amd_iommu.c 102.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56

57 58
#define AMD_IOMMU_MAPPING_ERROR	0

59 60
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

61
#define LOOP_TIMEOUT	100000
62

63 64 65 66
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

67 68 69 70 71 72
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

73 74 75 76 77 78
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
79
 * 512GB Pages are not supported due to a hardware bug
80
 */
J
Joerg Roedel 已提交
81
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
82

83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);
84
static DEFINE_SPINLOCK(pd_bitmap_lock);
85
static DEFINE_SPINLOCK(iommu_table_lock);
86

87
/* List of all available dev_data structures */
88
static LLIST_HEAD(dev_data_list);
89

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116
static void detach_device(struct device *dev);
117
static void iova_domain_flush_tlb(struct iova_domain *iovad);
118

119 120 121 122 123 124 125
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

126 127
	/* IOVA RB-Tree */
	struct iova_domain iovad;
128 129
};

130 131 132
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

133 134 135 136 137 138
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

139 140
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
141
{
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
157 158
}

159
static inline u16 get_pci_device_id(struct device *dev)
160 161 162 163 164 165
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

193 194 195 196 197
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

198 199 200 201 202 203
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

204
static struct iommu_dev_data *alloc_dev_data(u16 devid)
205 206 207 208 209 210 211
{
	struct iommu_dev_data *dev_data;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

212
	dev_data->devid = devid;
213 214
	ratelimit_default_init(&dev_data->rs);

215
	llist_add(&dev_data->dev_data_list, &dev_data_list);
216 217 218
	return dev_data;
}

219 220 221
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
222 223 224 225
	struct llist_node *node;

	if (llist_empty(&dev_data_list))
		return NULL;
226

227 228
	node = dev_data_list.first;
	llist_for_each_entry(dev_data, node, dev_data_list) {
229
		if (dev_data->devid == devid)
230
			return dev_data;
231 232
	}

233
	return NULL;
234 235
}

236 237 238 239 240 241 242 243 244 245 246
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

247
	/* The callers make sure that get_device_id() does not fail here */
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
289
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
290 291 292 293 294 295 296 297
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

298 299 300
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
301
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
302 303 304

	dev_data = search_dev_data(devid);

305
	if (dev_data == NULL) {
306
		dev_data = alloc_dev_data(devid);
307 308
		if (!dev_data)
			return NULL;
309

310 311 312 313
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

314 315 316
	return dev_data;
}

317
struct iommu_dev_data *get_dev_data(struct device *dev)
318 319 320
{
	return dev->archdata.iommu;
}
321
EXPORT_SYMBOL(get_dev_data);
322

323 324 325 326
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
327
{
328
	struct acpihid_map_entry *p, *entry = NULL;
329
	int devid;
330 331 332 333 334 335 336 337 338 339 340 341

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
342 343
	else
		iommu_group_ref_get(entry->group);
344 345

	return entry->group;
346 347
}

348 349 350 351
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
352 353
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
354 355 356 357 358 359 360 361 362 363 364 365
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

366 367 368 369 370 371 372 373 374
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

375 376 377 378 379 380
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
381
	int devid;
382 383 384 385 386

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
387
	if (devid < 0)
388
		return false;
389 390 391 392 393 394 395 396 397 398 399

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

400
static void init_iommu_group(struct device *dev)
401 402 403
{
	struct iommu_group *group;

404
	group = iommu_group_get_for_dev(dev);
405 406 407 408
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
409 410 411 412 413
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
414
	struct amd_iommu *iommu;
415
	int devid;
416 417 418 419

	if (dev->archdata.iommu)
		return 0;

420
	devid = get_device_id(dev);
421
	if (devid < 0)
422 423
		return devid;

424 425
	iommu = amd_iommu_rlookup_table[devid];

426
	dev_data = find_dev_data(devid);
427 428 429
	if (!dev_data)
		return -ENOMEM;

430 431
	dev_data->alias = get_alias(dev);

432
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
433 434
		struct amd_iommu *iommu;

435
		iommu = amd_iommu_rlookup_table[dev_data->devid];
436 437 438
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

439 440
	dev->archdata.iommu = dev_data;

441
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
442

443 444 445
	return 0;
}

446 447
static void iommu_ignore_device(struct device *dev)
{
448 449
	u16 alias;
	int devid;
450 451

	devid = get_device_id(dev);
452
	if (devid < 0)
453 454
		return;

455
	alias = get_alias(dev);
456 457 458 459 460 461 462 463

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

464 465
static void iommu_uninit_device(struct device *dev)
{
466
	struct iommu_dev_data *dev_data;
467 468
	struct amd_iommu *iommu;
	int devid;
469

470
	devid = get_device_id(dev);
471
	if (devid < 0)
472
		return;
473

474 475
	iommu = amd_iommu_rlookup_table[devid];

476
	dev_data = search_dev_data(devid);
477 478 479
	if (!dev_data)
		return;

