amd_iommu.c 101.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
	struct dma_ops_domain *dma_dom;
};

struct flush_queue {
	spinlock_t lock;
	unsigned next;
	struct flush_queue_entry *entries;
};

106
static DEFINE_PER_CPU(struct flush_queue, flush_queue);
107

108 109 110
static atomic_t queue_timer_on;
static struct timer_list queue_timer;

111 112 113 114
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
115
const struct iommu_ops amd_iommu_ops;
116

117
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
118
int amd_iommu_max_glx_val = -1;
119

120 121
static struct dma_map_ops amd_iommu_dma_ops;

122 123 124 125 126 127 128 129
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
130
	u16 alias;			  /* Alias Device ID */
131
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
132
	bool passthrough;		  /* Device is identity mapped */
133 134 135 136 137 138 139
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
140
	bool use_vapic;			  /* Enable device to use vapic mode */
141 142
};

143 144 145
/*
 * general struct to manage commands send to an IOMMU
 */
146
struct iommu_cmd {
147 148 149
	u32 data[4];
};

150 151
struct kmem_cache *amd_iommu_irq_cache;

152
static void update_domain(struct protection_domain *domain);
153
static int protection_domain_init(struct protection_domain *domain);
154
static void detach_device(struct device *dev);
155

156 157 158 159 160 161 162
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

163 164
	/* IOVA RB-Tree */
	struct iova_domain iovad;
165 166
};

167 168 169
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

170 171 172 173 174 175
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

176 177
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
178
{
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
194 195
}

196
static inline u16 get_pci_device_id(struct device *dev)
197 198 199 200 201 202
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

230 231 232 233 234
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

235 236 237 238 239 240
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

241
static struct iommu_dev_data *alloc_dev_data(u16 devid)
242 243 244 245 246 247 248 249
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

250
	dev_data->devid = devid;
251 252 253 254 255 256 257 258

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

278 279 280 281 282 283 284 285 286 287 288
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

289
	/* The callers make sure that get_device_id() does not fail here */
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
331
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
332 333 334 335 336 337 338 339
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

340 341 342 343 344 345 346 347 348 349 350 351
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

352 353 354 355 356
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

357 358 359 360
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
361
{
362
	struct acpihid_map_entry *p, *entry = NULL;
363
	int devid;
364 365 366 367 368 369 370 371 372 373 374 375

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
376 377
	else
		iommu_group_ref_get(entry->group);
378 379

	return entry->group;
380 381
}

382 383 384 385
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
386 387
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
388 389 390 391 392 393 394 395 396 397 398 399
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

400 401 402 403 404 405 406 407 408
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

409 410 411 412 413 414
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
415
	int devid;
416 417 418 419 420

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
421
	if (devid < 0)
422
		return false;
423 424 425 426 427 428 429 430 431 432 433

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

434
static void init_iommu_group(struct device *dev)
435 436 437
{
	struct iommu_group *group;

438
	group = iommu_group_get_for_dev(dev);
439 440 441 442
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
443 444 445 446 447
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
448
	int devid;
449 450 451 452

	if (dev->archdata.iommu)
		return 0;

453
	devid = get_device_id(dev);
454
	if (devid < 0)
455 456 457
		return devid;

	dev_data = find_dev_data(devid);
458 459 460
	if (!dev_data)
		return -ENOMEM;

461 462
	dev_data->alias = get_alias(dev);

463
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
464 465
		struct amd_iommu *iommu;

466
		iommu = amd_iommu_rlookup_table[dev_data->devid];
467 468 469
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

470 471
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
472 473 474
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

475 476 477
	return 0;
}

478 479
static void iommu_ignore_device(struct device *dev)
{
480 481
	u16 alias;
	int devid;
482 483

	devid = get_device_id(dev);
484
	if (devid < 0)
485 486
		return;

487
	alias = get_alias(dev);
488 489 490 491 492 493 494 495

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

496 497
static void iommu_uninit_device(struct device *dev)
{
498 499
	int devid;
	struct iommu_dev_data *dev_data;
500

501
	devid = get_device_id(dev);
502
	if (devid < 0)
503
		return;
504

505
	dev_data = search_dev_data(devid);
506 507 508
	if (!dev_data)
		return;

509 510 511
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
512 513 514
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

515 516
	iommu_group_remove_device(dev);

517 518 519
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

520
	/*
521 522
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
523
	 */
524
}
J
Joerg Roedel 已提交
525

526 527 528 529 530 531
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

532 533 534 535
static void dump_dte_entry(u16 devid)
{
	int i;

536 537
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
538 539 540
			amd_iommu_dev_table[devid].data[i]);
}

541 542 543 544 545 546 547 548 549
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

550
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
551
{
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
573

574
	printk(KERN_ERR "AMD-Vi: Event logged [");
575 576 577 578 579

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
580
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
581
		       address, flags);
582
		dump_dte_entry(devid);
583 584 585 586
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
587
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
588 589 590 591 592
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
593
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
594 595 596 597 598
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
599
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
600 601 602 603
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
604
		dump_command(address);
605 606 607 608 609 610 611 612
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
613
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
614 615 616 617 618
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
619
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
620 621 622 623 624
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
625 626

	memset(__evt, 0, 4 * sizeof(u32));
627 628 629 630 631 632 633 634 635 636
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
637
		iommu_print_event(iommu, iommu->evt_buf + head);
638
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
639 640 641 642 643
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

644
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
689

690 691 692
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
693

694 695 696 697 698 699 700
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
701 702
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
703 704 705 706 707 708

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
709 710 711 712
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

773
irqreturn_t amd_iommu_int_thread(int irq, void *data)
774
{
775 776
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
777

778 779 780
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
781
			iommu->mmio_base + MMIO_STATUS_OFFSET);
782

