amd_iommu.c 65.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

#include <linux/pci.h>
21
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
22
#include <linux/bitmap.h>
23
#include <linux/slab.h>
24
#include <linux/debugfs.h>
25
#include <linux/scatterlist.h>
26
#include <linux/dma-mapping.h>
27
#include <linux/iommu-helper.h>
28
#include <linux/iommu.h>
29
#include <linux/delay.h>
30
#include <linux/amd-iommu.h>
31
#include <asm/msidef.h>
32
#include <asm/proto.h>
33
#include <asm/iommu.h>
34
#include <asm/gart.h>
35
#include <asm/dma.h>
36 37 38

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
39 40 41

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

42
#define LOOP_TIMEOUT	100000
43

44 45
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

46 47 48 49
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

50 51 52 53
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

54 55 56 57 58 59
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

60 61
static struct iommu_ops amd_iommu_ops;

62 63 64
/*
 * general struct to manage commands send to an IOMMU
 */
65
struct iommu_cmd {
66 67 68
	u32 data[4];
};

69
static void update_domain(struct protection_domain *domain);
70
static int __init alloc_passthrough_domain(void);
71

72 73 74 75 76 77
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

78
static struct iommu_dev_data *alloc_dev_data(u16 devid)
79 80 81 82 83 84 85 86
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

87
	dev_data->devid = devid;
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

139 140 141 142 143 144 145
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

146 147 148 149 150
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
		PCI_PRI_CAP,
		PCI_PASID_CAP,
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

197 198 199 200 201 202 203 204 205 206 207 208
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
209
	if (dev->bus != &pci_bus_type)
210 211 212 213 214 215 216 217 218 219 220 221 222 223
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

224 225
static int iommu_init_device(struct device *dev)
{
226
	struct pci_dev *pdev = to_pci_dev(dev);
227
	struct iommu_dev_data *dev_data;
228
	u16 alias;
229 230 231 232

	if (dev->archdata.iommu)
		return 0;

233
	dev_data = find_dev_data(get_device_id(dev));
234 235 236
	if (!dev_data)
		return -ENOMEM;

237
	alias = amd_iommu_alias_table[dev_data->devid];
238
	if (alias != dev_data->devid) {
239
		struct iommu_dev_data *alias_data;
240

241 242 243 244
		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
245 246 247
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
248
		dev_data->alias_data = alias_data;
249
	}
250

251 252 253 254 255 256 257
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

258 259 260 261 262
	dev->archdata.iommu = dev_data;

	return 0;
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

277 278
static void iommu_uninit_device(struct device *dev)
{
279 280 281 282 283
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
284
}
J
Joerg Roedel 已提交
285 286 287

void __init amd_iommu_uninit_devices(void)
{
288
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
289 290 291 292 293 294 295 296 297
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
298 299 300 301

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
315 316 317
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
318 319 320 321 322 323 324 325 326 327 328
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
329 330 331 332 333 334
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

335
DECLARE_STATS_COUNTER(compl_wait);
336
DECLARE_STATS_COUNTER(cnt_map_single);
337
DECLARE_STATS_COUNTER(cnt_unmap_single);
338
DECLARE_STATS_COUNTER(cnt_map_sg);
339
DECLARE_STATS_COUNTER(cnt_unmap_sg);
340
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
341
DECLARE_STATS_COUNTER(cnt_free_coherent);
342
DECLARE_STATS_COUNTER(cross_page);
343
DECLARE_STATS_COUNTER(domain_flush_single);
344
DECLARE_STATS_COUNTER(domain_flush_all);
345
DECLARE_STATS_COUNTER(alloced_io_mem);
346
DECLARE_STATS_COUNTER(total_map_requests);
347

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
368 369

	amd_iommu_stats_add(&compl_wait);
370
	amd_iommu_stats_add(&cnt_map_single);
371
	amd_iommu_stats_add(&cnt_unmap_single);
372
	amd_iommu_stats_add(&cnt_map_sg);
373
	amd_iommu_stats_add(&cnt_unmap_sg);
374
	amd_iommu_stats_add(&cnt_alloc_coherent);
375
	amd_iommu_stats_add(&cnt_free_coherent);
376
	amd_iommu_stats_add(&cross_page);
377
	amd_iommu_stats_add(&domain_flush_single);
378
	amd_iommu_stats_add(&domain_flush_all);
379
	amd_iommu_stats_add(&alloced_io_mem);
380
	amd_iommu_stats_add(&total_map_requests);
381 382 383 384
}

#endif

385 386 387 388 389 390
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

391 392 393 394
static void dump_dte_entry(u16 devid)
{
	int i;

395 396
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
397 398 399
			amd_iommu_dev_table[devid].data[i]);
}

400 401 402 403 404 405 406 407 408
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