480 481 482
	if (dev_data->domain)
		detach_device(dev);

483
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
484

485 486
	iommu_group_remove_device(dev);

487
	/* Remove dma-ops */
488
	dev->dma_ops = NULL;
489

490
	/*
491 492
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
493
	 */
494
}
J
Joerg Roedel 已提交
495

496 497 498 499 500 501
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

502 503 504 505
static void dump_dte_entry(u16 devid)
{
	int i;

506 507
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
508 509 510
			amd_iommu_dev_table[devid].data[i]);
}

511 512
static void dump_command(unsigned long phys_addr)
{
513
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
514 515 516 517 518 519
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

520 521 522 523 524 525
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

526 527
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

544
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
545
{
546
	struct device *dev = iommu->iommu.dev;
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
568

569 570 571 572
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
573
		dev_err(dev, "AMD-Vi: Event logged [");
574
	}
575 576 577

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
578 579 580 581
		dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
582
		dump_dte_entry(devid);
583 584
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
585 586 587 588
		dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
589 590
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
591 592 593 594
		dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domid, address, flags);
595 596
		break;
	case EVENT_TYPE_ILL_CMD:
597
		dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
598
		dump_command(address);
599 600
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
601 602
		dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx "
			"flags=0x%04x]\n", address, flags);
603 604
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
605 606 607 608
		dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
			"address=0x%016llx]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address);
609 610
		break;
	case EVENT_TYPE_INV_DEV_REQ:
611 612 613 614
		dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
615 616
		break;
	default:
617 618 619
		dev_err(dev, KERN_ERR "UNKNOWN event[0]=0x%08x event[1]=0x%08x "
			"event[2]=0x%08x event[3]=0x%08x\n",
			event[0], event[1], event[2], event[3]);
620
	}
621 622

	memset(__evt, 0, 4 * sizeof(u32));
623 624 625 626 627 628 629 630 631 632
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
633
		iommu_print_event(iommu, iommu->evt_buf + head);
634
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
635 636 637 638 639
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

640
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
685

686 687 688
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
689

690 691 692 693 694 695 696
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
697 698
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
699 700 701 702 703 704

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
705 706 707 708
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

769
irqreturn_t amd_iommu_int_thread(int irq, void *data)
770
{
771 772
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
773

774 775 776
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
777
			iommu->mmio_base + MMIO_STATUS_OFFSET);
778

779 780 781 782
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
783

784 785 786 787
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
788

789 790 791 792 793 794 795
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
811
	return IRQ_HANDLED;
812 813
}

814 815 816 817 818
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

819 820 821 822 823 824
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
843
			       struct iommu_cmd *cmd)
844 845 846
{
	u8 *target;

847 848 849 850
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
851 852 853 854 855

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
856
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
857
}
858

859
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
860
{
861 862
	u64 paddr = iommu_virt_to_phys((void *)address);

863 864
	WARN_ON(address & 0x7ULL);

865
	memset(cmd, 0, sizeof(*cmd));
866 867
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
868
	cmd->data[2] = 1;
869 870 871
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

872 873 874 875 876 877 878
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

879 880 881 882
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
883
	bool s;
884 885

	pages = iommu_num_pages(address, size, PAGE_SIZE);
886
	s     = false;
887 888 889 890 891 892 893

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
894
		s = true;
895 896 897 898 899 900 901 902 903 904 905
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
906
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
907 908 909
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

910 911 912 913
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
914
	bool s;
915 916

	pages = iommu_num_pages(address, size, PAGE_SIZE);
917
	s     = false;
918 919 920 921 922 923 924

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
925
		s = true;
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

941 942 943 944 945 946 947
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

948
	cmd->data[0]  = pasid;
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
967
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
968 969
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
970
	cmd->data[1] |= (pasid & 0xff) << 16;
971 972 973 974 975 976 977 978
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

979 980 981 982 983 984 985
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
986
		cmd->data[1]  = pasid;
987 988 989 990 991 992 993 994
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

995 996 997 998
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
999 1000
}

1001 1002 1003 1004 1005 1006 1007
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1008 1009
/*
 * Writes the command to the IOMMUs command buffer and informs the
1010
 * hardware about the new command.
1011
 */
1012 1013 1014
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1015
{
1016
	unsigned int count = 0;
1017
	u32 left, next_tail;
1018

1019
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1020
again:
1021
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1022

1023
	if (left <= 0x20) {
1024 1025 1026 1027 1028 1029
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1030

1031 1032
			udelay(1);
		}
1033

1034 1035 1036
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1037 1038

		goto again;
1039 1040
	}

1041
	copy_cmd_to_buffer(iommu, cmd);
1042

1043
	/* Do we need to make sure all commands are processed? */
1044
	iommu->need_sync = sync;
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1056
	raw_spin_lock_irqsave(&iommu->lock, flags);
1057
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1058
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1059

