amd_iommu.c 102.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/dma-direct.h>
32
#include <linux/iommu-helper.h>
33
#include <linux/iommu.h>
34
#include <linux/delay.h>
35
#include <linux/amd-iommu.h>
36 37
#include <linux/notifier.h>
#include <linux/export.h>
38 39
#include <linux/irq.h>
#include <linux/msi.h>
40
#include <linux/dma-contiguous.h>
41
#include <linux/irqdomain.h>
42
#include <linux/percpu.h>
43
#include <linux/iova.h>
44 45 46 47
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
48
#include <asm/msidef.h>
49
#include <asm/proto.h>
50
#include <asm/iommu.h>
51
#include <asm/gart.h>
52
#include <asm/dma.h>
53 54 55

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
56
#include "irq_remapping.h"
57

58 59
#define AMD_IOMMU_MAPPING_ERROR	0

60 61
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

62
#define LOOP_TIMEOUT	100000
63

64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84 85
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

86 87 88 89
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116
static void detach_device(struct device *dev);
117
static void iova_domain_flush_tlb(struct iova_domain *iovad);
118

119 120 121 122 123 124 125
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

126 127
	/* IOVA RB-Tree */
	struct iova_domain iovad;
128 129
};

130 131 132
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

133 134 135 136 137 138
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

139 140
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
141
{
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
157 158
}

159
static inline u16 get_pci_device_id(struct device *dev)
160 161 162 163 164 165
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

193 194 195 196 197
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

198 199 200 201 202 203
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

204
static struct iommu_dev_data *alloc_dev_data(u16 devid)
205 206 207 208 209 210 211 212
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

213
	dev_data->devid = devid;
214 215 216 217 218

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

219 220
	ratelimit_default_init(&dev_data->rs);

221 222 223
	return dev_data;
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

243 244 245 246 247 248 249 250 251 252 253
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

254
	/* The callers make sure that get_device_id() does not fail here */
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
296
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
297 298 299 300 301 302 303 304
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

305 306 307
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
308
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
309 310 311

	dev_data = search_dev_data(devid);

312
	if (dev_data == NULL) {
313 314
		dev_data = alloc_dev_data(devid);

315 316 317 318
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

319 320 321
	return dev_data;
}

322
struct iommu_dev_data *get_dev_data(struct device *dev)
323 324 325
{
	return dev->archdata.iommu;
}
326
EXPORT_SYMBOL(get_dev_data);
327

328 329 330 331
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
332
{
333
	struct acpihid_map_entry *p, *entry = NULL;
334
	int devid;
335 336 337 338 339 340 341 342 343 344 345 346

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
347 348
	else
		iommu_group_ref_get(entry->group);
349 350

	return entry->group;
351 352
}

353 354 355 356
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
357 358
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
359 360 361 362 363 364 365 366 367 368 369 370
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

371 372 373 374 375 376 377 378 379
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

380 381 382 383 384 385
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
386
	int devid;
387 388 389 390 391

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
392
	if (devid < 0)
393
		return false;
394 395 396 397 398 399 400 401 402 403 404

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

405
static void init_iommu_group(struct device *dev)
406 407 408
{
	struct iommu_group *group;

409
	group = iommu_group_get_for_dev(dev);
410 411 412 413
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
414 415 416 417 418
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
419
	struct amd_iommu *iommu;
420
	int devid;
421 422 423 424

	if (dev->archdata.iommu)
		return 0;

425
	devid = get_device_id(dev);
426
	if (devid < 0)
427 428
		return devid;

429 430
	iommu = amd_iommu_rlookup_table[devid];

431
	dev_data = find_dev_data(devid);
432 433 434
	if (!dev_data)
		return -ENOMEM;

435 436
	dev_data->alias = get_alias(dev);

437
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
438 439
		struct amd_iommu *iommu;

440
		iommu = amd_iommu_rlookup_table[dev_data->devid];
441 442 443
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

444 445
	dev->archdata.iommu = dev_data;

446
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
447

448 449 450
	return 0;
}

451 452
static void iommu_ignore_device(struct device *dev)
{
453 454
	u16 alias;
	int devid;
455 456

	devid = get_device_id(dev);
457
	if (devid < 0)
458 459
		return;

460
	alias = get_alias(dev);
461 462 463 464 465 466 467 468

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

469 470
static void iommu_uninit_device(struct device *dev)
{
471
	struct iommu_dev_data *dev_data;
472 473
	struct amd_iommu *iommu;
	int devid;
474

475
	devid = get_device_id(dev);
476
	if (devid < 0)
477
		return;
478

479 480
	iommu = amd_iommu_rlookup_table[devid];

481
	dev_data = search_dev_data(devid);
482 483 484
	if (!dev_data)
		return;

485 486 487
	if (dev_data->domain)
		detach_device(dev);

488
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
489

490 491
	iommu_group_remove_device(dev);

492
	/* Remove dma-ops */
493
	dev->dma_ops = NULL;
494

495
	/*
496 497
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
498
	 */
499
}
J
Joerg Roedel 已提交
500

501 502 503 504 505 506
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

507 508 509 510
static void dump_dte_entry(u16 devid)
{
	int i;

511 512
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
513 514 515
			amd_iommu_dev_table[devid].data[i]);
}

516 517
static void dump_command(unsigned long phys_addr)
{
518
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
519 520 521 522 523 524
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

525 526 527 528 529 530
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

531 532
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

549
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
550
{
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
572

573 574 575 576 577 578
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
579 580 581 582 583

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
584
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
585
		       address, flags);
586
		dump_dte_entry(devid);
587 588 589 590
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
591
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
592 593 594 595 596
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
597
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
598 599 600 601
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
602
		dump_command(address);
603 604 605 606 607 608 609 610
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
611
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
612 613 614 615 616
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
617
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
618 619 620
		       address, flags);
		break;
	default:
621 622 623
		printk(KERN_ERR "UNKNOWN type=0x%02x event[0]=0x%08x "
		       "event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
		       type, event[0], event[1], event[2], event[3]);
624
	}
625 626

	memset(__evt, 0, 4 * sizeof(u32));
627 628 629 630 631 632 633 634 635 636
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
637
		iommu_print_event(iommu, iommu->evt_buf + head);
638
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
639 640 641 642 643
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