409
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
410 411 412 413 414 415 416 417
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

418
	printk(KERN_ERR "AMD-Vi: Event logged [");
419 420 421 422 423 424 425

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
426
		dump_dte_entry(devid);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
448
		dump_command(address);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
482
		iommu_print_event(iommu, iommu->evt_buf + head);
483 484 485 486 487 488 489 490
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

491
irqreturn_t amd_iommu_int_thread(int irq, void *data)
492
{
493 494
	struct amd_iommu *iommu;

495
	for_each_iommu(iommu)
496 497 498
		iommu_poll_events(iommu);

	return IRQ_HANDLED;
499 500
}

501 502 503 504 505
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

506 507 508 509 510 511
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
532 533 534
{
	u8 *target;

535
	target = iommu->cmd_buf + tail;
536 537 538 539 540 541
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
542
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
543
}
544

545
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
546
{
547 548
	WARN_ON(address & 0x7ULL);

549
	memset(cmd, 0, sizeof(*cmd));
550 551 552
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
553 554 555
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

556 557 558 559 560 561 562
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

625 626 627 628
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
629 630
}

631 632
/*
 * Writes the command to the IOMMUs command buffer and informs the
633
 * hardware about the new command.
634
 */
635 636 637
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
638
{
639
	u32 left, tail, head, next_tail;
640 641
	unsigned long flags;

642
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
643 644

again:
645 646
	spin_lock_irqsave(&iommu->lock, flags);

647 648 649 650
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
651

652 653 654 655
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
656

657 658
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
659

660 661 662 663 664 665
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
666 667
	}

668 669 670
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
671
	iommu->need_sync = sync;
672

673
	spin_unlock_irqrestore(&iommu->lock, flags);
674

675
	return 0;
676 677
}

678 679 680 681 682
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

683 684 685 686
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
687
static int iommu_completion_wait(struct amd_iommu *iommu)
688 689
{
	struct iommu_cmd cmd;
690
	volatile u64 sem = 0;
691
	int ret;
692

693
	if (!iommu->need_sync)
694
		return 0;
695

696
	build_completion_wait(&cmd, (u64)&sem);
697

698
	ret = iommu_queue_command_sync(iommu, &cmd, false);
699
	if (ret)
700
		return ret;
701

702
	return wait_on_sem(&sem);
703 704
}

705
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
706
{
707
	struct iommu_cmd cmd;
708

709
	build_inv_dte(&cmd, devid);
710

711 712
	return iommu_queue_command(iommu, &cmd);
}
713

714 715 716
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
717

718 719
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
720

721 722
	iommu_completion_wait(iommu);
}
723

724 725 726 727 728 729 730
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
731

732 733 734 735 736 737
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
738

739
	iommu_completion_wait(iommu);
740 741
}

742
static void iommu_flush_all(struct amd_iommu *iommu)
743
{
744
	struct iommu_cmd cmd;
745

746
	build_inv_all(&cmd);
747

748 749 750 751
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

752 753
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
754 755 756 757 758
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
759 760 761
	}
}

762
/*
763
 * Command send function for flushing on-device TLB
764
 */
765 766
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
767 768
{
	struct amd_iommu *iommu;
769
	struct iommu_cmd cmd;
770
	int qdep;
771

772 773
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
774

775
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
776 777

	return iommu_queue_command(iommu, &cmd);
778 779
}

780 781 782
/*
 * Command send function for invalidating a device table entry
 */
783
static int device_flush_dte(struct iommu_dev_data *dev_data)
784
{
785
	struct amd_iommu *iommu;
786
	int ret;
787

788
	iommu = amd_iommu_rlookup_table[dev_data->devid];
789

790
	ret = iommu_flush_dte(iommu, dev_data->devid);
791 792 793
	if (ret)
		return ret;

794
	if (dev_data->ats.enabled)
795
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
796 797

	return ret;
798 799
}

800 801 802 803 804
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
805 806
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
807
{
808
	struct iommu_dev_data *dev_data;
809 810
	struct iommu_cmd cmd;
	int ret = 0, i;
811

812
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
813

814 815 816 817 818 819 820 821
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
822
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
823 824
	}

825 826
	list_for_each_entry(dev_data, &domain->dev_list, list) {

827
		if (!dev_data->ats.enabled)
828 829
			continue;

830
		ret |= device_flush_iotlb(dev_data, address, size);
831 832
	}

833
	WARN_ON(ret);
834 835
}

836 837
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
838
{
839
	__domain_flush_pages(domain, address, size, 0);
840
}
841

842
/* Flush the whole IO/TLB for a given protection domain */
843
static void domain_flush_tlb(struct protection_domain *domain)
844
{
845
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
846 847
}