1060
	return ret;
1061 1062
}

1063 1064 1065 1066 1067
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1068 1069 1070 1071
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1072
static int iommu_completion_wait(struct amd_iommu *iommu)
1073 1074
{
	struct iommu_cmd cmd;
1075
	unsigned long flags;
1076
	int ret;
1077

1078
	if (!iommu->need_sync)
1079
		return 0;
1080

1081

1082 1083
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1084
	raw_spin_lock_irqsave(&iommu->lock, flags);
1085 1086 1087 1088

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1089
	if (ret)
1090 1091 1092 1093 1094
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1095
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1096

1097
	return ret;
1098 1099
}

1100
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1101
{
1102
	struct iommu_cmd cmd;
1103

1104
	build_inv_dte(&cmd, devid);
1105

1106 1107
	return iommu_queue_command(iommu, &cmd);
}
1108

1109
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1110 1111
{
	u32 devid;
1112

1113 1114
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1115

1116 1117
	iommu_completion_wait(iommu);
}
1118

1119 1120 1121 1122
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1123
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1124 1125
{
	u32 dom_id;
1126

1127 1128 1129 1130 1131 1132
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1133

1134
	iommu_completion_wait(iommu);
1135 1136
}

1137
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1138
{
1139
	struct iommu_cmd cmd;
1140

1141
	build_inv_all(&cmd);
1142

1143 1144 1145 1146
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1147 1148 1149 1150 1151 1152 1153 1154 1155
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1156
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1157 1158 1159 1160 1161 1162 1163 1164 1165
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1166 1167
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1168
	if (iommu_feature(iommu, FEATURE_IA)) {
1169
		amd_iommu_flush_all(iommu);
1170
	} else {
1171 1172 1173
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1174 1175 1176
	}
}

1177
/*
1178
 * Command send function for flushing on-device TLB
1179
 */
1180 1181
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1182 1183
{
	struct amd_iommu *iommu;
1184
	struct iommu_cmd cmd;
1185
	int qdep;
1186

1187 1188
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1189

1190
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1191 1192

	return iommu_queue_command(iommu, &cmd);
1193 1194
}

1195 1196 1197
/*
 * Command send function for invalidating a device table entry
 */
1198
static int device_flush_dte(struct iommu_dev_data *dev_data)
1199
{
1200
	struct amd_iommu *iommu;
1201
	u16 alias;
1202
	int ret;
1203

1204
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1205
	alias = dev_data->alias;
1206

1207
	ret = iommu_flush_dte(iommu, dev_data->devid);
1208 1209
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1210 1211 1212
	if (ret)
		return ret;

1213
	if (dev_data->ats.enabled)
1214
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1215 1216

	return ret;
1217 1218
}

1219 1220 1221 1222 1223
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1224 1225
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1226
{
1227
	struct iommu_dev_data *dev_data;
1228 1229
	struct iommu_cmd cmd;
	int ret = 0, i;
1230

1231
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1232

1233
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1234 1235 1236 1237 1238 1239 1240
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1241
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1242 1243
	}

1244 1245
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1246
		if (!dev_data->ats.enabled)
1247 1248
			continue;

1249
		ret |= device_flush_iotlb(dev_data, address, size);
1250 1251
	}

1252
	WARN_ON(ret);
1253 1254
}

1255 1256
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1257
{
1258
	__domain_flush_pages(domain, address, size, 0);
1259
}
1260

1261
/* Flush the whole IO/TLB for a given protection domain */
1262
static void domain_flush_tlb(struct protection_domain *domain)
1263
{
1264
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1265 1266
}

1267
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1268
static void domain_flush_tlb_pde(struct protection_domain *domain)
1269
{
1270
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1271 1272
}

1273
static void domain_flush_complete(struct protection_domain *domain)
1274
{
1275
	int i;
1276

1277
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1278
		if (domain && !domain->dev_iommu[i])
1279
			continue;
1280

1281 1282 1283 1284 1285
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1286
	}
1287 1288
}

1289

1290
/*
1291
 * This function flushes the DTEs for all devices in domain
1292
 */
1293
static void domain_flush_devices(struct protection_domain *domain)
1294
{
1295
	struct iommu_dev_data *dev_data;
1296

1297
	list_for_each_entry(dev_data, &domain->dev_list, list)
1298
		device_flush_dte(dev_data);
1299 1300
}

1301 1302 1303 1304 1305 1306 1307
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1327
					iommu_virt_to_phys(domain->pt_root));
1328 1329 1330 1331 1332 1333 1334 1335 1336
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1337
		      unsigned long page_size,
1338 1339 1340
		      u64 **pte_page,
		      gfp_t gfp)
{
1341
	int level, end_lvl;
1342
	u64 *pte, *page;
1343 1344

	BUG_ON(!is_power_of_2(page_size));
1345 1346 1347 1348

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1349 1350 1351 1352
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1353 1354

	while (level > end_lvl) {
1355 1356 1357 1358 1359
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1360 1361 1362
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1363

1364
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1365

1366 1367
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1368 1369 1370
				free_page((unsigned long)page);
				continue;
			}
1371 1372
		}