644
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
689

690 691 692
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
693

694 695 696 697 698 699 700
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
701 702
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
703 704 705 706 707 708

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
709 710 711 712
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

773
irqreturn_t amd_iommu_int_thread(int irq, void *data)
774
{
775 776
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
777

778 779 780
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
781
			iommu->mmio_base + MMIO_STATUS_OFFSET);
782

783 784 785 786
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
787

788 789 790 791
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
792

793 794 795 796 797 798 799
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
815
	return IRQ_HANDLED;
816 817
}

818 819 820 821 822
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

823 824 825 826 827 828
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
847
			       struct iommu_cmd *cmd)
848 849 850
{
	u8 *target;

851 852 853 854
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
855 856 857 858 859

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
860
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
861
}
862

863
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
864
{
865 866
	u64 paddr = iommu_virt_to_phys((void *)address);

867 868
	WARN_ON(address & 0x7ULL);

869
	memset(cmd, 0, sizeof(*cmd));
870 871
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
872
	cmd->data[2] = 1;
873 874 875
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

876 877 878 879 880 881 882
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

883 884 885 886
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
887
	bool s;
888 889

	pages = iommu_num_pages(address, size, PAGE_SIZE);
890
	s     = false;
891 892 893 894 895 896 897

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
898
		s = true;
899 900 901 902 903 904 905 906 907 908 909
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
910
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
911 912 913
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

914 915 916 917
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
918
	bool s;
919 920

	pages = iommu_num_pages(address, size, PAGE_SIZE);
921
	s     = false;
922 923 924 925 926 927 928

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
929
		s = true;
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

945 946 947 948 949 950 951
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

952
	cmd->data[0]  = pasid;
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
971
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
972 973
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
974
	cmd->data[1] |= (pasid & 0xff) << 16;
975 976 977 978 979 980 981 982
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

983 984 985 986 987 988 989
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
990
		cmd->data[1]  = pasid;
991 992 993 994 995 996 997 998
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

999 1000 1001 1002
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1003 1004
}

1005 1006 1007 1008 1009 1010 1011
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1012 1013
/*
 * Writes the command to the IOMMUs command buffer and informs the
1014
 * hardware about the new command.
1015
 */
1016 1017 1018
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1019
{
1020
	unsigned int count = 0;
1021
	u32 left, next_tail;
1022

1023
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1024
again:
1025
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1026

1027
	if (left <= 0x20) {
1028 1029 1030 1031 1032 1033
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1034

1035 1036
			udelay(1);
		}
1037

1038 1039 1040
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1041 1042

		goto again;
1043 1044
	}

1045
	copy_cmd_to_buffer(iommu, cmd);
1046

1047
	/* Do we need to make sure all commands are processed? */
1048
	iommu->need_sync = sync;
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1062
	spin_unlock_irqrestore(&iommu->lock, flags);
1063

1064
	return ret;
1065 1066
}

1067 1068 1069 1070 1071
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1072 1073 1074 1075
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1076
static int iommu_completion_wait(struct amd_iommu *iommu)
1077 1078
{
	struct iommu_cmd cmd;
1079
	unsigned long flags;
1080
	int ret;
1081

1082
	if (!iommu->need_sync)
1083
		return 0;
1084

1085

1086 1087 1088 1089 1090 1091 1092
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1093
	if (ret)
1094 1095 1096 1097 1098 1099
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1100

1101
	return ret;
1102 1103
}

1104
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1105
{
1106
	struct iommu_cmd cmd;
1107

1108
	build_inv_dte(&cmd, devid);
1109

1110 1111
	return iommu_queue_command(iommu, &cmd);
}
1112

1113
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1114 1115
{
	u32 devid;
1116

1117 1118
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1119

1120 1121
	iommu_completion_wait(iommu);
}
1122

1123 1124 1125 1126
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1127
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1128 1129
{
	u32 dom_id;
1130

1131 1132 1133 1134 1135 1136
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1137

1138
	iommu_completion_wait(iommu);
1139 1140
}

1141
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1142
{
1143
	struct iommu_cmd cmd;
1144

1145
	build_inv_all(&cmd);
1146

1147 1148 1149 1150
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1151 1152 1153 1154 1155 1156 1157 1158 1159
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1160
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1161 1162 1163 1164 1165 1166 1167 1168 1169
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1170 1171
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1172
	if (iommu_feature(iommu, FEATURE_IA)) {
1173
		amd_iommu_flush_all(iommu);
1174
	} else {
1175 1176 1177
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1178 1179 1180
	}
}

1181
/*
1182
 * Command send function for flushing on-device TLB
1183
 */
1184 1185
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1186 1187
{
	struct amd_iommu *iommu;
1188
	struct iommu_cmd cmd;
1189
	int qdep;
1190

1191 1192
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1193

1194
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1195 1196

	return iommu_queue_command(iommu, &cmd);
1197 1198
}

1199 1200 1201
/*
 * Command send function for invalidating a device table entry
 */
1202
static int device_flush_dte(struct iommu_dev_data *dev_data)
1203
{
1204
	struct amd_iommu *iommu;
1205
	u16 alias;
1206
	int ret;
1207

1208
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1209
	alias = dev_data->alias;
1210

1211
	ret = iommu_flush_dte(iommu, dev_data->devid);
1212 1213
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1214 1215 1216
	if (ret)
		return ret;

1217
	if (dev_data->ats.enabled)
1218
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1219 1220

	return ret;
1221 1222
}

1223 1224 1225 1226 1227
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1228 1229
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1230
{
1231
	struct iommu_dev_data *dev_data;
1232 1233
	struct iommu_cmd cmd;
	int ret = 0, i;
1234

1235
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1236

1237
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1238 1239 1240 1241 1242 1243 1244
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1245
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1246 1247
	}

