amd_iommu.c 105.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/dma-direct.h>
32
#include <linux/iommu-helper.h>
33
#include <linux/iommu.h>
34
#include <linux/delay.h>
35
#include <linux/amd-iommu.h>
36 37
#include <linux/notifier.h>
#include <linux/export.h>
38 39
#include <linux/irq.h>
#include <linux/msi.h>
40
#include <linux/dma-contiguous.h>
41
#include <linux/irqdomain.h>
42
#include <linux/percpu.h>
43
#include <linux/iova.h>
44 45 46 47
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
48
#include <asm/msidef.h>
49
#include <asm/proto.h>
50
#include <asm/iommu.h>
51
#include <asm/gart.h>
52
#include <asm/dma.h>
53 54 55

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
56
#include "irq_remapping.h"
57

58 59
#define AMD_IOMMU_MAPPING_ERROR	0

60 61
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

62
#define LOOP_TIMEOUT	100000
63

64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84
static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
85
static DEFINE_SPINLOCK(pd_bitmap_lock);
86

87
/* List of all available dev_data structures */
88
static LLIST_HEAD(dev_data_list);
89

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116
static void detach_device(struct device *dev);
117
static void iova_domain_flush_tlb(struct iova_domain *iovad);
118

119 120 121 122 123 124 125
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

126 127
	/* IOVA RB-Tree */
	struct iova_domain iovad;
128 129
};

130 131 132
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

133 134 135 136 137 138
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

139 140
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
141
{
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
157 158
}

159
static inline u16 get_pci_device_id(struct device *dev)
160 161 162 163 164 165
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

193 194 195 196 197
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

198 199 200 201 202 203
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

204
static struct iommu_dev_data *alloc_dev_data(u16 devid)
205 206 207 208 209 210 211
{
	struct iommu_dev_data *dev_data;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

212
	dev_data->devid = devid;
213 214
	ratelimit_default_init(&dev_data->rs);

215
	llist_add(&dev_data->dev_data_list, &dev_data_list);
216 217 218
	return dev_data;
}

219 220 221
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
222
	struct llist_node *node;
223

224 225
	if (llist_empty(&dev_data_list))
		return NULL;
226

227 228
	node = dev_data_list.first;
	llist_for_each_entry(dev_data, node, dev_data_list) {
229
		if (dev_data->devid == devid)
230
			return dev_data;
231 232
	}

233
	return NULL;
234 235
}

236 237 238 239 240 241 242 243 244 245 246
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

247
	/* The callers make sure that get_device_id() does not fail here */
248
	devid = get_device_id(dev);
249 250 251 252 253

	/* For ACPI HID devices, we simply return the devid as such */
	if (!dev_is_pci(dev))
		return devid;

254
	ivrs_alias = amd_iommu_alias_table[devid];
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
295
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
296 297 298 299 300 301 302 303
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

304 305 306
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
307
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
308 309 310

	dev_data = search_dev_data(devid);

311
	if (dev_data == NULL) {
312
		dev_data = alloc_dev_data(devid);
313 314
		if (!dev_data)
			return NULL;
315

316 317 318 319
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

320 321 322
	return dev_data;
}

323
struct iommu_dev_data *get_dev_data(struct device *dev)
324 325 326
{
	return dev->archdata.iommu;
}
327
EXPORT_SYMBOL(get_dev_data);
328

329 330 331 332
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
333
{
334
	struct acpihid_map_entry *p, *entry = NULL;
335
	int devid;
336 337 338 339 340 341 342 343 344 345 346 347

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
348 349
	else
		iommu_group_ref_get(entry->group);
350 351

	return entry->group;
352 353
}

354 355 356 357
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
358 359
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
360 361 362
	};
	int i, pos;

G
Gil Kupfer 已提交
363 364 365
	if (pci_ats_disabled())
		return false;

366 367 368 369 370 371 372 373 374
	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

375 376 377 378 379 380 381 382 383
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

384 385 386 387 388 389
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
390
	int devid;
391 392 393 394 395

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
396
	if (devid < 0)
397
		return false;
398 399 400 401 402 403 404 405 406 407 408

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

409
static void init_iommu_group(struct device *dev)
410 411 412
{
	struct iommu_group *group;

413
	group = iommu_group_get_for_dev(dev);
414 415 416 417
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
418 419 420 421 422
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
423
	struct amd_iommu *iommu;
424
	int devid;
425 426 427 428

	if (dev->archdata.iommu)
		return 0;

429
	devid = get_device_id(dev);
430
	if (devid < 0)
431 432
		return devid;

433 434
	iommu = amd_iommu_rlookup_table[devid];

435
	dev_data = find_dev_data(devid);
436 437 438
	if (!dev_data)
		return -ENOMEM;

439 440
	dev_data->alias = get_alias(dev);

441 442 443 444 445 446 447 448
	/*
	 * By default we use passthrough mode for IOMMUv2 capable device.
	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
	 * invalid address), we ignore the capability for the device so
	 * it'll be forced to go into translation mode.
	 */
	if ((iommu_pass_through || !amd_iommu_force_isolation) &&
	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
449 450
		struct amd_iommu *iommu;

451
		iommu = amd_iommu_rlookup_table[dev_data->devid];
452 453 454
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

455 456
	dev->archdata.iommu = dev_data;

457
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
458

459 460 461
	return 0;
}

462 463
static void iommu_ignore_device(struct device *dev)
{
464 465
	u16 alias;
	int devid;
466 467

	devid = get_device_id(dev);
468
	if (devid < 0)
469 470
		return;

471
	alias = get_alias(dev);
472 473 474 475 476 477 478 479

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

480 481
static void iommu_uninit_device(struct device *dev)
{
482
	struct iommu_dev_data *dev_data;
483 484
	struct amd_iommu *iommu;
	int devid;
485

486
	devid = get_device_id(dev);
487
	if (devid < 0)
488
		return;
489

490 491
	iommu = amd_iommu_rlookup_table[devid];

492
	dev_data = search_dev_data(devid);
493 494 495
	if (!dev_data)
		return;

496 497 498
	if (dev_data->domain)
		detach_device(dev);

499
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
500

501 502
	iommu_group_remove_device(dev);

503
	/* Remove dma-ops */
504
	dev->dma_ops = NULL;
505

506
	/*
507 508
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
509
	 */
510
}
J
Joerg Roedel 已提交
511

512 513 514 515 516 517
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

518 519 520 521
static void dump_dte_entry(u16 devid)
{
	int i;

522 523
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
524 525 526
			amd_iommu_dev_table[devid].data[i]);
}

527 528
static void dump_command(unsigned long phys_addr)
{
529
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
530 531 532 533 534 535
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

536 537 538 539 540 541
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

542 543
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

560
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
561
{
562
	struct device *dev = iommu->iommu.dev;
563
	int type, devid, pasid, flags, tag;
564 565 566 567 568 569 570
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
571
	pasid   = PPR_PASID(*(u64 *)&event[0]);
572 573 574 575 576 577 578 579 580 581 582 583
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
584

585
	if (type == EVENT_TYPE_IO_FAULT) {
586
		amd_iommu_report_page_fault(devid, pasid, address, flags);
587 588
		return;
	} else {
589
		dev_err(dev, "AMD-Vi: Event logged [");
590
	}
591 592 593

