amd_iommu.c 100.2 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
96
const struct iommu_ops amd_iommu_ops;
97

98
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
99
int amd_iommu_max_glx_val = -1;
100

101
static const struct dma_map_ops amd_iommu_dma_ops;
102

103 104 105 106 107 108 109 110
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
111
	u16 alias;			  /* Alias Device ID */
112
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
113
	bool passthrough;		  /* Device is identity mapped */
114 115 116 117 118 119 120
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
121
	bool use_vapic;			  /* Enable device to use vapic mode */
122 123

	struct ratelimit_state rs;	  /* Ratelimit IOPF messages */
124 125
};

126 127 128
/*
 * general struct to manage commands send to an IOMMU
 */
129
struct iommu_cmd {
130 131 132
	u32 data[4];
};

133 134
struct kmem_cache *amd_iommu_irq_cache;

135
static void update_domain(struct protection_domain *domain);
136
static int protection_domain_init(struct protection_domain *domain);
137
static void detach_device(struct device *dev);
138

139 140 141 142 143 144 145
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

146 147
	/* IOVA RB-Tree */
	struct iova_domain iovad;
148 149
};

150 151 152
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

153 154 155 156 157 158
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

159 160
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
161
{
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
177 178
}

179
static inline u16 get_pci_device_id(struct device *dev)
180 181 182 183 184 185
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

213 214 215 216 217
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

218 219 220 221 222 223
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

224
static struct iommu_dev_data *alloc_dev_data(u16 devid)
225 226 227 228 229 230 231 232
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

233
	dev_data->devid = devid;
234 235 236 237 238

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

239 240
	ratelimit_default_init(&dev_data->rs);

241 242 243
	return dev_data;
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

263 264 265 266 267 268 269 270 271 272 273
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

274
	/* The callers make sure that get_device_id() does not fail here */
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
316
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
317 318 319 320 321 322 323 324
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

325 326 327 328 329 330 331 332 333 334 335 336
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

337 338 339 340 341
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

342 343 344 345
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
346
{
347
	struct acpihid_map_entry *p, *entry = NULL;
348
	int devid;
349 350 351 352 353 354 355 356 357 358 359 360

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
361 362
	else
		iommu_group_ref_get(entry->group);
363 364

	return entry->group;
365 366
}

367 368 369 370
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
371 372
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
373 374 375 376 377 378 379 380 381 382 383 384
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

385 386 387 388 389 390 391 392 393
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

394 395 396 397 398 399
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
400
	int devid;
401 402 403 404 405

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
406
	if (devid < 0)
407
		return false;
408 409 410 411 412 413 414 415 416 417 418

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

419
static void init_iommu_group(struct device *dev)
420 421 422
{
	struct iommu_group *group;

423
	group = iommu_group_get_for_dev(dev);
424 425 426 427
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
428 429 430 431 432
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
433
	struct amd_iommu *iommu;
434
	int devid;
435 436 437 438

	if (dev->archdata.iommu)
		return 0;

439
	devid = get_device_id(dev);
440
	if (devid < 0)
441 442
		return devid;

443 444
	iommu = amd_iommu_rlookup_table[devid];

445
	dev_data = find_dev_data(devid);
446 447 448
	if (!dev_data)
		return -ENOMEM;

449 450
	dev_data->alias = get_alias(dev);

451
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
452 453
		struct amd_iommu *iommu;

454
		iommu = amd_iommu_rlookup_table[dev_data->devid];
455 456 457
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

458 459
	dev->archdata.iommu = dev_data;

460
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
461

462 463 464
	return 0;
}

465 466
static void iommu_ignore_device(struct device *dev)
{
467 468
	u16 alias;
	int devid;
469 470

	devid = get_device_id(dev);
471
	if (devid < 0)
472 473
		return;

474
	alias = get_alias(dev);
475 476 477 478 479 480 481 482

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

483 484
static void iommu_uninit_device(struct device *dev)
{
485
	struct iommu_dev_data *dev_data;
486 487
	struct amd_iommu *iommu;
	int devid;
488

489
	devid = get_device_id(dev);
490
	if (devid < 0)
491
		return;
492

493 494
	iommu = amd_iommu_rlookup_table[devid];

495
	dev_data = search_dev_data(devid);
496 497 498
	if (!dev_data)
		return;

499 500 501
	if (dev_data->domain)
		detach_device(dev);

502
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
503

504 505
	iommu_group_remove_device(dev);

506
	/* Remove dma-ops */
507
	dev->dma_ops = NULL;
508

509
	/*
510 511
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
512
	 */
513
}
J
Joerg Roedel 已提交
514

515 516 517 518 519 520
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

521 522 523 524
static void dump_dte_entry(u16 devid)
{
	int i;

525 526
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
527 528 529
			amd_iommu_dev_table[devid].data[i]);
}

530 531 532 533 534 535 536 537 538
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

	pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

562
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
563
{
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
585

586 587 588 589 590 591
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
592 593 594 595 596

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
597
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598
		       address, flags);
599
		dump_dte_entry(devid);
600 601 602 603
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
604
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
605 606 607 608 609
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
610
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
611 612 613 614
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
615
		dump_command(address);
616 617 618 619 620 621 622 623
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
624
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
625 626 627 628 629
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
630
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
631 632 633 634 635
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
636 637

	memset(__evt, 0, 4 * sizeof(u32));
638 639 640 641 642 643 644 645 646 647
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
648
		iommu_print_event(iommu, iommu->evt_buf + head);
649
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
650 651 652 653 654
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

