amd_iommu.c 97.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37 38 39 40
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
41
#include <asm/msidef.h>
42
#include <asm/proto.h>
43
#include <asm/iommu.h>
44
#include <asm/gart.h>
45
#include <asm/dma.h>
46 47 48

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
49
#include "irq_remapping.h"
50 51 52

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

53
#define LOOP_TIMEOUT	100000
54

55 56 57 58 59 60
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
61
 * 512GB Pages are not supported due to a hardware bug
62
 */
J
Joerg Roedel 已提交
63
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
64

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76 77
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

78 79 80 81 82 83
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

84
static const struct iommu_ops amd_iommu_ops;
85

86
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
87
int amd_iommu_max_glx_val = -1;
88

89 90
static struct dma_map_ops amd_iommu_dma_ops;

91 92 93 94 95 96
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
97
	struct list_head alias_list;      /* Link alias-groups together */
98 99 100 101 102 103 104 105 106 107 108 109 110 111
	struct iommu_dev_data *alias_data;/* The alias dev_data */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
	bool passthrough;		  /* Default for device is pt_domain */
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

112 113 114
/*
 * general struct to manage commands send to an IOMMU
 */
115
struct iommu_cmd {
116 117 118
	u32 data[4];
};

119 120
struct kmem_cache *amd_iommu_irq_cache;

121
static void update_domain(struct protection_domain *domain);
122
static int __init alloc_passthrough_domain(void);
123

124 125 126 127 128 129
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

130
static struct iommu_dev_data *alloc_dev_data(u16 devid)
131 132 133 134 135 136 137 138
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

139 140
	INIT_LIST_HEAD(&dev_data->alias_list);

141
	dev_data->devid = devid;
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

192 193 194 195
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

196
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
197 198
}

199 200 201 202 203
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

204 205 206 207
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
208 209
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
210 211 212 213 214 215 216 217 218 219 220 221
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

222 223 224 225 226 227 228 229 230
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

259 260 261 262 263 264 265 266 267 268 269
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

270 271
	/* No PCI device */
	if (!dev_is_pci(dev))
272 273 274 275 276 277 278 279 280 281 282 283 284 285
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

286
static void init_iommu_group(struct device *dev)
287 288 289
{
	struct iommu_group *group;

290
	group = iommu_group_get_for_dev(dev);
291 292
	if (!IS_ERR(group))
		iommu_group_put(group);
293 294
}

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

357 358 359 360 361 362 363 364 365 366 367 368 369
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

370 371
	alias = get_alias(dev);

372 373 374 375 376 377 378 379 380 381 382 383
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;

384 385
		/* Add device to the alias_list */
		list_add(&dev_data->alias_list, &alias_data->alias_list);
386
	}
387

388 389 390 391 392 393 394
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

395 396
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
397 398 399
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

400 401 402
	return 0;
}

403 404 405 406 407 408 409 410 411 412 413 414 415 416
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

417 418
static void iommu_uninit_device(struct device *dev)
{
419 420 421 422 423
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
424 425 426
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

427 428
	iommu_group_remove_device(dev);

429 430 431
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

432
	/*
433 434
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
435
	 */
436
}
J
Joerg Roedel 已提交
437 438 439

void __init amd_iommu_uninit_devices(void)
{
440
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
441 442 443 444 445 446 447 448 449
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
450 451 452 453

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
467 468 469
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
470 471 472
			goto out_free;
	}

473 474 475 476 477 478 479 480 481
	/*
	 * Initialize IOMMU groups only after iommu_init_device() has
	 * had a chance to populate any IVRS defined aliases.
	 */
	for_each_pci_dev(pdev) {
		if (check_device(&pdev->dev))
			init_iommu_group(&pdev->dev);
	}

J
Joerg Roedel 已提交
482 483 484 485 486 487 488 489
	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
490 491 492 493 494 495
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

496
DECLARE_STATS_COUNTER(compl_wait);
497
DECLARE_STATS_COUNTER(cnt_map_single);
498
DECLARE_STATS_COUNTER(cnt_unmap_single);
499
DECLARE_STATS_COUNTER(cnt_map_sg);
500
DECLARE_STATS_COUNTER(cnt_unmap_sg);
501
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
502
DECLARE_STATS_COUNTER(cnt_free_coherent);
503
DECLARE_STATS_COUNTER(cross_page);
504
DECLARE_STATS_COUNTER(domain_flush_single);
505
DECLARE_STATS_COUNTER(domain_flush_all);
506
DECLARE_STATS_COUNTER(alloced_io_mem);
507
DECLARE_STATS_COUNTER(total_map_requests);
508 509 510 511 512
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
532
					 &amd_iommu_unmap_flush);
533 534

	amd_iommu_stats_add(&compl_wait);
535
	amd_iommu_stats_add(&cnt_map_single);
536
	amd_iommu_stats_add(&cnt_unmap_single);
537
	amd_iommu_stats_add(&cnt_map_sg);
538
	amd_iommu_stats_add(&cnt_unmap_sg);
539
	amd_iommu_stats_add(&cnt_alloc_coherent);
540
	amd_iommu_stats_add(&cnt_free_coherent);
541
	amd_iommu_stats_add(&cross_page);
542
	amd_iommu_stats_add(&domain_flush_single);
543
	amd_iommu_stats_add(&domain_flush_all);
544
	amd_iommu_stats_add(&alloced_io_mem);
545
	amd_iommu_stats_add(&total_map_requests);
546 547 548 549
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
550 551 552 553
}

#endif

554 555 556 557 558 559
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

560 561 562 563
static void dump_dte_entry(u16 devid)
{
	int i;

564 565
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
566 567 568
			amd_iommu_dev_table[devid].data[i]);
}

569 570 571 572 573 574 575 576 577
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

578
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
579
{
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
601