1373 1374 1375 1376
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1394 1395 1396
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1397 1398 1399 1400
{
	int level;
	u64 *pte;

1401 1402 1403
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1404 1405 1406
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1407

1408 1409 1410
	while (level > 0) {

		/* Not Present */
1411 1412 1413
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1414
		/* Large PTE */
1415 1416 1417
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1418 1419 1420 1421 1422

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1423 1424
		level -= 1;

1425
		/* Walk to the next level */
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1441 1442 1443 1444 1445
	}

	return pte;
}

1446 1447 1448 1449 1450 1451 1452
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1453 1454 1455
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1456
			  unsigned long page_size,
1457
			  int prot,
1458
			  gfp_t gfp)
1459
{
1460
	u64 __pte, *pte;
1461
	int i, count;
1462

1463 1464 1465
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1466
	if (!(prot & IOMMU_PROT_MASK))
1467 1468
		return -EINVAL;

1469
	count = PAGE_SIZE_PTE_COUNT(page_size);
1470
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1471

1472 1473 1474
	if (!pte)
		return -ENOMEM;

1475 1476 1477
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1478

1479
	if (count > 1) {
1480
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1481
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1482
	} else
1483
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1484 1485 1486 1487 1488 1489

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1490 1491
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1492

1493 1494
	update_domain(dom);

1495 1496 1497
	return 0;
}

1498 1499 1500
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1501
{
1502 1503
	unsigned long long unmapped;
	unsigned long unmap_size;
1504 1505 1506 1507 1508
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1509

1510 1511
	while (unmapped < page_size) {

1512 1513 1514 1515 1516 1517
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1518 1519 1520 1521 1522 1523 1524 1525
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1526
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1527

1528
	return unmapped;
1529 1530
}

1531 1532 1533
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1534
 * interface functions.
1535 1536
 *
 ****************************************************************************/
1537

1538

1539 1540 1541
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1542
{
1543
	unsigned long pfn = 0;
1544

1545
	pages = __roundup_pow_of_two(pages);
1546

1547 1548
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1549
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1550

1551
	if (!pfn)
1552 1553
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1554

1555
	return (pfn << PAGE_SHIFT);
1556 1557
}

1558 1559 1560
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1561
{
1562 1563
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1564

1565
	free_iova_fast(&dma_dom->iovad, address, pages);
1566 1567
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1603 1604 1605 1606
static u16 domain_id_alloc(void)
{
	int id;

1607
	spin_lock(&pd_bitmap_lock);
1608 1609 1610 1611 1612 1613
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
1614
	spin_unlock(&pd_bitmap_lock);
1615 1616 1617 1618

	return id;
}

1619 1620
static void domain_id_free(int id)
{
1621
	spin_lock(&pd_bitmap_lock);
1622 1623
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1624
	spin_unlock(&pd_bitmap_lock);
1625 1626
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1637
		/* PTE present? */				\
1638 1639 1640
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1641 1642 1643 1644 1645
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1658
static void free_pagetable(struct protection_domain *domain)
1659
{
1660
	unsigned long root = (unsigned long)domain->pt_root;
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1685 1686 1687
	}
}

1688 1689 1690 1691 1692 1693 1694 1695 1696
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1697
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1712
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1713 1714 1715 1716 1717

		free_gcr3_tbl_level1(ptr);
	}
}

1718 1719
static void free_gcr3_table(struct protection_domain *domain)
{
1720 1721 1722 1723
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1724 1725
	else
		BUG_ON(domain->glx != 0);
1726

1727 1728 1729
	free_page((unsigned long)domain->gcr3_tbl);
}

1730 1731 1732 1733
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1734 1735
}

1736
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1737
{
1738
	struct dma_ops_domain *dom;
1739

1740
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1741 1742 1743 1744

	dma_ops_domain_flush_tlb(dom);
}

1745 1746 1747 1748
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1749 1750 1751 1752 1753
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1754 1755
	del_domain_from_list(&dom->domain);

1756
	put_iova_domain(&dom->iovad);
1757

1758
	free_pagetable(&dom->domain);
1759

1760 1761 1762
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1763 1764 1765
	kfree(dom);
}

1766 1767
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1768
 * It also initializes the page table and the address allocator data
1769 1770
 * structures required for the dma_ops interface
 */
1771
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1772 1773 1774 1775 1776 1777 1778
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1779
	if (protection_domain_init(&dma_dom->domain))
1780
		goto free_dma_dom;
1781

1782
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1783
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1784
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1785 1786 1787
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1788
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1789

1790
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1791 1792
		goto free_dma_dom;

1793 1794
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1795

1796 1797
	add_domain_to_list(&dma_dom->domain);

1798 1799 1800 1801 1802 1803 1804 1805
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1806 1807 1808 1809 1810 1811 1812 1813 1814
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1815 1816
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1817
{
1818
	u64 pte_root = 0;
1819
	u64 flags = 0;
1820