655
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
700

701 702 703
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
704

705 706 707 708 709 710 711
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
712 713
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
714 715 716 717 718 719

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
720 721 722 723
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

784
irqreturn_t amd_iommu_int_thread(int irq, void *data)
785
{
786 787
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
788

789 790 791
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
792
			iommu->mmio_base + MMIO_STATUS_OFFSET);
793

794 795 796 797
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
798

799 800 801 802
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
803

804 805 806 807 808 809 810
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
826
	return IRQ_HANDLED;
827 828
}

829 830 831 832 833
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

834 835 836 837 838 839
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
858
			       struct iommu_cmd *cmd)
859 860 861
{
	u8 *target;

862 863 864 865
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
866 867 868 869 870

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
871
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
872
}
873

874
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
875
{
876 877
	WARN_ON(address & 0x7ULL);

878
	memset(cmd, 0, sizeof(*cmd));
879 880 881
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
882 883 884
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

885 886 887 888 889 890 891
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

892 893 894 895
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
896
	bool s;
897 898

	pages = iommu_num_pages(address, size, PAGE_SIZE);
899
	s     = false;
900 901 902 903 904 905 906

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
907
		s = true;
908 909 910 911 912 913 914 915 916 917 918
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
919
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
920 921 922
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

923 924 925 926
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
927
	bool s;
928 929

	pages = iommu_num_pages(address, size, PAGE_SIZE);
930
	s     = false;
931 932 933 934 935 936 937

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
938
		s = true;
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

954 955 956 957 958 959 960
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

961
	cmd->data[0]  = pasid;
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
980
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
981 982
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
983
	cmd->data[1] |= (pasid & 0xff) << 16;
984 985 986 987 988 989 990 991
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

992 993 994 995 996 997 998
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
999
		cmd->data[1]  = pasid;
1000 1001 1002 1003 1004 1005 1006 1007
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1008 1009 1010 1011
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1012 1013
}

1014 1015 1016 1017 1018 1019 1020
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1021 1022
/*
 * Writes the command to the IOMMUs command buffer and informs the
1023
 * hardware about the new command.
1024
 */
1025 1026 1027
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1028
{
1029
	unsigned int count = 0;
1030
	u32 left, next_tail;
1031

1032
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1033
again:
1034
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1035

1036
	if (left <= 0x20) {
1037 1038 1039 1040 1041 1042
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1043

1044 1045
			udelay(1);
		}
1046

1047 1048 1049
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1050 1051

		goto again;
1052 1053
	}

1054
	copy_cmd_to_buffer(iommu, cmd);
1055

1056
	/* Do we need to make sure all commands are processed? */
1057
	iommu->need_sync = sync;
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1071
	spin_unlock_irqrestore(&iommu->lock, flags);
1072

1073
	return ret;
1074 1075
}

1076 1077 1078 1079 1080
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1081 1082 1083 1084
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1085
static int iommu_completion_wait(struct amd_iommu *iommu)
1086 1087
{
	struct iommu_cmd cmd;
1088
	unsigned long flags;
1089
	int ret;
1090

1091
	if (!iommu->need_sync)
1092
		return 0;
1093

1094

1095 1096 1097 1098 1099 1100 1101
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1102
	if (ret)
1103 1104 1105 1106 1107 1108
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1109

1110
	return ret;
1111 1112
}

1113
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1114
{
1115
	struct iommu_cmd cmd;
1116

1117
	build_inv_dte(&cmd, devid);
1118

1119 1120
	return iommu_queue_command(iommu, &cmd);
}
1121

1122 1123 1124
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1125

1126 1127
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1128

1129 1130
	iommu_completion_wait(iommu);
}
1131

1132 1133 1134 1135 1136 1137 1138
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1139

1140 1141 1142 1143 1144 1145
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1146

1147
	iommu_completion_wait(iommu);
1148 1149
}

1150
static void iommu_flush_all(struct amd_iommu *iommu)
1151
{
1152
	struct iommu_cmd cmd;
1153

1154
	build_inv_all(&cmd);
1155

1156 1157 1158 1159
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1179 1180
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1181 1182 1183 1184
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1185
		iommu_flush_irt_all(iommu);
1186
		iommu_flush_tlb_all(iommu);
1187 1188 1189
	}
}

1190
/*
1191
 * Command send function for flushing on-device TLB
1192
 */
1193 1194
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1195 1196
{
	struct amd_iommu *iommu;
1197
	struct iommu_cmd cmd;
1198
	int qdep;
1199

1200 1201
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1202

1203
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1204 1205

	return iommu_queue_command(iommu, &cmd);
1206 1207
}

1208 1209 1210
/*
 * Command send function for invalidating a device table entry
 */
1211
static int device_flush_dte(struct iommu_dev_data *dev_data)
1212
{
1213
	struct amd_iommu *iommu;
1214
	u16 alias;
1215
	int ret;
1216

1217
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1218
	alias = dev_data->alias;
1219

1220
	ret = iommu_flush_dte(iommu, dev_data->devid);
1221 1222
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1223 1224 1225
	if (ret)
		return ret;

1226
	if (dev_data->ats.enabled)
1227
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1228 1229

	return ret;
1230 1231
}

1232 1233 1234 1235 1236
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1237 1238
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1239
{
1240
	struct iommu_dev_data *dev_data;
1241 1242
	struct iommu_cmd cmd;
	int ret = 0, i;
1243

1244
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1245

1246
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1247 1248 1249 1250 1251 1252 1253
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1254
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1255 1256
	}

1257 1258
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1259
		if (!dev_data->ats.enabled)
1260 1261
			continue;