1248 1249
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1250
		if (!dev_data->ats.enabled)
1251 1252
			continue;

1253
		ret |= device_flush_iotlb(dev_data, address, size);
1254 1255
	}

1256
	WARN_ON(ret);
1257 1258
}

1259 1260
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1261
{
1262
	__domain_flush_pages(domain, address, size, 0);
1263
}
1264

1265
/* Flush the whole IO/TLB for a given protection domain */
1266
static void domain_flush_tlb(struct protection_domain *domain)
1267
{
1268
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1269 1270
}

1271
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1272
static void domain_flush_tlb_pde(struct protection_domain *domain)
1273
{
1274
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1275 1276
}

1277
static void domain_flush_complete(struct protection_domain *domain)
1278
{
1279
	int i;
1280

1281
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1282
		if (domain && !domain->dev_iommu[i])
1283
			continue;
1284

1285 1286 1287 1288 1289
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1290
	}
1291 1292
}

1293

1294
/*
1295
 * This function flushes the DTEs for all devices in domain
1296
 */
1297
static void domain_flush_devices(struct protection_domain *domain)
1298
{
1299
	struct iommu_dev_data *dev_data;
1300

1301
	list_for_each_entry(dev_data, &domain->dev_list, list)
1302
		device_flush_dte(dev_data);
1303 1304
}

1305 1306 1307 1308 1309 1310 1311
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1331
					iommu_virt_to_phys(domain->pt_root));
1332 1333 1334 1335 1336 1337 1338 1339 1340
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1341
		      unsigned long page_size,
1342 1343 1344
		      u64 **pte_page,
		      gfp_t gfp)
{
1345
	int level, end_lvl;
1346
	u64 *pte, *page;
1347 1348

	BUG_ON(!is_power_of_2(page_size));
1349 1350 1351 1352

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1353 1354 1355 1356
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1357 1358

	while (level > end_lvl) {
1359 1360 1361 1362 1363
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1364 1365 1366
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1367

1368
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1369

1370 1371
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1372 1373 1374
				free_page((unsigned long)page);
				continue;
			}
1375 1376
		}

1377 1378 1379 1380
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1398 1399 1400
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1401 1402 1403 1404
{
	int level;
	u64 *pte;

1405 1406 1407
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1408 1409 1410
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1411

1412 1413 1414
	while (level > 0) {

		/* Not Present */
1415 1416 1417
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1418
		/* Large PTE */
1419 1420 1421
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1422 1423 1424 1425 1426

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1427 1428
		level -= 1;

1429
		/* Walk to the next level */
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1445 1446 1447 1448 1449
	}

	return pte;
}

1450 1451 1452 1453 1454 1455 1456
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1457 1458 1459
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1460
			  unsigned long page_size,
1461
			  int prot,
1462
			  gfp_t gfp)
1463
{
1464
	u64 __pte, *pte;
1465
	int i, count;
1466

1467 1468 1469
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1470
	if (!(prot & IOMMU_PROT_MASK))
1471 1472
		return -EINVAL;

1473
	count = PAGE_SIZE_PTE_COUNT(page_size);
1474
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1475

1476 1477 1478
	if (!pte)
		return -ENOMEM;

1479 1480 1481
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1482

1483
	if (count > 1) {
1484
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1485
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1486
	} else
1487
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1488 1489 1490 1491 1492 1493

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1494 1495
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1496

1497 1498
	update_domain(dom);

1499 1500 1501
	return 0;
}

1502 1503 1504
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1505
{
1506 1507
	unsigned long long unmapped;
	unsigned long unmap_size;
1508 1509 1510 1511 1512
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1513

1514 1515
	while (unmapped < page_size) {

1516 1517 1518 1519 1520 1521
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1522 1523 1524 1525 1526 1527 1528 1529
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1530
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1531

1532
	return unmapped;
1533 1534
}

1535 1536 1537
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1538
 * interface functions.
1539 1540
 *
 ****************************************************************************/
1541

1542

1543 1544 1545
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1546
{
1547
	unsigned long pfn = 0;
1548

1549
	pages = __roundup_pow_of_two(pages);
1550

1551 1552
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1553
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1554

1555
	if (!pfn)
1556 1557
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1558

1559
	return (pfn << PAGE_SHIFT);
1560 1561
}

1562 1563 1564
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1565
{
1566 1567
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1568

1569
	free_iova_fast(&dma_dom->iovad, address, pages);
1570 1571
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1644
		/* PTE present? */				\
1645 1646 1647
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1648 1649 1650 1651 1652
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1665
static void free_pagetable(struct protection_domain *domain)
1666
{
1667
	unsigned long root = (unsigned long)domain->pt_root;
1668

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1692 1693 1694
	}
}

1695 1696 1697 1698 1699 1700 1701 1702 1703
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1704
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1719
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1720 1721 1722 1723 1724

		free_gcr3_tbl_level1(ptr);
	}
}

1725 1726
static void free_gcr3_table(struct protection_domain *domain)
{
1727 1728 1729 1730
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1731 1732
	else
		BUG_ON(domain->glx != 0);
1733

1734 1735 1736
	free_page((unsigned long)domain->gcr3_tbl);
}

1737 1738 1739 1740
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1741 1742
}

1743
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1744
{
1745
	struct dma_ops_domain *dom;
1746

1747
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1748 1749 1750 1751

	dma_ops_domain_flush_tlb(dom);
}

1752 1753 1754 1755
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1756 1757 1758 1759 1760
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1761 1762
	del_domain_from_list(&dom->domain);

1763
	put_iova_domain(&dom->iovad);
1764

1765
	free_pagetable(&dom->domain);
1766

1767 1768 1769
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1770 1771 1772
	kfree(dom);
}

1773 1774
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1775
 * It also initializes the page table and the address allocator data
1776 1777
 * structures required for the dma_ops interface
 */
1778
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1779 1780 1781 1782 1783 1784 1785
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1786
	if (protection_domain_init(&dma_dom->domain))
1787
		goto free_dma_dom;
1788