1821
	if (domain->mode != PAGE_MODE_NONE)
1822
		pte_root = iommu_virt_to_phys(domain->pt_root);
1823

1824 1825
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1826
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1827

1828 1829
	flags = amd_iommu_dev_table[devid].data[1];

1830 1831 1832
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1833 1834 1835 1836 1837 1838 1839
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1840
	if (domain->flags & PD_IOMMUV2_MASK) {
1841
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1866
	flags &= ~DEV_DOMID_MASK;
1867 1868 1869 1870
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1871 1872 1873 1874 1875
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1876
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1877
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1878 1879

	amd_iommu_apply_erratum_63(devid);
1880 1881
}

1882 1883
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1884 1885
{
	struct amd_iommu *iommu;
1886
	u16 alias;
1887
	bool ats;
1888

1889
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1890
	alias = dev_data->alias;
1891
	ats   = dev_data->ats.enabled;
1892 1893 1894 1895 1896 1897 1898 1899 1900

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1901
	/* Update device table */
1902
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1903
	if (alias != dev_data->devid)
1904
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1905

1906
	device_flush_dte(dev_data);
1907 1908
}

1909
static void do_detach(struct iommu_dev_data *dev_data)
1910 1911
{
	struct amd_iommu *iommu;
1912
	u16 alias;
1913

1914 1915 1916 1917 1918 1919 1920 1921 1922
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1923
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1924
	alias = dev_data->alias;
1925 1926

	/* decrease reference counters */
1927 1928 1929 1930 1931 1932
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1933
	clear_dte_entry(dev_data->devid);
1934 1935
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1936

1937
	/* Flush the DTE entry */
1938
	device_flush_dte(dev_data);
1939 1940 1941 1942 1943 1944
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1945
static int __attach_device(struct iommu_dev_data *dev_data,
1946
			   struct protection_domain *domain)
1947
{
1948
	int ret;
1949

1950 1951 1952 1953 1954 1955
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1956 1957 1958
	/* lock domain */
	spin_lock(&domain->lock);

1959
	ret = -EBUSY;
1960
	if (dev_data->domain != NULL)
1961
		goto out_unlock;
1962

1963
	/* Attach alias group root */
1964
	do_attach(dev_data, domain);
1965

1966 1967 1968 1969
	ret = 0;

out_unlock:

1970 1971
	/* ready */
	spin_unlock(&domain->lock);
1972

1973
	return ret;
1974
}
1975

1976 1977 1978 1979 1980 1981 1982 1983

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1984 1985 1986 1987 1988 1989
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1990
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1991 1992 1993
	if (!pos)
		return -EINVAL;

1994 1995 1996
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1997 1998 1999 2000

	return 0;
}

2001 2002
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2003 2004 2005 2006 2007 2008 2009 2010
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2022 2023
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2024 2025 2026
	if (ret)
		goto out_err;

2027 2028 2029 2030 2031 2032
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2046
/* FIXME: Move this to PCI code */
2047
#define PCI_PRI_TLP_OFF		(1 << 15)
2048

J
Joerg Roedel 已提交
2049
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2050
{
2051
	u16 status;
2052 2053
	int pos;

2054
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2055 2056 2057
	if (!pos)
		return false;

2058
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2059

2060
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2061 2062
}

2063
/*
F
Frank Arnold 已提交
2064
 * If a device is not yet associated with a domain, this function
2065 2066
 * assigns it visible for the hardware
 */
2067 2068
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2069
{
2070
	struct pci_dev *pdev;
2071
	struct iommu_dev_data *dev_data;
2072
	unsigned long flags;
2073
	int ret;
2074

2075 2076
	dev_data = get_dev_data(dev);

2077 2078 2079 2080
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2081
	if (domain->flags & PD_IOMMUV2_MASK) {
2082
		if (!dev_data->passthrough)
2083 2084
			return -EINVAL;

2085 2086 2087
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2088

2089 2090 2091 2092
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2093 2094
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2095 2096 2097
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2098

2099
skip_ats_check:
2100
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2101
	ret = __attach_device(dev_data, domain);
2102 2103
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2104 2105 2106 2107 2108
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2109
	domain_flush_tlb_pde(domain);
2110 2111

	return ret;
2112 2113
}

2114 2115 2116
/*
 * Removes a device from a protection domain (unlocked)
 */
2117
static void __detach_device(struct iommu_dev_data *dev_data)
2118
{
2119
	struct protection_domain *domain;
2120

2121 2122 2123 2124 2125
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2126

2127 2128
	if (WARN_ON(!dev_data->domain))
		return;
2129

2130
	domain = dev_data->domain;
2131

2132
	spin_lock(&domain->lock);
2133

2134
	do_detach(dev_data);
2135

2136
	spin_unlock(&domain->lock);
2137 2138 2139 2140 2141
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2142
static void detach_device(struct device *dev)
2143
{
2144
	struct protection_domain *domain;
2145
	struct iommu_dev_data *dev_data;
2146 2147
	unsigned long flags;