783 784 785 786
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
787

788 789 790 791
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
792

793 794 795 796 797 798 799
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
815
	return IRQ_HANDLED;
816 817
}

818 819 820 821 822
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

823 824 825 826 827 828
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
849 850 851
{
	u8 *target;

852
	target = iommu->cmd_buf + tail;
853
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
854 855 856 857 858

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
859
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
860
}
861

862
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
863
{
864 865
	WARN_ON(address & 0x7ULL);

866
	memset(cmd, 0, sizeof(*cmd));
867 868 869
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
870 871 872
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

873 874 875 876 877 878 879
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

880 881 882 883
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
884
	bool s;
885 886

	pages = iommu_num_pages(address, size, PAGE_SIZE);
887
	s     = false;
888 889 890 891 892 893 894

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
895
		s = true;
896 897 898 899 900 901 902 903 904 905 906
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
907
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
908 909 910
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

911 912 913 914
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
915
	bool s;
916 917

	pages = iommu_num_pages(address, size, PAGE_SIZE);
918
	s     = false;
919 920 921 922 923 924 925

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
926
		s = true;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

942 943 944 945 946 947 948
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

949
	cmd->data[0]  = pasid;
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
968
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
969 970
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
971
	cmd->data[1] |= (pasid & 0xff) << 16;
972 973 974 975 976 977 978 979
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

980 981 982 983 984 985 986
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
987
		cmd->data[1]  = pasid;
988 989 990 991 992 993 994 995
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

996 997 998 999
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1000 1001
}

1002 1003 1004 1005 1006 1007 1008
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1009 1010
/*
 * Writes the command to the IOMMUs command buffer and informs the
1011
 * hardware about the new command.
1012
 */
1013 1014 1015
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1016
{
1017
	u32 left, tail, head, next_tail;
1018

1019
again:
1020

1021 1022
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1023 1024
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
1025

1026 1027 1028
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		int ret;
1029

1030
		iommu->cmd_sem = 0;
1031

1032 1033
		build_completion_wait(&sync_cmd, (u64)&iommu->cmd_sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1034

1035
		if ((ret = wait_on_sem(&iommu->cmd_sem)) != 0)
1036 1037 1038
			return ret;

		goto again;
1039 1040
	}

1041 1042 1043
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1044
	iommu->need_sync = sync;
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1058
	spin_unlock_irqrestore(&iommu->lock, flags);
1059

1060
	return ret;
1061 1062
}

1063 1064 1065 1066 1067
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1068 1069 1070 1071
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1072
static int iommu_completion_wait(struct amd_iommu *iommu)
1073 1074
{
	struct iommu_cmd cmd;
1075
	unsigned long flags;
1076
	int ret;
1077

1078
	if (!iommu->need_sync)
1079
		return 0;
1080

1081

1082 1083 1084 1085 1086 1087 1088
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1089
	if (ret)
1090 1091 1092 1093 1094 1095
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1096

1097
	return ret;
1098 1099
}

1100
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1101
{
1102
	struct iommu_cmd cmd;
1103

1104
	build_inv_dte(&cmd, devid);
1105

1106 1107
	return iommu_queue_command(iommu, &cmd);
}
1108

1109 1110 1111
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1112

1113 1114
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1115

1116 1117
	iommu_completion_wait(iommu);
}
1118

1119 1120 1121 1122 1123 1124 1125
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1126

1127 1128 1129 1130 1131 1132
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1133

1134
	iommu_completion_wait(iommu);
1135 1136
}

1137
static void iommu_flush_all(struct amd_iommu *iommu)
1138
{
1139
	struct iommu_cmd cmd;
1140

1141
	build_inv_all(&cmd);
1142

1143 1144 1145 1146
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1166 1167
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1168 1169 1170 1171
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1172
		iommu_flush_irt_all(iommu);
1173
		iommu_flush_tlb_all(iommu);
1174 1175 1176
	}
}

1177
/*
1178
 * Command send function for flushing on-device TLB
1179
 */
1180 1181
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1182 1183
{
	struct amd_iommu *iommu;
1184
	struct iommu_cmd cmd;
1185
	int qdep;
1186

1187 1188
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1189

1190
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1191 1192

	return iommu_queue_command(iommu, &cmd);
1193 1194
}

1195 1196 1197
/*
 * Command send function for invalidating a device table entry
 */
1198
static int device_flush_dte(struct iommu_dev_data *dev_data)
1199
{
1200
	struct amd_iommu *iommu;
1201
	u16 alias;
1202
	int ret;
1203

1204
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1205
	alias = dev_data->alias;
1206

1207
	ret = iommu_flush_dte(iommu, dev_data->devid);
1208 1209
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1210 1211 1212
	if (ret)
		return ret;

1213
	if (dev_data->ats.enabled)
1214
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1215 1216

	return ret;
1217 1218
}

1219 1220 1221 1222 1223
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1224 1225
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1226
{
1227
	struct iommu_dev_data *dev_data;
1228 1229
	struct iommu_cmd cmd;
	int ret = 0, i;
1230

1231
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1232

1233 1234 1235 1236 1237 1238 1239 1240
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1241
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1242 1243
	}

1244 1245
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1246
		if (!dev_data->ats.enabled)
1247 1248
			continue;

1249
		ret |= device_flush_iotlb(dev_data, address, size);
1250 1251
	}

1252
	WARN_ON(ret);
1253 1254
}

1255 1256
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1257
{
1258
	__domain_flush_pages(domain, address, size, 0);
1259
}
1260

1261
/* Flush the whole IO/TLB for a given protection domain */
1262
static void domain_flush_tlb(struct protection_domain *domain)
1263
{
1264
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1265 1266
}