1789
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1790
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1791
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1792 1793 1794
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1795
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1796

1797
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1798 1799
		goto free_dma_dom;

1800 1801
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1802

1803 1804
	add_domain_to_list(&dma_dom->domain);

1805 1806 1807 1808 1809 1810 1811 1812
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1813 1814 1815 1816 1817 1818 1819 1820 1821
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1822 1823
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1824
{
1825
	u64 pte_root = 0;
1826
	u64 flags = 0;
1827

1828
	if (domain->mode != PAGE_MODE_NONE)
1829
		pte_root = iommu_virt_to_phys(domain->pt_root);
1830

1831 1832
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1833
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1834

1835 1836
	flags = amd_iommu_dev_table[devid].data[1];

1837 1838 1839
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1840 1841 1842 1843 1844 1845 1846
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1847
	if (domain->flags & PD_IOMMUV2_MASK) {
1848
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1873
	flags &= ~DEV_DOMID_MASK;
1874 1875 1876 1877
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1878 1879 1880 1881 1882
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1883
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1884
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1885 1886

	amd_iommu_apply_erratum_63(devid);
1887 1888
}

1889 1890
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1891 1892
{
	struct amd_iommu *iommu;
1893
	u16 alias;
1894
	bool ats;
1895

1896
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1897
	alias = dev_data->alias;
1898
	ats   = dev_data->ats.enabled;
1899 1900 1901 1902 1903 1904 1905 1906 1907

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1908
	/* Update device table */
1909
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1910
	if (alias != dev_data->devid)
1911
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1912

1913
	device_flush_dte(dev_data);
1914 1915
}

1916
static void do_detach(struct iommu_dev_data *dev_data)
1917 1918
{
	struct amd_iommu *iommu;
1919
	u16 alias;
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1930
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1931
	alias = dev_data->alias;
1932 1933

	/* decrease reference counters */
1934 1935 1936 1937 1938 1939
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1940
	clear_dte_entry(dev_data->devid);
1941 1942
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1943

1944
	/* Flush the DTE entry */
1945
	device_flush_dte(dev_data);
1946 1947 1948 1949 1950 1951
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1952
static int __attach_device(struct iommu_dev_data *dev_data,
1953
			   struct protection_domain *domain)
1954
{
1955
	int ret;
1956

1957 1958 1959 1960 1961 1962
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1963 1964 1965
	/* lock domain */
	spin_lock(&domain->lock);

1966
	ret = -EBUSY;
1967
	if (dev_data->domain != NULL)
1968
		goto out_unlock;
1969

1970
	/* Attach alias group root */
1971
	do_attach(dev_data, domain);
1972

1973 1974 1975 1976
	ret = 0;

out_unlock:

1977 1978
	/* ready */
	spin_unlock(&domain->lock);
1979

1980
	return ret;
1981
}
1982

1983 1984 1985 1986 1987 1988 1989 1990

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1991 1992 1993 1994 1995 1996
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1997
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1998 1999 2000
	if (!pos)
		return -EINVAL;

2001 2002 2003
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2004 2005 2006 2007

	return 0;
}

2008 2009
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2010 2011 2012 2013 2014 2015 2016 2017
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2029 2030
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2031 2032 2033
	if (ret)
		goto out_err;

2034 2035 2036 2037 2038 2039
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2053
/* FIXME: Move this to PCI code */
2054
#define PCI_PRI_TLP_OFF		(1 << 15)
2055

J
Joerg Roedel 已提交
2056
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2057
{
2058
	u16 status;
2059 2060
	int pos;

2061
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2062 2063 2064
	if (!pos)
		return false;

2065
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2066

2067
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2068 2069
}

2070
/*
F
Frank Arnold 已提交
2071
 * If a device is not yet associated with a domain, this function
2072 2073
 * assigns it visible for the hardware
 */
2074 2075
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2076
{
2077
	struct pci_dev *pdev;
2078
	struct iommu_dev_data *dev_data;
2079
	unsigned long flags;
2080
	int ret;
2081

2082 2083
	dev_data = get_dev_data(dev);

2084 2085 2086 2087
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2088
	if (domain->flags & PD_IOMMUV2_MASK) {
2089
		if (!dev_data->passthrough)
2090 2091
			return -EINVAL;

2092 2093 2094
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2095

2096 2097 2098 2099
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2100 2101
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2102 2103 2104
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2105

2106
skip_ats_check:
2107
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2108
	ret = __attach_device(dev_data, domain);
2109 2110
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2111 2112 2113 2114 2115
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2116
	domain_flush_tlb_pde(domain);
2117 2118

	return ret;
2119 2120
}

2121 2122 2123
/*
 * Removes a device from a protection domain (unlocked)
 */
2124
static void __detach_device(struct iommu_dev_data *dev_data)
2125
{
2126
	struct protection_domain *domain;
2127

2128 2129 2130 2131 2132
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2133

2134 2135
	if (WARN_ON(!dev_data->domain))
		return;
2136

2137
	domain = dev_data->domain;
2138

2139
	spin_lock(&domain->lock);
2140

2141
	do_detach(dev_data);
2142

2143
	spin_unlock(&domain->lock);
2144 2145 2146 2147 2148
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2149
static void detach_device(struct device *dev)
2150
{
2151
	struct protection_domain *domain;
2152
	struct iommu_dev_data *dev_data;
2153 2154
	unsigned long flags;

2155
	dev_data = get_dev_data(dev);
2156
	domain   = dev_data->domain;
2157

2158 2159
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2160
	__detach_device(dev_data);
2161
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2162

2163 2164 2165
	if (!dev_is_pci(dev))
		return;

2166
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2167 2168
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2169
		pci_disable_ats(to_pci_dev(dev));
2170 2171

	dev_data->ats.enabled = false;
2172
}
2173

2174
static int amd_iommu_add_device(struct device *dev)
2175
{
2176
	struct iommu_dev_data *dev_data;
2177
	struct iommu_domain *domain;
2178
	struct amd_iommu *iommu;
2179
	int ret, devid;
2180

