blk-mq.c 67.2 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35
#include "blk-mq-sched.h"
36 37 38 39 40 41 42

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
43
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44
{
45 46 47
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
48 49
}

50 51 52 53 54 55
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
56 57
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 59 60 61 62
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
63
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 65
}

66
void blk_mq_freeze_queue_start(struct request_queue *q)
67
{
68
	int freeze_depth;
69

70 71
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
72
		percpu_ref_kill(&q->q_usage_counter);
73
		blk_mq_run_hw_queues(q, false);
74
	}
75
}
76
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77 78 79

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
80
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 82
}

83 84 85 86
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
87
void blk_freeze_queue(struct request_queue *q)
88
{
89 90 91 92 93 94 95
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
96 97 98
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
99 100 101 102 103 104 105 106 107

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
108
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109

110
void blk_mq_unfreeze_queue(struct request_queue *q)
111
{
112
	int freeze_depth;
113

114 115 116
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
117
		percpu_ref_reinit(&q->q_usage_counter);
118
		wake_up_all(&q->mq_freeze_wq);
119
	}
120
}
121
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

150 151 152 153 154 155 156 157
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
158 159 160 161 162 163 164

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
165 166
}

167 168 169 170 171 172
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

173 174
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
175
{
176 177 178
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
179
	rq->mq_ctx = ctx;
180
	rq->cmd_flags = op;
181 182
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
183 184 185 186 187 188
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
189
	rq->start_time = jiffies;
190 191
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
192
	set_start_time_ns(rq);
193 194 195 196 197 198 199 200 201 202 203 204
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
205 206
	rq->timeout = 0;

207 208 209 210
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

211
	ctx->rq_dispatched[op_is_sync(op)]++;
212
}
213
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
214

215 216
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
217 218 219 220
{
	struct request *rq;
	unsigned int tag;

221
	tag = blk_mq_get_tag(data);
222
	if (tag != BLK_MQ_TAG_FAIL) {
223 224 225
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
226

227 228 229 230
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
231 232 233 234
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
235 236 237 238
			rq->tag = tag;
			rq->internal_tag = -1;
		}

239
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
240 241 242 243 244
		return rq;
	}

	return NULL;
}
245
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
246

247 248
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
249
{
250
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
251
	struct request *rq;
252
	int ret;
253

254
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
255 256
	if (ret)
		return ERR_PTR(ret);
257

258
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
259

260 261 262 263
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
264
		return ERR_PTR(-EWOULDBLOCK);
265 266 267 268

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
269 270
	return rq;
}
271
EXPORT_SYMBOL(blk_mq_alloc_request);
272

M
Ming Lin 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

298 299 300 301
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
302
	hctx = q->queue_hw_ctx[hctx_idx];
303 304 305 306
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
307 308 309
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
310
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
311
	if (!rq) {
312 313
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
314 315 316
	}

	return rq;
317 318 319 320

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
321 322 323
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

324 325
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
326
{
327
	const int sched_tag = rq->internal_tag;
328 329
	struct request_queue *q = rq->q;

330
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
331
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
332 333

	wbt_done(q->rq_wb, &rq->issue_stat);
334
	rq->rq_flags = 0;
335

336
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
337
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
338 339 340 341
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
342
	blk_mq_sched_restart_queues(hctx);
343
	blk_queue_exit(q);
344 345
}

346
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
347
				     struct request *rq)
348 349 350 351
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
352 353 354 355 356 357
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
358 359 360 361
}

void blk_mq_free_request(struct request *rq)
{
362
	blk_mq_sched_put_request(rq);
363
}
J
Jens Axboe 已提交
364
EXPORT_SYMBOL_GPL(blk_mq_free_request);
365

366
inline void __blk_mq_end_request(struct request *rq, int error)
367
{
M
Ming Lei 已提交
368 369
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
370
	if (rq->end_io) {
J
Jens Axboe 已提交
371
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
372
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
373 374 375
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
376
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
377
	}
378
}
379
EXPORT_SYMBOL(__blk_mq_end_request);
380

381
void blk_mq_end_request(struct request *rq, int error)
382 383 384
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
385
	__blk_mq_end_request(rq, error);
386
}
387
EXPORT_SYMBOL(blk_mq_end_request);
388

389
static void __blk_mq_complete_request_remote(void *data)
390
{
391
	struct request *rq = data;
392

