amd_iommu.c 92.6 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35 36 37 38 39
#include <linux/irq.h>
#include <linux/msi.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
40
#include <asm/msidef.h>
41
#include <asm/proto.h>
42
#include <asm/iommu.h>
43
#include <asm/gart.h>
44
#include <asm/dma.h>
45 46 47

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
48 49 50

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

51
#define LOOP_TIMEOUT	100000
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define AMD_IOMMU_PGSIZES	(~0xFFFUL)

71 72
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

73 74 75 76
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

77 78 79 80
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

81 82 83
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

84 85 86 87 88 89
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

90 91
static struct iommu_ops amd_iommu_ops;

92
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
93
int amd_iommu_max_glx_val = -1;
94

95 96
static struct dma_map_ops amd_iommu_dma_ops;

97 98 99
/*
 * general struct to manage commands send to an IOMMU
 */
100
struct iommu_cmd {
101 102 103
	u32 data[4];
};

104 105
struct kmem_cache *amd_iommu_irq_cache;

106
static void update_domain(struct protection_domain *domain);
107
static int __init alloc_passthrough_domain(void);
108

109 110 111 112 113 114
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

115
static struct iommu_dev_data *alloc_dev_data(u16 devid)
116 117 118 119 120 121 122 123
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

124
	dev_data->devid = devid;
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

176 177 178 179 180 181 182
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

183 184 185 186 187
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

188 189 190 191
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
192 193
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
194 195 196 197 198 199 200 201 202 203 204 205
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

206 207 208 209 210 211 212 213 214
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

243 244 245 246 247 248 249 250 251 252 253 254
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
255
	if (dev->bus != &pci_bus_type)
256 257 258 259 260 261 262 263 264 265 266 267 268 269
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

270 271 272 273 274 275 276 277
static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
{
	pci_dev_put(*from);
	*from = to;
}

#define REQ_ACS_FLAGS	(PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)

278 279
static int iommu_init_device(struct device *dev)
{
280
	struct pci_dev *dma_pdev, *pdev = to_pci_dev(dev);
281
	struct iommu_dev_data *dev_data;
282
	struct iommu_group *group;
283
	u16 alias;
284
	int ret;
285 286 287 288

	if (dev->archdata.iommu)
		return 0;

289
	dev_data = find_dev_data(get_device_id(dev));
290 291 292
	if (!dev_data)
		return -ENOMEM;

293
	alias = amd_iommu_alias_table[dev_data->devid];
294
	if (alias != dev_data->devid) {
295
		struct iommu_dev_data *alias_data;
296

297 298 299 300
		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
301 302 303
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
304
		dev_data->alias_data = alias_data;
305 306 307 308 309

		dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
	} else
		dma_pdev = pci_dev_get(pdev);

310
	/* Account for quirked devices */
311 312
	swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));

313 314 315 316
	/*
	 * If it's a multifunction device that does not support our
	 * required ACS flags, add to the same group as function 0.
	 */
317 318 319 320 321 322 323
	if (dma_pdev->multifunction &&
	    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
		swap_pci_ref(&dma_pdev,
			     pci_get_slot(dma_pdev->bus,
					  PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
					  0)));

324 325 326 327 328
	/*
	 * Devices on the root bus go through the iommu.  If that's not us,
	 * find the next upstream device and test ACS up to the root bus.
	 * Finding the next device may require skipping virtual buses.
	 */
329
	while (!pci_is_root_bus(dma_pdev->bus)) {
330 331 332 333 334 335 336 337 338 339
		struct pci_bus *bus = dma_pdev->bus;

		while (!bus->self) {
			if (!pci_is_root_bus(bus))
				bus = bus->parent;
			else
				goto root_bus;
		}

		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
340 341
			break;

342
		swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
343 344
	}

345
root_bus:
346 347 348 349 350 351
	group = iommu_group_get(&dma_pdev->dev);
	pci_dev_put(dma_pdev);
	if (!group) {
		group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);
352
	}
353

354 355 356 357 358 359 360
	ret = iommu_group_add_device(group, dev);

	iommu_group_put(group);

	if (ret)
		return ret;

361 362 363 364 365 366 367
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

368 369 370 371 372
	dev->archdata.iommu = dev_data;

	return 0;
}

373 374 375 376 377 378 379 380 381 382 383 384 385 386
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

387 388
static void iommu_uninit_device(struct device *dev)
{
389 390
	iommu_group_remove_device(dev);

391 392 393 394 395
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
396
}
J
Joerg Roedel 已提交
397 398 399

void __init amd_iommu_uninit_devices(void)
{
400
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
401 402 403 404 405 406 407 408 409
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
410 411 412 413

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
427 428 429
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
430 431 432 433 434 435 436 437 438 439 440
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
441 442 443 444 445 446
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