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
594
		dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
595
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
596
			pasid, address, flags);
597
		dump_dte_entry(devid);
598 599
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
600 601 602 603
		dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
604 605
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
606
		dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
607
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
608
			pasid, address, flags);
609 610
		break;
	case EVENT_TYPE_ILL_CMD:
611
		dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
612
		dump_command(address);
613 614
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
615 616
		dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
			address, flags);
617 618
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
619
		dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
620 621
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address);
622 623
		break;
	case EVENT_TYPE_INV_DEV_REQ:
624
		dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
625
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
626
			pasid, address, flags);
627
		break;
628 629 630 631 632 633 634
	case EVENT_TYPE_INV_PPR_REQ:
		pasid = ((event[0] >> 16) & 0xFFFF)
			| ((event[1] << 6) & 0xF0000);
		tag = event[1] & 0x03FF;
		dev_err(dev, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			pasid, address, flags);
635 636
		break;
	default:
637
		dev_err(dev, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
638
			event[0], event[1], event[2], event[3]);
639
	}
640 641

	memset(__evt, 0, 4 * sizeof(u32));
642 643 644 645 646 647 648 649 650 651
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
652
		iommu_print_event(iommu, iommu->evt_buf + head);
653
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
654 655 656 657 658
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

659
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
704

705 706 707
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
708

709 710 711 712 713 714 715
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
716 717
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
718 719 720 721 722 723

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
724 725 726 727
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

788
irqreturn_t amd_iommu_int_thread(int irq, void *data)
789
{
790 791
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
792

793 794 795
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
796
			iommu->mmio_base + MMIO_STATUS_OFFSET);
797

798 799 800 801
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
802

803 804 805 806
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
807

808 809 810 811 812 813 814
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
830
	return IRQ_HANDLED;
831 832
}

833 834 835 836 837
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

838 839 840 841 842 843
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
862
			       struct iommu_cmd *cmd)
863 864 865
{
	u8 *target;

866 867 868 869
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
870 871 872 873 874

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
875
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
876
}
877

878
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
879
{
880 881
	u64 paddr = iommu_virt_to_phys((void *)address);

882 883
	WARN_ON(address & 0x7ULL);

884
	memset(cmd, 0, sizeof(*cmd));
885 886
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
887
	cmd->data[2] = 1;
888 889 890
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

891 892 893 894 895 896 897
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

898 899 900 901
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
902
	bool s;
903 904

	pages = iommu_num_pages(address, size, PAGE_SIZE);
905
	s     = false;
906 907 908 909 910 911 912

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
913
		s = true;
914 915 916 917 918 919 920 921 922 923 924
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
925
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
926 927 928
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

929 930 931 932
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
933
	bool s;
934 935

	pages = iommu_num_pages(address, size, PAGE_SIZE);
936
	s     = false;
937 938 939 940 941 942 943

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
944
		s = true;
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

960 961 962 963 964 965 966
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

967
	cmd->data[0]  = pasid;
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
986
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
987 988
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
989
	cmd->data[1] |= (pasid & 0xff) << 16;
990 991 992 993 994 995 996 997
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

998 999 1000 1001 1002 1003 1004
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1005
		cmd->data[1]  = pasid;
1006 1007 1008 1009 1010 1011 1012 1013
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1014 1015 1016 1017
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1018 1019
}

1020 1021 1022 1023 1024 1025 1026
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1027 1028
/*
 * Writes the command to the IOMMUs command buffer and informs the
1029
 * hardware about the new command.
1030
 */
1031 1032 1033
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1034
{
1035
	unsigned int count = 0;
1036
	u32 left, next_tail;
1037

1038
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1039
again:
1040
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1041

1042
	if (left <= 0x20) {
1043 1044 1045 1046 1047 1048
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1049

1050 1051
			udelay(1);
		}
1052

1053 1054 1055
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1056 1057

		goto again;
1058 1059
	}

1060
	copy_cmd_to_buffer(iommu, cmd);
1061

1062
	/* Do we need to make sure all commands are processed? */
1063
	iommu->need_sync = sync;
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1075
	raw_spin_lock_irqsave(&iommu->lock, flags);
1076
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1077
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1078

1079
	return ret;
1080 1081
}

1082 1083 1084 1085 1086
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1087 1088 1089 1090
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1091
static int iommu_completion_wait(struct amd_iommu *iommu)
1092 1093
{
	struct iommu_cmd cmd;
1094
	unsigned long flags;
1095
	int ret;
1096

1097
	if (!iommu->need_sync)
1098
		return 0;
1099

1100

1101 1102
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1103
	raw_spin_lock_irqsave(&iommu->lock, flags);
1104 1105 1106 1107

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1108
	if (ret)
1109 1110 1111 1112 1113
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1114
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1115

1116
	return ret;
1117 1118
}

1119
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1120
{
1121
	struct iommu_cmd cmd;
1122

1123
	build_inv_dte(&cmd, devid);
1124

1125 1126
	return iommu_queue_command(iommu, &cmd);
}
1127

1128
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1129 1130
{
	u32 devid;
1131

1132 1133
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1134

1135 1136
	iommu_completion_wait(iommu);
}
1137

1138 1139 1140 1141
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1142
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1143 1144
{
	u32 dom_id;
1145

1146 1147 1148 1149 1150 1151
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1152

1153
	iommu_completion_wait(iommu);
1154 1155
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
{
	struct iommu_cmd cmd;

	build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			      dom_id, 1);
	iommu_queue_command(iommu, &cmd);

	iommu_completion_wait(iommu);
}

1167
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1168
{
1169
	struct iommu_cmd cmd;
1170

1171
	build_inv_all(&cmd);
1172

1173 1174 1175 1176
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1177 1178 1179 1180 1181 1182 1183 1184 1185
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1186
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1187 1188 1189 1190 1191 1192 1193 1194 1195
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1196 1197
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1198
	if (iommu_feature(iommu, FEATURE_IA)) {
1199
		amd_iommu_flush_all(iommu);
1200
	} else {
1201 1202 1203
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1204 1205 1206
	}
}

1207
/*
1208
 * Command send function for flushing on-device TLB
1209
 */
1210 1211
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1212 1213
{
	struct amd_iommu *iommu;
1214
	struct iommu_cmd cmd;
1215
	int qdep;
1216

1217 1218
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1219

1220
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1221 1222

	return iommu_queue_command(iommu, &cmd);
1223 1224
}

1225 1226 1227
/*
 * Command send function for invalidating a device table entry
 */
1228
static int device_flush_dte(struct iommu_dev_data *dev_data)
1229
{
1230
	struct amd_iommu *iommu;
1231
	u16 alias;
1232
	int ret;
1233

1234
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1235
	alias = dev_data->alias;
1236

1237
	ret = iommu_flush_dte(iommu, dev_data->devid);
1238 1239
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1240 1241 1242
	if (ret)
		return ret;

1243
	if (dev_data->ats.enabled)
1244
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1245 1246

	return ret;
1247 1248
}

1249 1250 1251 1252 1253
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1254 1255
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1256
{
1257
	struct iommu_dev_data *dev_data;
1258 1259
	struct iommu_cmd cmd;
	int ret = 0, i;
1260