1267
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1268
static void domain_flush_tlb_pde(struct protection_domain *domain)
1269
{
1270
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1271 1272
}

1273
static void domain_flush_complete(struct protection_domain *domain)
1274
{
1275
	int i;
1276

1277
	for (i = 0; i < amd_iommus_present; ++i) {
1278
		if (domain && !domain->dev_iommu[i])
1279
			continue;
1280

1281 1282 1283 1284 1285
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1286
	}
1287 1288
}

1289

1290
/*
1291
 * This function flushes the DTEs for all devices in domain
1292
 */
1293
static void domain_flush_devices(struct protection_domain *domain)
1294
{
1295
	struct iommu_dev_data *dev_data;
1296

1297
	list_for_each_entry(dev_data, &domain->dev_list, list)
1298
		device_flush_dte(dev_data);
1299 1300
}

1301 1302 1303 1304 1305 1306 1307
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1337
		      unsigned long page_size,
1338 1339 1340
		      u64 **pte_page,
		      gfp_t gfp)
{
1341
	int level, end_lvl;
1342
	u64 *pte, *page;
1343 1344

	BUG_ON(!is_power_of_2(page_size));
1345 1346 1347 1348

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1349 1350 1351 1352
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1353 1354

	while (level > end_lvl) {
1355 1356 1357 1358 1359
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1360 1361 1362
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1363 1364 1365

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1366 1367
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1368 1369 1370
				free_page((unsigned long)page);
				continue;
			}
1371 1372
		}

1373 1374 1375 1376
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1394 1395 1396
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1397 1398 1399 1400
{
	int level;
	u64 *pte;

1401 1402 1403
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1404 1405 1406
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1407

1408 1409 1410
	while (level > 0) {

		/* Not Present */
1411 1412 1413
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1414
		/* Large PTE */
1415 1416 1417
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1418 1419 1420 1421 1422

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1423 1424
		level -= 1;

1425
		/* Walk to the next level */
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1441 1442 1443 1444 1445
	}

	return pte;
}

1446 1447 1448 1449 1450 1451 1452
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1453 1454 1455
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1456
			  unsigned long page_size,
1457
			  int prot,
1458
			  gfp_t gfp)
1459
{
1460
	u64 __pte, *pte;
1461
	int i, count;
1462

1463 1464 1465
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1466
	if (!(prot & IOMMU_PROT_MASK))
1467 1468
		return -EINVAL;

1469
	count = PAGE_SIZE_PTE_COUNT(page_size);
1470
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1471

1472 1473 1474
	if (!pte)
		return -ENOMEM;

1475 1476 1477
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1478

1479
	if (count > 1) {
1480 1481 1482 1483
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1484 1485 1486 1487 1488 1489

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1490 1491
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1492

1493 1494
	update_domain(dom);

1495 1496 1497
	return 0;
}

1498 1499 1500
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1501
{
1502 1503
	unsigned long long unmapped;
	unsigned long unmap_size;
1504 1505 1506 1507 1508
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1509

1510 1511
	while (unmapped < page_size) {

1512 1513 1514 1515 1516 1517
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1518 1519 1520 1521 1522 1523 1524 1525
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1526
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1527

1528
	return unmapped;
1529 1530
}

1531 1532 1533
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1534
 * interface functions.
1535 1536
 *
 ****************************************************************************/
1537

1538

1539 1540 1541
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1542
{
1543
	unsigned long pfn = 0;
1544

1545
	pages = __roundup_pow_of_two(pages);
1546

1547 1548 1549
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1550

1551 1552
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1553

1554
	return (pfn << PAGE_SHIFT);
1555 1556
}

1557 1558 1559
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1560
{
1561 1562
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1563

1564
	free_iova_fast(&dma_dom->iovad, address, pages);
1565 1566
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1639
		/* PTE present? */				\
1640 1641 1642
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1643 1644 1645 1646 1647
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1660
static void free_pagetable(struct protection_domain *domain)
1661
{
1662
	unsigned long root = (unsigned long)domain->pt_root;
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1687 1688 1689
	}
}

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1720 1721
static void free_gcr3_table(struct protection_domain *domain)
{
1722 1723 1724 1725
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1726 1727
	else
		BUG_ON(domain->glx != 0);
1728

1729 1730 1731
	free_page((unsigned long)domain->gcr3_tbl);
}

1732 1733 1734 1735
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1736 1737 1738 1739 1740
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1741 1742
	del_domain_from_list(&dom->domain);

1743
	put_iova_domain(&dom->iovad);
1744

1745
	free_pagetable(&dom->domain);
1746

1747 1748 1749
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1750 1751 1752
	kfree(dom);
}

1753 1754
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1755
 * It also initializes the page table and the address allocator data
1756 1757
 * structures required for the dma_ops interface
 */
1758
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1759 1760 1761 1762 1763 1764 1765
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1766
	if (protection_domain_init(&dma_dom->domain))
1767
		goto free_dma_dom;
1768

1769
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1770
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1771
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1772 1773 1774
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1775 1776 1777
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1778 1779 1780
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1781 1782
	add_domain_to_list(&dma_dom->domain);

1783 1784 1785 1786 1787 1788 1789 1790
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1791 1792 1793 1794 1795 1796 1797 1798 1799
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1800
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1801
{
1802
	u64 pte_root = 0;
1803
	u64 flags = 0;
1804

1805 1806 1807
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1808 1809 1810
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1811

1812 1813
	flags = amd_iommu_dev_table[devid].data[1];

1814 1815 1816
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1843 1844 1845 1846 1847
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1848 1849 1850 1851 1852
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1853 1854
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1855 1856

	amd_iommu_apply_erratum_63(devid);
1857 1858
}

1859 1860
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1861 1862
{
	struct amd_iommu *iommu;
1863
	u16 alias;
1864
	bool ats;
1865