447
DECLARE_STATS_COUNTER(compl_wait);
448
DECLARE_STATS_COUNTER(cnt_map_single);
449
DECLARE_STATS_COUNTER(cnt_unmap_single);
450
DECLARE_STATS_COUNTER(cnt_map_sg);
451
DECLARE_STATS_COUNTER(cnt_unmap_sg);
452
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
453
DECLARE_STATS_COUNTER(cnt_free_coherent);
454
DECLARE_STATS_COUNTER(cross_page);
455
DECLARE_STATS_COUNTER(domain_flush_single);
456
DECLARE_STATS_COUNTER(domain_flush_all);
457
DECLARE_STATS_COUNTER(alloced_io_mem);
458
DECLARE_STATS_COUNTER(total_map_requests);
459 460 461 462 463
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
483
					 &amd_iommu_unmap_flush);
484 485

	amd_iommu_stats_add(&compl_wait);
486
	amd_iommu_stats_add(&cnt_map_single);
487
	amd_iommu_stats_add(&cnt_unmap_single);
488
	amd_iommu_stats_add(&cnt_map_sg);
489
	amd_iommu_stats_add(&cnt_unmap_sg);
490
	amd_iommu_stats_add(&cnt_alloc_coherent);
491
	amd_iommu_stats_add(&cnt_free_coherent);
492
	amd_iommu_stats_add(&cross_page);
493
	amd_iommu_stats_add(&domain_flush_single);
494
	amd_iommu_stats_add(&domain_flush_all);
495
	amd_iommu_stats_add(&alloced_io_mem);
496
	amd_iommu_stats_add(&total_map_requests);
497 498 499 500
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
501 502 503 504
}

#endif

505 506 507 508 509 510
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

511 512 513 514
static void dump_dte_entry(u16 devid)
{
	int i;

515 516
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
517 518 519
			amd_iommu_dev_table[devid].data[i]);
}

520 521 522 523 524 525 526 527 528
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

529
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
530
{
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
552

553
	printk(KERN_ERR "AMD-Vi: Event logged [");
554 555 556 557 558 559 560

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
561
		dump_dte_entry(devid);
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
583
		dump_command(address);
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
604 605

	memset(__evt, 0, 4 * sizeof(u32));
606 607 608 609 610 611 612 613 614 615 616 617 618
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
619
		iommu_print_event(iommu, iommu->evt_buf + head);
620 621 622 623 624 625 626 627
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

628
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
629 630 631
{
	struct amd_iommu_fault fault;

632 633
	INC_STATS_COUNTER(pri_requests);

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	unsigned long flags;
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

656 657 658
	/* enable ppr interrupts again */
	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);

659 660 661 662 663 664
	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
681

682 683 684
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
685

686 687 688 689 690 691 692
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
693 694
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
695 696 697 698 699 700 701 702 703 704 705 706 707 708

		/*
		 * Release iommu->lock because ppr-handling might need to
		 * re-aquire it
		 */
		spin_unlock_irqrestore(&iommu->lock, flags);

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		spin_lock_irqsave(&iommu->lock, flags);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
709 710 711 712 713 714
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}

	spin_unlock_irqrestore(&iommu->lock, flags);
}

715
irqreturn_t amd_iommu_int_thread(int irq, void *data)
716
{
717 718
	struct amd_iommu *iommu;

719
	for_each_iommu(iommu) {
720
		iommu_poll_events(iommu);
721 722
		iommu_poll_ppr_log(iommu);
	}
723 724

	return IRQ_HANDLED;
725 726
}

727 728 729 730 731
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

732 733 734 735 736 737
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
758 759 760
{
	u8 *target;

761
	target = iommu->cmd_buf + tail;
762 763 764 765 766 767
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
768
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
769
}
770

771
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
772
{
773 774
	WARN_ON(address & 0x7ULL);

775
	memset(cmd, 0, sizeof(*cmd));
776 777 778
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
779 780 781
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

782 783 784 785 786 787 788
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = pasid & PASID_MASK;
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
	cmd->data[0] |= (pasid & 0xff) << 16;
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
		cmd->data[1]  = pasid & PASID_MASK;
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

905 906 907 908
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
909 910
}

911 912 913 914 915 916 917
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

918 919
/*
 * Writes the command to the IOMMUs command buffer and informs the
920
 * hardware about the new command.
921
 */
922 923 924
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
925
{
926
	u32 left, tail, head, next_tail;
927 928
	unsigned long flags;

929
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
930 931

again:
932 933
	spin_lock_irqsave(&iommu->lock, flags);

934 935 936 937
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
938

939 940 941 942
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
943

944 945
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
946

947 948 949 950 951 952
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
953 954
	}

955 956 957
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
958
	iommu->need_sync = sync;
959

960
	spin_unlock_irqrestore(&iommu->lock, flags);
961

962
	return 0;
963 964
}

965 966 967 968 969
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

970 971 972 973
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
974
static int iommu_completion_wait(struct amd_iommu *iommu)
975 976
{
	struct iommu_cmd cmd;
977
	volatile u64 sem = 0;
978
	int ret;
979

980
	if (!iommu->need_sync)
981
		return 0;
982

983
	build_completion_wait(&cmd, (u64)&sem);
984

985
	ret = iommu_queue_command_sync(iommu, &cmd, false);
986
	if (ret)
987
		return ret;
988

989
	return wait_on_sem(&sem);
990 991
}

992
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
993
{
994
	struct iommu_cmd cmd;
995

996
	build_inv_dte(&cmd, devid);
997

998 999
	return iommu_queue_command(iommu, &cmd);
}
1000

1001 1002 1003
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1004

1005 1006
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1007

1008 1009
	iommu_completion_wait(iommu);
}
1010

1011 1012 1013 1014 1015 1016 1017
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1018

1019 1020 1021 1022 1023 1024
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1025

1026
	iommu_completion_wait(iommu);
1027 1028
}

1029
static void iommu_flush_all(struct amd_iommu *iommu)
1030
{
1031
	struct iommu_cmd cmd;
1032

1033
	build_inv_all(&cmd);
1034

1035 1036 1037 1038
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1058 1059
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1060 1061 1062 1063
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1064
		iommu_flush_irt_all(iommu);
1065
		iommu_flush_tlb_all(iommu);
1066 1067 1068
	}
}