1261
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1262

1263
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1264 1265 1266 1267 1268 1269 1270
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1271
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1272 1273
	}

1274 1275
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1276
		if (!dev_data->ats.enabled)
1277 1278
			continue;

1279
		ret |= device_flush_iotlb(dev_data, address, size);
1280 1281
	}

1282
	WARN_ON(ret);
1283 1284
}

1285 1286
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1287
{
1288
	__domain_flush_pages(domain, address, size, 0);
1289
}
1290

1291
/* Flush the whole IO/TLB for a given protection domain */
1292
static void domain_flush_tlb(struct protection_domain *domain)
1293
{
1294
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1295 1296
}

1297
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1298
static void domain_flush_tlb_pde(struct protection_domain *domain)
1299
{
1300
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1301 1302
}

1303
static void domain_flush_complete(struct protection_domain *domain)
1304
{
1305
	int i;
1306

1307
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1308
		if (domain && !domain->dev_iommu[i])
1309
			continue;
1310

1311 1312 1313 1314 1315
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1316
	}
1317 1318
}

1319

1320
/*
1321
 * This function flushes the DTEs for all devices in domain
1322
 */
1323
static void domain_flush_devices(struct protection_domain *domain)
1324
{
1325
	struct iommu_dev_data *dev_data;
1326

1327
	list_for_each_entry(dev_data, &domain->dev_list, list)
1328
		device_flush_dte(dev_data);
1329 1330
}

1331 1332 1333 1334 1335 1336 1337
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1357
					iommu_virt_to_phys(domain->pt_root));
1358 1359 1360 1361 1362 1363 1364 1365 1366
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1367
		      unsigned long page_size,
1368 1369 1370
		      u64 **pte_page,
		      gfp_t gfp)
{
1371
	int level, end_lvl;
1372
	u64 *pte, *page;
1373 1374

	BUG_ON(!is_power_of_2(page_size));
1375 1376 1377 1378

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1379 1380 1381 1382
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1383 1384

	while (level > end_lvl) {
1385 1386 1387 1388 1389
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1390 1391 1392
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1393

1394
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1395

1396 1397
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1398 1399 1400
				free_page((unsigned long)page);
				continue;
			}
1401 1402
		}

1403 1404 1405 1406
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1424 1425 1426
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1427 1428 1429 1430
{
	int level;
	u64 *pte;

1431 1432
	*page_size = 0;

1433 1434 1435
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1436 1437 1438
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1439

1440 1441 1442
	while (level > 0) {

		/* Not Present */
1443 1444 1445
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1446
		/* Large PTE */
1447 1448 1449
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1450 1451 1452 1453 1454

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1455 1456
		level -= 1;

1457
		/* Walk to the next level */
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1473 1474 1475 1476 1477
	}

	return pte;
}

1478 1479 1480 1481 1482 1483 1484
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1485 1486 1487
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1488
			  unsigned long page_size,
1489
			  int prot,
1490
			  gfp_t gfp)
1491
{
1492
	u64 __pte, *pte;
1493
	int i, count;
1494

1495 1496 1497
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1498
	if (!(prot & IOMMU_PROT_MASK))
1499 1500
		return -EINVAL;

1501
	count = PAGE_SIZE_PTE_COUNT(page_size);
1502
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1503

1504 1505 1506
	if (!pte)
		return -ENOMEM;

1507 1508 1509
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1510

1511
	if (count > 1) {
1512
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1513
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1514
	} else
1515
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1516 1517 1518 1519 1520 1521

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1522 1523
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1524

1525 1526
	update_domain(dom);

1527 1528 1529
	return 0;
}

1530 1531 1532
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1533
{
1534 1535
	unsigned long long unmapped;
	unsigned long unmap_size;
1536 1537 1538 1539 1540
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1541

1542 1543
	while (unmapped < page_size) {

1544 1545 1546 1547 1548 1549
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1550 1551 1552 1553 1554 1555 1556 1557
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1558
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1559

1560
	return unmapped;
1561 1562
}

1563 1564 1565
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1566
 * interface functions.
1567 1568
 *
 ****************************************************************************/
1569

1570

1571 1572 1573
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1574
{
1575
	unsigned long pfn = 0;
1576

1577
	pages = __roundup_pow_of_two(pages);
1578

1579 1580
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1581
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1582

1583
	if (!pfn)
1584 1585
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1586

1587
	return (pfn << PAGE_SHIFT);
1588 1589
}

1590 1591 1592
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1593
{
1594 1595
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1596

1597
	free_iova_fast(&dma_dom->iovad, address, pages);
1598 1599
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1635 1636 1637 1638
static u16 domain_id_alloc(void)
{
	int id;

1639
	spin_lock(&pd_bitmap_lock);
1640 1641 1642 1643 1644 1645
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
1646
	spin_unlock(&pd_bitmap_lock);
1647 1648 1649 1650

	return id;
}

1651 1652
static void domain_id_free(int id)
{
1653
	spin_lock(&pd_bitmap_lock);
1654 1655
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1656
	spin_unlock(&pd_bitmap_lock);
1657 1658
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1669
		/* PTE present? */				\
1670 1671 1672
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1673 1674 1675 1676 1677
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1690
static void free_pagetable(struct protection_domain *domain)
1691
{
1692
	unsigned long root = (unsigned long)domain->pt_root;
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1717 1718 1719
	}
}

1720 1721 1722 1723 1724 1725 1726 1727 1728
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1729
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1744
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1745 1746 1747 1748 1749

		free_gcr3_tbl_level1(ptr);
	}
}

1750 1751
static void free_gcr3_table(struct protection_domain *domain)
{
1752 1753 1754 1755
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1756 1757
	else
		BUG_ON(domain->glx != 0);
1758

1759 1760 1761
	free_page((unsigned long)domain->gcr3_tbl);
}

1762 1763 1764 1765
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1766 1767
}

1768
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1769
{
1770
	struct dma_ops_domain *dom;
1771

1772
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1773 1774 1775 1776

	dma_ops_domain_flush_tlb(dom);
}

1777 1778 1779 1780
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1781 1782 1783 1784 1785
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1786 1787
	del_domain_from_list(&dom->domain);

1788
	put_iova_domain(&dom->iovad);
1789

1790
	free_pagetable(&dom->domain);
1791

1792 1793 1794
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1795 1796 1797
	kfree(dom);
}

1798 1799
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1800
 * It also initializes the page table and the address allocator data
1801 1802
 * structures required for the dma_ops interface
 */
1803
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1804 1805 1806 1807 1808 1809 1810
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1811
	if (protection_domain_init(&dma_dom->domain))
1812
		goto free_dma_dom;
1813

1814
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1815
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1816
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1817 1818 1819
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1820
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1821

1822
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1823 1824
		goto free_dma_dom;

1825 1826
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1827

1828 1829
	add_domain_to_list(&dma_dom->domain);

1830 1831 1832 1833 1834 1835 1836 1837
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1838 1839 1840 1841 1842 1843 1844 1845 1846
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1847 1848
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1849
{
1850
	u64 pte_root = 0;
1851
	u64 flags = 0;
1852
	u32 old_domid;
1853