848
/* Flush the whole IO/TLB for a given protection domain - including PDE */
849
static void domain_flush_tlb_pde(struct protection_domain *domain)
850
{
851
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
852 853
}

854
static void domain_flush_complete(struct protection_domain *domain)
855
{
856
	int i;
857

858 859 860
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
861

862 863 864 865 866
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
867
	}
868 869
}

870

871
/*
872
 * This function flushes the DTEs for all devices in domain
873
 */
874
static void domain_flush_devices(struct protection_domain *domain)
875
{
876
	struct iommu_dev_data *dev_data;
877

878
	list_for_each_entry(dev_data, &domain->dev_list, list)
879
		device_flush_dte(dev_data);
880 881
}

882 883 884 885 886 887 888
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
918
		      unsigned long page_size,
919 920 921
		      u64 **pte_page,
		      gfp_t gfp)
{
922
	int level, end_lvl;
923
	u64 *pte, *page;
924 925

	BUG_ON(!is_power_of_2(page_size));
926 927 928 929

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

930 931 932 933
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
934 935 936 937 938 939 940 941 942

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

943 944 945 946
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
964
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
965 966 967 968
{
	int level;
	u64 *pte;

969 970 971 972 973
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
974

975 976 977
	while (level > 0) {

		/* Not Present */
978 979 980
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1000 1001
		level -= 1;

1002
		/* Walk to the next level */
1003 1004 1005 1006 1007 1008 1009
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1010 1011 1012 1013 1014 1015 1016
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1017 1018 1019
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1020
			  int prot,
1021
			  unsigned long page_size)
1022
{
1023
	u64 __pte, *pte;
1024
	int i, count;
1025

1026
	if (!(prot & IOMMU_PROT_MASK))
1027 1028
		return -EINVAL;

1029 1030 1031 1032 1033 1034 1035 1036
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1037

1038 1039 1040 1041 1042
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1043 1044 1045 1046 1047 1048

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1049 1050
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1051

1052 1053
	update_domain(dom);

1054 1055 1056
	return 0;
}

1057 1058 1059
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1060
{
1061 1062 1063 1064 1065 1066
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1097

1098
	return unmapped;
1099 1100
}

1101 1102 1103 1104
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1119 1120 1121 1122
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1123 1124 1125 1126 1127 1128 1129 1130
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1131
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1132
				     PAGE_SIZE);
1133 1134 1135 1136 1137 1138 1139
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1140
			__set_bit(addr >> PAGE_SHIFT,
1141
				  dma_dom->aperture[0]->bitmap);
1142 1143 1144 1145 1146
	}

	return 0;
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1169 1170 1171
/*
 * Inits the unity mappings required for a specific device
 */
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1189 1190 1191 1192 1193 1194 1195 1196 1197
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1198

1199
/*
1200
 * The address allocator core functions.
1201 1202 1203
 *
 * called with domain->lock held
 */
1204

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1225 1226 1227 1228 1229
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1230
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1231 1232 1233
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1234
	struct amd_iommu *iommu;
1235
	unsigned long i, old_size;
1236

1237 1238 1239 1240
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1260
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1271
	old_size                = dma_dom->aperture_size;
1272 1273
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1286
	/* Initialize the exclusion range if necessary */
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1309
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1310 1311 1312
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1313
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1314 1315
	}

1316 1317
	update_domain(&dma_dom->domain);

1318 1319 1320
	return 0;

out_free:
1321 1322
	update_domain(&dma_dom->domain);

1323 1324 1325 1326 1327 1328 1329 1330
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1331 1332 1333 1334 1335 1336 1337
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1338
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1339 1340 1341 1342 1343 1344
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1345 1346
	next_bit >>= PAGE_SHIFT;

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1365
			dom->next_address = address + (pages << PAGE_SHIFT);
1366 1367 1368 1369 1370 1371 1372 1373 1374
			break;
		}

		next_bit = 0;
	}

	return address;
}

1375 1376
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1377
					     unsigned int pages,
1378 1379
					     unsigned long align_mask,
					     u64 dma_mask)
1380 1381 1382
{
	unsigned long address;

1383 1384 1385 1386
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1387

1388
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1389
				     dma_mask, dom->next_address);
1390

1391
	if (address == -1) {
1392
		dom->next_address = 0;
1393 1394
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1395 1396
		dom->need_flush = true;
	}
1397

1398
	if (unlikely(address == -1))
1399
		address = DMA_ERROR_CODE;
1400 1401 1402 1403 1404 1405

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1406 1407 1408 1409 1410
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1411 1412 1413 1414
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1415 1416
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1417

1418 1419
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1420 1421 1422 1423
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1424

1425
	if (address >= dom->next_address)
1426
		dom->need_flush = true;
1427 1428

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1429

A
Akinobu Mita 已提交
1430
	bitmap_clear(range->bitmap, address, pages);
1431

1432 1433
}

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1496
static void free_pagetable(struct protection_domain *domain)
1497 1498 1499 1500
{
	int i, j;
	u64 *p1, *p2, *p3;