1069
/*
1070
 * Command send function for flushing on-device TLB
1071
 */
1072 1073
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1074 1075
{
	struct amd_iommu *iommu;
1076
	struct iommu_cmd cmd;
1077
	int qdep;
1078

1079 1080
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1081

1082
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1083 1084

	return iommu_queue_command(iommu, &cmd);
1085 1086
}

1087 1088 1089
/*
 * Command send function for invalidating a device table entry
 */
1090
static int device_flush_dte(struct iommu_dev_data *dev_data)
1091
{
1092
	struct amd_iommu *iommu;
1093
	int ret;
1094

1095
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1096

1097
	ret = iommu_flush_dte(iommu, dev_data->devid);
1098 1099 1100
	if (ret)
		return ret;

1101
	if (dev_data->ats.enabled)
1102
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1103 1104

	return ret;
1105 1106
}

1107 1108 1109 1110 1111
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1112 1113
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1114
{
1115
	struct iommu_dev_data *dev_data;
1116 1117
	struct iommu_cmd cmd;
	int ret = 0, i;
1118

1119
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1120

1121 1122 1123 1124 1125 1126 1127 1128
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1129
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1130 1131
	}

1132 1133
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1134
		if (!dev_data->ats.enabled)
1135 1136
			continue;

1137
		ret |= device_flush_iotlb(dev_data, address, size);
1138 1139
	}

1140
	WARN_ON(ret);
1141 1142
}

1143 1144
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1145
{
1146
	__domain_flush_pages(domain, address, size, 0);
1147
}
1148

1149
/* Flush the whole IO/TLB for a given protection domain */
1150
static void domain_flush_tlb(struct protection_domain *domain)
1151
{
1152
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1153 1154
}

1155
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1156
static void domain_flush_tlb_pde(struct protection_domain *domain)
1157
{
1158
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1159 1160
}

1161
static void domain_flush_complete(struct protection_domain *domain)
1162
{
1163
	int i;
1164

1165 1166 1167
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1168

1169 1170 1171 1172 1173
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1174
	}
1175 1176
}

1177

1178
/*
1179
 * This function flushes the DTEs for all devices in domain
1180
 */
1181
static void domain_flush_devices(struct protection_domain *domain)
1182
{
1183
	struct iommu_dev_data *dev_data;
1184

1185
	list_for_each_entry(dev_data, &domain->dev_list, list)
1186
		device_flush_dte(dev_data);
1187 1188
}

1189 1190 1191 1192 1193 1194 1195
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1225
		      unsigned long page_size,
1226 1227 1228
		      u64 **pte_page,
		      gfp_t gfp)
{
1229
	int level, end_lvl;
1230
	u64 *pte, *page;
1231 1232

	BUG_ON(!is_power_of_2(page_size));
1233 1234 1235 1236

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1237 1238 1239 1240
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1241 1242 1243 1244 1245 1246 1247 1248 1249

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1250 1251 1252 1253
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1271
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1272 1273 1274 1275
{
	int level;
	u64 *pte;

1276 1277 1278 1279 1280
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1281

1282 1283 1284
	while (level > 0) {

		/* Not Present */
1285 1286 1287
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1307 1308
		level -= 1;

1309
		/* Walk to the next level */
1310 1311 1312 1313 1314 1315 1316
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1317 1318 1319 1320 1321 1322 1323
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1324 1325 1326
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1327
			  int prot,
1328
			  unsigned long page_size)
1329
{
1330
	u64 __pte, *pte;
1331
	int i, count;
1332

1333
	if (!(prot & IOMMU_PROT_MASK))
1334 1335
		return -EINVAL;

1336 1337 1338 1339 1340 1341 1342 1343
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1344

1345 1346 1347 1348 1349
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1350 1351 1352 1353 1354 1355

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1356 1357
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1358

1359 1360
	update_domain(dom);

1361 1362 1363
	return 0;
}

1364 1365 1366
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1367
{
1368 1369 1370 1371 1372 1373
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1404

1405
	return unmapped;
1406 1407
}

1408 1409 1410 1411
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1426 1427 1428 1429
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1430 1431 1432 1433 1434 1435 1436 1437
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1438
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1439
				     PAGE_SIZE);
1440 1441 1442 1443 1444 1445 1446
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1447
			__set_bit(addr >> PAGE_SHIFT,
1448
				  dma_dom->aperture[0]->bitmap);
1449 1450 1451 1452 1453
	}

	return 0;
}

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1476 1477 1478
/*
 * Inits the unity mappings required for a specific device
 */
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1496 1497 1498 1499 1500 1501 1502 1503 1504
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1505

1506
/*
1507
 * The address allocator core functions.
1508 1509 1510
 *
 * called with domain->lock held
 */
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1532 1533 1534 1535 1536
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1537
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1538 1539 1540
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1541
	struct amd_iommu *iommu;
1542
	unsigned long i, old_size;
1543

1544 1545 1546 1547
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1567
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1578
	old_size                = dma_dom->aperture_size;
1579 1580
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1593
	/* Initialize the exclusion range if necessary */
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1616
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1617 1618 1619
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1620
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1621 1622
	}

1623 1624
	update_domain(&dma_dom->domain);

1625 1626 1627
	return 0;

out_free:
1628 1629
	update_domain(&dma_dom->domain);

1630 1631 1632 1633 1634 1635 1636 1637
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1638 1639 1640 1641 1642 1643 1644
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1645
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1646 1647 1648 1649 1650 1651
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1652 1653
	next_bit >>= PAGE_SHIFT;