1262
		ret |= device_flush_iotlb(dev_data, address, size);
1263 1264
	}

1265
	WARN_ON(ret);
1266 1267
}

1268 1269
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1270
{
1271
	__domain_flush_pages(domain, address, size, 0);
1272
}
1273

1274
/* Flush the whole IO/TLB for a given protection domain */
1275
static void domain_flush_tlb(struct protection_domain *domain)
1276
{
1277
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1278 1279
}

1280
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1281
static void domain_flush_tlb_pde(struct protection_domain *domain)
1282
{
1283
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1284 1285
}

1286
static void domain_flush_complete(struct protection_domain *domain)
1287
{
1288
	int i;
1289

1290
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1291
		if (domain && !domain->dev_iommu[i])
1292
			continue;
1293

1294 1295 1296 1297 1298
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1299
	}
1300 1301
}

1302

1303
/*
1304
 * This function flushes the DTEs for all devices in domain
1305
 */
1306
static void domain_flush_devices(struct protection_domain *domain)
1307
{
1308
	struct iommu_dev_data *dev_data;
1309

1310
	list_for_each_entry(dev_data, &domain->dev_list, list)
1311
		device_flush_dte(dev_data);
1312 1313
}

1314 1315 1316 1317 1318 1319 1320
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1350
		      unsigned long page_size,
1351 1352 1353
		      u64 **pte_page,
		      gfp_t gfp)
{
1354
	int level, end_lvl;
1355
	u64 *pte, *page;
1356 1357

	BUG_ON(!is_power_of_2(page_size));
1358 1359 1360 1361

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1362 1363 1364 1365
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1366 1367

	while (level > end_lvl) {
1368 1369 1370 1371 1372
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1373 1374 1375
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1376 1377 1378

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1379 1380
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1381 1382 1383
				free_page((unsigned long)page);
				continue;
			}
1384 1385
		}

1386 1387 1388 1389
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1407 1408 1409
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1410 1411 1412 1413
{
	int level;
	u64 *pte;

1414 1415 1416
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1417 1418 1419
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1420

1421 1422 1423
	while (level > 0) {

		/* Not Present */
1424 1425 1426
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1427
		/* Large PTE */
1428 1429 1430
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1431 1432 1433 1434 1435

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1436 1437
		level -= 1;

1438
		/* Walk to the next level */
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1454 1455 1456 1457 1458
	}

	return pte;
}

1459 1460 1461 1462 1463 1464 1465
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1466 1467 1468
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1469
			  unsigned long page_size,
1470
			  int prot,
1471
			  gfp_t gfp)
1472
{
1473
	u64 __pte, *pte;
1474
	int i, count;
1475

1476 1477 1478
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1479
	if (!(prot & IOMMU_PROT_MASK))
1480 1481
		return -EINVAL;

1482
	count = PAGE_SIZE_PTE_COUNT(page_size);
1483
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1484

1485 1486 1487
	if (!pte)
		return -ENOMEM;

1488 1489 1490
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1491

1492
	if (count > 1) {
1493 1494 1495 1496
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1497 1498 1499 1500 1501 1502

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1503 1504
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1505

1506 1507
	update_domain(dom);

1508 1509 1510
	return 0;
}

1511 1512 1513
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1514
{
1515 1516
	unsigned long long unmapped;
	unsigned long unmap_size;
1517 1518 1519 1520 1521
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1522

1523 1524
	while (unmapped < page_size) {

1525 1526 1527 1528 1529 1530
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1531 1532 1533 1534 1535 1536 1537 1538
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1539
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1540

1541
	return unmapped;
1542 1543
}

1544 1545 1546
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1547
 * interface functions.
1548 1549
 *
 ****************************************************************************/
1550

1551

1552 1553 1554
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1555
{
1556
	unsigned long pfn = 0;
1557

1558
	pages = __roundup_pow_of_two(pages);
1559

1560 1561 1562
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1563

1564 1565
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1566

1567
	return (pfn << PAGE_SHIFT);
1568 1569
}

1570 1571 1572
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1573
{
1574 1575
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1576

1577
	free_iova_fast(&dma_dom->iovad, address, pages);
1578 1579
}

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1652
		/* PTE present? */				\
1653 1654 1655
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1656 1657 1658 1659 1660
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1673
static void free_pagetable(struct protection_domain *domain)
1674
{
1675
	unsigned long root = (unsigned long)domain->pt_root;
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1700 1701 1702
	}
}

1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1733 1734
static void free_gcr3_table(struct protection_domain *domain)
{
1735 1736 1737 1738
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1739 1740
	else
		BUG_ON(domain->glx != 0);
1741

1742 1743 1744
	free_page((unsigned long)domain->gcr3_tbl);
}

1745 1746 1747 1748
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1749 1750 1751 1752 1753
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1754 1755
	del_domain_from_list(&dom->domain);

1756
	put_iova_domain(&dom->iovad);
1757

1758
	free_pagetable(&dom->domain);
1759

1760 1761 1762
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1763 1764 1765
	kfree(dom);
}

1766 1767
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1768
 * It also initializes the page table and the address allocator data
1769 1770
 * structures required for the dma_ops interface
 */
1771
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1772 1773 1774 1775 1776 1777 1778
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1779
	if (protection_domain_init(&dma_dom->domain))
1780
		goto free_dma_dom;
1781

1782
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1783
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1784
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1785 1786 1787
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1788 1789 1790
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1791 1792 1793
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1794 1795
	add_domain_to_list(&dma_dom->domain);