1501
	p1 = domain->pt_root;
1502 1503 1504 1505 1506 1507 1508 1509 1510

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1511
		for (j = 0; j < 512; ++j) {
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1522 1523

	domain->pt_root = NULL;
1524 1525
}

1526 1527 1528 1529
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1530 1531
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1532 1533
	int i;

1534 1535 1536
	if (!dom)
		return;

1537 1538
	del_domain_from_list(&dom->domain);

1539
	free_pagetable(&dom->domain);
1540

1541 1542 1543 1544 1545 1546
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1547 1548 1549 1550

	kfree(dom);
}

1551 1552
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1553
 * It also initializes the page table and the address allocator data
1554 1555
 * structures required for the dma_ops interface
 */
1556
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1569
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1570
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1571
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1572
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1573 1574 1575 1576
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1577
	dma_dom->need_flush = false;
1578
	dma_dom->target_dev = 0xffff;
1579

1580 1581
	add_domain_to_list(&dma_dom->domain);

1582
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1583 1584
		goto free_dma_dom;

1585
	/*
1586 1587
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1588
	 */
1589
	dma_dom->aperture[0]->bitmap[0] = 1;
1590
	dma_dom->next_address = 0;
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1601 1602 1603 1604 1605 1606 1607 1608 1609
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1610
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1611 1612
{
	u64 pte_root = virt_to_phys(domain->pt_root);
1613
	u64 flags = 0;
1614

1615 1616 1617
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1618

1619 1620
	flags = amd_iommu_dev_table[devid].data[1];

1621 1622 1623
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1624 1625 1626 1627 1628
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1629 1630 1631 1632 1633 1634 1635 1636 1637
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1638 1639
}

1640 1641
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1642 1643
{
	struct amd_iommu *iommu;
1644
	bool ats;
1645

1646 1647
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1648 1649 1650 1651

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1652
	set_dte_entry(dev_data->devid, domain, ats);
1653 1654 1655 1656 1657 1658

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1659
	device_flush_dte(dev_data);
1660 1661
}

1662
static void do_detach(struct iommu_dev_data *dev_data)
1663 1664 1665
{
	struct amd_iommu *iommu;

1666
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1667 1668

	/* decrease reference counters */
1669 1670 1671 1672 1673 1674
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1675
	clear_dte_entry(dev_data->devid);
1676

1677
	/* Flush the DTE entry */
1678
	device_flush_dte(dev_data);
1679 1680 1681 1682 1683 1684
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1685
static int __attach_device(struct iommu_dev_data *dev_data,
1686
			   struct protection_domain *domain)
1687
{
1688
	int ret;
1689

1690 1691 1692
	/* lock domain */
	spin_lock(&domain->lock);

1693 1694
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
1695

1696 1697 1698 1699 1700
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
1701

1702 1703 1704
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
1705

1706
		/* Do real assignment */
1707
		if (alias_data->domain == NULL)
1708
			do_attach(alias_data, domain);
1709 1710

		atomic_inc(&alias_data->bind);
1711
	}
1712

1713
	if (dev_data->domain == NULL)
1714
		do_attach(dev_data, domain);
1715

1716 1717
	atomic_inc(&dev_data->bind);

1718 1719 1720 1721
	ret = 0;

out_unlock:

1722 1723
	/* ready */
	spin_unlock(&domain->lock);
1724

1725
	return ret;
1726
}
1727

1728 1729 1730 1731
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1732 1733
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1734
{
1735
	struct pci_dev *pdev = to_pci_dev(dev);
1736
	struct iommu_dev_data *dev_data;
1737
	unsigned long flags;
1738
	int ret;
1739

1740 1741 1742 1743 1744 1745
	dev_data = get_dev_data(dev);

	if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
1746

1747
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1748
	ret = __attach_device(dev_data, domain);
1749 1750
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1751 1752 1753 1754 1755
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1756
	domain_flush_tlb_pde(domain);
1757 1758

	return ret;
1759 1760
}

1761 1762 1763
/*
 * Removes a device from a protection domain (unlocked)
 */
1764
static void __detach_device(struct iommu_dev_data *dev_data)
1765
{
1766
	struct protection_domain *domain;
1767
	unsigned long flags;
1768

1769
	BUG_ON(!dev_data->domain);
1770

1771 1772 1773
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
1774

1775 1776 1777
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

1778
		if (atomic_dec_and_test(&alias_data->bind))
1779
			do_detach(alias_data);
1780 1781
	}

