amd_iommu.c 106.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56

57 58
#define AMD_IOMMU_MAPPING_ERROR	0

59 60
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

61
#define LOOP_TIMEOUT	100000
62

63 64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84 85
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

86 87 88 89
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107 108 109 110 111 112
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
113
	u16 alias;			  /* Alias Device ID */
114
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
115
	bool passthrough;		  /* Device is identity mapped */
116 117 118 119 120 121 122
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
123
	bool use_vapic;			  /* Enable device to use vapic mode */
124
	bool defer_attach;
125 126

	struct ratelimit_state rs;	  /* Ratelimit IOPF messages */
127 128
};

129 130 131
/*
 * general struct to manage commands send to an IOMMU
 */
132
struct iommu_cmd {
133 134 135
	u32 data[4];
};

136 137
struct kmem_cache *amd_iommu_irq_cache;

138
static void update_domain(struct protection_domain *domain);
139
static int protection_domain_init(struct protection_domain *domain);
140
static void detach_device(struct device *dev);
141

142 143 144 145 146
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
147
	u64 counter; /* Flush counter when this entry was added to the queue */
148 149 150 151 152
};

struct flush_queue {
	struct flush_queue_entry *entries;
	unsigned head, tail;
153
	spinlock_t lock;
154 155
};

156 157 158 159 160 161 162
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

163 164
	/* IOVA RB-Tree */
	struct iova_domain iovad;
165 166

	struct flush_queue __percpu *flush_queue;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

	/*
	 * We need two counter here to be race-free wrt. IOTLB flushing and
	 * adding entries to the flush queue.
	 *
	 * The flush_start_cnt is incremented _before_ the IOTLB flush starts.
	 * New entries added to the flush ring-buffer get their 'counter' value
	 * from here. This way we can make sure that entries added to the queue
	 * (or other per-cpu queues of the same domain) while the TLB is about
	 * to be flushed are not considered to be flushed already.
	 */
	atomic64_t flush_start_cnt;

	/*
	 * The flush_finish_cnt is incremented when an IOTLB flush is complete.
	 * This value is always smaller than flush_start_cnt. The queue_add
	 * function frees all IOVAs that have a counter value smaller than
	 * flush_finish_cnt. This makes sure that we only free IOVAs that are
	 * flushed out of the IOTLB of the domain.
	 */
	atomic64_t flush_finish_cnt;
188 189 190 191 192 193 194

	/*
	 * Timer to make sure we don't keep IOVAs around unflushed
	 * for too long
	 */
	struct timer_list flush_timer;
	atomic_t flush_timer_on;
195 196
};

197 198 199
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

200 201 202 203 204 205
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

206 207
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
208
{
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
224 225
}

226
static inline u16 get_pci_device_id(struct device *dev)
227 228 229 230 231 232
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

260 261 262 263 264
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

265 266 267 268 269 270
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

271
static struct iommu_dev_data *alloc_dev_data(u16 devid)
272 273 274 275 276 277 278 279
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

280
	dev_data->devid = devid;
281 282 283 284 285

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

286 287
	ratelimit_default_init(&dev_data->rs);

288 289 290
	return dev_data;
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

310 311 312 313 314 315 316 317 318 319 320
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

321
	/* The callers make sure that get_device_id() does not fail here */
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
363
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
364 365 366 367 368 369 370 371
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

372 373 374
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
375
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
376 377 378

	dev_data = search_dev_data(devid);

379
	if (dev_data == NULL) {
380 381
		dev_data = alloc_dev_data(devid);

382 383 384 385
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

386 387 388
	return dev_data;
}

389 390 391 392 393
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

394 395 396 397
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
398
{
399
	struct acpihid_map_entry *p, *entry = NULL;
400
	int devid;
401 402 403 404 405 406 407 408 409 410 411 412

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
413 414
	else
		iommu_group_ref_get(entry->group);
415 416

	return entry->group;
417 418
}

419 420 421 422
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
423 424
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
425 426 427 428 429 430 431 432 433 434 435 436
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

437 438 439 440 441 442 443 444 445
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

446 447 448 449 450 451
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
452
	int devid;
453 454 455 456 457

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
458
	if (devid < 0)
459
		return false;
460 461 462 463 464 465 466 467 468 469 470

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

471
static void init_iommu_group(struct device *dev)
472 473 474
{
	struct iommu_group *group;

475
	group = iommu_group_get_for_dev(dev);
476 477 478 479
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
480 481 482 483 484
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
485
	struct amd_iommu *iommu;
486
	int devid;
487 488 489 490

	if (dev->archdata.iommu)
		return 0;

491
	devid = get_device_id(dev);
492
	if (devid < 0)
493 494
		return devid;

495 496
	iommu = amd_iommu_rlookup_table[devid];

497
	dev_data = find_dev_data(devid);
498 499 500
	if (!dev_data)
		return -ENOMEM;

501 502
	dev_data->alias = get_alias(dev);

503
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
504 505
		struct amd_iommu *iommu;

506
		iommu = amd_iommu_rlookup_table[dev_data->devid];
507 508 509
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

510 511
	dev->archdata.iommu = dev_data;

512
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
513

514 515 516
	return 0;
}

517 518
static void iommu_ignore_device(struct device *dev)
{
519 520
	u16 alias;
	int devid;
521 522

	devid = get_device_id(dev);
523
	if (devid < 0)
524 525
		return;

526
	alias = get_alias(dev);
527 528 529 530 531 532 533 534

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

535 536
static void iommu_uninit_device(struct device *dev)
{
537
	struct iommu_dev_data *dev_data;
538 539
	struct amd_iommu *iommu;
	int devid;
540

541
	devid = get_device_id(dev);
542
	if (devid < 0)
543
		return;
544

545 546
	iommu = amd_iommu_rlookup_table[devid];

547
	dev_data = search_dev_data(devid);
548 549 550
	if (!dev_data)
		return;

551 552 553
	if (dev_data->domain)
		detach_device(dev);

554
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
555

556 557
	iommu_group_remove_device(dev);

558
	/* Remove dma-ops */
559
	dev->dma_ops = NULL;
560

561
	/*
562 563
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
564
	 */
565
}
J
Joerg Roedel 已提交
566

567 568 569 570 571 572
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

573 574 575 576
static void dump_dte_entry(u16 devid)
{
	int i;

577 578
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
579 580 581
			amd_iommu_dev_table[devid].data[i]);
}

582 583 584 585 586 587 588 589 590
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

	pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

614
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
615
{
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
637