393
	rq->q->softirq_done_fn(rq);
394 395
}

396
static void blk_mq_ipi_complete_request(struct request *rq)
397 398
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
399
	bool shared = false;
400 401
	int cpu;

C
Christoph Hellwig 已提交
402
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
403 404 405
		rq->q->softirq_done_fn(rq);
		return;
	}
406 407

	cpu = get_cpu();
C
Christoph Hellwig 已提交
408 409 410 411
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
412
		rq->csd.func = __blk_mq_complete_request_remote;
413 414
		rq->csd.info = rq;
		rq->csd.flags = 0;
415
		smp_call_function_single_async(ctx->cpu, &rq->csd);
416
	} else {
417
		rq->q->softirq_done_fn(rq);
418
	}
419 420
	put_cpu();
}
421

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

437
static void __blk_mq_complete_request(struct request *rq)
438 439 440
{
	struct request_queue *q = rq->q;

441 442
	blk_mq_stat_add(rq);

443
	if (!q->softirq_done_fn)
444
		blk_mq_end_request(rq, rq->errors);
445 446 447 448
	else
		blk_mq_ipi_complete_request(rq);
}

449 450 451 452 453 454 455 456
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
457
void blk_mq_complete_request(struct request *rq, int error)
458
{
459 460 461
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
462
		return;
463 464
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
465
		__blk_mq_complete_request(rq);
466
	}
467 468
}
EXPORT_SYMBOL(blk_mq_complete_request);
469

470 471 472 473 474 475
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

476
void blk_mq_start_request(struct request *rq)
477 478 479
{
	struct request_queue *q = rq->q;

480 481
	blk_mq_sched_started_request(rq);

482 483
	trace_block_rq_issue(q, rq);

484 485 486
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
487
		wbt_issue(q->rq_wb, &rq->issue_stat);
488 489
	}

490
	blk_add_timer(rq);
491

492 493 494 495 496 497
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

498 499 500 501 502 503
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
504 505 506 507
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
508 509 510 511 512 513 514 515 516

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
517
}
518
EXPORT_SYMBOL(blk_mq_start_request);
519

520
static void __blk_mq_requeue_request(struct request *rq)
521 522 523 524
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
525
	wbt_requeue(q->rq_wb, &rq->issue_stat);
526
	blk_mq_sched_requeue_request(rq);
527

528 529 530 531
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
532 533
}

534
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
535 536 537 538
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
539
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
540 541 542
}
EXPORT_SYMBOL(blk_mq_requeue_request);

543 544 545
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
546
		container_of(work, struct request_queue, requeue_work.work);
547 548 549 550 551 552 553 554 555
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
556
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
557 558
			continue;

559
		rq->rq_flags &= ~RQF_SOFTBARRIER;
560
		list_del_init(&rq->queuelist);
561
		blk_mq_sched_insert_request(rq, true, false, false, true);
562 563 564 565 566
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
567
		blk_mq_sched_insert_request(rq, false, false, false, true);
568 569
	}

570
	blk_mq_run_hw_queues(q, false);
571 572
}

573 574
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
575 576 577 578 579 580 581 582
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
583
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
584 585 586

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
587
		rq->rq_flags |= RQF_SOFTBARRIER;
588 589 590 591 592
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
593 594 595

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
596 597 598 599 600
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
601
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
602 603 604
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

605 606 607 608 609 610 611 612
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

633 634
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
635 636
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
637
		return tags->rqs[tag];
638
	}
639 640

	return NULL;
641 642 643
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

644
struct blk_mq_timeout_data {
645 646
	unsigned long next;
	unsigned int next_set;
647 648
};

649
void blk_mq_rq_timed_out(struct request *req, bool reserved)
650
{
J
Jens Axboe 已提交
651
	const struct blk_mq_ops *ops = req->q->mq_ops;
652
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
653 654 655 656 657 658 659 660 661 662

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
663 664
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
665

666
	if (ops->timeout)
667
		ret = ops->timeout(req, reserved);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
683
}
684

685 686 687 688
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
689

690 691 692 693 694
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
695 696 697 698
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
699
		return;
700
	}
701

702 703
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
704
			blk_mq_rq_timed_out(rq, reserved);
705 706 707 708
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
709 710
}