602
	printk(KERN_ERR "AMD-Vi: Event logged [");
603 604 605 606 607

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
608
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
609
		       address, flags);
610
		dump_dte_entry(devid);
611 612 613 614
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
615
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
616 617 618 619 620
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
621
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
622 623 624 625 626
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
627
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628 629 630 631
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
632
		dump_command(address);
633 634 635 636 637 638 639 640
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
641
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
642 643 644 645 646
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
647
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
648 649 650 651 652
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
653 654

	memset(__evt, 0, 4 * sizeof(u32));
655 656 657 658 659 660 661 662 663 664
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
665
		iommu_print_event(iommu, iommu->evt_buf + head);
666 667 668 669 670 671
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

672
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
673 674 675
{
	struct amd_iommu_fault fault;

676 677
	INC_STATS_COUNTER(pri_requests);

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
719

720 721 722
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
723

724 725 726 727 728 729 730
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
731 732
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
733 734 735 736 737 738

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
739 740 741 742
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

743
irqreturn_t amd_iommu_int_thread(int irq, void *data)
744
{
745 746
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
747

748 749 750 751
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
752

753 754 755 756
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
757

758 759 760 761
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
778
	return IRQ_HANDLED;
779 780
}

781 782 783 784 785
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

786 787 788 789 790 791
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
812 813 814
{
	u8 *target;

815
	target = iommu->cmd_buf + tail;
816 817 818 819 820 821
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
822
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
823
}
824

825
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
826
{
827 828
	WARN_ON(address & 0x7ULL);

829
	memset(cmd, 0, sizeof(*cmd));
830 831 832
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
833 834 835
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

836 837 838 839 840 841 842
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

843 844 845 846
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
847
	bool s;
848 849

	pages = iommu_num_pages(address, size, PAGE_SIZE);
850
	s     = false;
851 852 853 854 855 856 857

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
858
		s = true;
859 860 861 862 863 864 865 866 867 868 869
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
870
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
871 872 873
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

874 875 876 877
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
878
	bool s;
879 880

	pages = iommu_num_pages(address, size, PAGE_SIZE);
881
	s     = false;
882 883 884 885 886 887 888

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
889
		s = true;
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

905 906 907 908 909 910 911
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

912
	cmd->data[0]  = pasid;
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
931
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
932 933
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
934
	cmd->data[1] |= (pasid & 0xff) << 16;
935 936 937 938 939 940 941 942
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

943 944 945 946 947 948 949
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
950
		cmd->data[1]  = pasid;
951 952 953 954 955 956 957 958
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

959 960 961 962
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
963 964
}

965 966 967 968 969 970 971
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

972 973
/*
 * Writes the command to the IOMMUs command buffer and informs the
974
 * hardware about the new command.
975
 */
976 977 978
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
979
{
980
	u32 left, tail, head, next_tail;
981 982
	unsigned long flags;

983
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
984 985

again:
986 987
	spin_lock_irqsave(&iommu->lock, flags);

988 989 990 991
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
992

993 994 995 996
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
997

998 999
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1000

1001 1002 1003 1004 1005 1006
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1007 1008
	}

1009 1010 1011
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1012
	iommu->need_sync = sync;
1013

1014
	spin_unlock_irqrestore(&iommu->lock, flags);
1015

1016
	return 0;
1017 1018
}

1019 1020 1021 1022 1023
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1024 1025 1026 1027
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1028
static int iommu_completion_wait(struct amd_iommu *iommu)
1029 1030
{
	struct iommu_cmd cmd;
1031
	volatile u64 sem = 0;
1032
	int ret;
1033

1034
	if (!iommu->need_sync)
1035
		return 0;
1036

1037
	build_completion_wait(&cmd, (u64)&sem);
1038

1039
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1040
	if (ret)
1041
		return ret;
1042

1043
	return wait_on_sem(&sem);
1044 1045
}

1046
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1047
{
1048
	struct iommu_cmd cmd;
1049

1050
	build_inv_dte(&cmd, devid);
1051

1052 1053
	return iommu_queue_command(iommu, &cmd);
}
1054

1055 1056 1057
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1058

1059 1060
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1061

1062 1063
	iommu_completion_wait(iommu);
}
1064

1065 1066 1067 1068 1069 1070 1071
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1072

1073 1074 1075 1076 1077 1078
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1079

1080
	iommu_completion_wait(iommu);
1081 1082
}

1083
static void iommu_flush_all(struct amd_iommu *iommu)
1084
{
1085
	struct iommu_cmd cmd;
1086

1087
	build_inv_all(&cmd);
1088

1089 1090 1091 1092
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1112 1113
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1114 1115 1116 1117
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1118
		iommu_flush_irt_all(iommu);
1119
		iommu_flush_tlb_all(iommu);
1120 1121 1122
	}
}

1123
/*
1124
 * Command send function for flushing on-device TLB
1125
 */
1126 1127
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1128 1129
{
	struct amd_iommu *iommu;
1130
	struct iommu_cmd cmd;
1131
	int qdep;
1132

1133 1134
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1135

1136
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1137 1138

	return iommu_queue_command(iommu, &cmd);
1139 1140
}

1141 1142 1143
/*
 * Command send function for invalidating a device table entry
 */
1144
static int device_flush_dte(struct iommu_dev_data *dev_data)
1145
{
1146
	struct amd_iommu *iommu;
1147
	int ret;
1148

1149
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1150

1151
	ret = iommu_flush_dte(iommu, dev_data->devid);
1152 1153 1154
	if (ret)
		return ret;

1155
	if (dev_data->ats.enabled)
1156
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1157 1158

	return ret;
1159 1160
}

1161 1162 1163 1164 1165
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1166 1167
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1168
{
1169
	struct iommu_dev_data *dev_data;
1170 1171
	struct iommu_cmd cmd;
	int ret = 0, i;
1172

1173
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1174

1175 1176 1177 1178 1179 1180 1181 1182
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1183
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1184 1185
	}