638 639 640 641 642 643
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
644 645 646 647 648

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
649
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
650
		       address, flags);
651
		dump_dte_entry(devid);
652 653 654 655
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
656
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
657 658 659 660 661
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
662
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
663 664 665 666
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
667
		dump_command(address);
668 669 670 671 672 673 674 675
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
676
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
677 678 679 680 681
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
682
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
683 684 685 686 687
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
688 689

	memset(__evt, 0, 4 * sizeof(u32));
690 691 692 693 694 695 696 697 698 699
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
700
		iommu_print_event(iommu, iommu->evt_buf + head);
701
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
702 703 704 705 706
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

707
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
752

753 754 755
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
756

757 758 759 760 761 762 763
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
764 765
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
766 767 768 769 770 771

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
772 773 774 775
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

836
irqreturn_t amd_iommu_int_thread(int irq, void *data)
837
{
838 839
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
840

841 842 843
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
844
			iommu->mmio_base + MMIO_STATUS_OFFSET);
845

846 847 848 849
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
850

851 852 853 854
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
855

856 857 858 859 860 861 862
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
878
	return IRQ_HANDLED;
879 880
}

881 882 883 884 885
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

886 887 888 889 890 891
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
910
			       struct iommu_cmd *cmd)
911 912 913
{
	u8 *target;

914 915 916 917
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
918 919 920 921 922

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
923
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
924
}
925

926
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
927
{
928 929
	WARN_ON(address & 0x7ULL);

930
	memset(cmd, 0, sizeof(*cmd));
931 932 933
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
934 935 936
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

937 938 939 940 941 942 943
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

944 945 946 947
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
948
	bool s;
949 950

	pages = iommu_num_pages(address, size, PAGE_SIZE);
951
	s     = false;
952 953 954 955 956 957 958

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
959
		s = true;
960 961 962 963 964 965 966 967 968 969 970
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
971
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
972 973 974
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

975 976 977 978
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
979
	bool s;
980 981

	pages = iommu_num_pages(address, size, PAGE_SIZE);
982
	s     = false;
983 984 985 986 987 988 989

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
990
		s = true;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

1006 1007 1008 1009 1010 1011 1012
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

1013
	cmd->data[0]  = pasid;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
1032
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1033 1034
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
1035
	cmd->data[1] |= (pasid & 0xff) << 16;
1036 1037 1038 1039 1040 1041 1042 1043
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

1044 1045 1046 1047 1048 1049 1050
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1051
		cmd->data[1]  = pasid;
1052 1053 1054 1055 1056 1057 1058 1059
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1060 1061 1062 1063
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1064 1065
}

1066 1067 1068 1069 1070 1071 1072
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1073 1074
/*
 * Writes the command to the IOMMUs command buffer and informs the
1075
 * hardware about the new command.
1076
 */
1077 1078 1079
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1080
{
1081
	unsigned int count = 0;
1082
	u32 left, next_tail;
1083

1084
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1085
again:
1086
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1087

1088
	if (left <= 0x20) {
1089 1090 1091 1092 1093 1094
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1095

1096 1097
			udelay(1);
		}
1098

1099 1100 1101
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1102 1103

		goto again;
1104 1105
	}

1106
	copy_cmd_to_buffer(iommu, cmd);
1107

1108
	/* Do we need to make sure all commands are processed? */
1109
	iommu->need_sync = sync;
1110

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1123
	spin_unlock_irqrestore(&iommu->lock, flags);
1124

1125
	return ret;
1126 1127
}

1128 1129 1130 1131 1132
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1133 1134 1135 1136
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1137
static int iommu_completion_wait(struct amd_iommu *iommu)
1138 1139
{
	struct iommu_cmd cmd;
1140
	unsigned long flags;
1141
	int ret;
1142

1143
	if (!iommu->need_sync)
1144
		return 0;
1145

1146

1147 1148 1149 1150 1151 1152 1153
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1154
	if (ret)
1155 1156 1157 1158 1159 1160
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1161

1162
	return ret;
1163 1164
}

1165
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1166
{
1167
	struct iommu_cmd cmd;
1168

1169
	build_inv_dte(&cmd, devid);
1170

1171 1172
	return iommu_queue_command(iommu, &cmd);
}
1173

1174 1175 1176
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1177

1178 1179
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1180

1181 1182
	iommu_completion_wait(iommu);
}
1183

1184 1185 1186 1187 1188 1189 1190
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1191

1192 1193 1194 1195 1196 1197
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1198

1199
	iommu_completion_wait(iommu);
1200 1201
}

1202
static void iommu_flush_all(struct amd_iommu *iommu)
1203
{
1204
	struct iommu_cmd cmd;
1205

1206
	build_inv_all(&cmd);
1207

1208 1209 1210 1211
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1231 1232
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1233 1234 1235 1236
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1237
		iommu_flush_irt_all(iommu);
1238
		iommu_flush_tlb_all(iommu);
1239 1240 1241
	}
}

1242
/*
1243
 * Command send function for flushing on-device TLB
1244
 */
1245 1246
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1247 1248
{
	struct amd_iommu *iommu;
1249
	struct iommu_cmd cmd;
1250
	int qdep;
1251

1252 1253
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1254

1255
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1256 1257

	return iommu_queue_command(iommu, &cmd);
1258 1259
}

1260 1261 1262
/*
 * Command send function for invalidating a device table entry
 */
1263
static int device_flush_dte(struct iommu_dev_data *dev_data)
1264
{
1265
	struct amd_iommu *iommu;
1266
	u16 alias;
1267
	int ret;
1268

1269
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1270
	alias = dev_data->alias;
1271

1272
	ret = iommu_flush_dte(iommu, dev_data->devid);
1273 1274
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1275 1276 1277
	if (ret)
		return ret;

1278
	if (dev_data->ats.enabled)
1279
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1280 1281

	return ret;
1282 1283
}

1284 1285 1286 1287 1288
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1289 1290
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1291
{
1292
	struct iommu_dev_data *dev_data;
1293 1294
	struct iommu_cmd cmd;
	int ret = 0, i;
1295

1296
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1297

1298
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1299 1300 1301 1302 1303 1304 1305
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1306
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1307 1308
	}

1309 1310
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1311
		if (!dev_data->ats.enabled)
1312 1313
			continue;

1314
		ret |= device_flush_iotlb(dev_data, address, size);
1315 1316
	}

1317
	WARN_ON(ret);
1318 1319
}

1320 1321
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1322
{
1323
	__domain_flush_pages(domain, address, size, 0);
1324
}
1325