1782
	if (atomic_dec_and_test(&dev_data->bind))
1783
		do_detach(dev_data);
1784

1785
	spin_unlock_irqrestore(&domain->lock, flags);
1786 1787 1788

	/*
	 * If we run in passthrough mode the device must be assigned to the
1789 1790
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
1791
	 */
1792
	if (dev_data->passthrough &&
1793
	    (dev_data->domain == NULL && domain != pt_domain))
1794
		__attach_device(dev_data, pt_domain);
1795 1796 1797 1798 1799
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1800
static void detach_device(struct device *dev)
1801
{
1802
	struct iommu_dev_data *dev_data;
1803 1804
	unsigned long flags;

1805 1806
	dev_data = get_dev_data(dev);

1807 1808
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1809
	__detach_device(dev_data);
1810
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1811

1812 1813 1814 1815
	if (dev_data->ats.enabled) {
		pci_disable_ats(to_pci_dev(dev));
		dev_data->ats.enabled = false;
	}
1816
}
1817

1818 1819 1820 1821 1822 1823
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
1824
	struct iommu_dev_data *dev_data;
1825
	struct protection_domain *dom = NULL;
1826 1827
	unsigned long flags;

1828
	dev_data   = get_dev_data(dev);
1829

1830 1831
	if (dev_data->domain)
		return dev_data->domain;
1832

1833 1834
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
1835 1836 1837 1838 1839 1840 1841 1842

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
1843 1844 1845 1846

	return dom;
}

1847 1848 1849 1850
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
1851 1852 1853
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
1854
	struct amd_iommu *iommu;
1855
	unsigned long flags;
1856
	u16 devid;
1857

1858 1859
	if (!check_device(dev))
		return 0;
1860

1861 1862 1863
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
1864 1865

	switch (action) {
1866
	case BUS_NOTIFY_UNBOUND_DRIVER:
1867 1868 1869

		domain = domain_for_device(dev);

1870 1871
		if (!domain)
			goto out;
1872
		if (dev_data->passthrough)
1873
			break;
1874
		detach_device(dev);
1875 1876
		break;
	case BUS_NOTIFY_ADD_DEVICE:
1877 1878 1879 1880 1881

		iommu_init_device(dev);

		domain = domain_for_device(dev);

1882 1883 1884 1885
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
1886
		dma_domain = dma_ops_domain_alloc();
1887 1888 1889 1890 1891 1892 1893 1894
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

1895
		break;
1896 1897 1898 1899
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

1910
static struct notifier_block device_nb = {
1911 1912
	.notifier_call = device_change_notifier,
};
1913

1914 1915 1916 1917 1918
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
1932
static struct protection_domain *get_domain(struct device *dev)
1933
{
1934
	struct protection_domain *domain;
1935
	struct dma_ops_domain *dma_dom;
1936
	u16 devid = get_device_id(dev);
1937

1938
	if (!check_device(dev))
1939
		return ERR_PTR(-EINVAL);
1940

1941 1942 1943
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
1944

1945 1946
	if (domain != NULL)
		return domain;
1947

1948
	/* Device not bount yet - bind it */
1949
	dma_dom = find_protection_domain(devid);
1950
	if (!dma_dom)
1951 1952
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
1953
	DUMP_printk("Using protection domain %d for device %s\n",
1954
		    dma_dom->domain.id, dev_name(dev));
1955

1956
	return &dma_dom->domain;
1957 1958
}

1959 1960
static void update_device_table(struct protection_domain *domain)
{
1961
	struct iommu_dev_data *dev_data;
1962

1963 1964
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
1965 1966 1967 1968 1969 1970 1971 1972
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
1973 1974 1975

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
1976 1977 1978 1979

	domain->updated = false;
}

1980 1981 1982 1983 1984 1985
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
1986
	struct aperture_range *aperture;
1987 1988
	u64 *pte, *pte_page;

1989 1990 1991 1992 1993
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1994
	if (!pte) {
1995
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1996
				GFP_ATOMIC);
1997 1998
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
1999
		pte += PM_LEVEL_INDEX(0, address);
2000

2001
	update_domain(&dom->domain);
2002 2003 2004 2005

	return pte;
}

2006 2007 2008 2009
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2010
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2021
	pte  = dma_ops_get_pte(dom, address);
2022
	if (!pte)
2023
		return DMA_ERROR_CODE;
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2041 2042 2043
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2044
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2045 2046
				 unsigned long address)
{
2047
	struct aperture_range *aperture;
2048 2049 2050 2051 2052
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2053 2054 2055 2056 2057 2058 2059
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2060

2061
	pte += PM_LEVEL_INDEX(0, address);
2062 2063 2064 2065 2066 2067

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2068 2069
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2070 2071
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2072 2073
 * Must be called with the domain lock held.
 */
2074 2075 2076 2077
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2078
			       int dir,
2079 2080
			       bool align,
			       u64 dma_mask)
2081 2082
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2083
	dma_addr_t address, start, ret;
2084
	unsigned int pages;
2085
	unsigned long align_mask = 0;
2086 2087
	int i;