1186 1187
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1188
		if (!dev_data->ats.enabled)
1189 1190
			continue;

1191
		ret |= device_flush_iotlb(dev_data, address, size);
1192 1193
	}

1194
	WARN_ON(ret);
1195 1196
}

1197 1198
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1199
{
1200
	__domain_flush_pages(domain, address, size, 0);
1201
}
1202

1203
/* Flush the whole IO/TLB for a given protection domain */
1204
static void domain_flush_tlb(struct protection_domain *domain)
1205
{
1206
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1207 1208
}

1209
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1210
static void domain_flush_tlb_pde(struct protection_domain *domain)
1211
{
1212
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1213 1214
}

1215
static void domain_flush_complete(struct protection_domain *domain)
1216
{
1217
	int i;
1218

1219 1220 1221
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1222

1223 1224 1225 1226 1227
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1228
	}
1229 1230
}

1231

1232
/*
1233
 * This function flushes the DTEs for all devices in domain
1234
 */
1235
static void domain_flush_devices(struct protection_domain *domain)
1236
{
1237
	struct iommu_dev_data *dev_data;
1238

1239
	list_for_each_entry(dev_data, &domain->dev_list, list)
1240
		device_flush_dte(dev_data);
1241 1242
}

1243 1244 1245 1246 1247 1248 1249
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1279
		      unsigned long page_size,
1280 1281 1282
		      u64 **pte_page,
		      gfp_t gfp)
{
1283
	int level, end_lvl;
1284
	u64 *pte, *page;
1285 1286

	BUG_ON(!is_power_of_2(page_size));
1287 1288 1289 1290

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1291 1292 1293 1294
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1295 1296 1297 1298 1299 1300 1301 1302 1303

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1304 1305 1306 1307
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1325
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1326 1327 1328 1329
{
	int level;
	u64 *pte;

1330 1331 1332 1333 1334
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1335

1336 1337 1338
	while (level > 0) {

		/* Not Present */
1339 1340 1341
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1361 1362
		level -= 1;

1363
		/* Walk to the next level */
1364 1365 1366 1367 1368 1369 1370
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1371 1372 1373 1374 1375 1376 1377
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1378 1379 1380
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1381
			  int prot,
1382
			  unsigned long page_size)
1383
{
1384
	u64 __pte, *pte;
1385
	int i, count;
1386

1387
	if (!(prot & IOMMU_PROT_MASK))
1388 1389
		return -EINVAL;

1390 1391 1392 1393 1394
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

1395 1396 1397
	if (!pte)
		return -ENOMEM;

1398 1399 1400
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1401

1402 1403 1404 1405 1406
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1407 1408 1409 1410 1411 1412

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1413 1414
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1415

1416 1417
	update_domain(dom);

1418 1419 1420
	return 0;
}

1421 1422 1423
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1424
{
1425 1426 1427 1428 1429 1430
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
1451 1452 1453 1454

			/* Only unmap from the first pte in the page */
			if ((unmap_size - 1) & bus_addr)
				break;
1455 1456 1457 1458 1459 1460 1461 1462 1463
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1464
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1465

1466
	return unmapped;
1467 1468
}

1469 1470 1471 1472
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1487 1488 1489 1490
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1491 1492 1493 1494 1495 1496 1497 1498
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1499
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1500
				     PAGE_SIZE);
1501 1502 1503 1504 1505 1506 1507
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1508
			__set_bit(addr >> PAGE_SHIFT,
1509
				  dma_dom->aperture[0]->bitmap);
1510 1511 1512 1513 1514
	}

	return 0;
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1537 1538 1539
/*
 * Inits the unity mappings required for a specific device
 */
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1557 1558 1559 1560 1561 1562 1563 1564 1565
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1566

1567
/*
1568
 * The address allocator core functions.
1569 1570 1571
 *
 * called with domain->lock held
 */
1572

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1593 1594 1595 1596 1597
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1598
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1599 1600 1601
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1602
	struct amd_iommu *iommu;
1603
	unsigned long i, old_size;
1604

1605 1606 1607 1608
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1628
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1639
	old_size                = dma_dom->aperture_size;
1640 1641
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1654
	/* Initialize the exclusion range if necessary */
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1677
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1678 1679 1680
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1681
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1682 1683
	}

1684 1685
	update_domain(&dma_dom->domain);

1686 1687 1688
	return 0;

out_free:
1689 1690
	update_domain(&dma_dom->domain);

1691 1692 1693 1694 1695 1696 1697 1698
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1699 1700 1701 1702 1703 1704 1705
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1706
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1707 1708 1709 1710 1711 1712
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1713 1714
	next_bit >>= PAGE_SHIFT;

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1733
			dom->next_address = address + (pages << PAGE_SHIFT);
1734 1735 1736 1737 1738 1739 1740 1741 1742
			break;
		}

		next_bit = 0;
	}

	return address;
}

1743 1744
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1745
					     unsigned int pages,
1746 1747
					     unsigned long align_mask,
					     u64 dma_mask)
1748 1749 1750
{
	unsigned long address;

1751 1752 1753 1754
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1755

1756
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1757
				     dma_mask, dom->next_address);
1758

1759
	if (address == -1) {
1760
		dom->next_address = 0;
1761 1762
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1763 1764
		dom->need_flush = true;
	}
1765

1766
	if (unlikely(address == -1))
1767
		address = DMA_ERROR_CODE;
1768 1769 1770 1771 1772 1773

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1774 1775 1776 1777 1778
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1779 1780 1781 1782
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1783 1784
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1785

1786 1787
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1788 1789 1790 1791
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1792