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1672
			dom->next_address = address + (pages << PAGE_SHIFT);
1673 1674 1675 1676 1677 1678 1679 1680 1681
			break;
		}

		next_bit = 0;
	}

	return address;
}

1682 1683
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1684
					     unsigned int pages,
1685 1686
					     unsigned long align_mask,
					     u64 dma_mask)
1687 1688 1689
{
	unsigned long address;

1690 1691 1692 1693
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1694

1695
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1696
				     dma_mask, dom->next_address);
1697

1698
	if (address == -1) {
1699
		dom->next_address = 0;
1700 1701
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1702 1703
		dom->need_flush = true;
	}
1704

1705
	if (unlikely(address == -1))
1706
		address = DMA_ERROR_CODE;
1707 1708 1709 1710 1711 1712

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1713 1714 1715 1716 1717
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1718 1719 1720 1721
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1722 1723
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1724

1725 1726
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1727 1728 1729 1730
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1731

1732
	if (address >= dom->next_address)
1733
		dom->need_flush = true;
1734 1735

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1736

A
Akinobu Mita 已提交
1737
	bitmap_clear(range->bitmap, address, pages);
1738

1739 1740
}

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1803
static void free_pagetable(struct protection_domain *domain)
1804 1805 1806 1807
{
	int i, j;
	u64 *p1, *p2, *p3;

1808
	p1 = domain->pt_root;
1809 1810 1811 1812 1813 1814 1815 1816 1817

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1818
		for (j = 0; j < 512; ++j) {
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1829 1830

	domain->pt_root = NULL;
1831 1832
}

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1863 1864
static void free_gcr3_table(struct protection_domain *domain)
{
1865 1866 1867 1868 1869 1870 1871
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1872 1873 1874
	free_page((unsigned long)domain->gcr3_tbl);
}

1875 1876 1877 1878
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1879 1880
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1881 1882
	int i;

1883 1884 1885
	if (!dom)
		return;

1886 1887
	del_domain_from_list(&dom->domain);

1888
	free_pagetable(&dom->domain);
1889

1890 1891 1892 1893 1894 1895
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1896 1897 1898 1899

	kfree(dom);
}

1900 1901
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1902
 * It also initializes the page table and the address allocator data
1903 1904
 * structures required for the dma_ops interface
 */
1905
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1918
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1919
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1920
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1921
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1922 1923 1924 1925
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1926
	dma_dom->need_flush = false;
1927
	dma_dom->target_dev = 0xffff;
1928

1929 1930
	add_domain_to_list(&dma_dom->domain);

1931
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1932 1933
		goto free_dma_dom;

1934
	/*
1935 1936
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1937
	 */
1938
	dma_dom->aperture[0]->bitmap[0] = 1;
1939
	dma_dom->next_address = 0;
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1950 1951 1952 1953 1954 1955 1956 1957 1958
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1959
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1960
{
1961
	u64 pte_root = 0;
1962
	u64 flags = 0;
1963

1964 1965 1966
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1967 1968 1969
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1970

1971 1972
	flags = amd_iommu_dev_table[devid].data[1];

1973 1974 1975
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2002 2003 2004 2005 2006
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2007 2008 2009 2010 2011 2012 2013 2014 2015
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2016 2017
}

2018 2019
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2020 2021
{
	struct amd_iommu *iommu;
2022
	bool ats;
2023

2024 2025
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2026 2027 2028 2029

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2030
	set_dte_entry(dev_data->devid, domain, ats);
2031 2032 2033 2034 2035 2036

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2037
	device_flush_dte(dev_data);
2038 2039
}

2040
static void do_detach(struct iommu_dev_data *dev_data)
2041 2042 2043
{
	struct amd_iommu *iommu;

2044
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2045 2046

	/* decrease reference counters */
2047 2048 2049 2050 2051 2052
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2053
	clear_dte_entry(dev_data->devid);
2054

2055
	/* Flush the DTE entry */
2056
	device_flush_dte(dev_data);
2057 2058 2059 2060 2061 2062
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2063
static int __attach_device(struct iommu_dev_data *dev_data,
2064
			   struct protection_domain *domain)
2065
{
2066
	int ret;
2067

2068 2069 2070
	/* lock domain */
	spin_lock(&domain->lock);

2071 2072
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2073

2074 2075 2076 2077 2078
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
2079

2080 2081 2082
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
2083

2084
		/* Do real assignment */
2085
		if (alias_data->domain == NULL)
2086
			do_attach(alias_data, domain);
2087 2088

		atomic_inc(&alias_data->bind);
2089
	}
2090

2091
	if (dev_data->domain == NULL)
2092
		do_attach(dev_data, domain);
2093

2094 2095
	atomic_inc(&dev_data->bind);

2096 2097 2098 2099
	ret = 0;

out_unlock:

2100 2101
	/* ready */
	spin_unlock(&domain->lock);
2102

2103
	return ret;
2104
}
2105

2106 2107 2108 2109 2110 2111 2112 2113

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2114 2115 2116 2117 2118 2119
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2120
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2121 2122 2123
	if (!pos)
		return -EINVAL;

2124 2125 2126
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2127 2128 2129 2130

	return 0;
}

2131 2132
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2133 2134 2135 2136 2137 2138 2139 2140
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2152 2153
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2154 2155 2156
	if (ret)
		goto out_err;

2157 2158 2159 2160 2161 2162
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2176
/* FIXME: Move this to PCI code */
2177
#define PCI_PRI_TLP_OFF		(1 << 15)
2178