2148
	dev_data = get_dev_data(dev);
2149
	domain   = dev_data->domain;
2150

2151 2152
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2153
	__detach_device(dev_data);
2154
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2155

2156 2157 2158
	if (!dev_is_pci(dev))
		return;

2159
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2160 2161
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2162
		pci_disable_ats(to_pci_dev(dev));
2163 2164

	dev_data->ats.enabled = false;
2165
}
2166

2167
static int amd_iommu_add_device(struct device *dev)
2168
{
2169
	struct iommu_dev_data *dev_data;
2170
	struct iommu_domain *domain;
2171
	struct amd_iommu *iommu;
2172
	int ret, devid;
2173

2174
	if (!check_device(dev) || get_dev_data(dev))
2175
		return 0;
2176

2177
	devid = get_device_id(dev);
2178
	if (devid < 0)
2179 2180
		return devid;

2181
	iommu = amd_iommu_rlookup_table[devid];
2182

2183
	ret = iommu_init_device(dev);
2184 2185 2186 2187
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2188

2189
		iommu_ignore_device(dev);
2190
		dev->dma_ops = &nommu_dma_ops;
2191 2192 2193
		goto out;
	}
	init_iommu_group(dev);
2194

2195
	dev_data = get_dev_data(dev);
2196

2197
	BUG_ON(!dev_data);
2198

2199
	if (iommu_pass_through || dev_data->iommu_v2)
2200
		iommu_request_dm_for_dev(dev);
2201

2202 2203
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2204
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2205
		dev_data->passthrough = true;
2206
	else
2207
		dev->dma_ops = &amd_iommu_dma_ops;
2208

2209
out:
2210 2211 2212 2213 2214
	iommu_completion_wait(iommu);

	return 0;
}

2215
static void amd_iommu_remove_device(struct device *dev)
2216
{
2217
	struct amd_iommu *iommu;
2218
	int devid;
2219 2220 2221 2222 2223

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2224
	if (devid < 0)
2225 2226
		return;

2227 2228 2229 2230
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2231 2232
}

2233 2234 2235 2236 2237 2238 2239 2240
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2254
static struct protection_domain *get_domain(struct device *dev)
2255
{
2256
	struct protection_domain *domain;
2257
	struct iommu_domain *io_domain;
2258

2259
	if (!check_device(dev))
2260
		return ERR_PTR(-EINVAL);
2261

2262
	domain = get_dev_data(dev)->domain;
2263 2264 2265 2266 2267 2268
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2269 2270 2271
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2272
	if (!dma_ops_domain(domain))
2273
		return ERR_PTR(-EBUSY);
2274

2275
	return domain;
2276 2277
}

2278 2279
static void update_device_table(struct protection_domain *domain)
{
2280
	struct iommu_dev_data *dev_data;
2281

2282
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2283 2284
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2285 2286 2287 2288 2289

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2290 2291
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2292
	}
2293 2294 2295 2296 2297 2298 2299 2300
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2301 2302 2303

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2304 2305 2306 2307

	domain->updated = false;
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2319

2320 2321
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2322 2323
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2324 2325
 * Must be called with the domain lock held.
 */
2326 2327 2328 2329
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2330
			       enum dma_data_direction direction,
2331
			       u64 dma_mask)
2332 2333
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2334
	dma_addr_t address, start, ret;
2335
	unsigned int pages;
2336
	int prot = 0;
2337 2338
	int i;

2339
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2340 2341
	paddr &= PAGE_MASK;

2342
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2343
	if (address == AMD_IOMMU_MAPPING_ERROR)
2344
		goto out;
2345

2346
	prot = dir2prot(direction);
2347

2348 2349
	start = address;
	for (i = 0; i < pages; ++i) {
2350 2351 2352
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2353 2354
			goto out_unmap;

2355 2356 2357 2358 2359
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2360
	if (unlikely(amd_iommu_np_cache)) {
2361
		domain_flush_pages(&dma_dom->domain, address, size);
2362 2363
		domain_flush_complete(&dma_dom->domain);
	}
2364

2365 2366
out:
	return address;
2367 2368 2369 2370 2371

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2372
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2373 2374
	}

2375 2376 2377 2378
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2379

2380
	return AMD_IOMMU_MAPPING_ERROR;
2381 2382
}

2383 2384 2385 2386
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2387
static void __unmap_single(struct dma_ops_domain *dma_dom,
2388 2389 2390 2391 2392 2393 2394
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2395
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2396 2397 2398 2399
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2400
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2401 2402 2403
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2404 2405 2406 2407 2408
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
2409 2410
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2411
	}
2412 2413
}

2414 2415 2416
/*
 * The exported map_single function for dma_ops.
 */
2417 2418 2419
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2420
			   unsigned long attrs)
2421
{
2422
	phys_addr_t paddr = page_to_phys(page) + offset;
2423
	struct protection_domain *domain;
2424
	struct dma_ops_domain *dma_dom;
2425
	u64 dma_mask;
2426