1793
	if (address >= dom->next_address)
1794
		dom->need_flush = true;
1795 1796

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1797

A
Akinobu Mita 已提交
1798
	bitmap_clear(range->bitmap, address, pages);
1799

1800 1801
}

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1889
static void free_pagetable(struct protection_domain *domain)
1890
{
1891
	unsigned long root = (unsigned long)domain->pt_root;
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1916 1917 1918
	}
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1949 1950
static void free_gcr3_table(struct protection_domain *domain)
{
1951 1952 1953 1954 1955 1956 1957
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1958 1959 1960
	free_page((unsigned long)domain->gcr3_tbl);
}

1961 1962 1963 1964
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1965 1966
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1967 1968
	int i;

1969 1970 1971
	if (!dom)
		return;

1972 1973
	del_domain_from_list(&dom->domain);

1974
	free_pagetable(&dom->domain);
1975

1976 1977 1978 1979 1980 1981
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1982 1983 1984 1985

	kfree(dom);
}

1986 1987
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1988
 * It also initializes the page table and the address allocator data
1989 1990
 * structures required for the dma_ops interface
 */
1991
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
2004
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2005
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2006
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2007
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2008 2009 2010 2011
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2012
	dma_dom->need_flush = false;
2013
	dma_dom->target_dev = 0xffff;
2014

2015 2016
	add_domain_to_list(&dma_dom->domain);

2017
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2018 2019
		goto free_dma_dom;

2020
	/*
2021 2022
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2023
	 */
2024
	dma_dom->aperture[0]->bitmap[0] = 1;
2025
	dma_dom->next_address = 0;
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2036 2037 2038 2039 2040 2041 2042 2043 2044
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2045
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2046
{
2047
	u64 pte_root = 0;
2048
	u64 flags = 0;
2049

2050 2051 2052
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2053 2054 2055
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2056

2057 2058
	flags = amd_iommu_dev_table[devid].data[1];

2059 2060 2061
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2088 2089 2090 2091 2092
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2093 2094 2095 2096 2097 2098 2099 2100 2101
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2102 2103
}

2104 2105
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2106 2107
{
	struct amd_iommu *iommu;
2108
	bool ats;
2109

2110 2111
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2112 2113 2114 2115

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2116
	set_dte_entry(dev_data->devid, domain, ats);
2117 2118 2119 2120 2121 2122

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2123
	device_flush_dte(dev_data);
2124 2125
}

2126
static void do_detach(struct iommu_dev_data *dev_data)
2127 2128 2129
{
	struct amd_iommu *iommu;

2130
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2131 2132

	/* decrease reference counters */
2133 2134 2135 2136 2137 2138
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2139
	clear_dte_entry(dev_data->devid);
2140

2141
	/* Flush the DTE entry */
2142
	device_flush_dte(dev_data);
2143 2144 2145 2146 2147 2148
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2149
static int __attach_device(struct iommu_dev_data *dev_data,
2150
			   struct protection_domain *domain)
2151
{
2152
	struct iommu_dev_data *head, *entry;
2153
	int ret;
2154

2155 2156 2157
	/* lock domain */
	spin_lock(&domain->lock);

2158
	head = dev_data;
2159

2160 2161
	if (head->alias_data != NULL)
		head = head->alias_data;
2162

2163
	/* Now we have the root of the alias group, if any */
2164

2165 2166 2167
	ret = -EBUSY;
	if (head->domain != NULL)
		goto out_unlock;
2168

2169 2170
	/* Attach alias group root */
	do_attach(head, domain);
2171

2172 2173 2174
	/* Attach other devices in the alias group */
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_attach(entry, domain);
2175

2176 2177 2178 2179
	ret = 0;

out_unlock:

2180 2181
	/* ready */
	spin_unlock(&domain->lock);
2182

2183
	return ret;
2184
}
2185

2186 2187 2188 2189 2190 2191 2192 2193

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2194 2195 2196 2197 2198 2199
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2200
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2201 2202 2203
	if (!pos)
		return -EINVAL;

2204 2205 2206
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2207 2208 2209 2210

	return 0;
}

2211 2212
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2213 2214 2215 2216 2217 2218 2219 2220
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2232 2233
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2234 2235 2236
	if (ret)
		goto out_err;

2237 2238 2239 2240 2241 2242
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2256
/* FIXME: Move this to PCI code */
2257
#define PCI_PRI_TLP_OFF		(1 << 15)
2258

J
Joerg Roedel 已提交
2259
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2260
{
2261
	u16 status;
2262 2263
	int pos;

2264
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2265 2266 2267
	if (!pos)
		return false;

2268
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2269

2270
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2271 2272
}

2273
/*
F
Frank Arnold 已提交
2274
 * If a device is not yet associated with a domain, this function
2275 2276
 * assigns it visible for the hardware
 */
2277 2278
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2279
{
2280
	struct pci_dev *pdev = to_pci_dev(dev);
2281
	struct iommu_dev_data *dev_data;
2282
	unsigned long flags;
2283
	int ret;
2284

2285 2286
	dev_data = get_dev_data(dev);

2287 2288 2289 2290 2291 2292 2293 2294 2295
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2296
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2297 2298
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2299 2300 2301
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2302

2303
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2304
	ret = __attach_device(dev_data, domain);
2305 2306
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2307 2308 2309 2310 2311
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2312
	domain_flush_tlb_pde(domain);
2313 2314

	return ret;
2315 2316
}

2317 2318 2319
/*
 * Removes a device from a protection domain (unlocked)
 */
2320
static void __detach_device(struct iommu_dev_data *dev_data)
2321
{
2322
	struct iommu_dev_data *head, *entry;
2323
	struct protection_domain *domain;
2324
	unsigned long flags;
2325

2326
	BUG_ON(!dev_data->domain);
2327

2328 2329 2330
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2331

2332 2333 2334
	head = dev_data;
	if (head->alias_data != NULL)
		head = head->alias_data;
2335

2336 2337
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_detach(entry);
2338