1854
	if (domain->mode != PAGE_MODE_NONE)
1855
		pte_root = iommu_virt_to_phys(domain->pt_root);
1856

1857 1858
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1859
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1860

1861 1862
	flags = amd_iommu_dev_table[devid].data[1];

1863 1864 1865
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1866 1867 1868 1869 1870 1871 1872
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1873
	if (domain->flags & PD_IOMMUV2_MASK) {
1874
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1899
	flags &= ~DEV_DOMID_MASK;
1900 1901
	flags |= domain->id;

1902
	old_domid = amd_iommu_dev_table[devid].data[1] & DEV_DOMID_MASK;
1903 1904
	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

	/*
	 * A kdump kernel might be replacing a domain ID that was copied from
	 * the previous kernel--if so, it needs to flush the translation cache
	 * entries for the old domain ID that is being overwritten
	 */
	if (old_domid) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		amd_iommu_flush_tlb_domid(iommu, old_domid);
	}
1916 1917 1918 1919 1920
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1921
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1922
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1923 1924

	amd_iommu_apply_erratum_63(devid);
1925 1926
}

1927 1928
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1929 1930
{
	struct amd_iommu *iommu;
1931
	u16 alias;
1932
	bool ats;
1933

1934
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1935
	alias = dev_data->alias;
1936
	ats   = dev_data->ats.enabled;
1937 1938 1939 1940 1941 1942 1943 1944 1945

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1946
	/* Update device table */
1947
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1948
	if (alias != dev_data->devid)
1949
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1950

1951
	device_flush_dte(dev_data);
1952 1953
}

1954
static void do_detach(struct iommu_dev_data *dev_data)
1955
{
1956
	struct protection_domain *domain = dev_data->domain;
1957
	struct amd_iommu *iommu;
1958
	u16 alias;
1959

1960
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1961
	alias = dev_data->alias;
1962

1963 1964 1965
	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1966
	clear_dte_entry(dev_data->devid);
1967 1968
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1969

1970
	/* Flush the DTE entry */
1971
	device_flush_dte(dev_data);
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981

	/* Flush IOTLB */
	domain_flush_tlb_pde(domain);

	/* Wait for the flushes to finish */
	domain_flush_complete(domain);

	/* decrease reference counters - needs to happen after the flushes */
	domain->dev_iommu[iommu->index] -= 1;
	domain->dev_cnt                 -= 1;
1982 1983 1984
}

/*
1985 1986
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
1987
 */
1988
static int __attach_device(struct iommu_dev_data *dev_data,
1989
			   struct protection_domain *domain)
1990
{
1991
	int ret;
1992

1993 1994 1995
	/* lock domain */
	spin_lock(&domain->lock);

1996
	ret = -EBUSY;
1997
	if (dev_data->domain != NULL)
1998
		goto out_unlock;
1999

2000
	/* Attach alias group root */
2001
	do_attach(dev_data, domain);
2002

2003 2004 2005 2006
	ret = 0;

out_unlock:

2007 2008
	/* ready */
	spin_unlock(&domain->lock);
2009

2010
	return ret;
2011
}
2012

2013 2014 2015 2016 2017 2018 2019 2020

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2021 2022 2023 2024 2025 2026
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2027
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2028 2029 2030
	if (!pos)
		return -EINVAL;

2031 2032 2033
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2034 2035 2036 2037

	return 0;
}

2038 2039
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2040 2041 2042 2043 2044 2045 2046 2047
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2059 2060
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2061 2062 2063
	if (ret)
		goto out_err;

2064 2065 2066 2067 2068 2069
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2083
/* FIXME: Move this to PCI code */
2084
#define PCI_PRI_TLP_OFF		(1 << 15)
2085

J
Joerg Roedel 已提交
2086
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2087
{
2088
	u16 status;
2089 2090
	int pos;

2091
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2092 2093 2094
	if (!pos)
		return false;

2095
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2096

2097
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2098 2099
}

2100
/*
2101 2102
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
2103
 */
2104 2105
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2106
{
2107
	struct pci_dev *pdev;
2108
	struct iommu_dev_data *dev_data;
2109
	unsigned long flags;
2110
	int ret;
2111

2112 2113
	dev_data = get_dev_data(dev);

2114 2115 2116 2117
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2118
	if (domain->flags & PD_IOMMUV2_MASK) {
2119
		if (!dev_data->passthrough)
2120 2121
			return -EINVAL;

2122 2123 2124
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2125

2126 2127 2128 2129
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2130 2131
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2132 2133 2134
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2135

2136
skip_ats_check:
2137
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2138
	ret = __attach_device(dev_data, domain);
2139
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2140

2141 2142 2143 2144 2145
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2146
	domain_flush_tlb_pde(domain);
2147 2148

	return ret;
2149 2150
}

2151 2152 2153
/*
 * Removes a device from a protection domain (unlocked)
 */
2154
static void __detach_device(struct iommu_dev_data *dev_data)
2155
{
2156
	struct protection_domain *domain;
2157

2158
	domain = dev_data->domain;
2159

2160
	spin_lock(&domain->lock);
2161

2162
	do_detach(dev_data);
2163

2164
	spin_unlock(&domain->lock);
2165 2166 2167 2168 2169
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2170
static void detach_device(struct device *dev)
2171
{
2172
	struct protection_domain *domain;
2173
	struct iommu_dev_data *dev_data;
2174 2175
	unsigned long flags;

2176
	dev_data = get_dev_data(dev);
2177
	domain   = dev_data->domain;
2178

2179 2180 2181 2182 2183 2184 2185 2186 2187
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (WARN_ON(!dev_data->domain))
		return;

2188
	/* lock device table */
2189
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2190
	__detach_device(dev_data);
2191
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2192

2193 2194 2195
	if (!dev_is_pci(dev))
		return;

2196
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2197 2198
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2199
		pci_disable_ats(to_pci_dev(dev));
2200 2201

	dev_data->ats.enabled = false;
2202
}
2203

2204
static int amd_iommu_add_device(struct device *dev)
2205
{
2206
	struct iommu_dev_data *dev_data;
2207
	struct iommu_domain *domain;
2208
	struct amd_iommu *iommu;
2209
	int ret, devid;
2210

2211
	if (!check_device(dev) || get_dev_data(dev))
2212
		return 0;
2213

2214
	devid = get_device_id(dev);
2215
	if (devid < 0)
2216 2217
		return devid;

2218
	iommu = amd_iommu_rlookup_table[devid];
2219

2220
	ret = iommu_init_device(dev);
2221 2222 2223 2224
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2225

2226
		iommu_ignore_device(dev);
2227
		dev->dma_ops = &dma_direct_ops;
2228 2229 2230
		goto out;
	}
	init_iommu_group(dev);
2231

2232
	dev_data = get_dev_data(dev);
2233

2234
	BUG_ON(!dev_data);
2235

2236
	if (iommu_pass_through || dev_data->iommu_v2)
2237
		iommu_request_dm_for_dev(dev);
2238

2239 2240
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2241
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2242
		dev_data->passthrough = true;
2243
	else
2244
		dev->dma_ops = &amd_iommu_dma_ops;
2245