711
static void blk_mq_timeout_work(struct work_struct *work)
712
{
713 714
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
715 716 717 718 719
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
720

721 722 723 724 725 726 727 728 729 730 731 732 733 734
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
735 736
		return;

737
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
738

739 740 741
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
742
	} else {
743 744
		struct blk_mq_hw_ctx *hctx;

745 746 747 748 749
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
750
	}
751
	blk_queue_exit(q);
752 753 754 755 756 757 758 759 760 761 762 763 764 765
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
766
		bool merged = false;
767 768 769 770 771 772 773

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

774 775 776 777
		switch (blk_try_merge(rq, bio)) {
		case ELEVATOR_BACK_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_back_merge(q, rq, bio);
778
			break;
779 780 781
		case ELEVATOR_FRONT_MERGE:
			if (blk_mq_sched_allow_merge(q, rq, bio))
				merged = bio_attempt_front_merge(q, rq, bio);
782
			break;
783 784
		default:
			continue;
785
		}
786 787 788 789

		if (merged)
			ctx->rq_merged++;
		return merged;
790 791 792 793 794
	}

	return false;
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

813 814 815 816
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
817
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
818
{
819 820 821 822
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
823

824
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
825
}
826
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
827

828 829 830 831
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
832

833
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
834 835
}

836 837
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (blk_mq_hctx_stopped(data.hctx))
		return false;

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
857 858 859 860
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
861 862 863 864 865 866 867
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				  struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

907
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
908 909 910
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
911 912
	LIST_HEAD(driver_list);
	struct list_head *dptr;
913
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
914

915 916 917 918 919 920
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

921 922 923
	/*
	 * Now process all the entries, sending them to the driver.
	 */
924
	queued = 0;
925
	while (!list_empty(list)) {
926
		struct blk_mq_queue_data bd;
927

928
		rq = list_first_entry(list, struct request, queuelist);
929 930 931
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
932 933 934 935 936 937 938

			/*
			 * We failed getting a driver tag. Mark the queue(s)
			 * as needing a restart. Retry getting a tag again,
			 * in case the needed IO completed right before we
			 * marked the queue as needing a restart.
			 */
939
			blk_mq_sched_mark_restart(hctx);
940 941
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
				break;
942
		}
943 944
		list_del_init(&rq->queuelist);

945 946
		bd.rq = rq;
		bd.list = dptr;
947
		bd.last = list_empty(list);
948 949

		ret = q->mq_ops->queue_rq(hctx, &bd);
950 951 952
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
953
			break;
954
		case BLK_MQ_RQ_QUEUE_BUSY:
955
			blk_mq_put_driver_tag(hctx, rq);
956
			list_add(&rq->queuelist, list);
957
			__blk_mq_requeue_request(rq);
958 959 960 961
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
962
			rq->errors = -EIO;
963
			blk_mq_end_request(rq, rq->errors);
964 965 966 967 968
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
969 970 971 972 973

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
974
		if (!dptr && list->next != list->prev)
975
			dptr = &driver_list;
976 977
	}

978
	hctx->dispatched[queued_to_index(queued)]++;
979 980 981 982 983

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
984
	if (!list_empty(list)) {
985
		spin_lock(&hctx->lock);
986
		list_splice_init(list, &hctx->dispatch);
987
		spin_unlock(&hctx->lock);
988

989 990 991 992 993 994 995 996
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
997 998 999 1000 1001 1002
		 *
		 * If RESTART is set, then let completion restart the queue
		 * instead of potentially looping here.
		 */
		if (!blk_mq_sched_needs_restart(hctx))
			blk_mq_run_hw_queue(hctx, true);
1003
	}
1004 1005 1006 1007

	return ret != BLK_MQ_RQ_QUEUE_BUSY;
}

1008 1009 1010 1011 1012 1013 1014 1015 1016
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1017
		blk_mq_sched_dispatch_requests(hctx);
1018 1019 1020
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1021
		blk_mq_sched_dispatch_requests(hctx);
1022 1023 1024 1025
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1026 1027 1028 1029 1030 1031 1032 1033
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1034 1035
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1036 1037

	if (--hctx->next_cpu_batch <= 0) {
1038
		int next_cpu;
1039 1040 1041 1042 1043 1044 1045 1046 1047

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1048
	return hctx->next_cpu;
1049 1050
}