2088
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2089 2090
	paddr &= PAGE_MASK;

2091 2092
	INC_STATS_COUNTER(total_map_requests);

2093 2094 2095
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2096 2097 2098
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2099
retry:
2100 2101
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2102
	if (unlikely(address == DMA_ERROR_CODE)) {
2103 2104 2105 2106 2107 2108 2109
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2110
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2111 2112 2113
			goto out;

		/*
2114
		 * aperture was successfully enlarged by 128 MB, try
2115 2116 2117 2118
		 * allocation again
		 */
		goto retry;
	}
2119 2120 2121

	start = address;
	for (i = 0; i < pages; ++i) {
2122
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2123
		if (ret == DMA_ERROR_CODE)
2124 2125
			goto out_unmap;

2126 2127 2128 2129 2130
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2131 2132
	ADD_STATS_COUNTER(alloced_io_mem, size);

2133
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2134
		domain_flush_tlb(&dma_dom->domain);
2135
		dma_dom->need_flush = false;
2136
	} else if (unlikely(amd_iommu_np_cache))
2137
		domain_flush_pages(&dma_dom->domain, address, size);
2138

2139 2140
out:
	return address;
2141 2142 2143 2144 2145

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2146
		dma_ops_domain_unmap(dma_dom, start);
2147 2148 2149 2150
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2151
	return DMA_ERROR_CODE;
2152 2153
}

2154 2155 2156 2157
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2158
static void __unmap_single(struct dma_ops_domain *dma_dom,
2159 2160 2161 2162
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2163
	dma_addr_t flush_addr;
2164 2165 2166
	dma_addr_t i, start;
	unsigned int pages;

2167
	if ((dma_addr == DMA_ERROR_CODE) ||
2168
	    (dma_addr + size > dma_dom->aperture_size))
2169 2170
		return;

2171
	flush_addr = dma_addr;
2172
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2173 2174 2175 2176
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2177
		dma_ops_domain_unmap(dma_dom, start);
2178 2179 2180
		start += PAGE_SIZE;
	}

2181 2182
	SUB_STATS_COUNTER(alloced_io_mem, size);

2183
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2184

2185
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2186
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2187 2188
		dma_dom->need_flush = false;
	}
2189 2190
}

2191 2192 2193
/*
 * The exported map_single function for dma_ops.
 */
2194 2195 2196 2197
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2198 2199 2200 2201
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2202
	u64 dma_mask;
2203
	phys_addr_t paddr = page_to_phys(page) + offset;
2204

2205 2206
	INC_STATS_COUNTER(cnt_map_single);

2207 2208
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2209
		return (dma_addr_t)paddr;
2210 2211
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2212

2213 2214
	dma_mask = *dev->dma_mask;

2215
	spin_lock_irqsave(&domain->lock, flags);
2216

2217
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2218
			    dma_mask);
2219
	if (addr == DMA_ERROR_CODE)
2220 2221
		goto out;

2222
	domain_flush_complete(domain);
2223 2224 2225 2226 2227 2228 2229

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2230 2231 2232
/*
 * The exported unmap_single function for dma_ops.
 */
2233 2234
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2235 2236 2237 2238
{
	unsigned long flags;
	struct protection_domain *domain;

2239 2240
	INC_STATS_COUNTER(cnt_unmap_single);

2241 2242
	domain = get_domain(dev);
	if (IS_ERR(domain))
2243 2244
		return;

2245 2246
	spin_lock_irqsave(&domain->lock, flags);

2247
	__unmap_single(domain->priv, dma_addr, size, dir);
2248

2249
	domain_flush_complete(domain);
2250 2251 2252 2253

	spin_unlock_irqrestore(&domain->lock, flags);
}

2254 2255 2256 2257
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2272 2273 2274 2275
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2276
static int map_sg(struct device *dev, struct scatterlist *sglist,
2277 2278
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2279 2280 2281 2282 2283 2284 2285
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2286
	u64 dma_mask;
2287

2288 2289
	INC_STATS_COUNTER(cnt_map_sg);

2290 2291
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2292
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2293 2294
	else if (IS_ERR(domain))
		return 0;
2295

2296
	dma_mask = *dev->dma_mask;
2297 2298 2299 2300 2301 2302

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2303
		s->dma_address = __map_single(dev, domain->priv,
2304 2305
					      paddr, s->length, dir, false,
					      dma_mask);
2306 2307 2308 2309 2310 2311 2312 2313

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2314
	domain_flush_complete(domain);
2315 2316 2317 2318 2319 2320 2321 2322