2246
out:
2247 2248 2249 2250 2251
	iommu_completion_wait(iommu);

	return 0;
}

2252
static void amd_iommu_remove_device(struct device *dev)
2253
{
2254
	struct amd_iommu *iommu;
2255
	int devid;
2256 2257 2258 2259 2260

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2261
	if (devid < 0)
2262 2263
		return;

2264 2265 2266 2267
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2268 2269
}

2270 2271 2272 2273 2274 2275 2276 2277
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2291
static struct protection_domain *get_domain(struct device *dev)
2292
{
2293
	struct protection_domain *domain;
2294
	struct iommu_domain *io_domain;
2295

2296
	if (!check_device(dev))
2297
		return ERR_PTR(-EINVAL);
2298

2299
	domain = get_dev_data(dev)->domain;
2300 2301 2302 2303 2304 2305
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2306 2307 2308
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2309
	if (!dma_ops_domain(domain))
2310
		return ERR_PTR(-EBUSY);
2311

2312
	return domain;
2313 2314
}

2315 2316
static void update_device_table(struct protection_domain *domain)
{
2317
	struct iommu_dev_data *dev_data;
2318

2319
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2320 2321
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2322 2323 2324 2325 2326

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2327 2328
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2329
	}
2330 2331 2332 2333 2334 2335 2336 2337
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2338 2339 2340

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2341 2342 2343 2344

	domain->updated = false;
}

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2356

2357 2358
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2359 2360
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2361 2362
 * Must be called with the domain lock held.
 */
2363 2364 2365 2366
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2367
			       enum dma_data_direction direction,
2368
			       u64 dma_mask)
2369 2370
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2371
	dma_addr_t address, start, ret;
2372
	unsigned int pages;
2373
	int prot = 0;
2374 2375
	int i;

2376
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2377 2378
	paddr &= PAGE_MASK;

2379
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2380
	if (address == AMD_IOMMU_MAPPING_ERROR)
2381
		goto out;
2382

2383
	prot = dir2prot(direction);
2384

2385 2386
	start = address;
	for (i = 0; i < pages; ++i) {
2387 2388 2389
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2390 2391
			goto out_unmap;

2392 2393 2394 2395 2396
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2397
	if (unlikely(amd_iommu_np_cache)) {
2398
		domain_flush_pages(&dma_dom->domain, address, size);
2399 2400
		domain_flush_complete(&dma_dom->domain);
	}
2401

2402 2403
out:
	return address;
2404 2405 2406 2407 2408

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2409
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2410 2411
	}

2412 2413 2414 2415
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2416

2417
	return AMD_IOMMU_MAPPING_ERROR;
2418 2419
}

2420 2421 2422 2423
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2424
static void __unmap_single(struct dma_ops_domain *dma_dom,
2425 2426 2427 2428 2429 2430 2431
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2432
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2433 2434 2435 2436
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2437
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2438 2439 2440
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2441 2442 2443
	if (amd_iommu_unmap_flush) {
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
2444
		dma_ops_free_iova(dma_dom, dma_addr, pages);
J
Joerg Roedel 已提交
2445
	} else {
2446 2447
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2448
	}
2449 2450
}

2451 2452 2453
/*
 * The exported map_single function for dma_ops.
 */
2454 2455 2456
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2457
			   unsigned long attrs)
2458
{
2459
	phys_addr_t paddr = page_to_phys(page) + offset;
2460
	struct protection_domain *domain;
2461
	struct dma_ops_domain *dma_dom;
2462
	u64 dma_mask;
2463

2464 2465
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2466
		return (dma_addr_t)paddr;
2467
	else if (IS_ERR(domain))
2468
		return AMD_IOMMU_MAPPING_ERROR;
2469

2470
	dma_mask = *dev->dma_mask;
2471
	dma_dom = to_dma_ops_domain(domain);
2472

2473
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2474 2475
}

2476 2477 2478
/*
 * The exported unmap_single function for dma_ops.
 */
2479
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2480
		       enum dma_data_direction dir, unsigned long attrs)
2481 2482
{
	struct protection_domain *domain;
2483
	struct dma_ops_domain *dma_dom;
2484

2485 2486
	domain = get_domain(dev);
	if (IS_ERR(domain))
2487 2488
		return;

2489 2490 2491
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2492 2493
}

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2520 2521 2522 2523
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2524
static int map_sg(struct device *dev, struct scatterlist *sglist,
2525
		  int nelems, enum dma_data_direction direction,
2526
		  unsigned long attrs)
2527
{
2528
	int mapped_pages = 0, npages = 0, prot = 0, i;
2529
	struct protection_domain *domain;
2530
	struct dma_ops_domain *dma_dom;
2531
	struct scatterlist *s;
2532
	unsigned long address;
2533
	u64 dma_mask;
2534

2535
	domain = get_domain(dev);
2536
	if (IS_ERR(domain))
2537
		return 0;
2538

2539
	dma_dom  = to_dma_ops_domain(domain);
2540
	dma_mask = *dev->dma_mask;
2541

2542 2543 2544
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2545
	if (address == AMD_IOMMU_MAPPING_ERROR)
2546 2547 2548 2549 2550
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2551
	for_each_sg(sglist, s, nelems, i) {
2552 2553 2554 2555 2556
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2557

2558 2559 2560 2561 2562
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2563

2564 2565
			mapped_pages += 1;
		}
2566 2567
	}

2568 2569
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
2570 2571 2572 2573 2574 2575
		/*
		 * Add in the remaining piece of the scatter-gather offset that
		 * was masked out when we were determining the physical address
		 * via (sg_phys(s) & PAGE_MASK) earlier.
		 */
		s->dma_address += address + (s->offset & ~PAGE_MASK);
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2590

2591 2592 2593
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

2594
			if (--mapped_pages == 0)
2595 2596
				goto out_free_iova;
		}
2597 2598
	}

2599
out_free_iova:
2600
	free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2601 2602

out_err:
2603
	return 0;
2604 2605
}

2606 2607 2608 2609
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2610
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2611
		     int nelems, enum dma_data_direction dir,
2612
		     unsigned long attrs)
2613 2614
{
	struct protection_domain *domain;
2615
	struct dma_ops_domain *dma_dom;
2616 2617
	unsigned long startaddr;
	int npages = 2;
2618

2619 2620
	domain = get_domain(dev);
	if (IS_ERR(domain))
2621 2622
		return;

2623
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2624
	dma_dom   = to_dma_ops_domain(domain);
2625 2626
	npages    = sg_num_pages(dev, sglist, nelems);

2627
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2628 2629
}

2630 2631 2632
/*
 * The exported alloc_coherent function for dma_ops.
 */
2633
static void *alloc_coherent(struct device *dev, size_t size,
2634
			    dma_addr_t *dma_addr, gfp_t flag,
2635
			    unsigned long attrs)
2636
{
2637
	u64 dma_mask = dev->coherent_dma_mask;
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;

	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
	} else if (IS_ERR(domain))
		return NULL;
2649

2650 2651 2652 2653 2654 2655 2656 2657 2658
	dma_dom   = to_dma_ops_domain(domain);
	size	  = PAGE_ALIGN(size);
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;

	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!gfpflags_allow_blocking(flag))
2659
			return NULL;
2660