1796 1797 1798 1799 1800 1801 1802 1803
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1804 1805 1806 1807 1808 1809 1810 1811 1812
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1813
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1814
{
1815
	u64 pte_root = 0;
1816
	u64 flags = 0;
1817

1818 1819 1820
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1821 1822 1823
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1824

1825 1826
	flags = amd_iommu_dev_table[devid].data[1];

1827 1828 1829
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1856 1857 1858 1859 1860
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1861 1862 1863 1864 1865
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1866 1867
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1868 1869

	amd_iommu_apply_erratum_63(devid);
1870 1871
}

1872 1873
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1874 1875
{
	struct amd_iommu *iommu;
1876
	u16 alias;
1877
	bool ats;
1878

1879
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1880
	alias = dev_data->alias;
1881
	ats   = dev_data->ats.enabled;
1882 1883 1884 1885 1886 1887 1888 1889 1890

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1891 1892 1893
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1894
		set_dte_entry(alias, domain, ats);
1895

1896
	device_flush_dte(dev_data);
1897 1898
}

1899
static void do_detach(struct iommu_dev_data *dev_data)
1900 1901
{
	struct amd_iommu *iommu;
1902
	u16 alias;
1903

1904 1905 1906 1907 1908 1909 1910 1911 1912
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1913
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1914
	alias = dev_data->alias;
1915 1916

	/* decrease reference counters */
1917 1918 1919 1920 1921 1922
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1923
	clear_dte_entry(dev_data->devid);
1924 1925
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1926

1927
	/* Flush the DTE entry */
1928
	device_flush_dte(dev_data);
1929 1930 1931 1932 1933 1934
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1935
static int __attach_device(struct iommu_dev_data *dev_data,
1936
			   struct protection_domain *domain)
1937
{
1938
	int ret;
1939

1940 1941 1942 1943 1944 1945
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1946 1947 1948
	/* lock domain */
	spin_lock(&domain->lock);

1949
	ret = -EBUSY;
1950
	if (dev_data->domain != NULL)
1951
		goto out_unlock;
1952

1953
	/* Attach alias group root */
1954
	do_attach(dev_data, domain);
1955

1956 1957 1958 1959
	ret = 0;

out_unlock:

1960 1961
	/* ready */
	spin_unlock(&domain->lock);
1962

1963
	return ret;
1964
}
1965

1966 1967 1968 1969 1970 1971 1972 1973

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1974 1975 1976 1977 1978 1979
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1980
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1981 1982 1983
	if (!pos)
		return -EINVAL;

1984 1985 1986
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1987 1988 1989 1990

	return 0;
}

1991 1992
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
1993 1994 1995 1996 1997 1998 1999 2000
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2012 2013
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2014 2015 2016
	if (ret)
		goto out_err;

2017 2018 2019 2020 2021 2022
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2036
/* FIXME: Move this to PCI code */
2037
#define PCI_PRI_TLP_OFF		(1 << 15)
2038

J
Joerg Roedel 已提交
2039
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2040
{
2041
	u16 status;
2042 2043
	int pos;

2044
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2045 2046 2047
	if (!pos)
		return false;

2048
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2049

2050
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2051 2052
}

2053
/*
F
Frank Arnold 已提交
2054
 * If a device is not yet associated with a domain, this function
2055 2056
 * assigns it visible for the hardware
 */
2057 2058
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2059
{
2060
	struct pci_dev *pdev;
2061
	struct iommu_dev_data *dev_data;
2062
	unsigned long flags;
2063
	int ret;
2064

2065 2066
	dev_data = get_dev_data(dev);

2067 2068 2069 2070
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2071
	if (domain->flags & PD_IOMMUV2_MASK) {
2072
		if (!dev_data->passthrough)
2073 2074
			return -EINVAL;

2075 2076 2077
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2078

2079 2080 2081 2082
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2083 2084
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2085 2086 2087
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2088

2089
skip_ats_check:
2090
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2091
	ret = __attach_device(dev_data, domain);
2092 2093
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2094 2095 2096 2097 2098
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2099
	domain_flush_tlb_pde(domain);
2100 2101

	return ret;
2102 2103
}

2104 2105 2106
/*
 * Removes a device from a protection domain (unlocked)
 */
2107
static void __detach_device(struct iommu_dev_data *dev_data)
2108
{
2109
	struct protection_domain *domain;
2110

2111 2112 2113 2114 2115
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2116

2117 2118
	if (WARN_ON(!dev_data->domain))
		return;
2119

2120
	domain = dev_data->domain;
2121

2122
	spin_lock(&domain->lock);
2123

2124
	do_detach(dev_data);
2125

2126
	spin_unlock(&domain->lock);
2127 2128 2129 2130 2131
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2132
static void detach_device(struct device *dev)
2133
{
2134
	struct protection_domain *domain;
2135
	struct iommu_dev_data *dev_data;
2136 2137
	unsigned long flags;

2138
	dev_data = get_dev_data(dev);
2139
	domain   = dev_data->domain;
2140

2141 2142
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2143
	__detach_device(dev_data);
2144
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2145

2146 2147 2148
	if (!dev_is_pci(dev))
		return;

2149
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2150 2151
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2152
		pci_disable_ats(to_pci_dev(dev));
2153 2154

	dev_data->ats.enabled = false;
2155
}
2156

2157
static int amd_iommu_add_device(struct device *dev)
2158
{
2159
	struct iommu_dev_data *dev_data;
2160
	struct iommu_domain *domain;
2161
	struct amd_iommu *iommu;
2162
	int ret, devid;
2163

2164
	if (!check_device(dev) || get_dev_data(dev))
2165
		return 0;
2166

2167
	devid = get_device_id(dev);
2168
	if (devid < 0)
2169 2170
		return devid;