J
Joerg Roedel 已提交
2179
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2180
{
2181
	u16 status;
2182 2183
	int pos;

2184
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2185 2186 2187
	if (!pos)
		return false;

2188
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2189

2190
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2191 2192
}

2193 2194 2195 2196
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2197 2198
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2199
{
2200
	struct pci_dev *pdev = to_pci_dev(dev);
2201
	struct iommu_dev_data *dev_data;
2202
	unsigned long flags;
2203
	int ret;
2204

2205 2206
	dev_data = get_dev_data(dev);

2207 2208 2209 2210 2211 2212 2213 2214 2215
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2216
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2217 2218
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2219 2220 2221
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2222

2223
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2224
	ret = __attach_device(dev_data, domain);
2225 2226
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2227 2228 2229 2230 2231
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2232
	domain_flush_tlb_pde(domain);
2233 2234

	return ret;
2235 2236
}

2237 2238 2239
/*
 * Removes a device from a protection domain (unlocked)
 */
2240
static void __detach_device(struct iommu_dev_data *dev_data)
2241
{
2242
	struct protection_domain *domain;
2243
	unsigned long flags;
2244

2245
	BUG_ON(!dev_data->domain);
2246

2247 2248 2249
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2250

2251 2252 2253
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2254
		if (atomic_dec_and_test(&alias_data->bind))
2255
			do_detach(alias_data);
2256 2257
	}

2258
	if (atomic_dec_and_test(&dev_data->bind))
2259
		do_detach(dev_data);
2260

2261
	spin_unlock_irqrestore(&domain->lock, flags);
2262 2263 2264

	/*
	 * If we run in passthrough mode the device must be assigned to the
2265 2266
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2267
	 */
2268
	if (dev_data->passthrough &&
2269
	    (dev_data->domain == NULL && domain != pt_domain))
2270
		__attach_device(dev_data, pt_domain);
2271 2272 2273 2274 2275
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2276
static void detach_device(struct device *dev)
2277
{
2278
	struct protection_domain *domain;
2279
	struct iommu_dev_data *dev_data;
2280 2281
	unsigned long flags;

2282
	dev_data = get_dev_data(dev);
2283
	domain   = dev_data->domain;
2284

2285 2286
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2287
	__detach_device(dev_data);
2288
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2289

2290 2291 2292
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2293
		pci_disable_ats(to_pci_dev(dev));
2294 2295

	dev_data->ats.enabled = false;
2296
}
2297

2298 2299 2300 2301 2302 2303
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2304
	struct iommu_dev_data *dev_data;
2305
	struct protection_domain *dom = NULL;
2306 2307
	unsigned long flags;

2308
	dev_data   = get_dev_data(dev);
2309

2310 2311
	if (dev_data->domain)
		return dev_data->domain;
2312

2313 2314
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2315 2316 2317 2318 2319 2320 2321 2322

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2323 2324 2325 2326

	return dom;
}

2327 2328 2329 2330
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2331 2332 2333
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2334
	struct amd_iommu *iommu;
2335
	unsigned long flags;
2336
	u16 devid;
2337

2338 2339
	if (!check_device(dev))
		return 0;
2340

2341 2342 2343
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2344 2345

	switch (action) {
2346
	case BUS_NOTIFY_UNBOUND_DRIVER:
2347 2348 2349

		domain = domain_for_device(dev);

2350 2351
		if (!domain)
			goto out;
2352
		if (dev_data->passthrough)
2353
			break;
2354
		detach_device(dev);
2355 2356
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2357 2358 2359

		iommu_init_device(dev);

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2372 2373
		domain = domain_for_device(dev);

2374 2375 2376 2377
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
2378
		dma_domain = dma_ops_domain_alloc();
2379 2380 2381 2382 2383 2384 2385 2386
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

2387 2388
		dev_data = get_dev_data(dev);

2389
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2390

2391
		break;
2392 2393 2394 2395
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2406
static struct notifier_block device_nb = {
2407 2408
	.notifier_call = device_change_notifier,
};
2409

2410 2411 2412 2413 2414
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2428
static struct protection_domain *get_domain(struct device *dev)
2429
{
2430
	struct protection_domain *domain;
2431
	struct dma_ops_domain *dma_dom;
2432
	u16 devid = get_device_id(dev);
2433

2434
	if (!check_device(dev))
2435
		return ERR_PTR(-EINVAL);
2436

2437 2438 2439
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2440

2441 2442
	if (domain != NULL)
		return domain;
2443

2444
	/* Device not bount yet - bind it */
2445
	dma_dom = find_protection_domain(devid);
2446
	if (!dma_dom)
2447 2448
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2449
	DUMP_printk("Using protection domain %d for device %s\n",
2450
		    dma_dom->domain.id, dev_name(dev));
2451

2452
	return &dma_dom->domain;
2453 2454
}

2455 2456
static void update_device_table(struct protection_domain *domain)
{
2457
	struct iommu_dev_data *dev_data;
2458

2459 2460
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2461 2462 2463 2464 2465 2466 2467 2468
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2469 2470 2471

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2472 2473 2474 2475

	domain->updated = false;
}

2476 2477 2478 2479 2480 2481
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2482
	struct aperture_range *aperture;
2483 2484
	u64 *pte, *pte_page;

2485 2486 2487 2488 2489
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2490
	if (!pte) {
2491
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2492
				GFP_ATOMIC);
2493 2494
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2495
		pte += PM_LEVEL_INDEX(0, address);
2496