2339
	do_detach(head);
2340

2341
	spin_unlock_irqrestore(&domain->lock, flags);
2342 2343 2344

	/*
	 * If we run in passthrough mode the device must be assigned to the
2345 2346
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2347
	 */
2348
	if (dev_data->passthrough &&
2349
	    (dev_data->domain == NULL && domain != pt_domain))
2350
		__attach_device(dev_data, pt_domain);
2351 2352 2353 2354 2355
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2356
static void detach_device(struct device *dev)
2357
{
2358
	struct protection_domain *domain;
2359
	struct iommu_dev_data *dev_data;
2360 2361
	unsigned long flags;

2362
	dev_data = get_dev_data(dev);
2363
	domain   = dev_data->domain;
2364

2365 2366
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2367
	__detach_device(dev_data);
2368
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2369

2370 2371 2372
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2373
		pci_disable_ats(to_pci_dev(dev));
2374 2375

	dev_data->ats.enabled = false;
2376
}
2377

2378 2379 2380 2381 2382 2383
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2384
	struct iommu_dev_data *dev_data;
2385
	struct protection_domain *dom = NULL;
2386 2387
	unsigned long flags;

2388
	dev_data   = get_dev_data(dev);
2389

2390 2391
	if (dev_data->domain)
		return dev_data->domain;
2392

2393 2394
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2395 2396 2397 2398 2399 2400 2401 2402

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2403 2404 2405 2406

	return dom;
}

2407 2408 2409 2410
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2411 2412 2413
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2414
	struct amd_iommu *iommu;
2415
	unsigned long flags;
2416
	u16 devid;
2417

2418 2419
	if (!check_device(dev))
		return 0;
2420

2421 2422 2423
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2424 2425

	switch (action) {
2426
	case BUS_NOTIFY_ADD_DEVICE:
2427 2428

		iommu_init_device(dev);
2429
		init_iommu_group(dev);
2430

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2443 2444
		domain = domain_for_device(dev);

2445 2446
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
		if (!dma_domain) {
			dma_domain = dma_ops_domain_alloc();
			if (!dma_domain)
				goto out;
			dma_domain->target_dev = devid;

			spin_lock_irqsave(&iommu_pd_list_lock, flags);
			list_add_tail(&dma_domain->list, &iommu_pd_list);
			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
		}
2457

2458
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2459

2460
		break;
2461
	case BUS_NOTIFY_REMOVED_DEVICE:
2462 2463 2464

		iommu_uninit_device(dev);

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2475
static struct notifier_block device_nb = {
2476 2477
	.notifier_call = device_change_notifier,
};
2478

2479 2480 2481 2482 2483
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2497
static struct protection_domain *get_domain(struct device *dev)
2498
{
2499
	struct protection_domain *domain;
2500
	struct dma_ops_domain *dma_dom;
2501
	u16 devid = get_device_id(dev);
2502

2503
	if (!check_device(dev))
2504
		return ERR_PTR(-EINVAL);
2505

2506 2507 2508
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2509

2510 2511
	if (domain != NULL)
		return domain;
2512

F
Frank Arnold 已提交
2513
	/* Device not bound yet - bind it */
2514
	dma_dom = find_protection_domain(devid);
2515
	if (!dma_dom)
2516 2517
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2518
	DUMP_printk("Using protection domain %d for device %s\n",
2519
		    dma_dom->domain.id, dev_name(dev));
2520

2521
	return &dma_dom->domain;
2522 2523
}

2524 2525
static void update_device_table(struct protection_domain *domain)
{
2526
	struct iommu_dev_data *dev_data;
2527

2528 2529
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2530 2531 2532 2533 2534 2535 2536 2537
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2538 2539 2540

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2541 2542 2543 2544

	domain->updated = false;
}

2545 2546 2547 2548 2549 2550
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2551
	struct aperture_range *aperture;
2552 2553
	u64 *pte, *pte_page;

2554 2555 2556 2557 2558
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2559
	if (!pte) {
2560
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2561
				GFP_ATOMIC);
2562 2563
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2564
		pte += PM_LEVEL_INDEX(0, address);
2565

2566
	update_domain(&dom->domain);
2567 2568 2569 2570

	return pte;
}

2571 2572 2573 2574
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2575
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2586
	pte  = dma_ops_get_pte(dom, address);
2587
	if (!pte)
2588
		return DMA_ERROR_CODE;
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2606 2607 2608
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2609
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2610 2611
				 unsigned long address)
{
2612
	struct aperture_range *aperture;
2613 2614 2615 2616 2617
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2618 2619 2620 2621 2622 2623 2624
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2625

2626
	pte += PM_LEVEL_INDEX(0, address);
2627 2628 2629 2630 2631 2632

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2633 2634
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2635 2636
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2637 2638
 * Must be called with the domain lock held.
 */
2639 2640 2641 2642
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2643
			       int dir,
2644 2645
			       bool align,
			       u64 dma_mask)
2646 2647
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2648
	dma_addr_t address, start, ret;
2649
	unsigned int pages;
2650
	unsigned long align_mask = 0;
2651 2652
	int i;

2653
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2654 2655
	paddr &= PAGE_MASK;

2656 2657
	INC_STATS_COUNTER(total_map_requests);

2658 2659 2660
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2661 2662 2663
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2664
retry:
2665 2666
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2667
	if (unlikely(address == DMA_ERROR_CODE)) {
2668 2669 2670 2671 2672 2673 2674
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2675
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2676 2677 2678
			goto out;

		/*
2679
		 * aperture was successfully enlarged by 128 MB, try
2680 2681 2682 2683
		 * allocation again
		 */
		goto retry;
	}
2684 2685 2686

	start = address;
	for (i = 0; i < pages; ++i) {
2687
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2688
		if (ret == DMA_ERROR_CODE)
2689 2690
			goto out_unmap;

2691 2692 2693 2694 2695
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2696 2697
	ADD_STATS_COUNTER(alloced_io_mem, size);