1866
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1867
	alias = dev_data->alias;
1868
	ats   = dev_data->ats.enabled;
1869 1870 1871 1872 1873 1874 1875 1876 1877

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1878 1879 1880
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1881
		set_dte_entry(alias, domain, ats);
1882

1883
	device_flush_dte(dev_data);
1884 1885
}

1886
static void do_detach(struct iommu_dev_data *dev_data)
1887 1888
{
	struct amd_iommu *iommu;
1889
	u16 alias;
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1900
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1901
	alias = dev_data->alias;
1902 1903

	/* decrease reference counters */
1904 1905 1906 1907 1908 1909
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1910
	clear_dte_entry(dev_data->devid);
1911 1912
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1913

1914
	/* Flush the DTE entry */
1915
	device_flush_dte(dev_data);
1916 1917 1918 1919 1920 1921
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1922
static int __attach_device(struct iommu_dev_data *dev_data,
1923
			   struct protection_domain *domain)
1924
{
1925
	int ret;
1926

1927 1928 1929 1930 1931 1932
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1933 1934 1935
	/* lock domain */
	spin_lock(&domain->lock);

1936
	ret = -EBUSY;
1937
	if (dev_data->domain != NULL)
1938
		goto out_unlock;
1939

1940
	/* Attach alias group root */
1941
	do_attach(dev_data, domain);
1942

1943 1944 1945 1946
	ret = 0;

out_unlock:

1947 1948
	/* ready */
	spin_unlock(&domain->lock);
1949

1950
	return ret;
1951
}
1952

1953 1954 1955 1956 1957 1958 1959 1960

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1961 1962 1963 1964 1965 1966
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1967
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1968 1969 1970
	if (!pos)
		return -EINVAL;

1971 1972 1973
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1974 1975 1976 1977

	return 0;
}

1978 1979
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
1980 1981 1982 1983 1984 1985 1986 1987
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

1999 2000
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2001 2002 2003
	if (ret)
		goto out_err;

2004 2005 2006 2007 2008 2009
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2023
/* FIXME: Move this to PCI code */
2024
#define PCI_PRI_TLP_OFF		(1 << 15)
2025

J
Joerg Roedel 已提交
2026
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2027
{
2028
	u16 status;
2029 2030
	int pos;

2031
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2032 2033 2034
	if (!pos)
		return false;

2035
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2036

2037
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2038 2039
}

2040
/*
F
Frank Arnold 已提交
2041
 * If a device is not yet associated with a domain, this function
2042 2043
 * assigns it visible for the hardware
 */
2044 2045
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2046
{
2047
	struct pci_dev *pdev;
2048
	struct iommu_dev_data *dev_data;
2049
	unsigned long flags;
2050
	int ret;
2051

2052 2053
	dev_data = get_dev_data(dev);

2054 2055 2056 2057
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2058
	if (domain->flags & PD_IOMMUV2_MASK) {
2059
		if (!dev_data->passthrough)
2060 2061
			return -EINVAL;

2062 2063 2064
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2065

2066 2067 2068 2069
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2070 2071
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2072 2073 2074
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2075

2076
skip_ats_check:
2077
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2078
	ret = __attach_device(dev_data, domain);
2079 2080
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2081 2082 2083 2084 2085
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2086
	domain_flush_tlb_pde(domain);
2087 2088

	return ret;
2089 2090
}

2091 2092 2093
/*
 * Removes a device from a protection domain (unlocked)
 */
2094
static void __detach_device(struct iommu_dev_data *dev_data)
2095
{
2096
	struct protection_domain *domain;
2097

2098 2099 2100 2101 2102
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2103

2104 2105
	if (WARN_ON(!dev_data->domain))
		return;
2106

2107
	domain = dev_data->domain;
2108

2109
	spin_lock(&domain->lock);
2110

2111
	do_detach(dev_data);
2112

2113
	spin_unlock(&domain->lock);
2114 2115 2116 2117 2118
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2119
static void detach_device(struct device *dev)
2120
{
2121
	struct protection_domain *domain;
2122
	struct iommu_dev_data *dev_data;
2123 2124
	unsigned long flags;

2125
	dev_data = get_dev_data(dev);
2126
	domain   = dev_data->domain;
2127

2128 2129
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2130
	__detach_device(dev_data);
2131
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2132

2133 2134 2135
	if (!dev_is_pci(dev))
		return;

2136
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2137 2138
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2139
		pci_disable_ats(to_pci_dev(dev));
2140 2141

	dev_data->ats.enabled = false;
2142
}
2143

2144
static int amd_iommu_add_device(struct device *dev)
2145
{
2146
	struct iommu_dev_data *dev_data;
2147
	struct iommu_domain *domain;
2148
	struct amd_iommu *iommu;
2149
	int ret, devid;
2150

2151
	if (!check_device(dev) || get_dev_data(dev))
2152
		return 0;
2153

2154
	devid = get_device_id(dev);
2155
	if (devid < 0)
2156 2157
		return devid;

2158
	iommu = amd_iommu_rlookup_table[devid];
2159

2160
	ret = iommu_init_device(dev);
2161 2162 2163 2164
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2165

2166
		iommu_ignore_device(dev);
2167
		dev->archdata.dma_ops = &nommu_dma_ops;
2168 2169 2170
		goto out;
	}
	init_iommu_group(dev);
2171

2172
	dev_data = get_dev_data(dev);
2173

2174
	BUG_ON(!dev_data);
2175

2176
	if (iommu_pass_through || dev_data->iommu_v2)
2177
		iommu_request_dm_for_dev(dev);
2178

2179 2180
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2181
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2182
		dev_data->passthrough = true;
2183
	else
2184
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2185