1051 1052
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1053 1054
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1055 1056
		return;

1057
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1058 1059
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1060
			__blk_mq_run_hw_queue(hctx);
1061
			put_cpu();
1062 1063
			return;
		}
1064

1065
		put_cpu();
1066
	}
1067

1068
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1069 1070
}

1071
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1072 1073 1074 1075 1076
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1077
		if (!blk_mq_hctx_has_pending(hctx) ||
1078
		    blk_mq_hctx_stopped(hctx))
1079 1080
			continue;

1081
		blk_mq_run_hw_queue(hctx, async);
1082 1083
	}
}
1084
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1085

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1106 1107
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1108
	cancel_work(&hctx->run_work);
1109
	cancel_delayed_work(&hctx->delay_work);
1110 1111 1112 1113
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1124 1125 1126
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1127

1128
	blk_mq_run_hw_queue(hctx, false);
1129 1130 1131
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1152
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1153 1154 1155 1156
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1157 1158
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1159 1160 1161
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1162
static void blk_mq_run_work_fn(struct work_struct *work)
1163 1164 1165
{
	struct blk_mq_hw_ctx *hctx;

1166
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1167

1168 1169 1170
	__blk_mq_run_hw_queue(hctx);
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1183 1184
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1185

1186
	blk_mq_stop_hw_queue(hctx);
1187 1188
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1189 1190 1191
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1192 1193 1194
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1195
{
J
Jens Axboe 已提交
1196 1197
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1198 1199
	trace_block_rq_insert(hctx->queue, rq);

1200 1201 1202 1203
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1204
}
1205

1206 1207
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1208 1209 1210
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1211
	__blk_mq_insert_req_list(hctx, rq, at_head);
1212 1213 1214
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1215 1216
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1228
		BUG_ON(rq->mq_ctx != ctx);
1229
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1230
		__blk_mq_insert_req_list(hctx, rq, false);
1231
	}
1232
	blk_mq_hctx_mark_pending(hctx, ctx);
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1269 1270 1271 1272
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1289 1290 1291
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1292 1293 1294 1295 1296 1297
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1298

1299
	blk_account_io_start(rq, true);
1300 1301
}

1302 1303 1304 1305 1306 1307
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1308 1309 1310
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1311
{
1312
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1313 1314 1315 1316 1317 1318 1319
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1320 1321
		struct request_queue *q = hctx->queue;

1322 1323 1324 1325 1326
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1327

1328
		spin_unlock(&ctx->lock);
1329
		__blk_mq_finish_request(hctx, ctx, rq);
1330
		return true;
1331
	}
1332
}
1333

1334 1335
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1336 1337 1338 1339
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1340 1341
}

1342
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1343 1344 1345 1346 1347 1348 1349
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1350 1351 1352
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1353

1354
	if (q->elevator)
1355 1356
		goto insert;

1357 1358 1359 1360 1361
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1362 1363 1364 1365 1366 1367
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1368 1369
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1370
		return;
1371
	}
1372

1373 1374 1375 1376 1377 1378
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1379
		return;
1380
	}
1381

1382
insert:
1383
	blk_mq_sched_insert_request(rq, false, true, true, false);
1384 1385
}

1386 1387 1388 1389 1390
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1391
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1392
{
1393
	const int is_sync = op_is_sync(bio->bi_opf);
1394
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1395
	struct blk_mq_alloc_data data = { .flags = 0 };
1396
	struct request *rq;
1397
	unsigned int request_count = 0, srcu_idx;
1398
	struct blk_plug *plug;
1399
	struct request *same_queue_rq = NULL;
1400
	blk_qc_t cookie;
J
Jens Axboe 已提交
1401
	unsigned int wb_acct;
1402 1403 1404 1405

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1406
		bio_io_error(bio);
1407
		return BLK_QC_T_NONE;
1408 1409
	}

1410 1411
	blk_queue_split(q, &bio, q->bio_split);

1412 1413 1414
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1415

1416 1417 1418
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1419 1420
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1421 1422 1423
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1424 1425
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1426
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1427 1428 1429
	}

	wbt_track(&rq->issue_stat, wb_acct);
1430

1431
	cookie = request_to_qc_t(data.hctx, rq);
1432 1433

	if (unlikely(is_flush_fua)) {
1434
		blk_mq_put_ctx(data.ctx);
1435
		blk_mq_bio_to_request(rq, bio);
1436
		blk_mq_get_driver_tag(rq, NULL, true);
1437
		blk_insert_flush(rq);
1438 1439
		blk_mq_run_hw_queue(data.hctx, true);
		goto done;
1440 1441
	}