1326
/* Flush the whole IO/TLB for a given protection domain */
1327
static void domain_flush_tlb(struct protection_domain *domain)
1328
{
1329
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1330 1331
}

1332
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1333
static void domain_flush_tlb_pde(struct protection_domain *domain)
1334
{
1335
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1336 1337
}

1338
static void domain_flush_complete(struct protection_domain *domain)
1339
{
1340
	int i;
1341

1342
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1343
		if (domain && !domain->dev_iommu[i])
1344
			continue;
1345

1346 1347 1348 1349 1350
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1351
	}
1352 1353
}

1354

1355
/*
1356
 * This function flushes the DTEs for all devices in domain
1357
 */
1358
static void domain_flush_devices(struct protection_domain *domain)
1359
{
1360
	struct iommu_dev_data *dev_data;
1361

1362
	list_for_each_entry(dev_data, &domain->dev_list, list)
1363
		device_flush_dte(dev_data);
1364 1365
}

1366 1367 1368 1369 1370 1371 1372
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1402
		      unsigned long page_size,
1403 1404 1405
		      u64 **pte_page,
		      gfp_t gfp)
{
1406
	int level, end_lvl;
1407
	u64 *pte, *page;
1408 1409

	BUG_ON(!is_power_of_2(page_size));
1410 1411 1412 1413

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1414 1415 1416 1417
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1418 1419

	while (level > end_lvl) {
1420 1421 1422 1423 1424
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1425 1426 1427
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1428 1429 1430

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1431 1432
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1433 1434 1435
				free_page((unsigned long)page);
				continue;
			}
1436 1437
		}

1438 1439 1440 1441
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1459 1460 1461
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1462 1463 1464 1465
{
	int level;
	u64 *pte;

1466 1467 1468
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1469 1470 1471
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1472

1473 1474 1475
	while (level > 0) {

		/* Not Present */
1476 1477 1478
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1479
		/* Large PTE */
1480 1481 1482
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1483 1484 1485 1486 1487

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1488 1489
		level -= 1;

1490
		/* Walk to the next level */
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1506 1507 1508 1509 1510
	}

	return pte;
}

1511 1512 1513 1514 1515 1516 1517
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1518 1519 1520
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1521
			  unsigned long page_size,
1522
			  int prot,
1523
			  gfp_t gfp)
1524
{
1525
	u64 __pte, *pte;
1526
	int i, count;
1527

1528 1529 1530
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1531
	if (!(prot & IOMMU_PROT_MASK))
1532 1533
		return -EINVAL;

1534
	count = PAGE_SIZE_PTE_COUNT(page_size);
1535
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1536

1537 1538 1539
	if (!pte)
		return -ENOMEM;

1540 1541 1542
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1543

1544
	if (count > 1) {
1545
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1546
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1547
	} else
1548
		__pte = phys_addr | IOMMU_PTE_PR | IOMMU_PTE_FC;
1549 1550 1551 1552 1553 1554

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1555 1556
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1557

1558 1559
	update_domain(dom);

1560 1561 1562
	return 0;
}

1563 1564 1565
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1566
{
1567 1568
	unsigned long long unmapped;
	unsigned long unmap_size;
1569 1570 1571 1572 1573
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1574

1575 1576
	while (unmapped < page_size) {

1577 1578 1579 1580 1581 1582
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1583 1584 1585 1586 1587 1588 1589 1590
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1591
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1592

1593
	return unmapped;
1594 1595
}

1596 1597 1598
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1599
 * interface functions.
1600 1601
 *
 ****************************************************************************/
1602

1603

1604 1605 1606
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1607
{
1608
	unsigned long pfn = 0;
1609

1610
	pages = __roundup_pow_of_two(pages);
1611

1612 1613 1614
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1615

1616 1617
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1618

1619
	return (pfn << PAGE_SHIFT);
1620 1621
}

1622 1623 1624
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1625
{
1626 1627
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1628

1629
	free_iova_fast(&dma_dom->iovad, address, pages);
1630 1631
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1704
		/* PTE present? */				\
1705 1706 1707
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1708 1709 1710 1711 1712
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1725
static void free_pagetable(struct protection_domain *domain)
1726
{
1727
	unsigned long root = (unsigned long)domain->pt_root;
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1752 1753 1754
	}
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1785 1786
static void free_gcr3_table(struct protection_domain *domain)
{
1787 1788 1789 1790
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1791 1792
	else
		BUG_ON(domain->glx != 0);
1793

1794 1795 1796
	free_page((unsigned long)domain->gcr3_tbl);
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
static void dma_ops_domain_free_flush_queue(struct dma_ops_domain *dom)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		kfree(queue->entries);
	}

	free_percpu(dom->flush_queue);

	dom->flush_queue = NULL;
}

static int dma_ops_domain_alloc_flush_queue(struct dma_ops_domain *dom)
{
	int cpu;

1817 1818 1819
	atomic64_set(&dom->flush_start_cnt,  0);
	atomic64_set(&dom->flush_finish_cnt, 0);

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	dom->flush_queue = alloc_percpu(struct flush_queue);
	if (!dom->flush_queue)
		return -ENOMEM;

	/* First make sure everything is cleared */
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		queue->head    = 0;
		queue->tail    = 0;
		queue->entries = NULL;
	}

	/* Now start doing the allocation */
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		queue->entries = kzalloc(FLUSH_QUEUE_SIZE * sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries) {
			dma_ops_domain_free_flush_queue(dom);
			return -ENOMEM;
		}
1845 1846

		spin_lock_init(&queue->lock);
1847 1848 1849 1850 1851
	}

	return 0;
}

1852 1853 1854 1855 1856 1857 1858 1859
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	atomic64_inc(&dom->flush_start_cnt);
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
	atomic64_inc(&dom->flush_finish_cnt);
}

1860 1861
static inline bool queue_ring_full(struct flush_queue *queue)
{
1862 1863
	assert_spin_locked(&queue->lock);

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	return (((queue->tail + 1) % FLUSH_QUEUE_SIZE) == queue->head);
}

#define queue_ring_for_each(i, q) \
	for (i = (q)->head; i != (q)->tail; i = (i + 1) % FLUSH_QUEUE_SIZE)

static inline unsigned queue_ring_add(struct flush_queue *queue)
{
	unsigned idx = queue->tail;