2181
	if (!check_device(dev) || get_dev_data(dev))
2182
		return 0;
2183

2184
	devid = get_device_id(dev);
2185
	if (devid < 0)
2186 2187
		return devid;

2188
	iommu = amd_iommu_rlookup_table[devid];
2189

2190
	ret = iommu_init_device(dev);
2191 2192 2193 2194
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2195

2196
		iommu_ignore_device(dev);
2197
		dev->dma_ops = &dma_direct_ops;
2198 2199 2200
		goto out;
	}
	init_iommu_group(dev);
2201

2202
	dev_data = get_dev_data(dev);
2203

2204
	BUG_ON(!dev_data);
2205

2206
	if (iommu_pass_through || dev_data->iommu_v2)
2207
		iommu_request_dm_for_dev(dev);
2208

2209 2210
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2211
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2212
		dev_data->passthrough = true;
2213
	else
2214
		dev->dma_ops = &amd_iommu_dma_ops;
2215

2216
out:
2217 2218 2219 2220 2221
	iommu_completion_wait(iommu);

	return 0;
}

2222
static void amd_iommu_remove_device(struct device *dev)
2223
{
2224
	struct amd_iommu *iommu;
2225
	int devid;
2226 2227 2228 2229 2230

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2231
	if (devid < 0)
2232 2233
		return;

2234 2235 2236 2237
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2238 2239
}

2240 2241 2242 2243 2244 2245 2246 2247
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2261
static struct protection_domain *get_domain(struct device *dev)
2262
{
2263
	struct protection_domain *domain;
2264
	struct iommu_domain *io_domain;
2265

2266
	if (!check_device(dev))
2267
		return ERR_PTR(-EINVAL);
2268

2269
	domain = get_dev_data(dev)->domain;
2270 2271 2272 2273 2274 2275
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2276 2277 2278
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2279
	if (!dma_ops_domain(domain))
2280
		return ERR_PTR(-EBUSY);
2281

2282
	return domain;
2283 2284
}

2285 2286
static void update_device_table(struct protection_domain *domain)
{
2287
	struct iommu_dev_data *dev_data;
2288

2289
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2290 2291
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2292 2293 2294 2295 2296

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2297 2298
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2299
	}
2300 2301 2302 2303 2304 2305 2306 2307
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2308 2309 2310

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2311 2312 2313 2314

	domain->updated = false;
}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2326

2327 2328
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2329 2330
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2331 2332
 * Must be called with the domain lock held.
 */
2333 2334 2335 2336
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2337
			       enum dma_data_direction direction,
2338
			       u64 dma_mask)
2339 2340
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2341
	dma_addr_t address, start, ret;
2342
	unsigned int pages;
2343
	int prot = 0;
2344 2345
	int i;

2346
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2347 2348
	paddr &= PAGE_MASK;

2349
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2350
	if (address == AMD_IOMMU_MAPPING_ERROR)
2351
		goto out;
2352

2353
	prot = dir2prot(direction);
2354

2355 2356
	start = address;
	for (i = 0; i < pages; ++i) {
2357 2358 2359
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2360 2361
			goto out_unmap;

2362 2363 2364 2365 2366
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2367
	if (unlikely(amd_iommu_np_cache)) {
2368
		domain_flush_pages(&dma_dom->domain, address, size);
2369 2370
		domain_flush_complete(&dma_dom->domain);
	}
2371

2372 2373
out:
	return address;
2374 2375 2376 2377 2378

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2379
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2380 2381
	}

2382 2383 2384 2385
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2386

2387
	return AMD_IOMMU_MAPPING_ERROR;
2388 2389
}

2390 2391 2392 2393
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2394
static void __unmap_single(struct dma_ops_domain *dma_dom,
2395 2396 2397 2398 2399 2400 2401
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2402
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2403 2404 2405 2406
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2407
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2408 2409 2410
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2411 2412 2413 2414 2415
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
2416 2417
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2418
	}
2419 2420
}

2421 2422 2423
/*
 * The exported map_single function for dma_ops.
 */
2424 2425 2426
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2427
			   unsigned long attrs)
2428
{
2429
	phys_addr_t paddr = page_to_phys(page) + offset;
2430
	struct protection_domain *domain;
2431
	struct dma_ops_domain *dma_dom;
2432
	u64 dma_mask;
2433

2434 2435
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2436
		return (dma_addr_t)paddr;
2437
	else if (IS_ERR(domain))
2438
		return AMD_IOMMU_MAPPING_ERROR;
2439

2440
	dma_mask = *dev->dma_mask;
2441
	dma_dom = to_dma_ops_domain(domain);
2442

2443
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2444 2445
}

2446 2447 2448
/*
 * The exported unmap_single function for dma_ops.
 */
2449
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2450
		       enum dma_data_direction dir, unsigned long attrs)
2451 2452
{
	struct protection_domain *domain;
2453
	struct dma_ops_domain *dma_dom;
2454

2455 2456
	domain = get_domain(dev);
	if (IS_ERR(domain))
2457 2458
		return;

2459 2460 2461
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2462 2463
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2490 2491 2492 2493
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2494
static int map_sg(struct device *dev, struct scatterlist *sglist,
2495
		  int nelems, enum dma_data_direction direction,
2496
		  unsigned long attrs)
2497
{
2498
	int mapped_pages = 0, npages = 0, prot = 0, i;
2499
	struct protection_domain *domain;
2500
	struct dma_ops_domain *dma_dom;
2501
	struct scatterlist *s;
2502
	unsigned long address;
2503
	u64 dma_mask;
2504

2505
	domain = get_domain(dev);
2506
	if (IS_ERR(domain))
2507
		return 0;
2508

2509
	dma_dom  = to_dma_ops_domain(domain);
2510
	dma_mask = *dev->dma_mask;
2511

2512 2513 2514
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2515
	if (address == AMD_IOMMU_MAPPING_ERROR)
2516 2517 2518 2519 2520
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2521
	for_each_sg(sglist, s, nelems, i) {
2522 2523 2524 2525 2526
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2527