2698
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2699
		domain_flush_tlb(&dma_dom->domain);
2700
		dma_dom->need_flush = false;
2701
	} else if (unlikely(amd_iommu_np_cache))
2702
		domain_flush_pages(&dma_dom->domain, address, size);
2703

2704 2705
out:
	return address;
2706 2707 2708 2709 2710

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2711
		dma_ops_domain_unmap(dma_dom, start);
2712 2713 2714 2715
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2716
	return DMA_ERROR_CODE;
2717 2718
}

2719 2720 2721 2722
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2723
static void __unmap_single(struct dma_ops_domain *dma_dom,
2724 2725 2726 2727
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2728
	dma_addr_t flush_addr;
2729 2730 2731
	dma_addr_t i, start;
	unsigned int pages;

2732
	if ((dma_addr == DMA_ERROR_CODE) ||
2733
	    (dma_addr + size > dma_dom->aperture_size))
2734 2735
		return;

2736
	flush_addr = dma_addr;
2737
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2738 2739 2740 2741
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2742
		dma_ops_domain_unmap(dma_dom, start);
2743 2744 2745
		start += PAGE_SIZE;
	}

2746 2747
	SUB_STATS_COUNTER(alloced_io_mem, size);

2748
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2749

2750
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2751
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2752 2753
		dma_dom->need_flush = false;
	}
2754 2755
}

2756 2757 2758
/*
 * The exported map_single function for dma_ops.
 */
2759 2760 2761 2762
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2763 2764 2765 2766
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2767
	u64 dma_mask;
2768
	phys_addr_t paddr = page_to_phys(page) + offset;
2769

2770 2771
	INC_STATS_COUNTER(cnt_map_single);

2772 2773
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2774
		return (dma_addr_t)paddr;
2775 2776
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2777

2778 2779
	dma_mask = *dev->dma_mask;

2780
	spin_lock_irqsave(&domain->lock, flags);
2781

2782
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2783
			    dma_mask);
2784
	if (addr == DMA_ERROR_CODE)
2785 2786
		goto out;

2787
	domain_flush_complete(domain);
2788 2789 2790 2791 2792 2793 2794

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2795 2796 2797
/*
 * The exported unmap_single function for dma_ops.
 */
2798 2799
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2800 2801 2802 2803
{
	unsigned long flags;
	struct protection_domain *domain;

2804 2805
	INC_STATS_COUNTER(cnt_unmap_single);

2806 2807
	domain = get_domain(dev);
	if (IS_ERR(domain))
2808 2809
		return;

2810 2811
	spin_lock_irqsave(&domain->lock, flags);

2812
	__unmap_single(domain->priv, dma_addr, size, dir);
2813

2814
	domain_flush_complete(domain);
2815 2816 2817 2818

	spin_unlock_irqrestore(&domain->lock, flags);
}

2819 2820 2821 2822
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2823
static int map_sg(struct device *dev, struct scatterlist *sglist,
2824 2825
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2826 2827 2828 2829 2830 2831 2832
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2833
	u64 dma_mask;
2834

2835 2836
	INC_STATS_COUNTER(cnt_map_sg);

2837
	domain = get_domain(dev);
2838
	if (IS_ERR(domain))
2839
		return 0;
2840

2841
	dma_mask = *dev->dma_mask;
2842 2843 2844 2845 2846 2847

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2848
		s->dma_address = __map_single(dev, domain->priv,
2849 2850
					      paddr, s->length, dir, false,
					      dma_mask);
2851 2852 2853 2854 2855 2856 2857 2858

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2859
	domain_flush_complete(domain);
2860 2861 2862 2863 2864 2865 2866 2867

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2868
			__unmap_single(domain->priv, s->dma_address,
2869 2870 2871 2872 2873 2874 2875 2876 2877
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2878 2879 2880 2881
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2882
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2883 2884
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2885 2886 2887 2888 2889 2890
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2891 2892
	INC_STATS_COUNTER(cnt_unmap_sg);

2893 2894
	domain = get_domain(dev);
	if (IS_ERR(domain))
2895 2896
		return;

2897 2898 2899
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2900
		__unmap_single(domain->priv, s->dma_address,
2901 2902 2903 2904
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2905
	domain_flush_complete(domain);
2906 2907 2908 2909

	spin_unlock_irqrestore(&domain->lock, flags);
}

2910 2911 2912
/*
 * The exported alloc_coherent function for dma_ops.
 */
2913
static void *alloc_coherent(struct device *dev, size_t size,
2914 2915
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2916
{
2917
	u64 dma_mask = dev->coherent_dma_mask;
2918 2919 2920
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2921

2922 2923
	INC_STATS_COUNTER(cnt_alloc_coherent);

2924 2925
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2926 2927 2928
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2929 2930
	} else if (IS_ERR(domain))
		return NULL;
2931

2932
	size	  = PAGE_ALIGN(size);
2933 2934
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2935

2936 2937 2938 2939
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!(flag & __GFP_WAIT))
			return NULL;
2940

2941 2942 2943 2944 2945
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2946

2947 2948 2949
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2950 2951
	spin_lock_irqsave(&domain->lock, flags);

2952
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2953
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2954

2955
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2956
		spin_unlock_irqrestore(&domain->lock, flags);
2957
		goto out_free;
J
Jiri Slaby 已提交
2958
	}
2959

2960
	domain_flush_complete(domain);
2961 2962 2963

	spin_unlock_irqrestore(&domain->lock, flags);

2964
	return page_address(page);
2965 2966 2967

out_free:

2968 2969
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2970 2971

	return NULL;
2972 2973
}

2974 2975 2976
/*
 * The exported free_coherent function for dma_ops.
 */
2977
static void free_coherent(struct device *dev, size_t size,
2978 2979
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2980 2981
{
	struct protection_domain *domain;
2982 2983
	unsigned long flags;
	struct page *page;
2984

2985 2986
	INC_STATS_COUNTER(cnt_free_coherent);