2427 2428
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2429
		return (dma_addr_t)paddr;
2430
	else if (IS_ERR(domain))
2431
		return AMD_IOMMU_MAPPING_ERROR;
2432

2433
	dma_mask = *dev->dma_mask;
2434
	dma_dom = to_dma_ops_domain(domain);
2435

2436
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2437 2438
}

2439 2440 2441
/*
 * The exported unmap_single function for dma_ops.
 */
2442
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2443
		       enum dma_data_direction dir, unsigned long attrs)
2444 2445
{
	struct protection_domain *domain;
2446
	struct dma_ops_domain *dma_dom;
2447

2448 2449
	domain = get_domain(dev);
	if (IS_ERR(domain))
2450 2451
		return;

2452 2453 2454
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2455 2456
}

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2483 2484 2485 2486
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2487
static int map_sg(struct device *dev, struct scatterlist *sglist,
2488
		  int nelems, enum dma_data_direction direction,
2489
		  unsigned long attrs)
2490
{
2491
	int mapped_pages = 0, npages = 0, prot = 0, i;
2492
	struct protection_domain *domain;
2493
	struct dma_ops_domain *dma_dom;
2494
	struct scatterlist *s;
2495
	unsigned long address;
2496
	u64 dma_mask;
2497

2498
	domain = get_domain(dev);
2499
	if (IS_ERR(domain))
2500
		return 0;
2501

2502
	dma_dom  = to_dma_ops_domain(domain);
2503
	dma_mask = *dev->dma_mask;
2504

2505 2506 2507
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2508
	if (address == AMD_IOMMU_MAPPING_ERROR)
2509 2510 2511 2512 2513
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2514
	for_each_sg(sglist, s, nelems, i) {
2515 2516 2517 2518 2519
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2520

2521 2522 2523 2524 2525
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2526

2527 2528
			mapped_pages += 1;
		}
2529 2530
	}

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2548

2549 2550 2551 2552 2553 2554
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2555 2556
	}

2557 2558 2559 2560
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2561
	return 0;
2562 2563
}

2564 2565 2566 2567
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2568
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2569
		     int nelems, enum dma_data_direction dir,
2570
		     unsigned long attrs)
2571 2572
{
	struct protection_domain *domain;
2573
	struct dma_ops_domain *dma_dom;
2574 2575
	unsigned long startaddr;
	int npages = 2;
2576

2577 2578
	domain = get_domain(dev);
	if (IS_ERR(domain))
2579 2580
		return;

2581
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2582
	dma_dom   = to_dma_ops_domain(domain);
2583 2584
	npages    = sg_num_pages(dev, sglist, nelems);

2585
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2586 2587
}

2588 2589 2590
/*
 * The exported alloc_coherent function for dma_ops.
 */
2591
static void *alloc_coherent(struct device *dev, size_t size,
2592
			    dma_addr_t *dma_addr, gfp_t flag,
2593
			    unsigned long attrs)
2594
{
2595
	u64 dma_mask = dev->coherent_dma_mask;
2596
	struct protection_domain *domain;
2597
	struct dma_ops_domain *dma_dom;
2598
	struct page *page;
2599

2600 2601
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2602 2603 2604
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2605 2606
	} else if (IS_ERR(domain))
		return NULL;
2607

2608
	dma_dom   = to_dma_ops_domain(domain);
2609
	size	  = PAGE_ALIGN(size);
2610 2611
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2612
	flag     |= __GFP_ZERO;
2613

2614 2615
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2616
		if (!gfpflags_allow_blocking(flag))
2617
			return NULL;
2618

2619
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2620
						 get_order(size), flag);
2621 2622 2623
		if (!page)
			return NULL;
	}
2624

2625 2626 2627
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2628
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2629
				 size, DMA_BIDIRECTIONAL, dma_mask);
2630

2631
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2632
		goto out_free;
2633

2634
	return page_address(page);
2635 2636 2637

out_free:

2638 2639
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2640 2641

	return NULL;
2642 2643
}

2644 2645 2646
/*
 * The exported free_coherent function for dma_ops.
 */
2647
static void free_coherent(struct device *dev, size_t size,
2648
			  void *virt_addr, dma_addr_t dma_addr,
2649
			  unsigned long attrs)
2650 2651
{
	struct protection_domain *domain;
2652
	struct dma_ops_domain *dma_dom;
2653
	struct page *page;
2654

2655 2656 2657
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2658 2659
	domain = get_domain(dev);
	if (IS_ERR(domain))
2660 2661
		goto free_mem;

2662 2663 2664
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2665 2666

free_mem:
2667 2668
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2669 2670
}

2671 2672 2673 2674 2675 2676
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2677 2678
	if (!x86_dma_supported(dev, mask))
		return 0;
2679
	return check_device(dev);
2680 2681
}