1874
	assert_spin_locked(&queue->lock);
1875 1876 1877 1878 1879
	queue->tail = (idx + 1) % FLUSH_QUEUE_SIZE;

	return idx;
}

1880 1881 1882 1883 1884 1885
static inline void queue_ring_remove_head(struct flush_queue *queue)
{
	assert_spin_locked(&queue->lock);
	queue->head = (queue->head + 1) % FLUSH_QUEUE_SIZE;
}

1886 1887
static void queue_ring_free_flushed(struct dma_ops_domain *dom,
				    struct flush_queue *queue)
1888
{
1889
	u64 counter = atomic64_read(&dom->flush_finish_cnt);
1890 1891
	int idx;

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	queue_ring_for_each(idx, queue) {
		/*
		 * This assumes that counter values in the ring-buffer are
		 * monotonously rising.
		 */
		if (queue->entries[idx].counter >= counter)
			break;

		free_iova_fast(&dom->iovad,
			       queue->entries[idx].iova_pfn,
			       queue->entries[idx].pages);

		queue_ring_remove_head(queue);
	}
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
}

static void queue_add(struct dma_ops_domain *dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(dom->flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

1921 1922 1923 1924 1925 1926
	/*
	 * First remove the enries from the ring-buffer that are already
	 * flushed to make the below queue_ring_full() check less likely
	 */
	queue_ring_free_flushed(dom, queue);

1927 1928 1929 1930 1931
	/*
	 * When ring-queue is full, flush the entries from the IOTLB so
	 * that we can free all entries with queue_ring_free_flushed()
	 * below.
	 */
1932
	if (queue_ring_full(queue)) {
1933
		dma_ops_domain_flush_tlb(dom);
1934 1935
		queue_ring_free_flushed(dom, queue);
	}
1936 1937 1938 1939 1940

	idx = queue_ring_add(queue);

	queue->entries[idx].iova_pfn = address;
	queue->entries[idx].pages    = pages;
1941
	queue->entries[idx].counter  = atomic64_read(&dom->flush_start_cnt);
1942

1943
	spin_unlock_irqrestore(&queue->lock, flags);
1944 1945 1946 1947

	if (atomic_cmpxchg(&dom->flush_timer_on, 0, 1) == 0)
		mod_timer(&dom->flush_timer, jiffies + msecs_to_jiffies(10));

1948 1949 1950
	put_cpu_ptr(dom->flush_queue);
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
static void queue_flush_timeout(unsigned long data)
{
	struct dma_ops_domain *dom = (struct dma_ops_domain *)data;
	int cpu;

	atomic_set(&dom->flush_timer_on, 0);

	dma_ops_domain_flush_tlb(dom);

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		queue_ring_free_flushed(dom, queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

1971 1972 1973 1974
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1975 1976 1977 1978 1979
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1980 1981
	del_domain_from_list(&dom->domain);

1982 1983 1984
	if (timer_pending(&dom->flush_timer))
		del_timer(&dom->flush_timer);

1985 1986
	dma_ops_domain_free_flush_queue(dom);

1987
	put_iova_domain(&dom->iovad);
1988

1989
	free_pagetable(&dom->domain);
1990

1991 1992 1993
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1994 1995 1996
	kfree(dom);
}

1997 1998
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1999
 * It also initializes the page table and the address allocator data
2000 2001
 * structures required for the dma_ops interface
 */
2002
static struct dma_ops_domain *dma_ops_domain_alloc(void)
2003 2004 2005 2006 2007 2008 2009
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

2010
	if (protection_domain_init(&dma_dom->domain))
2011
		goto free_dma_dom;
2012

2013
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
2014
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2015
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2016 2017 2018
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2019 2020 2021
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

2022 2023 2024
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

2025 2026 2027
	if (dma_ops_domain_alloc_flush_queue(dma_dom))
		goto free_dma_dom;

2028 2029 2030 2031 2032
	setup_timer(&dma_dom->flush_timer, queue_flush_timeout,
		    (unsigned long)dma_dom);

	atomic_set(&dma_dom->flush_timer_on, 0);

2033 2034
	add_domain_to_list(&dma_dom->domain);

2035 2036 2037 2038 2039 2040 2041 2042
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2043 2044 2045 2046 2047 2048 2049 2050 2051
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2052
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2053
{
2054
	u64 pte_root = 0;
2055
	u64 flags = 0;
2056

2057 2058 2059
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2060 2061
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
2062
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
2063

2064 2065
	flags = amd_iommu_dev_table[devid].data[1];

2066 2067 2068
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2095
	flags &= ~DEV_DOMID_MASK;
2096 2097 2098 2099
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2100 2101 2102 2103 2104
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
2105
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
2106
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2107 2108

	amd_iommu_apply_erratum_63(devid);
2109 2110
}

2111 2112
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2113 2114
{
	struct amd_iommu *iommu;
2115
	u16 alias;
2116
	bool ats;
2117

2118
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2119
	alias = dev_data->alias;
2120
	ats   = dev_data->ats.enabled;
2121 2122 2123 2124 2125 2126 2127 2128 2129

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

2130 2131 2132
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
2133
		set_dte_entry(alias, domain, ats);
2134

2135
	device_flush_dte(dev_data);
2136 2137
}

2138
static void do_detach(struct iommu_dev_data *dev_data)
2139 2140
{
	struct amd_iommu *iommu;
2141
	u16 alias;
2142

2143 2144 2145 2146 2147 2148 2149 2150 2151
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2152
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2153
	alias = dev_data->alias;
2154 2155

	/* decrease reference counters */
2156 2157 2158 2159 2160 2161
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2162
	clear_dte_entry(dev_data->devid);
2163 2164
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2165

2166
	/* Flush the DTE entry */
2167
	device_flush_dte(dev_data);
2168 2169 2170 2171 2172 2173
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2174
static int __attach_device(struct iommu_dev_data *dev_data,
2175
			   struct protection_domain *domain)
2176
{
2177
	int ret;
2178

2179 2180 2181 2182 2183 2184
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2185 2186 2187
	/* lock domain */
	spin_lock(&domain->lock);

2188
	ret = -EBUSY;
2189
	if (dev_data->domain != NULL)
2190
		goto out_unlock;
2191

2192
	/* Attach alias group root */
2193
	do_attach(dev_data, domain);
2194

2195 2196 2197 2198
	ret = 0;

out_unlock:

2199 2200
	/* ready */
	spin_unlock(&domain->lock);
2201

2202
	return ret;
2203
}
2204

2205 2206 2207 2208 2209 2210 2211 2212

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2213 2214 2215 2216 2217 2218
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2219
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2220 2221 2222
	if (!pos)
		return -EINVAL;