2528 2529 2530 2531 2532
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2533

2534 2535
			mapped_pages += 1;
		}
2536 2537
	}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2555

2556 2557 2558 2559 2560 2561
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2562 2563
	}

2564 2565 2566 2567
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2568
	return 0;
2569 2570
}

2571 2572 2573 2574
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2575
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2576
		     int nelems, enum dma_data_direction dir,
2577
		     unsigned long attrs)
2578 2579
{
	struct protection_domain *domain;
2580
	struct dma_ops_domain *dma_dom;
2581 2582
	unsigned long startaddr;
	int npages = 2;
2583

2584 2585
	domain = get_domain(dev);
	if (IS_ERR(domain))
2586 2587
		return;

2588
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2589
	dma_dom   = to_dma_ops_domain(domain);
2590 2591
	npages    = sg_num_pages(dev, sglist, nelems);

2592
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2593 2594
}

2595 2596 2597
/*
 * The exported alloc_coherent function for dma_ops.
 */
2598
static void *alloc_coherent(struct device *dev, size_t size,
2599
			    dma_addr_t *dma_addr, gfp_t flag,
2600
			    unsigned long attrs)
2601
{
2602
	u64 dma_mask = dev->coherent_dma_mask;
2603
	struct protection_domain *domain;
2604
	struct dma_ops_domain *dma_dom;
2605
	struct page *page;
2606

2607 2608
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2609 2610 2611
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2612 2613
	} else if (IS_ERR(domain))
		return NULL;
2614

2615
	dma_dom   = to_dma_ops_domain(domain);
2616
	size	  = PAGE_ALIGN(size);
2617 2618
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2619
	flag     |= __GFP_ZERO;
2620

2621 2622
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2623
		if (!gfpflags_allow_blocking(flag))
2624
			return NULL;
2625

2626
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2627
						 get_order(size), flag);
2628 2629 2630
		if (!page)
			return NULL;
	}
2631

2632 2633 2634
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2635
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2636
				 size, DMA_BIDIRECTIONAL, dma_mask);
2637

2638
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2639
		goto out_free;
2640

2641
	return page_address(page);
2642 2643 2644

out_free:

2645 2646
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2647 2648

	return NULL;
2649 2650
}

2651 2652 2653
/*
 * The exported free_coherent function for dma_ops.
 */
2654
static void free_coherent(struct device *dev, size_t size,
2655
			  void *virt_addr, dma_addr_t dma_addr,
2656
			  unsigned long attrs)
2657 2658
{
	struct protection_domain *domain;
2659
	struct dma_ops_domain *dma_dom;
2660
	struct page *page;
2661

2662 2663 2664
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2665 2666
	domain = get_domain(dev);
	if (IS_ERR(domain))
2667 2668
		goto free_mem;

2669 2670 2671
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2672 2673

free_mem:
2674 2675
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2676 2677
}

2678 2679 2680 2681 2682 2683
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2684
	if (!dma_direct_supported(dev, mask))
2685
		return 0;
2686
	return check_device(dev);
2687 2688
}

2689 2690 2691 2692 2693
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2694
static const struct dma_map_ops amd_iommu_dma_ops = {
2695 2696 2697 2698 2699 2700 2701
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2702
	.mapping_error	= amd_iommu_mapping_error,
2703 2704
};

2705 2706 2707 2708 2709
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2710
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2757
int __init amd_iommu_init_api(void)
2758
{
2759
	int ret, err = 0;
2760 2761 2762 2763

	ret = iova_cache_get();
	if (ret)
		return ret;
2764

2765 2766 2767 2768
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2769 2770 2771 2772 2773 2774 2775 2776
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2777 2778 2779
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2780

2781
	return 0;
2782 2783
}

2784 2785
int __init amd_iommu_init_dma_ops(void)
{
2786
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2787 2788
	iommu_detected = 1;

2789 2790
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2791 2792 2793 2794 2795
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2796 2797
	 */
	if (!swiotlb)
2798
		dma_ops = &dma_direct_ops;
2799

2800 2801 2802 2803 2804
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2805
	return 0;
2806

2807
}
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2821
	struct iommu_dev_data *entry;
2822 2823 2824 2825
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2826 2827 2828 2829
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2830
	}
2831 2832 2833 2834

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2835 2836 2837 2838 2839
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2840 2841
	del_domain_from_list(domain);

2842 2843 2844 2845 2846 2847
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2860
static struct protection_domain *protection_domain_alloc(void)
2861 2862 2863 2864 2865
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2866
		return NULL;
2867

2868
	if (protection_domain_init(domain))
2869 2870
		goto out_err;

2871 2872
	add_domain_to_list(domain);

2873 2874 2875 2876 2877 2878 2879 2880
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2881
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2882
{
2883
	struct protection_domain *pdomain;
2884
	struct dma_ops_domain *dma_domain;
2885

2886 2887 2888 2889 2890
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2891

2892 2893 2894 2895 2896 2897
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2898

2899 2900 2901
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2902

2903 2904 2905 2906 2907 2908 2909 2910 2911
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2912 2913 2914 2915
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2916

2917 2918
		pdomain->mode = PAGE_MODE_NONE;
		break;
2919 2920 2921
	default:
		return NULL;
	}
2922

2923
	return &pdomain->domain;
2924 2925
}

2926
static void amd_iommu_domain_free(struct iommu_domain *dom)
2927
{
2928
	struct protection_domain *domain;
2929
	struct dma_ops_domain *dma_dom;
2930

2931 2932
	domain = to_pdomain(dom);

2933 2934 2935 2936 2937
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2938 2939
	if (!dom)
		return;
2940

2941 2942
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2943
		/* Now release the domain */
2944
		dma_dom = to_dma_ops_domain(domain);
2945 2946 2947 2948 2949
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2950

2951 2952 2953 2954 2955 2956
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2957 2958
}

2959 2960 2961
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2962
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2963
	struct amd_iommu *iommu;
2964
	int devid;
2965