2661
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2662
					get_order(size), flag & __GFP_NOWARN);
2663 2664 2665
		if (!page)
			return NULL;
	}
2666

2667 2668 2669
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2670 2671 2672
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
				 size, DMA_BIDIRECTIONAL, dma_mask);

2673
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2674
		goto out_free;
2675 2676

	return page_address(page);
2677 2678

out_free:
2679 2680 2681 2682

	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));

2683
	return NULL;
2684 2685
}

2686 2687 2688
/*
 * The exported free_coherent function for dma_ops.
 */
2689
static void free_coherent(struct device *dev, size_t size,
2690
			  void *virt_addr, dma_addr_t dma_addr,
2691
			  unsigned long attrs)
2692
{
2693 2694 2695
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;
2696

2697
	page = virt_to_page(virt_addr);
2698 2699
	size = PAGE_ALIGN(size);

2700 2701 2702
	domain = get_domain(dev);
	if (IS_ERR(domain))
		goto free_mem;
2703

2704 2705 2706
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2707

2708 2709 2710
free_mem:
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2711 2712
}

2713 2714 2715 2716 2717 2718
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2719
	if (!dma_direct_supported(dev, mask))
2720
		return 0;
2721
	return check_device(dev);
2722 2723
}

2724 2725 2726 2727 2728
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2729
static const struct dma_map_ops amd_iommu_dma_ops = {
2730 2731 2732 2733 2734 2735 2736
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2737
	.mapping_error	= amd_iommu_mapping_error,
2738 2739
};

2740 2741 2742 2743 2744
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2745
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2792
int __init amd_iommu_init_api(void)
2793
{
2794
	int ret, err = 0;
2795 2796 2797 2798

	ret = iova_cache_get();
	if (ret)
		return ret;
2799

2800 2801 2802 2803
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2804 2805 2806 2807 2808 2809 2810 2811
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2812 2813 2814
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2815

2816
	return 0;
2817 2818
}

2819 2820
int __init amd_iommu_init_dma_ops(void)
{
2821
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2822 2823
	iommu_detected = 1;

2824 2825
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2826 2827 2828 2829 2830
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2831 2832
	 */
	if (!swiotlb)
2833
		dma_ops = &dma_direct_ops;
2834

2835 2836 2837 2838 2839
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2840
	return 0;
2841

2842
}
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2856
	struct iommu_dev_data *entry;
2857 2858
	unsigned long flags;

2859
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2860

2861 2862 2863
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
2864
		BUG_ON(!entry->domain);
2865
		__detach_device(entry);
2866
	}
2867

2868
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2869 2870
}

2871 2872 2873 2874 2875
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2876 2877
	del_domain_from_list(domain);

2878 2879 2880 2881 2882 2883
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2896
static struct protection_domain *protection_domain_alloc(void)
2897 2898 2899 2900 2901
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2902
		return NULL;
2903

2904
	if (protection_domain_init(domain))
2905 2906
		goto out_err;

2907 2908
	add_domain_to_list(domain);

2909 2910 2911 2912 2913 2914 2915 2916
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2917
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2918
{
2919
	struct protection_domain *pdomain;
2920
	struct dma_ops_domain *dma_domain;
2921

2922 2923 2924 2925 2926
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2927

2928 2929 2930 2931 2932 2933
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2934

2935 2936 2937
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2938

2939 2940 2941 2942 2943 2944 2945 2946 2947
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2948 2949 2950 2951
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2952

2953 2954
		pdomain->mode = PAGE_MODE_NONE;
		break;
2955 2956 2957
	default:
		return NULL;
	}
2958

2959
	return &pdomain->domain;
2960 2961
}

2962
static void amd_iommu_domain_free(struct iommu_domain *dom)
2963
{
2964
	struct protection_domain *domain;
2965
	struct dma_ops_domain *dma_dom;
2966

2967 2968
	domain = to_pdomain(dom);

2969 2970 2971 2972 2973
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2974 2975
	if (!dom)
		return;
2976

2977 2978
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2979
		/* Now release the domain */
2980
		dma_dom = to_dma_ops_domain(domain);
2981 2982 2983 2984 2985
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2986

2987 2988 2989 2990 2991 2992
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2993 2994
}

2995 2996 2997
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2998
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2999
	struct amd_iommu *iommu;
3000
	int devid;
3001

3002
	if (!check_device(dev))
3003 3004
		return;

3005
	devid = get_device_id(dev);
3006
	if (devid < 0)
3007
		return;
3008

3009
	if (dev_data->domain != NULL)
3010
		detach_device(dev);
3011 3012 3013 3014 3015

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3016 3017 3018 3019 3020 3021
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3022 3023 3024
	iommu_completion_wait(iommu);
}

3025 3026 3027
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3028
	struct protection_domain *domain = to_pdomain(dom);
3029
	struct iommu_dev_data *dev_data;
3030
	struct amd_iommu *iommu;
3031
	int ret;
3032

3033
	if (!check_device(dev))
3034 3035
		return -EINVAL;

3036 3037
	dev_data = dev->archdata.iommu;

3038
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3039 3040 3041
	if (!iommu)
		return -EINVAL;

3042
	if (dev_data->domain)
3043
		detach_device(dev);
3044

3045
	ret = attach_device(dev, domain);
3046

3047 3048 3049 3050 3051 3052 3053 3054 3055
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3056 3057
	iommu_completion_wait(iommu);

3058
	return ret;
3059 3060
}

3061
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3062
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3063
{
3064
	struct protection_domain *domain = to_pdomain(dom);
3065 3066 3067
	int prot = 0;
	int ret;

3068 3069 3070
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3071 3072 3073 3074 3075
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3076
	mutex_lock(&domain->api_lock);
3077
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3078 3079
	mutex_unlock(&domain->api_lock);

3080
	return ret;
3081 3082
}

3083 3084
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3085
{
3086
	struct protection_domain *domain = to_pdomain(dom);
3087
	size_t unmap_size;
3088

3089
	if (domain->mode == PAGE_MODE_NONE)
3090
		return 0;
3091

3092
	mutex_lock(&domain->api_lock);
3093
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3094
	mutex_unlock(&domain->api_lock);
3095

3096
	return unmap_size;
3097 3098
}

3099
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3100
					  dma_addr_t iova)
3101
{
3102
	struct protection_domain *domain = to_pdomain(dom);
3103
	unsigned long offset_mask, pte_pgsize;
3104
	u64 *pte, __pte;
3105

3106 3107 3108
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3109
	pte = fetch_pte(domain, iova, &pte_pgsize);
3110

3111
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3112 3113
		return 0;

3114
	offset_mask = pte_pgsize - 1;
3115
	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
3116

3117
	return (__pte & ~offset_mask) | (iova & offset_mask);
3118 3119
}

3120
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3121
{
3122 3123
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3124
		return true;
3125
	case IOMMU_CAP_INTR_REMAP:
3126
		return (irq_remapping_enabled == 1);
3127 3128
	case IOMMU_CAP_NOEXEC:
		return false;
3129 3130
	}