2223 2224 2225
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2226 2227 2228 2229

	return 0;
}

2230 2231
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2232 2233 2234 2235 2236 2237 2238 2239
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2251 2252
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2253 2254 2255
	if (ret)
		goto out_err;

2256 2257 2258 2259 2260 2261
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2275
/* FIXME: Move this to PCI code */
2276
#define PCI_PRI_TLP_OFF		(1 << 15)
2277

J
Joerg Roedel 已提交
2278
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2279
{
2280
	u16 status;
2281 2282
	int pos;

2283
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2284 2285 2286
	if (!pos)
		return false;

2287
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2288

2289
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2290 2291
}

2292
/*
F
Frank Arnold 已提交
2293
 * If a device is not yet associated with a domain, this function
2294 2295
 * assigns it visible for the hardware
 */
2296 2297
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2298
{
2299
	struct pci_dev *pdev;
2300
	struct iommu_dev_data *dev_data;
2301
	unsigned long flags;
2302
	int ret;
2303

2304 2305
	dev_data = get_dev_data(dev);

2306 2307 2308 2309
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2310
	if (domain->flags & PD_IOMMUV2_MASK) {
2311
		if (!dev_data->passthrough)
2312 2313
			return -EINVAL;

2314 2315 2316
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2317

2318 2319 2320 2321
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2322 2323
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2324 2325 2326
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2327

2328
skip_ats_check:
2329
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2330
	ret = __attach_device(dev_data, domain);
2331 2332
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2333 2334 2335 2336 2337
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2338
	domain_flush_tlb_pde(domain);
2339 2340

	return ret;
2341 2342
}

2343 2344 2345
/*
 * Removes a device from a protection domain (unlocked)
 */
2346
static void __detach_device(struct iommu_dev_data *dev_data)
2347
{
2348
	struct protection_domain *domain;
2349

2350 2351 2352 2353 2354
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2355

2356 2357
	if (WARN_ON(!dev_data->domain))
		return;
2358

2359
	domain = dev_data->domain;
2360

2361
	spin_lock(&domain->lock);
2362

2363
	do_detach(dev_data);
2364

2365
	spin_unlock(&domain->lock);
2366 2367 2368 2369 2370
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2371
static void detach_device(struct device *dev)
2372
{
2373
	struct protection_domain *domain;
2374
	struct iommu_dev_data *dev_data;
2375 2376
	unsigned long flags;

2377
	dev_data = get_dev_data(dev);
2378
	domain   = dev_data->domain;
2379

2380 2381
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2382
	__detach_device(dev_data);
2383
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2384

2385 2386 2387
	if (!dev_is_pci(dev))
		return;

2388
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2389 2390
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2391
		pci_disable_ats(to_pci_dev(dev));
2392 2393

	dev_data->ats.enabled = false;
2394
}
2395

2396
static int amd_iommu_add_device(struct device *dev)
2397
{
2398
	struct iommu_dev_data *dev_data;
2399
	struct iommu_domain *domain;
2400
	struct amd_iommu *iommu;
2401
	int ret, devid;
2402

2403
	if (!check_device(dev) || get_dev_data(dev))
2404
		return 0;
2405

2406
	devid = get_device_id(dev);
2407
	if (devid < 0)
2408 2409
		return devid;

2410
	iommu = amd_iommu_rlookup_table[devid];
2411

2412
	ret = iommu_init_device(dev);
2413 2414 2415 2416
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2417

2418
		iommu_ignore_device(dev);
2419
		dev->dma_ops = &nommu_dma_ops;
2420 2421 2422
		goto out;
	}
	init_iommu_group(dev);
2423

2424
	dev_data = get_dev_data(dev);
2425

2426
	BUG_ON(!dev_data);
2427

2428
	if (iommu_pass_through || dev_data->iommu_v2)
2429
		iommu_request_dm_for_dev(dev);
2430

2431 2432
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2433
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2434
		dev_data->passthrough = true;
2435
	else
2436
		dev->dma_ops = &amd_iommu_dma_ops;
2437

2438
out:
2439 2440 2441 2442 2443
	iommu_completion_wait(iommu);

	return 0;
}

2444
static void amd_iommu_remove_device(struct device *dev)
2445
{
2446
	struct amd_iommu *iommu;
2447
	int devid;
2448 2449 2450 2451 2452

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2453
	if (devid < 0)
2454 2455
		return;

2456 2457 2458 2459
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2460 2461
}

2462 2463 2464 2465 2466 2467 2468 2469
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2483
static struct protection_domain *get_domain(struct device *dev)
2484
{
2485
	struct protection_domain *domain;
2486
	struct iommu_domain *io_domain;
2487

2488
	if (!check_device(dev))
2489
		return ERR_PTR(-EINVAL);
2490

2491
	domain = get_dev_data(dev)->domain;
2492 2493 2494 2495 2496 2497
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2498
	if (!dma_ops_domain(domain))
2499
		return ERR_PTR(-EBUSY);
2500

2501
	return domain;
2502 2503
}

2504 2505
static void update_device_table(struct protection_domain *domain)
{
2506
	struct iommu_dev_data *dev_data;
2507

2508
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2509
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2510 2511 2512 2513 2514 2515 2516

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2517 2518 2519 2520 2521 2522 2523 2524
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2525 2526 2527

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2528 2529 2530 2531

	domain->updated = false;
}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2543 2544
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2545 2546
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2547 2548
 * Must be called with the domain lock held.
 */
2549 2550 2551 2552
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2553
			       enum dma_data_direction direction,
2554
			       u64 dma_mask)
2555 2556
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2557
	dma_addr_t address, start, ret;
2558
	unsigned int pages;
2559
	int prot = 0;
2560 2561
	int i;

2562
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2563 2564
	paddr &= PAGE_MASK;

2565
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2566
	if (address == AMD_IOMMU_MAPPING_ERROR)
2567
		goto out;
2568

2569
	prot = dir2prot(direction);
2570

2571 2572
	start = address;
	for (i = 0; i < pages; ++i) {
2573 2574 2575
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2576 2577
			goto out_unmap;

2578 2579 2580 2581 2582
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2583
	if (unlikely(amd_iommu_np_cache)) {
2584
		domain_flush_pages(&dma_dom->domain, address, size);
2585 2586
		domain_flush_complete(&dma_dom->domain);
	}
2587

2588 2589
out:
	return address;
2590 2591 2592 2593 2594

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2595
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2596 2597
	}