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2323
			__unmap_single(domain->priv, s->dma_address,
2324 2325 2326 2327 2328 2329 2330 2331 2332
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2333 2334 2335 2336
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2337
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2338 2339
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2340 2341 2342 2343 2344 2345
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2346 2347
	INC_STATS_COUNTER(cnt_unmap_sg);

2348 2349
	domain = get_domain(dev);
	if (IS_ERR(domain))
2350 2351
		return;

2352 2353 2354
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2355
		__unmap_single(domain->priv, s->dma_address,
2356 2357 2358 2359
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2360
	domain_flush_complete(domain);
2361 2362 2363 2364

	spin_unlock_irqrestore(&domain->lock, flags);
}

2365 2366 2367
/*
 * The exported alloc_coherent function for dma_ops.
 */
2368 2369 2370 2371 2372 2373 2374
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2375
	u64 dma_mask = dev->coherent_dma_mask;
2376

2377 2378
	INC_STATS_COUNTER(cnt_alloc_coherent);

2379 2380
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2381 2382 2383
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2384 2385
	} else if (IS_ERR(domain))
		return NULL;
2386

2387 2388 2389
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2390 2391 2392

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2393
		return NULL;
2394 2395 2396

	paddr = virt_to_phys(virt_addr);

2397 2398 2399
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2400 2401
	spin_lock_irqsave(&domain->lock, flags);

2402
	*dma_addr = __map_single(dev, domain->priv, paddr,
2403
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2404

2405
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2406
		spin_unlock_irqrestore(&domain->lock, flags);
2407
		goto out_free;
J
Jiri Slaby 已提交
2408
	}
2409

2410
	domain_flush_complete(domain);
2411 2412 2413 2414

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2415 2416 2417 2418 2419 2420

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2421 2422
}

2423 2424 2425
/*
 * The exported free_coherent function for dma_ops.
 */
2426 2427 2428 2429 2430 2431
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2432 2433
	INC_STATS_COUNTER(cnt_free_coherent);

2434 2435
	domain = get_domain(dev);
	if (IS_ERR(domain))
2436 2437
		goto free_mem;

2438 2439
	spin_lock_irqsave(&domain->lock, flags);

2440
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2441

2442
	domain_flush_complete(domain);
2443 2444 2445 2446 2447 2448 2449

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2450 2451 2452 2453 2454 2455
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2456
	return check_device(dev);
2457 2458
}

2459
/*
2460 2461
 * The function for pre-allocating protection domains.
 *
2462 2463 2464 2465
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2466
static void prealloc_protection_domains(void)
2467
{
2468
	struct iommu_dev_data *dev_data;
2469
	struct dma_ops_domain *dma_dom;
2470
	struct pci_dev *dev = NULL;
2471
	u16 devid;
2472

2473
	for_each_pci_dev(dev) {
2474 2475 2476

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2477
			continue;
2478

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
			pr_info("AMD-Vi: Using passthough domain for device %s\n",
				dev_name(&dev->dev));
		}

2489
		/* Is there already any domain for it? */
2490
		if (domain_for_device(&dev->dev))
2491
			continue;
2492 2493 2494

		devid = get_device_id(&dev->dev);

2495
		dma_dom = dma_ops_domain_alloc();
2496 2497 2498
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2499 2500
		dma_dom->target_dev = devid;

2501
		attach_device(&dev->dev, &dma_dom->domain);
2502

2503
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2504 2505 2506
	}
}

2507
static struct dma_map_ops amd_iommu_dma_ops = {
2508 2509
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2510 2511
	.map_page = map_page,
	.unmap_page = unmap_page,
2512 2513
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2514
	.dma_supported = amd_iommu_dma_supported,
2515 2516
};

2517 2518
static unsigned device_dma_ops_init(void)
{
2519
	struct iommu_dev_data *dev_data;
2520 2521 2522 2523 2524 2525 2526 2527 2528
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
			unhandled += 1;
			continue;
		}

2529 2530 2531 2532 2533 2534
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2535 2536 2537 2538 2539
	}

	return unhandled;
}

2540 2541 2542
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2543 2544 2545

void __init amd_iommu_init_api(void)
{
2546
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2547 2548
}

2549 2550 2551
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
2552
	int ret, unhandled;
2553

2554 2555 2556 2557 2558
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2559
	for_each_iommu(iommu) {
2560
		iommu->default_dom = dma_ops_domain_alloc();
2561 2562
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2563
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2564 2565 2566 2567 2568
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2569
	/*
2570
	 * Pre-allocate the protection domains for each device.
2571
	 */
2572
	prealloc_protection_domains();
2573 2574

	iommu_detected = 1;
2575
	swiotlb = 0;
2576

2577
	/* Make the driver finally visible to the drivers */
2578 2579 2580 2581 2582
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
2583