2497
	update_domain(&dom->domain);
2498 2499 2500 2501

	return pte;
}

2502 2503 2504 2505
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2506
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2517
	pte  = dma_ops_get_pte(dom, address);
2518
	if (!pte)
2519
		return DMA_ERROR_CODE;
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2537 2538 2539
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2540
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2541 2542
				 unsigned long address)
{
2543
	struct aperture_range *aperture;
2544 2545 2546 2547 2548
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2549 2550 2551 2552 2553 2554 2555
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2556

2557
	pte += PM_LEVEL_INDEX(0, address);
2558 2559 2560 2561 2562 2563

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2564 2565
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2566 2567
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2568 2569
 * Must be called with the domain lock held.
 */
2570 2571 2572 2573
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2574
			       int dir,
2575 2576
			       bool align,
			       u64 dma_mask)
2577 2578
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2579
	dma_addr_t address, start, ret;
2580
	unsigned int pages;
2581
	unsigned long align_mask = 0;
2582 2583
	int i;

2584
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2585 2586
	paddr &= PAGE_MASK;

2587 2588
	INC_STATS_COUNTER(total_map_requests);

2589 2590 2591
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2592 2593 2594
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2595
retry:
2596 2597
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2598
	if (unlikely(address == DMA_ERROR_CODE)) {
2599 2600 2601 2602 2603 2604 2605
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2606
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2607 2608 2609
			goto out;

		/*
2610
		 * aperture was successfully enlarged by 128 MB, try
2611 2612 2613 2614
		 * allocation again
		 */
		goto retry;
	}
2615 2616 2617

	start = address;
	for (i = 0; i < pages; ++i) {
2618
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2619
		if (ret == DMA_ERROR_CODE)
2620 2621
			goto out_unmap;

2622 2623 2624 2625 2626
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2627 2628
	ADD_STATS_COUNTER(alloced_io_mem, size);

2629
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2630
		domain_flush_tlb(&dma_dom->domain);
2631
		dma_dom->need_flush = false;
2632
	} else if (unlikely(amd_iommu_np_cache))
2633
		domain_flush_pages(&dma_dom->domain, address, size);
2634

2635 2636
out:
	return address;
2637 2638 2639 2640 2641

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2642
		dma_ops_domain_unmap(dma_dom, start);
2643 2644 2645 2646
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2647
	return DMA_ERROR_CODE;
2648 2649
}

2650 2651 2652 2653
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2654
static void __unmap_single(struct dma_ops_domain *dma_dom,
2655 2656 2657 2658
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2659
	dma_addr_t flush_addr;
2660 2661 2662
	dma_addr_t i, start;
	unsigned int pages;

2663
	if ((dma_addr == DMA_ERROR_CODE) ||
2664
	    (dma_addr + size > dma_dom->aperture_size))
2665 2666
		return;

2667
	flush_addr = dma_addr;
2668
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2669 2670 2671 2672
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2673
		dma_ops_domain_unmap(dma_dom, start);
2674 2675 2676
		start += PAGE_SIZE;
	}

2677 2678
	SUB_STATS_COUNTER(alloced_io_mem, size);

2679
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2680

2681
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2682
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2683 2684
		dma_dom->need_flush = false;
	}
2685 2686
}

2687 2688 2689
/*
 * The exported map_single function for dma_ops.
 */
2690 2691 2692 2693
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2694 2695 2696 2697
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2698
	u64 dma_mask;
2699
	phys_addr_t paddr = page_to_phys(page) + offset;
2700

2701 2702
	INC_STATS_COUNTER(cnt_map_single);

2703 2704
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2705
		return (dma_addr_t)paddr;
2706 2707
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2708

2709 2710
	dma_mask = *dev->dma_mask;

2711
	spin_lock_irqsave(&domain->lock, flags);
2712

2713
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2714
			    dma_mask);
2715
	if (addr == DMA_ERROR_CODE)
2716 2717
		goto out;

2718
	domain_flush_complete(domain);
2719 2720 2721 2722 2723 2724 2725

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2726 2727 2728
/*
 * The exported unmap_single function for dma_ops.
 */
2729 2730
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2731 2732 2733 2734
{
	unsigned long flags;
	struct protection_domain *domain;

2735 2736
	INC_STATS_COUNTER(cnt_unmap_single);

2737 2738
	domain = get_domain(dev);
	if (IS_ERR(domain))
2739 2740
		return;

2741 2742
	spin_lock_irqsave(&domain->lock, flags);

2743
	__unmap_single(domain->priv, dma_addr, size, dir);
2744

2745
	domain_flush_complete(domain);
2746 2747 2748 2749

	spin_unlock_irqrestore(&domain->lock, flags);
}

2750 2751 2752 2753
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2768 2769 2770 2771
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2772
static int map_sg(struct device *dev, struct scatterlist *sglist,
2773 2774
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2775 2776 2777 2778 2779 2780 2781
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2782
	u64 dma_mask;
2783

2784 2785
	INC_STATS_COUNTER(cnt_map_sg);

2786 2787
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2788
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2789 2790
	else if (IS_ERR(domain))
		return 0;
2791

2792
	dma_mask = *dev->dma_mask;
2793 2794 2795 2796 2797 2798

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2799
		s->dma_address = __map_single(dev, domain->priv,
2800 2801
					      paddr, s->length, dir, false,
					      dma_mask);
2802 2803 2804 2805 2806 2807 2808 2809

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2810
	domain_flush_complete(domain);
2811 2812 2813 2814 2815 2816 2817 2818