2598 2599 2600 2601
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2602

2603
	return AMD_IOMMU_MAPPING_ERROR;
2604 2605
}

2606 2607 2608 2609
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2610
static void __unmap_single(struct dma_ops_domain *dma_dom,
2611 2612 2613 2614
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2615
	dma_addr_t flush_addr;
2616 2617 2618
	dma_addr_t i, start;
	unsigned int pages;

2619
	flush_addr = dma_addr;
2620
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2621 2622 2623 2624
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2625
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2626 2627 2628
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2629 2630 2631 2632 2633 2634 2635
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2636 2637
}

2638 2639 2640
/*
 * The exported map_single function for dma_ops.
 */
2641 2642 2643
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2644
			   unsigned long attrs)
2645
{
2646
	phys_addr_t paddr = page_to_phys(page) + offset;
2647
	struct protection_domain *domain;
2648
	struct dma_ops_domain *dma_dom;
2649
	u64 dma_mask;
2650

2651 2652
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2653
		return (dma_addr_t)paddr;
2654
	else if (IS_ERR(domain))
2655
		return AMD_IOMMU_MAPPING_ERROR;
2656

2657
	dma_mask = *dev->dma_mask;
2658
	dma_dom = to_dma_ops_domain(domain);
2659

2660
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2661 2662
}

2663 2664 2665
/*
 * The exported unmap_single function for dma_ops.
 */
2666
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2667
		       enum dma_data_direction dir, unsigned long attrs)
2668 2669
{
	struct protection_domain *domain;
2670
	struct dma_ops_domain *dma_dom;
2671

2672 2673
	domain = get_domain(dev);
	if (IS_ERR(domain))
2674 2675
		return;

2676 2677 2678
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2679 2680
}

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2707 2708 2709 2710
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2711
static int map_sg(struct device *dev, struct scatterlist *sglist,
2712
		  int nelems, enum dma_data_direction direction,
2713
		  unsigned long attrs)
2714
{
2715
	int mapped_pages = 0, npages = 0, prot = 0, i;
2716
	struct protection_domain *domain;
2717
	struct dma_ops_domain *dma_dom;
2718
	struct scatterlist *s;
2719
	unsigned long address;
2720
	u64 dma_mask;
2721

2722
	domain = get_domain(dev);
2723
	if (IS_ERR(domain))
2724
		return 0;
2725

2726
	dma_dom  = to_dma_ops_domain(domain);
2727
	dma_mask = *dev->dma_mask;
2728

2729 2730 2731
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2732
	if (address == AMD_IOMMU_MAPPING_ERROR)
2733 2734 2735 2736 2737
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2738
	for_each_sg(sglist, s, nelems, i) {
2739 2740 2741 2742 2743
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2744

2745 2746 2747 2748 2749
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2750

2751 2752
			mapped_pages += 1;
		}
2753 2754
	}

2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2772

2773 2774 2775 2776 2777 2778
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2779 2780
	}

2781 2782 2783 2784
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2785
	return 0;
2786 2787
}

2788 2789 2790 2791
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2792
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2793
		     int nelems, enum dma_data_direction dir,
2794
		     unsigned long attrs)
2795 2796
{
	struct protection_domain *domain;
2797
	struct dma_ops_domain *dma_dom;
2798 2799
	unsigned long startaddr;
	int npages = 2;
2800

2801 2802
	domain = get_domain(dev);
	if (IS_ERR(domain))
2803 2804
		return;

2805
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2806
	dma_dom   = to_dma_ops_domain(domain);
2807 2808
	npages    = sg_num_pages(dev, sglist, nelems);

2809
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2810 2811
}

2812 2813 2814
/*
 * The exported alloc_coherent function for dma_ops.
 */
2815
static void *alloc_coherent(struct device *dev, size_t size,
2816
			    dma_addr_t *dma_addr, gfp_t flag,
2817
			    unsigned long attrs)
2818
{
2819
	u64 dma_mask = dev->coherent_dma_mask;
2820
	struct protection_domain *domain;
2821
	struct dma_ops_domain *dma_dom;
2822
	struct page *page;
2823

2824 2825
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2826 2827 2828
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2829 2830
	} else if (IS_ERR(domain))
		return NULL;
2831

2832
	dma_dom   = to_dma_ops_domain(domain);
2833
	size	  = PAGE_ALIGN(size);
2834 2835
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2836
	flag     |= __GFP_ZERO;
2837

2838 2839
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2840
		if (!gfpflags_allow_blocking(flag))
2841
			return NULL;
2842

2843
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2844
						 get_order(size), flag);
2845 2846 2847
		if (!page)
			return NULL;
	}
2848

2849 2850 2851
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2852
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2853
				 size, DMA_BIDIRECTIONAL, dma_mask);
2854

2855
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2856
		goto out_free;
2857

2858
	return page_address(page);
2859 2860 2861

out_free:

2862 2863
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2864 2865

	return NULL;
2866 2867
}

2868 2869 2870
/*
 * The exported free_coherent function for dma_ops.
 */
2871
static void free_coherent(struct device *dev, size_t size,
2872
			  void *virt_addr, dma_addr_t dma_addr,
2873
			  unsigned long attrs)
2874 2875
{
	struct protection_domain *domain;
2876
	struct dma_ops_domain *dma_dom;
2877
	struct page *page;
2878

2879 2880 2881
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2882 2883
	domain = get_domain(dev);
	if (IS_ERR(domain))
2884 2885
		goto free_mem;

2886 2887 2888
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2889 2890

free_mem:
2891 2892
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2893 2894
}

2895 2896 2897 2898 2899 2900
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2901 2902
	if (!x86_dma_supported(dev, mask))
		return 0;
2903
	return check_device(dev);
2904 2905
}

2906 2907 2908 2909 2910
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2911
static const struct dma_map_ops amd_iommu_dma_ops = {
2912 2913 2914 2915 2916 2917 2918
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2919
	.mapping_error	= amd_iommu_mapping_error,
2920 2921
};

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2975
int __init amd_iommu_init_api(void)
2976
{
2977
	int ret, err = 0;
2978 2979 2980 2981

	ret = iova_cache_get();
	if (ret)
		return ret;
2982

2983 2984 2985 2986
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2987 2988 2989 2990 2991 2992 2993 2994
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2995 2996 2997
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2998

2999
	return 0;
3000 3001
}

3002 3003
int __init amd_iommu_init_dma_ops(void)
{
3004
	swiotlb        = iommu_pass_through ? 1 : 0;
3005 3006
	iommu_detected = 1;

3007 3008 3009 3010 3011 3012 3013 3014 3015
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