2186
out:
2187 2188 2189 2190 2191
	iommu_completion_wait(iommu);

	return 0;
}

2192
static void amd_iommu_remove_device(struct device *dev)
2193
{
2194
	struct amd_iommu *iommu;
2195
	int devid;
2196 2197 2198 2199 2200

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2201
	if (devid < 0)
2202 2203
		return;

2204 2205 2206 2207
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2208 2209
}

2210 2211 2212 2213 2214 2215 2216 2217
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2218 2219 2220 2221 2222 2223
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

J
Joerg Roedel 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
static void __queue_flush(struct flush_queue *queue)
{
	struct protection_domain *domain;
	unsigned long flags;
	int idx;

	/* First flush TLB of all known domains */
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_for_each_entry(domain, &amd_iommu_pd_list, list)
		domain_flush_tlb(domain);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);

	/* Wait until flushes have completed */
	domain_flush_complete(NULL);

	for (idx = 0; idx < queue->next; ++idx) {
		struct flush_queue_entry *entry;

		entry = queue->entries + idx;

		free_iova_fast(&entry->dma_dom->iovad,
				entry->iova_pfn,
				entry->pages);

		/* Not really necessary, just to make sure we catch any bugs */
		entry->dma_dom = NULL;
	}

	queue->next = 0;
}

2255
static void queue_flush_all(void)
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(&flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		if (queue->next > 0)
			__queue_flush(queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

2271 2272 2273 2274 2275 2276
static void queue_flush_timeout(unsigned long unsused)
{
	atomic_set(&queue_timer_on, 0);
	queue_flush_all();
}

J
Joerg Roedel 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static void queue_add(struct dma_ops_domain *dma_dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue_entry *entry;
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(&flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

	if (queue->next == FLUSH_QUEUE_SIZE)
		__queue_flush(queue);

	idx   = queue->next++;
	entry = queue->entries + idx;

	entry->iova_pfn = address;
	entry->pages    = pages;
	entry->dma_dom  = dma_dom;

	spin_unlock_irqrestore(&queue->lock, flags);
2302 2303 2304 2305

	if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0)
		mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10));

J
Joerg Roedel 已提交
2306 2307 2308 2309
	put_cpu_ptr(&flush_queue);
}


2310 2311 2312 2313 2314 2315 2316
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2317
static struct protection_domain *get_domain(struct device *dev)
2318
{
2319
	struct protection_domain *domain;
2320

2321
	if (!check_device(dev))
2322
		return ERR_PTR(-EINVAL);
2323

2324
	domain = get_dev_data(dev)->domain;
2325
	if (!dma_ops_domain(domain))
2326
		return ERR_PTR(-EBUSY);
2327

2328
	return domain;
2329 2330
}

2331 2332
static void update_device_table(struct protection_domain *domain)
{
2333
	struct iommu_dev_data *dev_data;
2334

2335
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2336
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2337 2338 2339 2340 2341 2342 2343

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2344 2345 2346 2347 2348 2349 2350 2351
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2352 2353 2354

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2355 2356 2357 2358

	domain->updated = false;
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2370 2371
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2372 2373
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2374 2375
 * Must be called with the domain lock held.
 */
2376 2377 2378 2379
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2380
			       enum dma_data_direction direction,
2381
			       u64 dma_mask)
2382 2383
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2384
	dma_addr_t address, start, ret;
2385
	unsigned int pages;
2386
	int prot = 0;
2387 2388
	int i;

2389
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2390 2391
	paddr &= PAGE_MASK;

2392
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2393 2394
	if (address == DMA_ERROR_CODE)
		goto out;
2395

2396
	prot = dir2prot(direction);
2397

2398 2399
	start = address;
	for (i = 0; i < pages; ++i) {
2400 2401 2402
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2403 2404
			goto out_unmap;

2405 2406 2407 2408 2409
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2410
	if (unlikely(amd_iommu_np_cache)) {
2411
		domain_flush_pages(&dma_dom->domain, address, size);
2412 2413
		domain_flush_complete(&dma_dom->domain);
	}
2414

2415 2416
out:
	return address;
2417 2418 2419 2420 2421

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2422
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2423 2424
	}

2425 2426 2427 2428
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2429

2430
	return DMA_ERROR_CODE;
2431 2432
}

2433 2434 2435 2436
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2437
static void __unmap_single(struct dma_ops_domain *dma_dom,
2438 2439 2440 2441
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2442
	dma_addr_t flush_addr;
2443 2444 2445
	dma_addr_t i, start;
	unsigned int pages;

2446
	flush_addr = dma_addr;
2447
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2448 2449 2450 2451
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2452
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2453 2454 2455
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2456 2457 2458 2459 2460 2461 2462
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2463 2464
}

2465 2466 2467
/*
 * The exported map_single function for dma_ops.
 */
2468 2469 2470
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2471
			   unsigned long attrs)
2472
{
2473
	phys_addr_t paddr = page_to_phys(page) + offset;
2474
	struct protection_domain *domain;
2475
	struct dma_ops_domain *dma_dom;
2476
	u64 dma_mask;
2477

2478 2479
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2480
		return (dma_addr_t)paddr;
2481 2482
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2483

2484
	dma_mask = *dev->dma_mask;
2485
	dma_dom = to_dma_ops_domain(domain);
2486

2487
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2488 2489
}

2490 2491 2492
/*
 * The exported unmap_single function for dma_ops.
 */
2493
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2494
		       enum dma_data_direction dir, unsigned long attrs)
2495 2496
{
	struct protection_domain *domain;
2497
	struct dma_ops_domain *dma_dom;
2498

2499 2500
	domain = get_domain(dev);
	if (IS_ERR(domain))
2501 2502
		return;