1442
	plug = current->plug;
1443 1444 1445 1446 1447
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1448 1449 1450
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1451 1452 1453 1454

		blk_mq_bio_to_request(rq, bio);

		/*
1455
		 * We do limited plugging. If the bio can be merged, do that.
1456 1457
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1458
		 */
1459
		if (plug) {
1460 1461
			/*
			 * The plug list might get flushed before this. If that
1462 1463 1464
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1465 1466
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1467
				list_del_init(&old_rq->queuelist);
1468
			}
1469 1470 1471 1472 1473
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1474
			goto done;
1475 1476 1477

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1478
			blk_mq_try_issue_directly(old_rq, &cookie);
1479 1480 1481
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1482
			blk_mq_try_issue_directly(old_rq, &cookie);
1483 1484
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1485
		goto done;
1486 1487
	}

1488 1489 1490
	if (q->elevator) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1491
		blk_mq_sched_insert_request(rq, false, true,
1492
						!is_sync || is_flush_fua, true);
1493 1494
		goto done;
	}
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1505 1506
done:
	return cookie;
1507 1508 1509 1510 1511 1512
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1513
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1514
{
1515
	const int is_sync = op_is_sync(bio->bi_opf);
1516
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1517 1518
	struct blk_plug *plug;
	unsigned int request_count = 0;
1519
	struct blk_mq_alloc_data data = { .flags = 0 };
1520
	struct request *rq;
1521
	blk_qc_t cookie;
J
Jens Axboe 已提交
1522
	unsigned int wb_acct;
1523 1524 1525 1526

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1527
		bio_io_error(bio);
1528
		return BLK_QC_T_NONE;
1529 1530
	}

1531 1532
	blk_queue_split(q, &bio, q->bio_split);

1533 1534 1535 1536 1537
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1538

1539 1540 1541
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1542 1543
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1544 1545 1546
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1547 1548
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1549
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1550 1551 1552
	}

	wbt_track(&rq->issue_stat, wb_acct);
1553

1554
	cookie = request_to_qc_t(data.hctx, rq);
1555 1556

	if (unlikely(is_flush_fua)) {
1557
		blk_mq_put_ctx(data.ctx);
1558
		blk_mq_bio_to_request(rq, bio);
1559
		blk_mq_get_driver_tag(rq, NULL, true);
1560
		blk_insert_flush(rq);
1561 1562
		blk_mq_run_hw_queue(data.hctx, true);
		goto done;
1563 1564 1565 1566 1567 1568 1569
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1570 1571
	plug = current->plug;
	if (plug) {
1572 1573
		struct request *last = NULL;

1574
		blk_mq_bio_to_request(rq, bio);
1575 1576 1577 1578 1579 1580 1581

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1582
		if (!request_count)
1583
			trace_block_plug(q);
1584 1585
		else
			last = list_entry_rq(plug->mq_list.prev);
1586 1587 1588

		blk_mq_put_ctx(data.ctx);

1589 1590
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1591 1592
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1593
		}
1594

1595
		list_add_tail(&rq->queuelist, &plug->mq_list);
1596
		return cookie;
1597 1598
	}

1599 1600 1601
	if (q->elevator) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1602
		blk_mq_sched_insert_request(rq, false, true,
1603
						!is_sync || is_flush_fua, true);
1604 1605
		goto done;
	}
1606 1607 1608 1609 1610 1611 1612 1613
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1614 1615
	}

1616
	blk_mq_put_ctx(data.ctx);
1617
done:
1618
	return cookie;
1619 1620
}

1621 1622
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1623
{
1624
	struct page *page;
1625

1626
	if (tags->rqs && set->ops->exit_request) {
1627
		int i;
1628

1629
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1630 1631 1632
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1633
				continue;
J
Jens Axboe 已提交
1634
			set->ops->exit_request(set->driver_data, rq,
1635
						hctx_idx, i);
J
Jens Axboe 已提交
1636
			tags->static_rqs[i] = NULL;
1637
		}
1638 1639
	}