3016 3017 3018 3019 3020
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3021
	return 0;
3022

3023
}
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3037
	struct iommu_dev_data *entry;
3038 3039 3040 3041
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3042 3043 3044 3045
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3046
	}
3047 3048 3049 3050

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3051 3052 3053 3054 3055
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3056 3057
	del_domain_from_list(domain);

3058 3059 3060 3061 3062 3063
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

3076
static struct protection_domain *protection_domain_alloc(void)
3077 3078 3079 3080 3081
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3082
		return NULL;
3083

3084
	if (protection_domain_init(domain))
3085 3086
		goto out_err;

3087 3088
	add_domain_to_list(domain);

3089 3090 3091 3092 3093 3094 3095 3096
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3097
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3098
{
3099
	struct protection_domain *pdomain;
3100
	struct dma_ops_domain *dma_domain;
3101

3102 3103 3104 3105 3106
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3107

3108 3109 3110 3111 3112 3113
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
3114

3115 3116 3117
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
3118

3119 3120 3121 3122 3123 3124 3125 3126 3127
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
3128 3129 3130 3131
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3132

3133 3134
		pdomain->mode = PAGE_MODE_NONE;
		break;
3135 3136 3137
	default:
		return NULL;
	}
3138

3139
	return &pdomain->domain;
3140 3141
}

3142
static void amd_iommu_domain_free(struct iommu_domain *dom)
3143
{
3144
	struct protection_domain *domain;
3145
	struct dma_ops_domain *dma_dom;
3146

3147 3148
	domain = to_pdomain(dom);

3149 3150 3151 3152 3153
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3154 3155
	if (!dom)
		return;
3156

3157 3158
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
3159
		/* Now release the domain */
3160
		dma_dom = to_dma_ops_domain(domain);
3161 3162 3163 3164 3165
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
3166

3167 3168 3169 3170 3171 3172
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
3173 3174
}

3175 3176 3177
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3178
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3179
	struct amd_iommu *iommu;
3180
	int devid;
3181

3182
	if (!check_device(dev))
3183 3184
		return;

3185
	devid = get_device_id(dev);
3186
	if (devid < 0)
3187
		return;
3188

3189
	if (dev_data->domain != NULL)
3190
		detach_device(dev);
3191 3192 3193 3194 3195

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3196 3197 3198 3199 3200 3201
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3202 3203 3204
	iommu_completion_wait(iommu);
}

3205 3206 3207
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3208
	struct protection_domain *domain = to_pdomain(dom);
3209
	struct iommu_dev_data *dev_data;
3210
	struct amd_iommu *iommu;
3211
	int ret;
3212

3213
	if (!check_device(dev))
3214 3215
		return -EINVAL;

3216 3217
	dev_data = dev->archdata.iommu;

3218
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3219 3220 3221
	if (!iommu)
		return -EINVAL;

3222
	if (dev_data->domain)
3223
		detach_device(dev);
3224

3225
	ret = attach_device(dev, domain);
3226

3227 3228 3229 3230 3231 3232 3233 3234 3235
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3236 3237
	iommu_completion_wait(iommu);

3238
	return ret;
3239 3240
}

3241
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3242
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3243
{
3244
	struct protection_domain *domain = to_pdomain(dom);
3245 3246 3247
	int prot = 0;
	int ret;

3248 3249 3250
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3251 3252 3253 3254 3255
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3256
	mutex_lock(&domain->api_lock);
3257
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3258 3259
	mutex_unlock(&domain->api_lock);

3260
	return ret;
3261 3262
}

3263 3264
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3265
{
3266
	struct protection_domain *domain = to_pdomain(dom);
3267
	size_t unmap_size;
3268

3269 3270 3271
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3272
	mutex_lock(&domain->api_lock);
3273
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3274
	mutex_unlock(&domain->api_lock);
3275

3276
	domain_flush_tlb_pde(domain);
3277

3278
	return unmap_size;
3279 3280
}

3281
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3282
					  dma_addr_t iova)
3283
{
3284
	struct protection_domain *domain = to_pdomain(dom);
3285
	unsigned long offset_mask, pte_pgsize;
3286
	u64 *pte, __pte;
3287

3288 3289 3290
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3291
	pte = fetch_pte(domain, iova, &pte_pgsize);
3292

3293
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3294 3295
		return 0;

3296 3297
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3298

3299
	return (__pte & ~offset_mask) | (iova & offset_mask);
3300 3301
}

3302
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3303
{
3304 3305
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3306
		return true;
3307
	case IOMMU_CAP_INTR_REMAP:
3308
		return (irq_remapping_enabled == 1);
3309 3310
	case IOMMU_CAP_NOEXEC:
		return false;
3311 3312
	}

3313
	return false;
S
Sheng Yang 已提交
3314 3315
}

3316 3317
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3318
{
3319
	struct iommu_resv_region *region;
3320
	struct unity_map_entry *entry;
3321
	int devid;
3322 3323

	devid = get_device_id(dev);
3324
	if (devid < 0)
3325
		return;
3326 3327

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3328 3329
		size_t length;
		int prot = 0;
3330 3331 3332 3333

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3334 3335 3336 3337 3338 3339 3340 3341 3342
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3343 3344 3345 3346 3347 3348 3349
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3350 3351 3352

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3353
					 0, IOMMU_RESV_MSI);
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3364 3365
}

3366
static void amd_iommu_put_resv_regions(struct device *dev,
3367 3368
				     struct list_head *head)
{
3369
	struct iommu_resv_region *entry, *next;
3370 3371 3372 3373 3374

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3375
static void amd_iommu_apply_resv_region(struct device *dev,
3376
				      struct iommu_domain *domain,
3377
				      struct iommu_resv_region *region)
3378
{
3379
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3380 3381 3382 3383 3384 3385 3386 3387
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3388 3389 3390 3391 3392 3393 3394
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3395
const struct iommu_ops amd_iommu_ops = {
3396
	.capable = amd_iommu_capable,
3397 3398
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3399 3400
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3401 3402
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3403
	.map_sg = default_iommu_map_sg,
3404
	.iova_to_phys = amd_iommu_iova_to_phys,
3405 3406
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3407
	.device_group = amd_iommu_device_group,
3408 3409 3410
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3411
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3412
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3413 3414
};

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3437 3438 3439

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3440
	struct protection_domain *domain = to_pdomain(dom);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3458 3459 3460