2966
	if (!check_device(dev))
2967 2968
		return;

2969
	devid = get_device_id(dev);
2970
	if (devid < 0)
2971
		return;
2972

2973
	if (dev_data->domain != NULL)
2974
		detach_device(dev);
2975 2976 2977 2978 2979

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2980 2981 2982 2983 2984 2985
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2986 2987 2988
	iommu_completion_wait(iommu);
}

2989 2990 2991
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2992
	struct protection_domain *domain = to_pdomain(dom);
2993
	struct iommu_dev_data *dev_data;
2994
	struct amd_iommu *iommu;
2995
	int ret;
2996

2997
	if (!check_device(dev))
2998 2999
		return -EINVAL;

3000 3001
	dev_data = dev->archdata.iommu;

3002
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3003 3004 3005
	if (!iommu)
		return -EINVAL;

3006
	if (dev_data->domain)
3007
		detach_device(dev);
3008

3009
	ret = attach_device(dev, domain);
3010

3011 3012 3013 3014 3015 3016 3017 3018 3019
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3020 3021
	iommu_completion_wait(iommu);

3022
	return ret;
3023 3024
}

3025
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3026
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3027
{
3028
	struct protection_domain *domain = to_pdomain(dom);
3029 3030 3031
	int prot = 0;
	int ret;

3032 3033 3034
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3035 3036 3037 3038 3039
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3040
	mutex_lock(&domain->api_lock);
3041
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3042 3043
	mutex_unlock(&domain->api_lock);

3044
	return ret;
3045 3046
}

3047 3048
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3049
{
3050
	struct protection_domain *domain = to_pdomain(dom);
3051
	size_t unmap_size;
3052

3053 3054 3055
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3056
	mutex_lock(&domain->api_lock);
3057
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3058
	mutex_unlock(&domain->api_lock);
3059

3060
	domain_flush_tlb_pde(domain);
3061
	domain_flush_complete(domain);
3062

3063
	return unmap_size;
3064 3065
}

3066
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3067
					  dma_addr_t iova)
3068
{
3069
	struct protection_domain *domain = to_pdomain(dom);
3070
	unsigned long offset_mask, pte_pgsize;
3071
	u64 *pte, __pte;
3072

3073 3074 3075
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3076
	pte = fetch_pte(domain, iova, &pte_pgsize);
3077

3078
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3079 3080
		return 0;

3081 3082
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3083

3084
	return (__pte & ~offset_mask) | (iova & offset_mask);
3085 3086
}

3087
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3088
{
3089 3090
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3091
		return true;
3092
	case IOMMU_CAP_INTR_REMAP:
3093
		return (irq_remapping_enabled == 1);
3094 3095
	case IOMMU_CAP_NOEXEC:
		return false;
3096 3097
	}

3098
	return false;
S
Sheng Yang 已提交
3099 3100
}

3101 3102
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3103
{
3104
	struct iommu_resv_region *region;
3105
	struct unity_map_entry *entry;
3106
	int devid;
3107 3108

	devid = get_device_id(dev);
3109
	if (devid < 0)
3110
		return;
3111 3112

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3113 3114
		size_t length;
		int prot = 0;
3115 3116 3117 3118

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3119 3120 3121 3122 3123 3124 3125 3126 3127
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3128 3129 3130 3131 3132 3133 3134
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3135 3136 3137

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3138
					 0, IOMMU_RESV_MSI);
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3149 3150
}

3151
static void amd_iommu_put_resv_regions(struct device *dev,
3152 3153
				     struct list_head *head)
{
3154
	struct iommu_resv_region *entry, *next;
3155 3156 3157 3158 3159

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3160
static void amd_iommu_apply_resv_region(struct device *dev,
3161
				      struct iommu_domain *domain,
3162
				      struct iommu_resv_region *region)
3163
{
3164
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3165 3166 3167
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3168
	end   = IOVA_PFN(region->start + region->length - 1);
3169 3170 3171 3172

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3173 3174 3175 3176 3177 3178 3179
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3180
const struct iommu_ops amd_iommu_ops = {
3181
	.capable = amd_iommu_capable,
3182 3183
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3184 3185
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3186 3187
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3188
	.map_sg = default_iommu_map_sg,
3189
	.iova_to_phys = amd_iommu_iova_to_phys,
3190 3191
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3192
	.device_group = amd_iommu_device_group,
3193 3194 3195
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3196
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3197
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3198 3199
};

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3222 3223 3224

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3225
	struct protection_domain *domain = to_pdomain(dom);
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3243 3244 3245

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3246
	struct protection_domain *domain = to_pdomain(dom);
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3307
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3324 3325 3326 3327 3328 3329
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3361
	struct protection_domain *domain = to_pdomain(dom);
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3381
	struct protection_domain *domain = to_pdomain(dom);
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3414
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3415 3416
		}

3417
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3461
	struct protection_domain *domain = to_pdomain(dom);
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3475
	struct protection_domain *domain = to_pdomain(dom);
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3503 3504 3505

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3506
	struct protection_domain *pdomain;
3507

3508 3509
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3510 3511 3512
		return NULL;

	/* Only return IOMMUv2 domains */
3513
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3514 3515
		return NULL;

3516
	return &pdomain->domain;
3517 3518
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3574 3575 3576 3577 3578 3579 3580 3581 3582

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3583 3584
static struct irq_chip amd_ir_chip;

3585 3586 3587 3588 3589 3590
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3591
	dte	|= iommu_virt_to_phys(table->table);
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3614
		goto out_unlock;
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3628
		goto out_unlock;
3629

3630 3631 3632
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3633 3634 3635 3636 3637 3638 3639
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3640
		table = NULL;
3641
		goto out_unlock;
3642 3643
	}

3644 3645 3646 3647 3648 3649
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3650 3651 3652 3653 3654