1640 1641
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1642
		list_del_init(&page->lru);
1643 1644 1645 1646 1647
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1648 1649
		__free_pages(page, page->private);
	}
1650
}
1651

1652 1653
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1654
	kfree(tags->rqs);
1655
	tags->rqs = NULL;
J
Jens Axboe 已提交
1656 1657
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1658

1659
	blk_mq_free_tags(tags);
1660 1661
}

1662 1663 1664 1665
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1666
{
1667
	struct blk_mq_tags *tags;
1668

1669
	tags = blk_mq_init_tags(nr_tags, reserved_tags,
S
Shaohua Li 已提交
1670 1671
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1672 1673
	if (!tags)
		return NULL;
1674

1675
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1676
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1677
				 set->numa_node);
1678 1679 1680 1681
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1682

J
Jens Axboe 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

	INIT_LIST_HEAD(&tags->page_list);

1708 1709 1710 1711
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1712
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1713
				cache_line_size());
1714
	left = rq_size * depth;
1715

1716
	for (i = 0; i < depth; ) {
1717 1718 1719 1720 1721
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1722
		while (this_order && left < order_to_size(this_order - 1))
1723 1724 1725
			this_order--;

		do {
1726
			page = alloc_pages_node(set->numa_node,
1727
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1728
				this_order);
1729 1730 1731 1732 1733 1734 1735 1736 1737
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1738
			goto fail;
1739 1740

		page->private = this_order;
1741
		list_add_tail(&page->lru, &tags->page_list);
1742 1743

		p = page_address(page);
1744 1745 1746 1747
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1748
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1749
		entries_per_page = order_to_size(this_order) / rq_size;
1750
		to_do = min(entries_per_page, depth - i);
1751 1752
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1753 1754 1755
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1756 1757
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1758
						rq, hctx_idx, i,
1759
						set->numa_node)) {
J
Jens Axboe 已提交
1760
					tags->static_rqs[i] = NULL;
1761
					goto fail;
1762
				}
1763 1764
			}

1765 1766 1767 1768
			p += rq_size;
			i++;
		}
	}
1769
	return 0;
1770

1771
fail:
1772 1773
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1774 1775
}

J
Jens Axboe 已提交
1776 1777 1778 1779 1780
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1781
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1782
{
1783
	struct blk_mq_hw_ctx *hctx;
1784 1785 1786
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1787
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1788
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1789 1790 1791 1792 1793 1794 1795 1796 1797

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1798
		return 0;
1799

J
Jens Axboe 已提交
1800 1801 1802
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1803 1804

	blk_mq_run_hw_queue(hctx, true);
1805
	return 0;
1806 1807
}

1808
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1809
{
1810 1811
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1812 1813
}

1814
/* hctx->ctxs will be freed in queue's release handler */
1815 1816 1817 1818
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1819 1820
	unsigned flush_start_tag = set->queue_depth;

1821 1822
	blk_mq_tag_idle(hctx);

1823 1824 1825 1826 1827
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1828 1829 1830
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1831 1832 1833
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1834
	blk_mq_remove_cpuhp(hctx);
1835
	blk_free_flush_queue(hctx->fq);
1836
	sbitmap_free(&hctx->ctx_map);
1837 1838
}

M
Ming Lei 已提交
1839 1840 1841 1842 1843 1844 1845 1846 1847
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1848
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1858
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1859 1860 1861
		free_cpumask_var(hctx->cpumask);
}

1862 1863 1864
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1865
{
1866
	int node;
1867
	unsigned flush_start_tag = set->queue_depth;
1868 1869 1870 1871 1872

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1873
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1874 1875 1876 1877 1878
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1879
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1880

1881
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1882 1883

	hctx->tags = set->tags[hctx_idx];
1884 1885

	/*
1886 1887
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1888
	 */
1889 1890 1891 1892
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1893

1894 1895
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1896
		goto free_ctxs;
1897

1898
	hctx->nr_ctx = 0;
1899

1900 1901 1902
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1903

1904 1905 1906
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1907

1908 1909 1910 1911 1912
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1913

1914 1915 1916
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1917
	return 0;
1918

1919 1920 1921 1922 1923
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1924
 free_bitmap:
1925
	sbitmap_free(&hctx->ctx_map);
1926 1927 1928
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1929
	blk_mq_remove_cpuhp(hctx);
1930 1931
	return -1;
}
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
1947 1948
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1949 1950 1951 1952 1953