2171
	iommu = amd_iommu_rlookup_table[devid];
2172

2173
	ret = iommu_init_device(dev);
2174 2175 2176 2177
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2178

2179
		iommu_ignore_device(dev);
2180
		dev->dma_ops = &nommu_dma_ops;
2181 2182 2183
		goto out;
	}
	init_iommu_group(dev);
2184

2185
	dev_data = get_dev_data(dev);
2186

2187
	BUG_ON(!dev_data);
2188

2189
	if (iommu_pass_through || dev_data->iommu_v2)
2190
		iommu_request_dm_for_dev(dev);
2191

2192 2193
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2194
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2195
		dev_data->passthrough = true;
2196
	else
2197
		dev->dma_ops = &amd_iommu_dma_ops;
2198

2199
out:
2200 2201 2202 2203 2204
	iommu_completion_wait(iommu);

	return 0;
}

2205
static void amd_iommu_remove_device(struct device *dev)
2206
{
2207
	struct amd_iommu *iommu;
2208
	int devid;
2209 2210 2211 2212 2213

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2214
	if (devid < 0)
2215 2216
		return;

2217 2218 2219 2220
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2221 2222
}

2223 2224 2225 2226 2227 2228 2229 2230
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2244
static struct protection_domain *get_domain(struct device *dev)
2245
{
2246
	struct protection_domain *domain;
2247

2248
	if (!check_device(dev))
2249
		return ERR_PTR(-EINVAL);
2250

2251
	domain = get_dev_data(dev)->domain;
2252
	if (!dma_ops_domain(domain))
2253
		return ERR_PTR(-EBUSY);
2254

2255
	return domain;
2256 2257
}

2258 2259
static void update_device_table(struct protection_domain *domain)
{
2260
	struct iommu_dev_data *dev_data;
2261

2262
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2263
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2264 2265 2266 2267 2268 2269 2270

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2271 2272 2273 2274 2275 2276 2277 2278
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2279 2280 2281

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2282 2283 2284 2285

	domain->updated = false;
}

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2297 2298
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2299 2300
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2301 2302
 * Must be called with the domain lock held.
 */
2303 2304 2305 2306
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2307
			       enum dma_data_direction direction,
2308
			       u64 dma_mask)
2309 2310
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2311
	dma_addr_t address, start, ret;
2312
	unsigned int pages;
2313
	int prot = 0;
2314 2315
	int i;

2316
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2317 2318
	paddr &= PAGE_MASK;

2319
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2320 2321
	if (address == DMA_ERROR_CODE)
		goto out;
2322

2323
	prot = dir2prot(direction);
2324

2325 2326
	start = address;
	for (i = 0; i < pages; ++i) {
2327 2328 2329
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2330 2331
			goto out_unmap;

2332 2333 2334 2335 2336
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2337
	if (unlikely(amd_iommu_np_cache)) {
2338
		domain_flush_pages(&dma_dom->domain, address, size);
2339 2340
		domain_flush_complete(&dma_dom->domain);
	}
2341

2342 2343
out:
	return address;
2344 2345 2346 2347 2348

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2349
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2350 2351
	}

2352 2353 2354 2355
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2356

2357
	return DMA_ERROR_CODE;
2358 2359
}

2360 2361 2362 2363
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2364
static void __unmap_single(struct dma_ops_domain *dma_dom,
2365 2366 2367 2368
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2369
	dma_addr_t flush_addr;
2370 2371 2372
	dma_addr_t i, start;
	unsigned int pages;

2373
	flush_addr = dma_addr;
2374
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2375 2376 2377 2378
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2379
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2380 2381 2382
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2383 2384 2385 2386 2387
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
2388 2389 2390 2391
		/* Keep the if() around, we need it later again */
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
J
Joerg Roedel 已提交
2392
	}
2393 2394
}

2395 2396 2397
/*
 * The exported map_single function for dma_ops.
 */
2398 2399 2400
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2401
			   unsigned long attrs)
2402
{
2403
	phys_addr_t paddr = page_to_phys(page) + offset;
2404
	struct protection_domain *domain;
2405
	struct dma_ops_domain *dma_dom;
2406
	u64 dma_mask;
2407

2408 2409
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2410
		return (dma_addr_t)paddr;
2411 2412
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2413

2414
	dma_mask = *dev->dma_mask;
2415
	dma_dom = to_dma_ops_domain(domain);
2416

2417
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2418 2419
}

2420 2421 2422
/*
 * The exported unmap_single function for dma_ops.
 */
2423
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2424
		       enum dma_data_direction dir, unsigned long attrs)
2425 2426
{
	struct protection_domain *domain;
2427
	struct dma_ops_domain *dma_dom;
2428

2429 2430
	domain = get_domain(dev);
	if (IS_ERR(domain))
2431 2432
		return;

2433 2434 2435
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2436 2437
}

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2464 2465 2466 2467
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2468
static int map_sg(struct device *dev, struct scatterlist *sglist,
2469
		  int nelems, enum dma_data_direction direction,
2470
		  unsigned long attrs)
2471
{
2472
	int mapped_pages = 0, npages = 0, prot = 0, i;
2473
	struct protection_domain *domain;
2474
	struct dma_ops_domain *dma_dom;
2475
	struct scatterlist *s;
2476
	unsigned long address;
2477
	u64 dma_mask;
2478

2479
	domain = get_domain(dev);
2480
	if (IS_ERR(domain))
2481
		return 0;
2482

2483
	dma_dom  = to_dma_ops_domain(domain);
2484
	dma_mask = *dev->dma_mask;
2485