2987 2988 2989
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2990 2991
	domain = get_domain(dev);
	if (IS_ERR(domain))
2992 2993
		goto free_mem;

2994 2995
	spin_lock_irqsave(&domain->lock, flags);

2996
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2997

2998
	domain_flush_complete(domain);
2999 3000 3001 3002

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
3003 3004
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
3005 3006
}

3007 3008 3009 3010 3011 3012
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
3013
	return check_device(dev);
3014 3015
}

3016
/*
3017 3018
 * The function for pre-allocating protection domains.
 *
3019 3020 3021 3022
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
3023
static void __init prealloc_protection_domains(void)
3024
{
3025
	struct iommu_dev_data *dev_data;
3026
	struct dma_ops_domain *dma_dom;
3027
	struct pci_dev *dev = NULL;
3028
	u16 devid;
3029

3030
	for_each_pci_dev(dev) {
3031 3032 3033

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
3034
			continue;
3035

3036 3037 3038 3039 3040 3041
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
F
Frank Arnold 已提交
3042
			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3043 3044 3045
				dev_name(&dev->dev));
		}

3046
		/* Is there already any domain for it? */
3047
		if (domain_for_device(&dev->dev))
3048
			continue;
3049 3050 3051

		devid = get_device_id(&dev->dev);

3052
		dma_dom = dma_ops_domain_alloc();
3053 3054 3055
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
3056 3057
		dma_dom->target_dev = devid;

3058
		attach_device(&dev->dev, &dma_dom->domain);
3059

3060
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3061 3062 3063
	}
}

3064
static struct dma_map_ops amd_iommu_dma_ops = {
3065 3066
	.alloc = alloc_coherent,
	.free = free_coherent,
3067 3068
	.map_page = map_page,
	.unmap_page = unmap_page,
3069 3070
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3071
	.dma_supported = amd_iommu_dma_supported,
3072 3073
};

3074 3075
static unsigned device_dma_ops_init(void)
{
3076
	struct iommu_dev_data *dev_data;
3077 3078 3079 3080 3081
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3082 3083 3084

			iommu_ignore_device(&pdev->dev);

3085 3086 3087 3088
			unhandled += 1;
			continue;
		}

3089 3090 3091 3092 3093 3094
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3095 3096 3097 3098 3099
	}

	return unhandled;
}

3100 3101 3102
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3103 3104 3105

void __init amd_iommu_init_api(void)
{
3106
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3107 3108
}

3109 3110 3111
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3112
	int ret, unhandled;
3113

3114 3115 3116 3117 3118
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3119
	for_each_iommu(iommu) {
3120
		iommu->default_dom = dma_ops_domain_alloc();
3121 3122
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3123
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3124 3125 3126 3127 3128
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3129
	/*
3130
	 * Pre-allocate the protection domains for each device.
3131
	 */
3132
	prealloc_protection_domains();
3133 3134

	iommu_detected = 1;
3135
	swiotlb = 0;
3136

3137
	/* Make the driver finally visible to the drivers */
3138 3139 3140 3141 3142
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3143

3144 3145
	amd_iommu_stats_init();

3146 3147 3148 3149 3150
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3151 3152 3153 3154
	return 0;

free_domains:

3155
	for_each_iommu(iommu) {
3156
		dma_ops_domain_free(iommu->default_dom);
3157 3158 3159 3160
	}

	return ret;
}
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3174
	struct iommu_dev_data *entry;
3175 3176 3177 3178
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3179 3180 3181 3182
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3183
	}
3184 3185 3186 3187

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3188 3189 3190 3191 3192
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3193 3194
	del_domain_from_list(domain);

3195 3196 3197 3198 3199 3200 3201
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3202 3203 3204 3205 3206
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3207
		return NULL;
3208 3209

	spin_lock_init(&domain->lock);
3210
	mutex_init(&domain->api_lock);
3211 3212
	domain->id = domain_id_alloc();
	if (!domain->id)
3213
		goto out_err;
3214
	INIT_LIST_HEAD(&domain->dev_list);
3215

3216 3217
	add_domain_to_list(domain);

3218 3219 3220 3221 3222 3223 3224 3225
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3240 3241 3242 3243 3244 3245
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3246
		goto out_free;
3247 3248

	domain->mode    = PAGE_MODE_3_LEVEL;
3249 3250 3251 3252
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3253 3254
	domain->iommu_domain = dom;

3255 3256
	dom->priv = domain;

3257 3258 3259 3260
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3261 3262 3263
	return 0;

out_free:
3264
	protection_domain_free(domain);
3265 3266 3267 3268

	return -ENOMEM;
}

3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3281 3282
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3283

3284 3285 3286
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3287
	protection_domain_free(domain);
3288 3289 3290 3291

	dom->priv = NULL;
}

3292 3293 3294
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3295
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3296 3297 3298
	struct amd_iommu *iommu;
	u16 devid;

3299
	if (!check_device(dev))
3300 3301
		return;

3302
	devid = get_device_id(dev);
3303

3304
	if (dev_data->domain != NULL)
3305
		detach_device(dev);
3306 3307 3308 3309 3310 3311 3312 3313

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3314 3315 3316 3317
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3318
	struct iommu_dev_data *dev_data;
3319
	struct amd_iommu *iommu;
3320
	int ret;
3321

3322
	if (!check_device(dev))
3323 3324
		return -EINVAL;

3325 3326
	dev_data = dev->archdata.iommu;

3327
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3328 3329 3330
	if (!iommu)
		return -EINVAL;

3331
	if (dev_data->domain)
3332
		detach_device(dev);
3333

3334
	ret = attach_device(dev, domain);
3335 3336 3337

	iommu_completion_wait(iommu);

3338
	return ret;
3339 3340
}

3341
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3342
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3343 3344 3345 3346 3347
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3348 3349 3350
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3351 3352 3353 3354 3355
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3356
	mutex_lock(&domain->api_lock);
3357
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3358 3359
	mutex_unlock(&domain->api_lock);