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1954
		hctx = blk_mq_map_queue(q, i);
1955

1956 1957 1958 1959 1960
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1961
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1962 1963 1964
	}
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1987 1988 1989 1990 1991
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
1992 1993
}

1994 1995
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
1996
{
1997
	unsigned int i, hctx_idx;
1998 1999
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2000
	struct blk_mq_tag_set *set = q->tag_set;
2001

2002 2003 2004 2005 2006
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2007
	queue_for_each_hw_ctx(q, hctx, i) {
2008
		cpumask_clear(hctx->cpumask);
2009 2010 2011 2012 2013 2014
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2015
	for_each_possible_cpu(i) {
2016
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2017
		if (!cpumask_test_cpu(i, online_mask))
2018 2019
			continue;

2020 2021
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2022 2023
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2024 2025 2026 2027 2028 2029
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2030
			q->mq_map[i] = 0;
2031 2032
		}

2033
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2034
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2035

2036
		cpumask_set_cpu(i, hctx->cpumask);
2037 2038 2039
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2040

2041 2042
	mutex_unlock(&q->sysfs_lock);

2043
	queue_for_each_hw_ctx(q, hctx, i) {
2044
		/*
2045 2046
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2047 2048
		 */
		if (!hctx->nr_ctx) {
2049 2050 2051 2052
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2053 2054 2055
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2056
			hctx->tags = NULL;
2057 2058 2059
			continue;
		}

M
Ming Lei 已提交
2060 2061 2062
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2063 2064 2065 2066 2067
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2068
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2069

2070 2071 2072
		/*
		 * Initialize batch roundrobin counts
		 */
2073 2074 2075
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2076 2077
}

2078
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2079 2080 2081 2082
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2094 2095 2096

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2097
		queue_set_hctx_shared(q, shared);
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2108 2109 2110 2111 2112 2113
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2114 2115 2116 2117 2118 2119 2120 2121 2122
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2123 2124 2125 2126 2127 2128 2129 2130 2131

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2132
	list_add_tail(&q->tag_set_list, &set->tag_list);
2133

2134 2135 2136
	mutex_unlock(&set->tag_list_lock);
}

2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2148 2149
	blk_mq_sched_teardown(q);

2150
	/* hctx kobj stays in hctx */
2151 2152 2153 2154
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
2155
		kfree(hctx);
2156
	}
2157

2158 2159
	q->mq_map = NULL;

2160 2161 2162 2163 2164 2165
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2166
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2182 2183
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2184
{
K
Keith Busch 已提交
2185 2186
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2187

K
Keith Busch 已提交
2188
	blk_mq_sysfs_unregister(q);
2189
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2190
		int node;
2191

K
Keith Busch 已提交
2192 2193 2194 2195
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2196 2197
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2198
		if (!hctxs[i])
K
Keith Busch 已提交
2199
			break;
2200

2201
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2202 2203 2204 2205 2206
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2207

2208
		atomic_set(&hctxs[i]->nr_active, 0);
2209
		hctxs[i]->numa_node = node;
2210
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2211 2212 2213 2214 2215 2216 2217 2218

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2219
	}
K
Keith Busch 已提交
2220 2221 2222 2223
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2224 2225
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2242 2243 2244
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2245 2246
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2247
		goto err_exit;
K
Keith Busch 已提交
2248 2249 2250 2251 2252 2253

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2254
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2255 2256 2257 2258

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2259

2260
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2261
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2262 2263 2264

	q->nr_queues = nr_cpu_ids;

2265
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2266

2267 2268 2269
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2270 2271
	q->sg_reserved_size = INT_MAX;

2272
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2273 2274 2275
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2276 2277 2278 2279 2280
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2281 2282 2283 2284 2285
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2286 2287 2288 2289 2290
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2291 2292
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2293

2294
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2295

2296
	get_online_cpus();
2297 2298
	mutex_lock(&all_q_mutex);

2299
	list_add_tail(&q->all_q_node, &all_q_list);
2300
	blk_mq_add_queue_tag_set(set, q);
2301
	blk_mq_map_swqueue(q, cpu_online_mask);
2302