2486 2487 2488 2489 2490 2491 2492 2493 2494
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
	if (address == DMA_ERROR_CODE)
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2495
	for_each_sg(sglist, s, nelems, i) {
2496 2497 2498 2499 2500
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2501

2502 2503 2504 2505 2506
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2507

2508 2509
			mapped_pages += 1;
		}
2510 2511
	}

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2529

2530 2531 2532 2533 2534 2535
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2536 2537
	}

2538 2539 2540 2541
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2542
	return 0;
2543 2544
}

2545 2546 2547 2548
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2549
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2550
		     int nelems, enum dma_data_direction dir,
2551
		     unsigned long attrs)
2552 2553
{
	struct protection_domain *domain;
2554
	struct dma_ops_domain *dma_dom;
2555 2556
	unsigned long startaddr;
	int npages = 2;
2557

2558 2559
	domain = get_domain(dev);
	if (IS_ERR(domain))
2560 2561
		return;

2562
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2563
	dma_dom   = to_dma_ops_domain(domain);
2564 2565
	npages    = sg_num_pages(dev, sglist, nelems);

2566
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2567 2568
}

2569 2570 2571
/*
 * The exported alloc_coherent function for dma_ops.
 */
2572
static void *alloc_coherent(struct device *dev, size_t size,
2573
			    dma_addr_t *dma_addr, gfp_t flag,
2574
			    unsigned long attrs)
2575
{
2576
	u64 dma_mask = dev->coherent_dma_mask;
2577
	struct protection_domain *domain;
2578
	struct dma_ops_domain *dma_dom;
2579
	struct page *page;
2580

2581 2582
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2583 2584 2585
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2586 2587
	} else if (IS_ERR(domain))
		return NULL;
2588

2589
	dma_dom   = to_dma_ops_domain(domain);
2590
	size	  = PAGE_ALIGN(size);
2591 2592
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2593
	flag     |= __GFP_ZERO;
2594

2595 2596
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2597
		if (!gfpflags_allow_blocking(flag))
2598
			return NULL;
2599

2600
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2601
						 get_order(size), flag);
2602 2603 2604
		if (!page)
			return NULL;
	}
2605

2606 2607 2608
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2609
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2610
				 size, DMA_BIDIRECTIONAL, dma_mask);
2611

2612
	if (*dma_addr == DMA_ERROR_CODE)
2613
		goto out_free;
2614

2615
	return page_address(page);
2616 2617 2618

out_free:

2619 2620
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2621 2622

	return NULL;
2623 2624
}

2625 2626 2627
/*
 * The exported free_coherent function for dma_ops.
 */
2628
static void free_coherent(struct device *dev, size_t size,
2629
			  void *virt_addr, dma_addr_t dma_addr,
2630
			  unsigned long attrs)
2631 2632
{
	struct protection_domain *domain;
2633
	struct dma_ops_domain *dma_dom;
2634
	struct page *page;
2635

2636 2637 2638
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2639 2640
	domain = get_domain(dev);
	if (IS_ERR(domain))
2641 2642
		goto free_mem;

2643 2644 2645
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2646 2647

free_mem:
2648 2649
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2650 2651
}

2652 2653 2654 2655 2656 2657
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2658
	return check_device(dev);
2659 2660
}

2661
static const struct dma_map_ops amd_iommu_dma_ops = {
2662 2663 2664 2665 2666 2667 2668
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2669 2670
};

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2724
int __init amd_iommu_init_api(void)
2725
{
2726
	int ret, err = 0;
2727 2728 2729 2730

	ret = iova_cache_get();
	if (ret)
		return ret;
2731

2732 2733 2734 2735
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2736 2737 2738 2739 2740 2741 2742 2743
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2744 2745 2746
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2747

2748
	return 0;
2749 2750
}

2751 2752
int __init amd_iommu_init_dma_ops(void)
{
2753
	swiotlb        = iommu_pass_through ? 1 : 0;
2754 2755
	iommu_detected = 1;

2756 2757 2758 2759 2760 2761 2762 2763 2764
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2765 2766 2767 2768 2769
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2770
	return 0;
2771

2772
}
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2786
	struct iommu_dev_data *entry;
2787 2788 2789 2790
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2791 2792 2793 2794
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2795
	}
2796 2797 2798 2799

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2800 2801 2802 2803 2804
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2805 2806
	del_domain_from_list(domain);

2807 2808 2809 2810 2811 2812
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2825
static struct protection_domain *protection_domain_alloc(void)
2826 2827 2828 2829 2830
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2831
		return NULL;
2832

2833
	if (protection_domain_init(domain))
2834 2835
		goto out_err;

2836 2837
	add_domain_to_list(domain);

2838 2839 2840 2841 2842 2843 2844 2845
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2846
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2847
{
2848
	struct protection_domain *pdomain;
2849
	struct dma_ops_domain *dma_domain;
2850

2851 2852 2853 2854 2855
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2856

2857 2858 2859 2860 2861 2862
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2863

2864 2865 2866
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2867

2868 2869 2870 2871 2872 2873 2874 2875 2876
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2877 2878 2879 2880
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2881

2882 2883
		pdomain->mode = PAGE_MODE_NONE;
		break;
2884 2885 2886
	default:
		return NULL;
	}
2887

2888
	return &pdomain->domain;
2889 2890
}

2891
static void amd_iommu_domain_free(struct iommu_domain *dom)
2892
{
2893
	struct protection_domain *domain;
2894
	struct dma_ops_domain *dma_dom;
2895