2584 2585
	amd_iommu_stats_init();

2586 2587 2588 2589
	return 0;

free_domains:

2590
	for_each_iommu(iommu) {
2591 2592 2593 2594 2595 2596
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2610
	struct iommu_dev_data *dev_data, *next;
2611 2612 2613 2614
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2615
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2616
		__detach_device(dev_data);
2617 2618
		atomic_set(&dev_data->bind, 0);
	}
2619 2620 2621 2622

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2623 2624 2625 2626 2627
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2628 2629
	del_domain_from_list(domain);

2630 2631 2632 2633 2634 2635 2636
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2637 2638 2639 2640 2641
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2642
		return NULL;
2643 2644

	spin_lock_init(&domain->lock);
2645
	mutex_init(&domain->api_lock);
2646 2647
	domain->id = domain_id_alloc();
	if (!domain->id)
2648
		goto out_err;
2649
	INIT_LIST_HEAD(&domain->dev_list);
2650

2651 2652
	add_domain_to_list(domain);

2653 2654 2655 2656 2657 2658 2659 2660
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
2675 2676 2677 2678 2679 2680
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2681
		goto out_free;
2682 2683

	domain->mode    = PAGE_MODE_3_LEVEL;
2684 2685 2686 2687 2688 2689 2690 2691 2692
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2693
	protection_domain_free(domain);
2694 2695 2696 2697

	return -ENOMEM;
}

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

	free_pagetable(domain);

2712
	protection_domain_free(domain);
2713 2714 2715 2716

	dom->priv = NULL;
}

2717 2718 2719
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2720
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2721 2722 2723
	struct amd_iommu *iommu;
	u16 devid;

2724
	if (!check_device(dev))
2725 2726
		return;

2727
	devid = get_device_id(dev);
2728

2729
	if (dev_data->domain != NULL)
2730
		detach_device(dev);
2731 2732 2733 2734 2735 2736 2737 2738

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

2739 2740 2741 2742
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2743
	struct iommu_dev_data *dev_data;
2744
	struct amd_iommu *iommu;
2745
	int ret;
2746

2747
	if (!check_device(dev))
2748 2749
		return -EINVAL;

2750 2751
	dev_data = dev->archdata.iommu;

2752
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2753 2754 2755
	if (!iommu)
		return -EINVAL;

2756
	if (dev_data->domain)
2757
		detach_device(dev);
2758

2759
	ret = attach_device(dev, domain);
2760 2761 2762

	iommu_completion_wait(iommu);

2763
	return ret;
2764 2765
}

2766 2767
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2768
{
2769
	unsigned long page_size = 0x1000UL << gfp_order;
2770 2771 2772 2773 2774 2775 2776 2777 2778
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2779
	mutex_lock(&domain->api_lock);
2780
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2781 2782
	mutex_unlock(&domain->api_lock);

2783
	return ret;
2784 2785
}

2786 2787
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   int gfp_order)
2788 2789
{
	struct protection_domain *domain = dom->priv;
2790
	unsigned long page_size, unmap_size;
2791

2792
	page_size  = 0x1000UL << gfp_order;
2793

2794
	mutex_lock(&domain->api_lock);
2795
	unmap_size = iommu_unmap_page(domain, iova, page_size);
2796
	mutex_unlock(&domain->api_lock);
2797

2798
	domain_flush_tlb_pde(domain);
2799

2800
	return get_order(unmap_size);
2801 2802
}

2803 2804 2805 2806
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
2807
	unsigned long offset_mask;
2808
	phys_addr_t paddr;
2809
	u64 *pte, __pte;
2810

2811
	pte = fetch_pte(domain, iova);
2812

2813
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2814 2815
		return 0;

2816 2817 2818 2819 2820 2821 2822
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2823 2824 2825 2826

	return paddr;
}

S
Sheng Yang 已提交
2827 2828 2829
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
2830 2831 2832 2833 2834
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
2835 2836 2837
	return 0;
}

2838 2839 2840 2841 2842
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
2843 2844
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
2845
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
2846
	.domain_has_cap = amd_iommu_domain_has_cap,
2847 2848
};

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
2861
	struct iommu_dev_data *dev_data;
2862
	struct pci_dev *dev = NULL;
2863
	struct amd_iommu *iommu;
2864
	u16 devid;
2865
	int ret;
2866

2867 2868 2869
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
2870

2871
	for_each_pci_dev(dev) {
2872
		if (!check_device(&dev->dev))
2873 2874
			continue;

2875 2876 2877
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

2878 2879
		devid = get_device_id(&dev->dev);

2880
		iommu = amd_iommu_rlookup_table[devid];
2881 2882 2883
		if (!iommu)
			continue;

2884
		attach_device(&dev->dev, pt_domain);
2885 2886 2887 2888 2889 2890
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}