3360
	return ret;
3361 3362
}

3363 3364
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3365 3366
{
	struct protection_domain *domain = dom->priv;
3367
	size_t unmap_size;
3368

3369 3370 3371
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3372
	mutex_lock(&domain->api_lock);
3373
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3374
	mutex_unlock(&domain->api_lock);
3375

3376
	domain_flush_tlb_pde(domain);
3377

3378
	return unmap_size;
3379 3380
}

3381
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3382
					  dma_addr_t iova)
3383 3384
{
	struct protection_domain *domain = dom->priv;
3385
	unsigned long offset_mask;
3386
	phys_addr_t paddr;
3387
	u64 *pte, __pte;
3388

3389 3390 3391
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3392
	pte = fetch_pte(domain, iova);
3393

3394
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3395 3396
		return 0;

3397 3398 3399 3400 3401 3402 3403
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3404 3405 3406 3407

	return paddr;
}

3408
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3409
{
3410 3411
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3412
		return true;
3413
	case IOMMU_CAP_INTR_REMAP:
3414
		return (irq_remapping_enabled == 1);
3415 3416
	case IOMMU_CAP_NOEXEC:
		return false;
3417 3418
	}

3419
	return false;
S
Sheng Yang 已提交
3420 3421
}

3422
static const struct iommu_ops amd_iommu_ops = {
3423
	.capable = amd_iommu_capable,
3424 3425 3426 3427
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3428 3429
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3430
	.map_sg = default_iommu_map_sg,
3431
	.iova_to_phys = amd_iommu_iova_to_phys,
3432
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3433 3434
};

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3447
	struct iommu_dev_data *dev_data;
3448
	struct pci_dev *dev = NULL;
3449
	int ret;
3450

3451 3452 3453
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3454

3455
	for_each_pci_dev(dev) {
3456
		if (!check_device(&dev->dev))
3457 3458
			continue;

3459 3460 3461
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3462
		attach_device(&dev->dev, pt_domain);
3463 3464
	}

J
Joerg Roedel 已提交
3465 3466
	amd_iommu_stats_init();

3467 3468 3469 3470
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3612 3613
	INC_STATS_COUNTER(invalidate_iotlb);

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3634 3635
	INC_STATS_COUNTER(invalidate_iotlb_all);

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3747 3748 3749 3750 3751 3752 3753 3754

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3755 3756
	INC_STATS_COUNTER(complete_ppr);

3757 3758 3759 3760 3761 3762 3763 3764 3765
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3913 3914 3915
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3916 3917 3918 3919 3920 3921 3922
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3923
		table = NULL;
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3941
		set_dte_irq_entry(alias, table);
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
3976
			struct irq_2_irte *irte_info;
3977 3978 3979 3980 3981 3982

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

3983
			cfg->remapped	      = 1;
3984 3985 3986
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4062 4063 4064 4065 4066
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
4067
	struct irq_2_irte *irte_info;
4068 4069 4070 4071 4072 4073 4074
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

4075
	cfg = irq_cfg(irq);
4076 4077 4078
	if (!cfg)
		return -EINVAL;

4079
	irte_info = &cfg->irq_2_irte;
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4093
	cfg->remapped	      = 1;
4094 4095
	irte_info->devid      = devid;
	irte_info->index      = index;
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
4129
	struct irq_2_irte *irte_info;
4130 4131 4132 4133 4134 4135 4136 4137
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

4138
	cfg       = irqd_cfg(data);
4139
	irq       = data->irq;
4140
	irte_info = &cfg->irq_2_irte;
4141 4142 4143 4144

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

4145
	if (get_irte(irte_info->devid, irte_info->index, &irte))
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

4161
	modify_irte(irte_info->devid, irte_info->index, irte);
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
4173
	struct irq_2_irte *irte_info;
4174 4175
	struct irq_cfg *cfg;

4176
	cfg = irq_cfg(irq);
4177 4178 4179
	if (!cfg)
		return -EINVAL;

4180
	irte_info = &cfg->irq_2_irte;
4181

4182
	free_irte(irte_info->devid, irte_info->index);
4183 4184 4185 4186

	return 0;
}

4187 4188 4189 4190
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
4191
	struct irq_2_irte *irte_info;
4192 4193 4194
	struct irq_cfg *cfg;
	union irte irte;

4195
	cfg = irq_cfg(irq);
4196 4197 4198
	if (!cfg)
		return;

4199
	irte_info = &cfg->irq_2_irte;
4200 4201 4202 4203 4204 4205 4206 4207

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

4208
	modify_irte(irte_info->devid, irte_info->index, irte);
4209 4210 4211

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
4212
	msg->data       = irte_info->index;
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4224
	cfg = irq_cfg(irq);
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4237
	struct irq_2_irte *irte_info;
4238 4239 4240 4241 4242 4243
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4244
	cfg = irq_cfg(irq);
4245 4246 4247 4248 4249 4250 4251
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4252
	irte_info	= &cfg->irq_2_irte;
4253

4254
	cfg->remapped	      = 1;
4255 4256
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4257 4258 4259 4260

	return 0;
}

4261
static int alloc_hpet_msi(unsigned int irq, unsigned int id)
4262
{
4263
	struct irq_2_irte *irte_info;
4264 4265 4266
	struct irq_cfg *cfg;
	int index, devid;

4267
	cfg = irq_cfg(irq);
4268 4269 4270
	if (!cfg)
		return -EINVAL;

4271
	irte_info = &cfg->irq_2_irte;
4272 4273 4274 4275 4276 4277 4278 4279
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4280
	cfg->remapped	      = 1;
4281 4282
	irte_info->devid      = devid;
	irte_info->index      = index;
4283 4284 4285 4286

	return 0;
}

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
4299
	.alloc_hpet_msi		= alloc_hpet_msi,
4300
};
4301
#endif