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3461
	struct protection_domain *domain = to_pdomain(dom);
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3522
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3539 3540 3541 3542 3543 3544
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3576
	struct protection_domain *domain = to_pdomain(dom);
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3596
	struct protection_domain *domain = to_pdomain(dom);
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3676
	struct protection_domain *domain = to_pdomain(dom);
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3690
	struct protection_domain *domain = to_pdomain(dom);
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3718 3719 3720

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3721
	struct protection_domain *pdomain;
3722

3723 3724
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3725 3726 3727
		return NULL;

	/* Only return IOMMUv2 domains */
3728
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3729 3730
		return NULL;

3731
	return &pdomain->domain;
3732 3733
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3789 3790 3791 3792 3793 3794 3795 3796 3797

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3798 3799
static struct irq_chip amd_ir_chip;

3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3829
		goto out_unlock;
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3843
		goto out_unlock;
3844

3845 3846 3847
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3848 3849 3850 3851 3852 3853 3854
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3855
		table = NULL;
3856
		goto out_unlock;
3857 3858
	}

3859 3860 3861 3862 3863 3864
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3865 3866 3867 3868 3869

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3870
			iommu->irte_ops->set_allocated(table, i);
3871 3872 3873 3874 3875 3876 3877
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3878
		set_dte_irq_entry(alias, table);
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3891
static int alloc_irq_index(u16 devid, int count)
3892 3893 3894 3895
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3896 3897 3898 3899
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3911
		if (!iommu->irte_ops->is_allocated(table, index))
3912 3913 3914 3915 3916 3917
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3918
				iommu->irte_ops->set_allocated(table, index - c + 1);
3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3933 3934
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3935 3936 3937 3938
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3939
	struct irte_ga *entry;
3940 3941 3942 3943 3944 3945 3946 3947 3948 3949

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3950 3951 3952 3953 3954 3955 3956

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3957 3958
	if (data)
		data->ref = entry;
3959 3960 3961 3962 3963 3964 3965 3966 3967 3968

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3983
	table->table[index] = irte->val;
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
4007
	iommu->irte_ops->clear_allocated(table, index);
4008 4009 4010 4011 4012 4013
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4014 4015
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
4016
			 u8 vector, u32 dest_apicid, int devid)
4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
4030
			    u8 vector, u32 dest_apicid, int devid)
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
4056
	modify_irte_ga(devid, index, irte, NULL);
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
4072
	modify_irte_ga(devid, index, irte, NULL);
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
4089
	struct iommu_dev_data *dev_data = search_dev_data(devid);
4090

4091 4092
	if (!dev_data || !dev_data->use_vapic ||
	    !irte->lo.fields_remap.guest_mode) {
4093 4094 4095 4096
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
4097 4098
}

4099
#define IRTE_ALLOCATED (~1U)
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

4145
static int get_devid(struct irq_alloc_info *info)
4146
{
4147
	int devid = -1;
4148

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4164

4165 4166
	return devid;
}
4167

4168 4169 4170 4171
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4172

4173 4174
	if (!info)
		return NULL;
4175

4176 4177 4178 4179 4180 4181
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4182

4183
	return NULL;
4184 4185
}

4186
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4187
{
4188 4189
	struct amd_iommu *iommu;
	int devid;
4190

4191 4192
	if (!info)
		return NULL;
4193

4194 4195 4196 4197
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4198
		if (devid < 0)
4199 4200
			return NULL;

4201 4202 4203
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4204 4205 4206 4207
		break;
	default:
		break;
	}
4208

4209 4210
	return NULL;
}
4211

4212 4213 4214 4215 4216 4217
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4218 4219 4220
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4221

4222 4223 4224 4225 4226 4227 4228 4229
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4230 4231 4232 4233
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4234

4235 4236
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4237 4238
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4239
				 irq_cfg->dest_apicid, devid);
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4255

4256 4257 4258 4259 4260 4261 4262
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4263

4264 4265 4266 4267
	default:
		BUG_ON(1);
		break;
	}
4268 4269
}

4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4290 4291
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4292
{
4293 4294
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4295
	struct amd_ir_data *data = NULL;
4296
	struct irq_cfg *cfg;
4297 4298
	int i, ret, devid;
	int index = -1;
4299

4300 4301 4302 4303
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4304 4305
		return -EINVAL;

4306 4307 4308 4309 4310 4311
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4312

4313 4314 4315
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4316

4317 4318 4319
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4320

4321 4322 4323 4324 4325 4326
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4327
		index = alloc_irq_index(devid, nr_irqs);
4328 4329 4330
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4331
		ret = index;
4332 4333
		goto out_free_parent;
	}
4334

4335 4336 4337 4338 4339 4340 4341
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4342

4343 4344 4345 4346 4347
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4358 4359 4360 4361 4362 4363
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4364

4365
	return 0;
4366

4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4378 4379
}

4380 4381
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4382
{
4383 4384 4385 4386
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4387

4388 4389 4390 4391 4392 4393
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4394
			kfree(data->entry);
4395 4396 4397 4398 4399
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4400

4401 4402 4403 4404 4405
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4406
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4407

4408 4409 4410
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4411 4412
}

4413 4414
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4415
{
4416 4417
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4418
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4419

4420 4421 4422
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4423
}
4424

4425
static const struct irq_domain_ops amd_ir_domain_ops = {
4426 4427 4428 4429
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4430
};
4431

4432 4433 4434 4435 4436 4437 4438 4439
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4440 4441 4442 4443 4444 4445 4446 4447
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4470
		irte->lo.fields_vapic.ga_log_intr = 1;
4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4497 4498 4499 4500 4501 4502 4503
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4504
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4505
	int ret;
4506

4507 4508 4509
	if (!iommu)
		return -ENODEV;

4510 4511 4512
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4513

4514 4515 4516 4517
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4518 4519
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4520

4521 4522 4523 4524 4525
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4526
	send_cleanup_vector(cfg);
4527 4528

	return IRQ_SET_MASK_OK_DONE;
4529 4530
}

4531
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4532
{
4533
	struct amd_ir_data *ir_data = irq_data->chip_data;
4534

4535 4536
	*msg = ir_data->msi_entry;
}
4537

4538
static struct irq_chip amd_ir_chip = {
4539 4540 4541 4542 4543
	.name			= "AMD-IR",
	.irq_ack		= ir_ack_apic_edge,
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4544
};
4545

4546 4547
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4548 4549 4550 4551 4552 4553 4554
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4555 4556
	if (!iommu->ir_domain)
		return -ENOMEM;
4557

4558
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4559 4560 4561
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4562 4563
	return 0;
}
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4603
#endif