2503 2504 2505
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2506 2507
}

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2534 2535 2536 2537
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2538
static int map_sg(struct device *dev, struct scatterlist *sglist,
2539
		  int nelems, enum dma_data_direction direction,
2540
		  unsigned long attrs)
2541
{
2542
	int mapped_pages = 0, npages = 0, prot = 0, i;
2543
	struct protection_domain *domain;
2544
	struct dma_ops_domain *dma_dom;
2545
	struct scatterlist *s;
2546
	unsigned long address;
2547
	u64 dma_mask;
2548

2549
	domain = get_domain(dev);
2550
	if (IS_ERR(domain))
2551
		return 0;
2552

2553
	dma_dom  = to_dma_ops_domain(domain);
2554
	dma_mask = *dev->dma_mask;
2555

2556 2557 2558 2559 2560 2561 2562 2563 2564
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
	if (address == DMA_ERROR_CODE)
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2565
	for_each_sg(sglist, s, nelems, i) {
2566 2567 2568 2569 2570
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2571

2572 2573 2574 2575 2576
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2577

2578 2579
			mapped_pages += 1;
		}
2580 2581
	}

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2599

2600 2601 2602 2603 2604 2605
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2606 2607
	}

2608 2609 2610 2611
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2612
	return 0;
2613 2614
}

2615 2616 2617 2618
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2619
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2620
		     int nelems, enum dma_data_direction dir,
2621
		     unsigned long attrs)
2622 2623
{
	struct protection_domain *domain;
2624
	struct dma_ops_domain *dma_dom;
2625 2626
	unsigned long startaddr;
	int npages = 2;
2627

2628 2629
	domain = get_domain(dev);
	if (IS_ERR(domain))
2630 2631
		return;

2632
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2633
	dma_dom   = to_dma_ops_domain(domain);
2634 2635
	npages    = sg_num_pages(dev, sglist, nelems);

2636
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2637 2638
}

2639 2640 2641
/*
 * The exported alloc_coherent function for dma_ops.
 */
2642
static void *alloc_coherent(struct device *dev, size_t size,
2643
			    dma_addr_t *dma_addr, gfp_t flag,
2644
			    unsigned long attrs)
2645
{
2646
	u64 dma_mask = dev->coherent_dma_mask;
2647
	struct protection_domain *domain;
2648
	struct dma_ops_domain *dma_dom;
2649
	struct page *page;
2650

2651 2652
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2653 2654 2655
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2656 2657
	} else if (IS_ERR(domain))
		return NULL;
2658

2659
	dma_dom   = to_dma_ops_domain(domain);
2660
	size	  = PAGE_ALIGN(size);
2661 2662
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2663
	flag     |= __GFP_ZERO;
2664

2665 2666
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2667
		if (!gfpflags_allow_blocking(flag))
2668
			return NULL;
2669

2670 2671 2672 2673 2674
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2675

2676 2677 2678
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2679
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2680
				 size, DMA_BIDIRECTIONAL, dma_mask);
2681

2682
	if (*dma_addr == DMA_ERROR_CODE)
2683
		goto out_free;
2684

2685
	return page_address(page);
2686 2687 2688

out_free:

2689 2690
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2691 2692

	return NULL;
2693 2694
}

2695 2696 2697
/*
 * The exported free_coherent function for dma_ops.
 */
2698
static void free_coherent(struct device *dev, size_t size,
2699
			  void *virt_addr, dma_addr_t dma_addr,
2700
			  unsigned long attrs)
2701 2702
{
	struct protection_domain *domain;
2703
	struct dma_ops_domain *dma_dom;
2704
	struct page *page;
2705

2706 2707 2708
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2709 2710
	domain = get_domain(dev);
	if (IS_ERR(domain))
2711 2712
		goto free_mem;

2713 2714 2715
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2716 2717

free_mem:
2718 2719
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2720 2721
}

2722 2723 2724 2725 2726 2727
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2728
	return check_device(dev);
2729 2730
}

2731
static struct dma_map_ops amd_iommu_dma_ops = {
2732 2733 2734 2735 2736 2737 2738
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2739 2740
};

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2794
int __init amd_iommu_init_api(void)
2795
{
2796
	int ret, cpu, err = 0;
2797 2798 2799 2800

	ret = iova_cache_get();
	if (ret)
		return ret;
2801

2802 2803 2804 2805
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
					 sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries)
			goto out_put_iova;

		spin_lock_init(&queue->lock);
	}

2818 2819 2820 2821 2822 2823 2824 2825
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2826 2827 2828
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2829
	return 0;
2830 2831 2832 2833 2834 2835 2836 2837 2838

out_put_iova:
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		kfree(queue->entries);
	}

	return -ENOMEM;
2839 2840
}

2841 2842
int __init amd_iommu_init_dma_ops(void)
{
2843 2844 2845
	setup_timer(&queue_timer, queue_flush_timeout, 0);
	atomic_set(&queue_timer_on, 0);

2846
	swiotlb        = iommu_pass_through ? 1 : 0;
2847 2848
	iommu_detected = 1;

2849 2850 2851 2852 2853 2854 2855 2856 2857
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2858 2859 2860 2861 2862
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2863
	return 0;
2864

2865
}
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2879
	struct iommu_dev_data *entry;
2880 2881 2882 2883
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2884 2885 2886 2887
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2888
	}
2889 2890 2891 2892

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2893 2894 2895 2896 2897
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2898 2899
	del_domain_from_list(domain);

2900 2901 2902 2903 2904 2905
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2918
static struct protection_domain *protection_domain_alloc(void)
2919 2920 2921 2922 2923
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2924
		return NULL;
2925

2926
	if (protection_domain_init(domain))
2927 2928
		goto out_err;

2929 2930
	add_domain_to_list(domain);