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2819
			__unmap_single(domain->priv, s->dma_address,
2820 2821 2822 2823 2824 2825 2826 2827 2828
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2829 2830 2831 2832
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2833
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2834 2835
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2836 2837 2838 2839 2840 2841
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2842 2843
	INC_STATS_COUNTER(cnt_unmap_sg);

2844 2845
	domain = get_domain(dev);
	if (IS_ERR(domain))
2846 2847
		return;

2848 2849 2850
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2851
		__unmap_single(domain->priv, s->dma_address,
2852 2853 2854 2855
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2856
	domain_flush_complete(domain);
2857 2858 2859 2860

	spin_unlock_irqrestore(&domain->lock, flags);
}

2861 2862 2863
/*
 * The exported alloc_coherent function for dma_ops.
 */
2864
static void *alloc_coherent(struct device *dev, size_t size,
2865 2866
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2867 2868 2869 2870 2871
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2872
	u64 dma_mask = dev->coherent_dma_mask;
2873

2874 2875
	INC_STATS_COUNTER(cnt_alloc_coherent);

2876 2877
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2878 2879 2880
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2881 2882
	} else if (IS_ERR(domain))
		return NULL;
2883

2884 2885 2886
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2887 2888 2889

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2890
		return NULL;
2891 2892 2893

	paddr = virt_to_phys(virt_addr);

2894 2895 2896
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2897 2898
	spin_lock_irqsave(&domain->lock, flags);

2899
	*dma_addr = __map_single(dev, domain->priv, paddr,
2900
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2901

2902
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2903
		spin_unlock_irqrestore(&domain->lock, flags);
2904
		goto out_free;
J
Jiri Slaby 已提交
2905
	}
2906

2907
	domain_flush_complete(domain);
2908 2909 2910 2911

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2912 2913 2914 2915 2916 2917

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2918 2919
}

2920 2921 2922
/*
 * The exported free_coherent function for dma_ops.
 */
2923
static void free_coherent(struct device *dev, size_t size,
2924 2925
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2926 2927 2928 2929
{
	unsigned long flags;
	struct protection_domain *domain;

2930 2931
	INC_STATS_COUNTER(cnt_free_coherent);

2932 2933
	domain = get_domain(dev);
	if (IS_ERR(domain))
2934 2935
		goto free_mem;

2936 2937
	spin_lock_irqsave(&domain->lock, flags);

2938
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2939

2940
	domain_flush_complete(domain);
2941 2942 2943 2944 2945 2946 2947

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2948 2949 2950 2951 2952 2953
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2954
	return check_device(dev);
2955 2956
}

2957
/*
2958 2959
 * The function for pre-allocating protection domains.
 *
2960 2961 2962 2963
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
2964
static void __init prealloc_protection_domains(void)
2965
{
2966
	struct iommu_dev_data *dev_data;
2967
	struct dma_ops_domain *dma_dom;
2968
	struct pci_dev *dev = NULL;
2969
	u16 devid;
2970

2971
	for_each_pci_dev(dev) {
2972 2973 2974

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2975
			continue;
2976

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
			pr_info("AMD-Vi: Using passthough domain for device %s\n",
				dev_name(&dev->dev));
		}

2987
		/* Is there already any domain for it? */
2988
		if (domain_for_device(&dev->dev))
2989
			continue;
2990 2991 2992

		devid = get_device_id(&dev->dev);

2993
		dma_dom = dma_ops_domain_alloc();
2994 2995 2996
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2997 2998
		dma_dom->target_dev = devid;

2999
		attach_device(&dev->dev, &dma_dom->domain);
3000

3001
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3002 3003 3004
	}
}

3005
static struct dma_map_ops amd_iommu_dma_ops = {
3006 3007
	.alloc = alloc_coherent,
	.free = free_coherent,
3008 3009
	.map_page = map_page,
	.unmap_page = unmap_page,
3010 3011
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3012
	.dma_supported = amd_iommu_dma_supported,
3013 3014
};

3015 3016
static unsigned device_dma_ops_init(void)
{
3017
	struct iommu_dev_data *dev_data;
3018 3019 3020 3021 3022
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3023 3024 3025

			iommu_ignore_device(&pdev->dev);

3026 3027 3028 3029
			unhandled += 1;
			continue;
		}

3030 3031 3032 3033 3034 3035
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3036 3037 3038 3039 3040
	}

	return unhandled;
}

3041 3042 3043
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3044 3045 3046

void __init amd_iommu_init_api(void)
{
3047
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3048 3049
}

3050 3051 3052
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3053
	int ret, unhandled;
3054

3055 3056 3057 3058 3059
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3060
	for_each_iommu(iommu) {
3061
		iommu->default_dom = dma_ops_domain_alloc();
3062 3063
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3064
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3065 3066 3067 3068 3069
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3070
	/*
3071
	 * Pre-allocate the protection domains for each device.
3072
	 */
3073
	prealloc_protection_domains();
3074 3075

	iommu_detected = 1;
3076
	swiotlb = 0;
3077

3078
	/* Make the driver finally visible to the drivers */
3079 3080 3081 3082 3083
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3084

3085 3086
	amd_iommu_stats_init();

3087 3088 3089 3090 3091
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3092 3093 3094 3095
	return 0;

free_domains:

3096
	for_each_iommu(iommu) {
3097 3098 3099 3100 3101 3102
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3116
	struct iommu_dev_data *dev_data, *next;
3117 3118 3119 3120
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3121
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3122
		__detach_device(dev_data);
3123 3124
		atomic_set(&dev_data->bind, 0);
	}
3125 3126 3127 3128

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3129 3130 3131 3132 3133
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3134 3135
	del_domain_from_list(domain);