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3655
			iommu->irte_ops->set_allocated(table, i);
3656 3657 3658 3659 3660 3661 3662
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3663
		set_dte_irq_entry(alias, table);
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3676
static int alloc_irq_index(u16 devid, int count, bool align)
3677 3678
{
	struct irq_remap_table *table;
3679
	int index, c, alignment = 1;
3680
	unsigned long flags;
3681 3682 3683 3684
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3685 3686 3687 3688 3689

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

3690 3691 3692
	if (align)
		alignment = roundup_pow_of_two(count);

3693 3694 3695
	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
3696
	for (index = ALIGN(table->min_index, alignment), c = 0;
3697
	     index < MAX_IRQS_PER_TABLE;) {
3698
		if (!iommu->irte_ops->is_allocated(table, index)) {
3699
			c += 1;
3700 3701
		} else {
			c     = 0;
3702
			index = ALIGN(index + 1, alignment);
3703 3704
			continue;
		}
3705 3706 3707

		if (c == count)	{
			for (; c != 0; --c)
3708
				iommu->irte_ops->set_allocated(table, index - c + 1);
3709 3710 3711 3712

			index -= count - 1;
			goto out;
		}
3713 3714

		index++;
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3725 3726
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3727 3728 3729 3730
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3731
	struct irte_ga *entry;
3732 3733 3734 3735 3736 3737 3738 3739 3740 3741

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3742 3743 3744 3745 3746 3747 3748

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3749 3750
	if (data)
		data->ref = entry;
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3775
	table->table[index] = irte->val;
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3799
	iommu->irte_ops->clear_allocated(table, index);
3800 3801 3802 3803 3804 3805
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3806 3807
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3808
			 u8 vector, u32 dest_apicid, int devid)
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3822
			    u8 vector, u32 dest_apicid, int devid)
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3848
	modify_irte_ga(devid, index, irte, NULL);
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3864
	modify_irte_ga(devid, index, irte, NULL);
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3881
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3882

3883 3884
	if (!dev_data || !dev_data->use_vapic ||
	    !irte->lo.fields_remap.guest_mode) {
3885 3886 3887 3888
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
3889 3890
}

3891
#define IRTE_ALLOCATED (~1U)
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3937
static int get_devid(struct irq_alloc_info *info)
3938
{
3939
	int devid = -1;
3940

3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3956

3957 3958
	return devid;
}
3959

3960 3961 3962 3963
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3964

3965 3966
	if (!info)
		return NULL;
3967

3968 3969 3970 3971 3972 3973
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3974

3975
	return NULL;
3976 3977
}

3978
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3979
{
3980 3981
	struct amd_iommu *iommu;
	int devid;
3982

3983 3984
	if (!info)
		return NULL;
3985

3986 3987 3988 3989
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3990
		if (devid < 0)
3991 3992
			return NULL;

3993 3994 3995
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3996 3997 3998 3999
		break;
	default:
		break;
	}
4000

4001 4002
	return NULL;
}
4003

4004 4005 4006 4007 4008 4009
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4010 4011 4012
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4013

4014 4015 4016 4017 4018 4019 4020 4021
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4022 4023 4024 4025
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4026

4027 4028
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4029 4030
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4031
				 irq_cfg->dest_apicid, devid);
4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4047

4048 4049 4050 4051 4052 4053 4054
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4055

4056 4057 4058 4059
	default:
		BUG_ON(1);
		break;
	}
4060 4061
}

4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4082 4083
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4084
{
4085 4086
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4087
	struct amd_ir_data *data = NULL;
4088
	struct irq_cfg *cfg;
4089 4090
	int i, ret, devid;
	int index = -1;
4091

4092 4093 4094 4095
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4096 4097
		return -EINVAL;

4098 4099 4100 4101 4102 4103
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4104

4105 4106 4107
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4108

4109 4110 4111
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4112

4113 4114 4115 4116 4117 4118
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4119 4120 4121
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4122 4123 4124
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4125
		ret = index;
4126 4127
		goto out_free_parent;
	}
4128

4129 4130 4131 4132 4133 4134 4135
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4136

4137 4138 4139 4140 4141
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4152 4153 4154 4155 4156 4157
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4158

4159
	return 0;
4160

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4172 4173
}

4174 4175
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4176
{
4177 4178 4179 4180
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4181

4182 4183 4184 4185 4186 4187
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4188
			kfree(data->entry);
4189 4190 4191 4192 4193
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4194

4195 4196 4197 4198 4199
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4200
static int irq_remapping_activate(struct irq_domain *domain,
4201
				  struct irq_data *irq_data, bool reserve)
4202 4203 4204
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4205
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4206
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4207

4208 4209 4210 4211 4212 4213
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4214
	return 0;
4215 4216
}

4217 4218
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4219
{
4220 4221
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4222
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4223

4224 4225 4226
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4227
}
4228

4229
static const struct irq_domain_ops amd_ir_domain_ops = {
4230 4231 4232 4233
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4234
};
4235

4236 4237 4238 4239 4240 4241 4242 4243
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4244 4245 4246 4247 4248 4249 4250 4251
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4274
		irte->lo.fields_vapic.ga_log_intr = 1;
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4317 4318 4319 4320 4321 4322 4323
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4324
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4325
	int ret;
4326

4327 4328 4329
	if (!iommu)
		return -ENODEV;

4330 4331 4332
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4333

4334
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4335 4336 4337 4338 4339
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4340
	send_cleanup_vector(cfg);
4341 4342

	return IRQ_SET_MASK_OK_DONE;
4343 4344
}

4345
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4346
{
4347
	struct amd_ir_data *ir_data = irq_data->chip_data;
4348

4349 4350
	*msg = ir_data->msi_entry;
}
4351

4352
static struct irq_chip amd_ir_chip = {
4353 4354 4355 4356 4357
	.name			= "AMD-IR",
	.irq_ack		= ir_ack_apic_edge,
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4358
};
4359

4360 4361
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4362 4363 4364 4365 4366 4367 4368
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4369 4370
	if (!iommu->ir_domain)
		return -ENOMEM;
4371

4372
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4373 4374 4375
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4376 4377
	return 0;
}
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4417
#endif