2931 2932 2933 2934 2935 2936 2937 2938
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2939
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2940
{
2941
	struct protection_domain *pdomain;
2942
	struct dma_ops_domain *dma_domain;
2943

2944 2945 2946 2947 2948
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2949

2950 2951 2952 2953 2954 2955
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2956

2957 2958 2959
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2960

2961 2962 2963 2964 2965 2966 2967 2968 2969
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2970 2971 2972 2973
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2974

2975 2976
		pdomain->mode = PAGE_MODE_NONE;
		break;
2977 2978 2979
	default:
		return NULL;
	}
2980

2981
	return &pdomain->domain;
2982 2983
}

2984
static void amd_iommu_domain_free(struct iommu_domain *dom)
2985
{
2986
	struct protection_domain *domain;
2987
	struct dma_ops_domain *dma_dom;
2988

2989 2990
	domain = to_pdomain(dom);

2991 2992 2993 2994 2995
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2996 2997
	if (!dom)
		return;
2998

2999 3000
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
3001 3002 3003 3004 3005 3006 3007
		/*
		 * First make sure the domain is no longer referenced from the
		 * flush queue
		 */
		queue_flush_all();

		/* Now release the domain */
3008
		dma_dom = to_dma_ops_domain(domain);
3009 3010 3011 3012 3013
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
3014

3015 3016 3017 3018 3019 3020
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
3021 3022
}

3023 3024 3025
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3026
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3027
	struct amd_iommu *iommu;
3028
	int devid;
3029

3030
	if (!check_device(dev))
3031 3032
		return;

3033
	devid = get_device_id(dev);
3034
	if (devid < 0)
3035
		return;
3036

3037
	if (dev_data->domain != NULL)
3038
		detach_device(dev);
3039 3040 3041 3042 3043

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3044 3045 3046 3047 3048 3049
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3050 3051 3052
	iommu_completion_wait(iommu);
}

3053 3054 3055
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3056
	struct protection_domain *domain = to_pdomain(dom);
3057
	struct iommu_dev_data *dev_data;
3058
	struct amd_iommu *iommu;
3059
	int ret;
3060

3061
	if (!check_device(dev))
3062 3063
		return -EINVAL;

3064 3065
	dev_data = dev->archdata.iommu;

3066
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3067 3068 3069
	if (!iommu)
		return -EINVAL;

3070
	if (dev_data->domain)
3071
		detach_device(dev);
3072

3073
	ret = attach_device(dev, domain);
3074

3075 3076 3077 3078 3079 3080 3081 3082 3083
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3084 3085
	iommu_completion_wait(iommu);

3086
	return ret;
3087 3088
}

3089
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3090
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3091
{
3092
	struct protection_domain *domain = to_pdomain(dom);
3093 3094 3095
	int prot = 0;
	int ret;

3096 3097 3098
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3099 3100 3101 3102 3103
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3104
	mutex_lock(&domain->api_lock);
3105
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3106 3107
	mutex_unlock(&domain->api_lock);

3108
	return ret;
3109 3110
}

3111 3112
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3113
{
3114
	struct protection_domain *domain = to_pdomain(dom);
3115
	size_t unmap_size;
3116

3117 3118 3119
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3120
	mutex_lock(&domain->api_lock);
3121
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3122
	mutex_unlock(&domain->api_lock);
3123

3124
	domain_flush_tlb_pde(domain);
3125

3126
	return unmap_size;
3127 3128
}

3129
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3130
					  dma_addr_t iova)
3131
{
3132
	struct protection_domain *domain = to_pdomain(dom);
3133
	unsigned long offset_mask, pte_pgsize;
3134
	u64 *pte, __pte;
3135

3136 3137 3138
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3139
	pte = fetch_pte(domain, iova, &pte_pgsize);
3140

3141
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3142 3143
		return 0;

3144 3145
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3146

3147
	return (__pte & ~offset_mask) | (iova & offset_mask);
3148 3149
}

3150
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3151
{
3152 3153
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3154
		return true;
3155
	case IOMMU_CAP_INTR_REMAP:
3156
		return (irq_remapping_enabled == 1);
3157 3158
	case IOMMU_CAP_NOEXEC:
		return false;
3159 3160
	}

3161
	return false;
S
Sheng Yang 已提交
3162 3163
}

3164 3165 3166 3167
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
3168
	int devid;
3169 3170

	devid = get_device_id(dev);
3171
	if (devid < 0)
3172
		return;
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3207 3208 3209 3210
static void amd_iommu_apply_dm_region(struct device *dev,
				      struct iommu_domain *domain,
				      struct iommu_dm_region *region)
{
3211
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3212 3213 3214 3215 3216 3217 3218 3219
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3220
const struct iommu_ops amd_iommu_ops = {
3221
	.capable = amd_iommu_capable,
3222 3223
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3224 3225
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3226 3227
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3228
	.map_sg = default_iommu_map_sg,
3229
	.iova_to_phys = amd_iommu_iova_to_phys,
3230 3231
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3232
	.device_group = amd_iommu_device_group,
3233 3234
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3235
	.apply_dm_region = amd_iommu_apply_dm_region,
3236
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3237 3238
};

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3261 3262 3263

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3264
	struct protection_domain *domain = to_pdomain(dom);
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3282 3283 3284

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3285
	struct protection_domain *domain = to_pdomain(dom);
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3363 3364 3365 3366 3367 3368
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3400
	struct protection_domain *domain = to_pdomain(dom);
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3420
	struct protection_domain *domain = to_pdomain(dom);
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3500
	struct protection_domain *domain = to_pdomain(dom);
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3514
	struct protection_domain *domain = to_pdomain(dom);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3542 3543 3544

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3545
	struct protection_domain *pdomain;
3546