3136 3137 3138 3139 3140 3141 3142
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3143 3144 3145 3146 3147
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3148
		return NULL;
3149 3150

	spin_lock_init(&domain->lock);
3151
	mutex_init(&domain->api_lock);
3152 3153
	domain->id = domain_id_alloc();
	if (!domain->id)
3154
		goto out_err;
3155
	INIT_LIST_HEAD(&domain->dev_list);
3156

3157 3158
	add_domain_to_list(domain);

3159 3160 3161 3162 3163 3164 3165 3166
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3181 3182 3183 3184 3185 3186
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3187
		goto out_free;
3188 3189

	domain->mode    = PAGE_MODE_3_LEVEL;
3190 3191 3192 3193
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3194 3195
	domain->iommu_domain = dom;

3196 3197
	dom->priv = domain;

3198 3199 3200 3201
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3202 3203 3204
	return 0;

out_free:
3205
	protection_domain_free(domain);
3206 3207 3208 3209

	return -ENOMEM;
}

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3222 3223
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3224

3225 3226 3227
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3228
	protection_domain_free(domain);
3229 3230 3231 3232

	dom->priv = NULL;
}

3233 3234 3235
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3236
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3237 3238 3239
	struct amd_iommu *iommu;
	u16 devid;

3240
	if (!check_device(dev))
3241 3242
		return;

3243
	devid = get_device_id(dev);
3244

3245
	if (dev_data->domain != NULL)
3246
		detach_device(dev);
3247 3248 3249 3250 3251 3252 3253 3254

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3255 3256 3257 3258
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3259
	struct iommu_dev_data *dev_data;
3260
	struct amd_iommu *iommu;
3261
	int ret;
3262

3263
	if (!check_device(dev))
3264 3265
		return -EINVAL;

3266 3267
	dev_data = dev->archdata.iommu;

3268
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3269 3270 3271
	if (!iommu)
		return -EINVAL;

3272
	if (dev_data->domain)
3273
		detach_device(dev);
3274

3275
	ret = attach_device(dev, domain);
3276 3277 3278

	iommu_completion_wait(iommu);

3279
	return ret;
3280 3281
}

3282
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3283
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3284 3285 3286 3287 3288
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3289 3290 3291
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3292 3293 3294 3295 3296
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3297
	mutex_lock(&domain->api_lock);
3298
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3299 3300
	mutex_unlock(&domain->api_lock);

3301
	return ret;
3302 3303
}

3304 3305
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3306 3307
{
	struct protection_domain *domain = dom->priv;
3308
	size_t unmap_size;
3309

3310 3311 3312
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3313
	mutex_lock(&domain->api_lock);
3314
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3315
	mutex_unlock(&domain->api_lock);
3316

3317
	domain_flush_tlb_pde(domain);
3318

3319
	return unmap_size;
3320 3321
}

3322 3323 3324 3325
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
3326
	unsigned long offset_mask;
3327
	phys_addr_t paddr;
3328
	u64 *pte, __pte;
3329

3330 3331 3332
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3333
	pte = fetch_pte(domain, iova);
3334

3335
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3336 3337
		return 0;

3338 3339 3340 3341 3342 3343 3344
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3345 3346 3347 3348

	return paddr;
}

S
Sheng Yang 已提交
3349 3350 3351
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3352 3353 3354 3355 3356
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
3357 3358 3359
	return 0;
}

3360 3361 3362 3363 3364
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3365 3366
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3367
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3368
	.domain_has_cap = amd_iommu_domain_has_cap,
3369
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3370 3371
};

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3384
	struct iommu_dev_data *dev_data;
3385
	struct pci_dev *dev = NULL;
3386
	struct amd_iommu *iommu;
3387
	u16 devid;
3388
	int ret;
3389

3390 3391 3392
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3393

3394
	for_each_pci_dev(dev) {
3395
		if (!check_device(&dev->dev))
3396 3397
			continue;

3398 3399 3400
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3401 3402
		devid = get_device_id(&dev->dev);

3403
		iommu = amd_iommu_rlookup_table[devid];
3404 3405 3406
		if (!iommu)
			continue;

3407
		attach_device(&dev->dev, pt_domain);
3408 3409
	}

J
Joerg Roedel 已提交
3410 3411
	amd_iommu_stats_init();

3412 3413 3414 3415
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3557 3558
	INC_STATS_COUNTER(invalidate_iotlb);

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3579 3580
	INC_STATS_COUNTER(invalidate_iotlb_all);

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3692 3693 3694 3695 3696 3697 3698 3699

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3700 3701
	INC_STATS_COUNTER(complete_ppr);

3702 3703 3704 3705 3706 3707 3708 3709 3710
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			struct irq_2_iommu *irte_info;

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

			irte_info             = &cfg->irq_2_iommu;
			irte_info->sub_handle = devid;
			irte_info->irte_index = index;
			irte_info->iommu      = (void *)cfg;

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	irte_info = &cfg->irq_2_iommu;
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
	irte_info->sub_handle = devid;
	irte_info->irte_index = index;
	irte_info->iommu      = (void *)cfg;

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
	struct irq_2_iommu *irte_info;
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

	cfg       = data->chip_data;
	irq       = data->irq;
	irte_info = &cfg->irq_2_iommu;

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

	if (get_irte(irte_info->sub_handle, irte_info->irte_index, &irte))
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

	modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	irte_info = &cfg->irq_2_iommu;

	free_irte(irte_info->sub_handle, irte_info->irte_index);

	return 0;
}

4129
#endif