2896 2897
	domain = to_pdomain(dom);

2898 2899 2900 2901 2902
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2903 2904
	if (!dom)
		return;
2905

2906 2907
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2908
		/* Now release the domain */
2909
		dma_dom = to_dma_ops_domain(domain);
2910 2911 2912 2913 2914
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2915

2916 2917 2918 2919 2920 2921
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2922 2923
}

2924 2925 2926
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2927
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2928
	struct amd_iommu *iommu;
2929
	int devid;
2930

2931
	if (!check_device(dev))
2932 2933
		return;

2934
	devid = get_device_id(dev);
2935
	if (devid < 0)
2936
		return;
2937

2938
	if (dev_data->domain != NULL)
2939
		detach_device(dev);
2940 2941 2942 2943 2944

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2945 2946 2947 2948 2949 2950
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2951 2952 2953
	iommu_completion_wait(iommu);
}

2954 2955 2956
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2957
	struct protection_domain *domain = to_pdomain(dom);
2958
	struct iommu_dev_data *dev_data;
2959
	struct amd_iommu *iommu;
2960
	int ret;
2961

2962
	if (!check_device(dev))
2963 2964
		return -EINVAL;

2965 2966
	dev_data = dev->archdata.iommu;

2967
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2968 2969 2970
	if (!iommu)
		return -EINVAL;

2971
	if (dev_data->domain)
2972
		detach_device(dev);
2973

2974
	ret = attach_device(dev, domain);
2975

2976 2977 2978 2979 2980 2981 2982 2983 2984
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

2985 2986
	iommu_completion_wait(iommu);

2987
	return ret;
2988 2989
}

2990
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2991
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
2992
{
2993
	struct protection_domain *domain = to_pdomain(dom);
2994 2995 2996
	int prot = 0;
	int ret;

2997 2998 2999
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3000 3001 3002 3003 3004
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3005
	mutex_lock(&domain->api_lock);
3006
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3007 3008
	mutex_unlock(&domain->api_lock);

3009
	return ret;
3010 3011
}

3012 3013
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3014
{
3015
	struct protection_domain *domain = to_pdomain(dom);
3016
	size_t unmap_size;
3017

3018 3019 3020
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3021
	mutex_lock(&domain->api_lock);
3022
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3023
	mutex_unlock(&domain->api_lock);
3024

3025
	domain_flush_tlb_pde(domain);
3026

3027
	return unmap_size;
3028 3029
}

3030
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3031
					  dma_addr_t iova)
3032
{
3033
	struct protection_domain *domain = to_pdomain(dom);
3034
	unsigned long offset_mask, pte_pgsize;
3035
	u64 *pte, __pte;
3036

3037 3038 3039
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3040
	pte = fetch_pte(domain, iova, &pte_pgsize);
3041

3042
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3043 3044
		return 0;

3045 3046
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3047

3048
	return (__pte & ~offset_mask) | (iova & offset_mask);
3049 3050
}

3051
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3052
{
3053 3054
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3055
		return true;
3056
	case IOMMU_CAP_INTR_REMAP:
3057
		return (irq_remapping_enabled == 1);
3058 3059
	case IOMMU_CAP_NOEXEC:
		return false;
3060 3061
	}

3062
	return false;
S
Sheng Yang 已提交
3063 3064
}

3065 3066
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3067
{
3068
	struct iommu_resv_region *region;
3069
	struct unity_map_entry *entry;
3070
	int devid;
3071 3072

	devid = get_device_id(dev);
3073
	if (devid < 0)
3074
		return;
3075 3076

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3077 3078
		size_t length;
		int prot = 0;
3079 3080 3081 3082

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3083 3084 3085 3086 3087 3088 3089 3090 3091
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3092 3093 3094 3095 3096 3097 3098
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3099 3100 3101

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3102
					 0, IOMMU_RESV_MSI);
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3113 3114
}

3115
static void amd_iommu_put_resv_regions(struct device *dev,
3116 3117
				     struct list_head *head)
{
3118
	struct iommu_resv_region *entry, *next;
3119 3120 3121 3122 3123

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3124
static void amd_iommu_apply_resv_region(struct device *dev,
3125
				      struct iommu_domain *domain,
3126
				      struct iommu_resv_region *region)
3127
{
3128
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3129 3130 3131 3132 3133 3134 3135 3136
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3137
const struct iommu_ops amd_iommu_ops = {
3138
	.capable = amd_iommu_capable,
3139 3140
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3141 3142
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3143 3144
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3145
	.map_sg = default_iommu_map_sg,
3146
	.iova_to_phys = amd_iommu_iova_to_phys,
3147 3148
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3149
	.device_group = amd_iommu_device_group,
3150 3151 3152
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3153
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3154 3155
};

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3178 3179 3180

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3181
	struct protection_domain *domain = to_pdomain(dom);
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3199 3200 3201

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3202
	struct protection_domain *domain = to_pdomain(dom);
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3263
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3280 3281 3282 3283 3284 3285
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3317
	struct protection_domain *domain = to_pdomain(dom);
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3337
	struct protection_domain *domain = to_pdomain(dom);
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3417
	struct protection_domain *domain = to_pdomain(dom);
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3431
	struct protection_domain *domain = to_pdomain(dom);
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3459 3460 3461

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3462
	struct protection_domain *pdomain;
3463

3464 3465
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3466 3467 3468
		return NULL;

	/* Only return IOMMUv2 domains */
3469
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3470 3471
		return NULL;

3472
	return &pdomain->domain;
3473 3474
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3530 3531 3532 3533 3534 3535 3536 3537 3538