3131
	return false;
S
Sheng Yang 已提交
3132 3133
}

3134 3135
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3136
{
3137
	struct iommu_resv_region *region;
3138
	struct unity_map_entry *entry;
3139
	int devid;
3140 3141

	devid = get_device_id(dev);
3142
	if (devid < 0)
3143
		return;
3144 3145

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3146
		int type, prot = 0;
3147
		size_t length;
3148 3149 3150 3151

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3152
		type   = IOMMU_RESV_DIRECT;
3153 3154 3155 3156 3157
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;
3158 3159 3160
		if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
			/* Exclusion range */
			type = IOMMU_RESV_RESERVED;
3161 3162

		region = iommu_alloc_resv_region(entry->address_start,
3163
						 length, prot, type);
3164 3165 3166 3167 3168 3169 3170
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3171 3172 3173

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3174
					 0, IOMMU_RESV_MSI);
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3185 3186
}

3187
static void amd_iommu_put_resv_regions(struct device *dev,
3188 3189
				     struct list_head *head)
{
3190
	struct iommu_resv_region *entry, *next;
3191 3192 3193 3194 3195

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3196
static void amd_iommu_apply_resv_region(struct device *dev,
3197
				      struct iommu_domain *domain,
3198
				      struct iommu_resv_region *region)
3199
{
3200
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3201 3202 3203
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3204
	end   = IOVA_PFN(region->start + region->length - 1);
3205 3206 3207 3208

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3209 3210 3211 3212 3213 3214 3215
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct protection_domain *dom = to_pdomain(domain);

	domain_flush_tlb_pde(dom);
	domain_flush_complete(dom);
}

static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
				      unsigned long iova, size_t size)
{
}

3229
const struct iommu_ops amd_iommu_ops = {
3230
	.capable = amd_iommu_capable,
3231 3232
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3233 3234
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3235 3236
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3237
	.iova_to_phys = amd_iommu_iova_to_phys,
3238 3239
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3240
	.device_group = amd_iommu_device_group,
3241 3242 3243
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3244
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3245
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3246 3247 3248
	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
	.iotlb_range_add = amd_iommu_iotlb_range_add,
	.iotlb_sync = amd_iommu_flush_iotlb_all,
3249 3250
};

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3273 3274 3275

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3276
	struct protection_domain *domain = to_pdomain(dom);
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3294 3295 3296

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3297
	struct protection_domain *domain = to_pdomain(dom);
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3358
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3375 3376 3377 3378 3379 3380
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3412
	struct protection_domain *domain = to_pdomain(dom);
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3432
	struct protection_domain *domain = to_pdomain(dom);
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3465
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3466 3467
		}

3468
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3512
	struct protection_domain *domain = to_pdomain(dom);
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3526
	struct protection_domain *domain = to_pdomain(dom);
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3554 3555 3556

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3557
	struct protection_domain *pdomain;
3558

3559 3560
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3561 3562 3563
		return NULL;

	/* Only return IOMMUv2 domains */
3564
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3565 3566
		return NULL;

3567
	return &pdomain->domain;
3568 3569
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

G
Gil Kupfer 已提交
3597 3598 3599 3600 3601
	if (!pci_ats_disabled()) {
		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
		if (pos)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
	}
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3627 3628 3629 3630 3631 3632 3633 3634 3635

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3636
static struct irq_chip amd_ir_chip;
3637
static DEFINE_SPINLOCK(iommu_table_lock);
3638

3639 3640 3641 3642 3643 3644
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3645
	dte	|= iommu_virt_to_phys(table->table);
3646 3647 3648 3649 3650 3651 3652
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
static struct irq_remap_table *__alloc_irq_table(void)
{
	struct irq_remap_table *table;

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return NULL;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
	if (!table->table) {
		kfree(table);
		return NULL;
	}
	raw_spin_lock_init(&table->lock);

	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
	return table;
}

3692 3693 3694 3695 3696 3697 3698 3699
static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
				  struct irq_remap_table *table)
{
	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
}

3700
static struct irq_remap_table *alloc_irq_table(u16 devid)
3701 3702
{
	struct irq_remap_table *table = NULL;
3703
	struct irq_remap_table *new_table = NULL;
3704 3705 3706 3707
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

3708
	spin_lock_irqsave(&iommu_table_lock, flags);
3709 3710 3711 3712 3713 3714 3715

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3716
		goto out_unlock;
3717 3718 3719 3720

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
3721
		set_remap_table_entry(iommu, devid, table);
3722
		goto out_wait;
3723
	}
3724
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3725 3726

	/* Nothing there yet, allocate new irq remapping table */
3727 3728 3729
	new_table = __alloc_irq_table();
	if (!new_table)
		return NULL;
3730

3731
	spin_lock_irqsave(&iommu_table_lock, flags);
3732

3733 3734
	table = irq_lookup_table[devid];
	if (table)
3735
		goto out_unlock;
3736

3737 3738 3739 3740
	table = irq_lookup_table[alias];
	if (table) {
		set_remap_table_entry(iommu, devid, table);
		goto out_wait;
3741 3742
	}

3743 3744
	table = new_table;
	new_table = NULL;
3745

3746 3747 3748
	set_remap_table_entry(iommu, devid, table);
	if (devid != alias)
		set_remap_table_entry(iommu, alias, table);
3749

3750
out_wait:
3751 3752 3753
	iommu_completion_wait(iommu);

out_unlock:
3754
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3755

3756 3757 3758 3759
	if (new_table) {
		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
		kfree(new_table);
	}
3760 3761 3762
	return table;
}

3763
static int alloc_irq_index(u16 devid, int count, bool align)
3764 3765
{
	struct irq_remap_table *table;
3766
	int index, c, alignment = 1;
3767
	unsigned long flags;
3768 3769 3770 3771
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3772

3773
	table = alloc_irq_table(devid);
3774 3775 3776
	if (!table)
		return -ENODEV;

3777 3778 3779
	if (align)
		alignment = roundup_pow_of_two(count);

3780
	raw_spin_lock_irqsave(&table->lock, flags);
3781 3782

	/* Scan table for free entries */
3783
	for (index = ALIGN(table->min_index, alignment), c = 0;
3784
	     index < MAX_IRQS_PER_TABLE;) {
3785
		if (!iommu->irte_ops->is_allocated(table, index)) {
3786
			c += 1;
3787 3788
		} else {
			c     = 0;
3789
			index = ALIGN(index + 1, alignment);
3790 3791
			continue;
		}
3792 3793 3794

		if (c == count)	{
			for (; c != 0; --c)
3795
				iommu->irte_ops->set_allocated(table, index - c + 1);
3796 3797 3798 3799

			index -= count - 1;
			goto out;
		}
3800 3801

		index++;
3802 3803 3804 3805 3806
	}

	index = -ENOSPC;

out:
3807
	raw_spin_unlock_irqrestore(&table->lock, flags);
3808 3809 3810 3811

	return index;
}

3812 3813
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3814 3815 3816 3817
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3818
	struct irte_ga *entry;
3819 3820 3821 3822 3823

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3824
	table = get_irq_table(devid);
3825 3826 3827
	if (!table)
		return -ENOMEM;

3828
	raw_spin_lock_irqsave(&table->lock, flags);
3829 3830 3831 3832 3833 3834 3835

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3836 3837
	if (data)
		data->ref = entry;
3838