3547 3548
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3549 3550 3551
		return NULL;

	/* Only return IOMMUv2 domains */
3552
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3553 3554
		return NULL;

3555
	return &pdomain->domain;
3556 3557
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3613 3614 3615 3616 3617 3618 3619 3620 3621

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3622 3623
static struct irq_chip amd_ir_chip;

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3658
		goto out_unlock;
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3672
		goto out_unlock;
3673

3674 3675 3676
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3677 3678 3679 3680 3681 3682 3683
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3684
		table = NULL;
3685
		goto out_unlock;
3686 3687
	}

3688 3689 3690 3691 3692 3693
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3694 3695 3696 3697 3698

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3699
			iommu->irte_ops->set_allocated(table, i);
3700 3701 3702 3703 3704 3705 3706
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3707
		set_dte_irq_entry(alias, table);
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3720
static int alloc_irq_index(u16 devid, int count)
3721 3722 3723 3724
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3725 3726 3727 3728
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3740
		if (!iommu->irte_ops->is_allocated(table, index))
3741 3742 3743 3744 3745 3746
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3747
				iommu->irte_ops->set_allocated(table, index - c + 1);
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3762 3763
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3764 3765 3766 3767
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3768
	struct irte_ga *entry;
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3779 3780 3781 3782 3783 3784 3785

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3786 3787
	if (data)
		data->ref = entry;
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3812
	table->table[index] = irte->val;
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3836
	iommu->irte_ops->clear_allocated(table, index);
3837 3838 3839 3840 3841 3842
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3843 3844
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3845
			 u8 vector, u32 dest_apicid, int devid)
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3859
			    u8 vector, u32 dest_apicid, int devid)
3860 3861
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3862
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3863 3864 3865

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
3866
	irte->lo.fields_remap.guest_mode  = dev_data ? dev_data->use_vapic : 0;
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3887
	modify_irte_ga(devid, index, irte, NULL);
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3903
	modify_irte_ga(devid, index, irte, NULL);
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3920
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3921

3922 3923 3924 3925 3926 3927
	if (!dev_data || !dev_data->use_vapic) {
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		irte->lo.fields_remap.guest_mode = 0;
		modify_irte_ga(devid, index, irte, NULL);
	}
3928 3929
}

3930
#define IRTE_ALLOCATED (~1U)
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3976
static int get_devid(struct irq_alloc_info *info)
3977
{
3978
	int devid = -1;
3979

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3995

3996 3997
	return devid;
}
3998

3999 4000 4001 4002
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4003

4004 4005
	if (!info)
		return NULL;
4006

4007 4008 4009 4010 4011 4012
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4013

4014
	return NULL;
4015 4016
}

4017
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4018
{
4019 4020
	struct amd_iommu *iommu;
	int devid;
4021

4022 4023
	if (!info)
		return NULL;
4024

4025 4026 4027 4028
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4029
		if (devid < 0)
4030 4031
			return NULL;

4032 4033 4034
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4035 4036 4037 4038
		break;
	default:
		break;
	}
4039

4040 4041
	return NULL;
}
4042

4043 4044 4045 4046 4047 4048
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4049 4050 4051
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4052

4053 4054 4055 4056 4057 4058 4059 4060
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4061 4062 4063 4064
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4065

4066 4067
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4068 4069
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4070
				 irq_cfg->dest_apicid, devid);
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4086

4087 4088 4089 4090 4091 4092 4093
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4094

4095 4096 4097 4098
	default:
		BUG_ON(1);
		break;
	}
4099 4100
}

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4121 4122
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4123
{
4124 4125
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4126
	struct amd_ir_data *data = NULL;
4127
	struct irq_cfg *cfg;
4128 4129
	int i, ret, devid;
	int index = -1;
4130

4131 4132 4133 4134
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4135 4136
		return -EINVAL;

4137 4138 4139 4140 4141 4142
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4143

4144 4145 4146
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4147

4148 4149 4150
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4151

4152 4153 4154 4155 4156 4157
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4158
		index = alloc_irq_index(devid, nr_irqs);
4159 4160 4161
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4162
		ret = index;
4163 4164
		goto out_free_parent;
	}
4165

4166 4167 4168 4169 4170 4171 4172
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4173

4174 4175 4176 4177 4178
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4189 4190 4191 4192 4193 4194
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4195

4196
	return 0;
4197

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4209 4210
}

4211 4212
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4213
{
4214 4215 4216 4217
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4218

4219 4220 4221 4222 4223 4224
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4225
			kfree(data->entry);
4226 4227 4228 4229 4230
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4231

4232 4233 4234 4235 4236
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4237
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4238

4239 4240 4241
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4242 4243
}

4244 4245
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4246
{
4247 4248
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4249
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4250

4251 4252 4253
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4254
}
4255

4256 4257 4258 4259 4260
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4261
};
4262

4263 4264 4265 4266 4267 4268 4269 4270
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4271 4272 4273 4274 4275 4276 4277 4278
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4327 4328 4329 4330 4331 4332 4333
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4334
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4335
	int ret;
4336

4337 4338 4339
	if (!iommu)
		return -ENODEV;

4340 4341 4342
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4343

4344 4345 4346 4347
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4348 4349
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4350

4351 4352 4353 4354 4355
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4356
	send_cleanup_vector(cfg);
4357 4358

	return IRQ_SET_MASK_OK_DONE;
4359 4360
}

4361
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4362
{
4363
	struct amd_ir_data *ir_data = irq_data->chip_data;
4364

4365 4366
	*msg = ir_data->msi_entry;
}
4367

4368 4369 4370
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
4371
	.irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4372 4373
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4374

4375 4376 4377 4378 4379
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4380

4381 4382
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4383 4384 4385

	return 0;
}
4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4425
#endif