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3539 3540
static struct irq_chip amd_ir_chip;

3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3575
		goto out_unlock;
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3589
		goto out_unlock;
3590

3591 3592 3593
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3594 3595 3596 3597 3598 3599 3600
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3601
		table = NULL;
3602
		goto out_unlock;
3603 3604
	}

3605 3606 3607 3608 3609 3610
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3611 3612 3613 3614 3615

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3616
			iommu->irte_ops->set_allocated(table, i);
3617 3618 3619 3620 3621 3622 3623
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3624
		set_dte_irq_entry(alias, table);
3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3637
static int alloc_irq_index(u16 devid, int count)
3638 3639 3640 3641
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3642 3643 3644 3645
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3657
		if (!iommu->irte_ops->is_allocated(table, index))
3658 3659 3660 3661 3662 3663
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3664
				iommu->irte_ops->set_allocated(table, index - c + 1);
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3679 3680
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3681 3682 3683 3684
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3685
	struct irte_ga *entry;
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3696 3697 3698 3699 3700 3701 3702

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3703 3704
	if (data)
		data->ref = entry;
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3729
	table->table[index] = irte->val;
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3753
	iommu->irte_ops->clear_allocated(table, index);
3754 3755 3756 3757 3758 3759
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3760 3761
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3762
			 u8 vector, u32 dest_apicid, int devid)
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3776
			    u8 vector, u32 dest_apicid, int devid)
3777 3778
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3779
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3780 3781 3782

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
3783
	irte->lo.fields_remap.guest_mode  = dev_data ? dev_data->use_vapic : 0;
3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3804
	modify_irte_ga(devid, index, irte, NULL);
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3820
	modify_irte_ga(devid, index, irte, NULL);
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3837
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3838

3839 3840 3841 3842 3843 3844
	if (!dev_data || !dev_data->use_vapic) {
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		irte->lo.fields_remap.guest_mode = 0;
		modify_irte_ga(devid, index, irte, NULL);
	}
3845 3846
}

3847
#define IRTE_ALLOCATED (~1U)
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3893
static int get_devid(struct irq_alloc_info *info)
3894
{
3895
	int devid = -1;
3896

3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3912

3913 3914
	return devid;
}
3915

3916 3917 3918 3919
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3920

3921 3922
	if (!info)
		return NULL;
3923

3924 3925 3926 3927 3928 3929
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3930

3931
	return NULL;
3932 3933
}

3934
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3935
{
3936 3937
	struct amd_iommu *iommu;
	int devid;
3938

3939 3940
	if (!info)
		return NULL;
3941

3942 3943 3944 3945
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3946
		if (devid < 0)
3947 3948
			return NULL;

3949 3950 3951
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3952 3953 3954 3955
		break;
	default:
		break;
	}
3956

3957 3958
	return NULL;
}
3959

3960 3961 3962 3963 3964 3965
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3966 3967 3968
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3969

3970 3971 3972 3973 3974 3975 3976 3977
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
3978 3979 3980 3981
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
3982

3983 3984
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3985 3986
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
3987
				 irq_cfg->dest_apicid, devid);
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4003

4004 4005 4006 4007 4008 4009 4010
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4011

4012 4013 4014 4015
	default:
		BUG_ON(1);
		break;
	}
4016 4017
}

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4038 4039
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4040
{
4041 4042
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4043
	struct amd_ir_data *data = NULL;
4044
	struct irq_cfg *cfg;
4045 4046
	int i, ret, devid;
	int index = -1;
4047

4048 4049 4050 4051
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4052 4053
		return -EINVAL;

4054 4055 4056 4057 4058 4059
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4060

4061 4062 4063
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4064

4065 4066 4067
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4068

4069 4070 4071 4072 4073 4074
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4075
		index = alloc_irq_index(devid, nr_irqs);
4076 4077 4078
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4079
		ret = index;
4080 4081
		goto out_free_parent;
	}
4082

4083 4084 4085 4086 4087 4088 4089
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4090

4091 4092 4093 4094 4095
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4106 4107 4108 4109 4110 4111
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4112

4113
	return 0;
4114

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4126 4127
}

4128 4129
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4130
{
4131 4132 4133 4134
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4135

4136 4137 4138 4139 4140 4141
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4142
			kfree(data->entry);
4143 4144 4145 4146 4147
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4148

4149 4150 4151 4152 4153
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4154
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4155

4156 4157 4158
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4159 4160
}

4161 4162
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4163
{
4164 4165
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4166
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4167

4168 4169 4170
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4171
}
4172

4173
static const struct irq_domain_ops amd_ir_domain_ops = {
4174 4175 4176 4177
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4178
};
4179

4180 4181 4182 4183 4184 4185 4186 4187
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4188 4189 4190 4191 4192 4193 4194 4195
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4244 4245 4246 4247 4248 4249 4250
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4251
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4252
	int ret;
4253

4254 4255 4256
	if (!iommu)
		return -ENODEV;

4257 4258 4259
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4260

4261 4262 4263 4264
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4265 4266
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4267

4268 4269 4270 4271 4272
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4273
	send_cleanup_vector(cfg);
4274 4275

	return IRQ_SET_MASK_OK_DONE;
4276 4277
}

4278
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4279
{
4280
	struct amd_ir_data *ir_data = irq_data->chip_data;
4281

4282 4283
	*msg = ir_data->msi_entry;
}
4284

4285 4286 4287
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
4288
	.irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4289 4290
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4291

4292 4293 4294 4295 4296
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4297

4298 4299
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4300 4301 4302

	return 0;
}
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4342
#endif