3839
	raw_spin_unlock_irqrestore(&table->lock, flags);
3840 3841 3842 3843 3844 3845 3846 3847

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3848 3849 3850 3851 3852 3853 3854 3855 3856
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3857
	table = get_irq_table(devid);
3858 3859 3860
	if (!table)
		return -ENOMEM;

3861
	raw_spin_lock_irqsave(&table->lock, flags);
3862
	table->table[index] = irte->val;
3863
	raw_spin_unlock_irqrestore(&table->lock, flags);
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3881
	table = get_irq_table(devid);
3882 3883 3884
	if (!table)
		return;

3885
	raw_spin_lock_irqsave(&table->lock, flags);
3886
	iommu->irte_ops->clear_allocated(table, index);
3887
	raw_spin_unlock_irqrestore(&table->lock, flags);
3888 3889 3890 3891 3892

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3893 3894
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3895
			 u8 vector, u32 dest_apicid, int devid)
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3909
			    u8 vector, u32 dest_apicid, int devid)
3910 3911 3912 3913 3914 3915 3916 3917
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
3918 3919
	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3936
	modify_irte_ga(devid, index, irte, NULL);
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3952
	modify_irte_ga(devid, index, irte, NULL);
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3970
	if (!irte->lo.fields_remap.guest_mode) {
3971
		irte->hi.fields.vector = vector;
3972 3973 3974 3975
		irte->lo.fields_remap.destination =
					APICID_TO_IRTE_DEST_LO(dest_apicid);
		irte->hi.fields.destination =
					APICID_TO_IRTE_DEST_HI(dest_apicid);
3976 3977
		modify_irte_ga(devid, index, irte, NULL);
	}
3978 3979
}

3980
#define IRTE_ALLOCATED (~1U)
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

4026
static int get_devid(struct irq_alloc_info *info)
4027
{
4028
	int devid = -1;
4029

4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4045

4046 4047
	return devid;
}
4048

4049 4050 4051 4052
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4053

4054 4055
	if (!info)
		return NULL;
4056

4057 4058 4059 4060 4061 4062
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4063

4064
	return NULL;
4065 4066
}

4067
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4068
{
4069 4070
	struct amd_iommu *iommu;
	int devid;
4071

4072 4073
	if (!info)
		return NULL;
4074

4075 4076 4077 4078
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4079
		if (devid < 0)
4080 4081
			return NULL;

4082 4083 4084
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4085 4086 4087 4088
		break;
	default:
		break;
	}
4089

4090 4091
	return NULL;
}
4092

4093 4094 4095 4096 4097 4098
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4099 4100 4101
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4102

4103 4104 4105 4106 4107 4108 4109 4110
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4111 4112 4113 4114
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4115

4116 4117
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4118 4119
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4120
				 irq_cfg->dest_apicid, devid);
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4136

4137 4138 4139 4140 4141 4142 4143
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4144

4145 4146 4147 4148
	default:
		BUG_ON(1);
		break;
	}
4149 4150
}

4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4171 4172
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4173
{
4174 4175
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4176
	struct amd_ir_data *data = NULL;
4177
	struct irq_cfg *cfg;
4178
	int i, ret, devid;
4179
	int index;
4180

4181 4182 4183 4184
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4185 4186
		return -EINVAL;

4187 4188 4189 4190 4191 4192
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4193

4194 4195 4196
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4197

4198 4199 4200
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4201

4202
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218
		struct irq_remap_table *table;
		struct amd_iommu *iommu;

		table = alloc_irq_table(devid);
		if (table) {
			if (!table->min_index) {
				/*
				 * Keep the first 32 indexes free for IOAPIC
				 * interrupts.
				 */
				table->min_index = 32;
				iommu = amd_iommu_rlookup_table[devid];
				for (i = 0; i < 32; ++i)
					iommu->irte_ops->set_allocated(table, i);
			}
			WARN_ON(table->min_index != 32);
4219
			index = info->ioapic_pin;
4220
		} else {
4221
			index = -ENOMEM;
4222
		}
4223
	} else {
4224 4225 4226
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4227 4228 4229
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4230
		ret = index;
4231 4232
		goto out_free_parent;
	}
4233

4234 4235 4236 4237 4238 4239 4240
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4241

4242 4243 4244 4245 4246
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4257 4258 4259 4260 4261 4262
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4263

4264
	return 0;
4265

4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4277 4278
}

4279 4280
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4281
{
4282 4283 4284 4285
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4286

4287 4288 4289 4290 4291 4292
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4293
			kfree(data->entry);
4294 4295 4296 4297 4298
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4299

4300 4301 4302 4303 4304
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4305
static int irq_remapping_activate(struct irq_domain *domain,
4306
				  struct irq_data *irq_data, bool reserve)
4307 4308 4309
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4310
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4311
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4312

4313 4314 4315 4316 4317 4318
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4319
	return 0;
4320 4321
}

4322 4323
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4324
{
4325 4326
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4327
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4328

4329 4330 4331
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4332
}
4333

4334
static const struct irq_domain_ops amd_ir_domain_ops = {
4335 4336 4337 4338
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4339
};
4340

4341 4342 4343 4344 4345 4346 4347 4348
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4349 4350 4351 4352 4353 4354 4355 4356
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4379
		irte->lo.fields_vapic.ga_log_intr = 1;
4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
4392 4393 4394 4395
		irte->lo.fields_remap.destination =
				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
		irte->hi.fields.destination =
				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4425 4426 4427 4428 4429 4430 4431
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4432
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4433
	int ret;
4434

4435 4436 4437
	if (!iommu)
		return -ENODEV;

4438 4439 4440
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4441

4442
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4443 4444 4445 4446 4447
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4448
	send_cleanup_vector(cfg);
4449 4450

	return IRQ_SET_MASK_OK_DONE;
4451 4452
}

4453
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4454
{
4455
	struct amd_ir_data *ir_data = irq_data->chip_data;
4456

4457 4458
	*msg = ir_data->msi_entry;
}
4459

4460
static struct irq_chip amd_ir_chip = {
4461
	.name			= "AMD-IR",
4462
	.irq_ack		= apic_ack_irq,
4463 4464 4465
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4466
};
4467

4468 4469
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4470 4471 4472 4473 4474 4475 4476
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4477 4478
	if (!iommu->ir_domain)
		return -ENOMEM;
4479

4480
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4481 4482 4483
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4484 4485
	return 0;
}
4486 4487 4488 4489 4490

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
4491
	struct irq_remap_table *table;
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4505 4506
	table = get_irq_table(devid);
	if (!table)
4507 4508
		return -ENODEV;

4509
	raw_spin_lock_irqsave(&table->lock, flags);
4510 4511

	if (ref->lo.fields_vapic.guest_mode) {
4512 4513 4514 4515 4516 4517
		if (cpu >= 0) {
			ref->lo.fields_vapic.destination =
						APICID_TO_IRTE_DEST_LO(cpu);
			ref->hi.fields.destination =
						APICID_TO_IRTE_DEST_HI(cpu);
		}
4518 4519 4520 4521
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4522
	raw_spin_unlock_irqrestore(&table->lock, flags);
4523 4524 4525 4526 4527 4528

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4529
#endif