2303
	mutex_unlock(&all_q_mutex);
2304
	put_online_cpus();
2305

2306 2307 2308 2309 2310 2311 2312 2313
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2314
	return q;
2315

2316
err_hctxs:
K
Keith Busch 已提交
2317
	kfree(q->queue_hw_ctx);
2318
err_percpu:
K
Keith Busch 已提交
2319
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2320 2321
err_exit:
	q->mq_ops = NULL;
2322 2323
	return ERR_PTR(-ENOMEM);
}
2324
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2325 2326 2327

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2328
	struct blk_mq_tag_set	*set = q->tag_set;
2329

2330 2331 2332 2333
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2334 2335
	wbt_exit(q);

2336 2337
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2338 2339
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2340 2341 2342
}

/* Basically redo blk_mq_init_queue with queue frozen */
2343 2344
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2345
{
2346
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2347

2348 2349
	blk_mq_sysfs_unregister(q);

2350 2351 2352 2353 2354 2355
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2356
	blk_mq_map_swqueue(q, online_mask);
2357

2358
	blk_mq_sysfs_register(q);
2359 2360
}

2361 2362 2363 2364 2365 2366 2367 2368
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2369 2370 2371 2372
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2373 2374 2375 2376 2377 2378 2379 2380 2381
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2382
	list_for_each_entry(q, &all_q_list, all_q_node)
2383 2384
		blk_mq_freeze_queue_wait(q);

2385
	list_for_each_entry(q, &all_q_list, all_q_node)
2386
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2387 2388 2389 2390

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2391
	mutex_unlock(&all_q_mutex);
2392 2393 2394 2395
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2396
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2412 2413 2414 2415
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2416 2417 2418 2419 2420 2421 2422
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2423 2424
}

2425 2426 2427 2428
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2429 2430
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2431 2432 2433 2434 2435 2436
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2437
		blk_mq_free_rq_map(set->tags[i]);
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2477 2478 2479 2480 2481 2482
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2483 2484
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2485 2486
	int ret;

B
Bart Van Assche 已提交
2487 2488
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2489 2490
	if (!set->nr_hw_queues)
		return -EINVAL;
2491
	if (!set->queue_depth)
2492 2493 2494 2495
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2496
	if (!set->ops->queue_rq)
2497 2498
		return -EINVAL;

2499 2500 2501 2502 2503
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2504

2505 2506 2507 2508 2509 2510 2511 2512 2513
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2514 2515 2516 2517 2518
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2519

K
Keith Busch 已提交
2520
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2521 2522
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2523
		return -ENOMEM;
2524

2525 2526 2527
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2528 2529 2530
	if (!set->mq_map)
		goto out_free_tags;

2531 2532 2533 2534 2535 2536 2537 2538 2539
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2540
		goto out_free_mq_map;
2541

2542 2543 2544
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2545
	return 0;
2546 2547 2548 2549 2550

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2551 2552
	kfree(set->tags);
	set->tags = NULL;
2553
	return ret;
2554 2555 2556 2557 2558 2559 2560
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2561 2562
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2563

2564 2565 2566
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2567
	kfree(set->tags);
2568
	set->tags = NULL;
2569 2570 2571
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2572 2573 2574 2575 2576 2577
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2578
	if (!set)
2579 2580
		return -EINVAL;

2581 2582 2583
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2584 2585
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2586 2587
		if (!hctx->tags)
			continue;
2588 2589 2590 2591
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2592 2593 2594 2595 2596 2597 2598 2599
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2600 2601 2602 2603 2604 2605 2606
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2607 2608 2609
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2610 2611 2612
	return ret;
}

K
Keith Busch 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2679
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2680
				     struct blk_mq_hw_ctx *hctx,
2681 2682 2683 2684
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2685
	unsigned int nsecs;
2686 2687
	ktime_t kt;

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2706 2707 2708 2709 2710 2711 2712 2713
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2714
	kt = nsecs;
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2737 2738 2739 2740 2741
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2742 2743 2744 2745 2746 2747 2748
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2749
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2750 2751
		return true;

J
Jens Axboe 已提交
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2795 2796 2797 2798
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2799 2800 2801 2802 2803

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2814 2815
static int __init blk_mq_init(void)
{
2816 2817
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2818

2819 2820 2821
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2822 2823 2824
	return 0;
}
subsys_initcall(blk_mq_init);