2682 2683 2684 2685 2686
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2687
static const struct dma_map_ops amd_iommu_dma_ops = {
2688 2689 2690 2691 2692 2693 2694
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2695
	.mapping_error	= amd_iommu_mapping_error,
2696 2697
};

2698 2699 2700 2701 2702
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2703
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2750
int __init amd_iommu_init_api(void)
2751
{
2752
	int ret, err = 0;
2753 2754 2755 2756

	ret = iova_cache_get();
	if (ret)
		return ret;
2757

2758 2759 2760 2761
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2762 2763 2764 2765 2766 2767 2768 2769
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2770 2771 2772
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2773

2774
	return 0;
2775 2776
}

2777 2778
int __init amd_iommu_init_dma_ops(void)
{
2779
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2780 2781
	iommu_detected = 1;

2782 2783
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2784 2785 2786 2787 2788
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2789 2790 2791 2792
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2793 2794 2795 2796 2797
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2798
	return 0;
2799

2800
}
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2814
	struct iommu_dev_data *entry;
2815 2816 2817 2818
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2819 2820 2821 2822
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2823
	}
2824 2825 2826 2827

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2828 2829 2830 2831 2832
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2833 2834
	del_domain_from_list(domain);

2835 2836 2837 2838 2839 2840
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2853
static struct protection_domain *protection_domain_alloc(void)
2854 2855 2856 2857 2858
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2859
		return NULL;
2860

2861
	if (protection_domain_init(domain))
2862 2863
		goto out_err;

2864 2865
	add_domain_to_list(domain);

2866 2867 2868 2869 2870 2871 2872 2873
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2874
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2875
{
2876
	struct protection_domain *pdomain;
2877
	struct dma_ops_domain *dma_domain;
2878

2879 2880 2881 2882 2883
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2884

2885 2886 2887 2888 2889 2890
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2891

2892 2893 2894
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2895

2896 2897 2898 2899 2900 2901 2902 2903 2904
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2905 2906 2907 2908
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2909

2910 2911
		pdomain->mode = PAGE_MODE_NONE;
		break;
2912 2913 2914
	default:
		return NULL;
	}
2915

2916
	return &pdomain->domain;
2917 2918
}

2919
static void amd_iommu_domain_free(struct iommu_domain *dom)
2920
{
2921
	struct protection_domain *domain;
2922
	struct dma_ops_domain *dma_dom;
2923

2924 2925
	domain = to_pdomain(dom);

2926 2927 2928 2929 2930
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2931 2932
	if (!dom)
		return;
2933

2934 2935
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2936
		/* Now release the domain */
2937
		dma_dom = to_dma_ops_domain(domain);
2938 2939 2940 2941 2942
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2943

2944 2945 2946 2947 2948 2949
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2950 2951
}

2952 2953 2954
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2955
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2956
	struct amd_iommu *iommu;
2957
	int devid;
2958

2959
	if (!check_device(dev))
2960 2961
		return;

2962
	devid = get_device_id(dev);
2963
	if (devid < 0)
2964
		return;
2965

2966
	if (dev_data->domain != NULL)
2967
		detach_device(dev);
2968 2969 2970 2971 2972

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2973 2974 2975 2976 2977 2978
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2979 2980 2981
	iommu_completion_wait(iommu);
}

2982 2983 2984
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2985
	struct protection_domain *domain = to_pdomain(dom);
2986
	struct iommu_dev_data *dev_data;
2987
	struct amd_iommu *iommu;
2988
	int ret;
2989

2990
	if (!check_device(dev))
2991 2992
		return -EINVAL;

2993 2994
	dev_data = dev->archdata.iommu;

2995
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2996 2997 2998
	if (!iommu)
		return -EINVAL;

2999
	if (dev_data->domain)
3000
		detach_device(dev);
3001

3002
	ret = attach_device(dev, domain);
3003

3004 3005 3006 3007 3008 3009 3010 3011 3012
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3013 3014
	iommu_completion_wait(iommu);

3015
	return ret;
3016 3017
}

3018
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3019
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3020
{
3021
	struct protection_domain *domain = to_pdomain(dom);
3022 3023 3024
	int prot = 0;
	int ret;

3025 3026 3027
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3028 3029 3030 3031 3032
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3033
	mutex_lock(&domain->api_lock);
3034
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3035 3036
	mutex_unlock(&domain->api_lock);

3037
	return ret;
3038 3039
}

3040 3041
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3042
{
3043
	struct protection_domain *domain = to_pdomain(dom);
3044
	size_t unmap_size;
3045

3046 3047 3048
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3049
	mutex_lock(&domain->api_lock);
3050
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3051
	mutex_unlock(&domain->api_lock);
3052

3053
	return unmap_size;
3054 3055
}

3056
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3057
					  dma_addr_t iova)
3058
{
3059
	struct protection_domain *domain = to_pdomain(dom);
3060
	unsigned long offset_mask, pte_pgsize;
3061
	u64 *pte, __pte;
3062

3063 3064 3065
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3066
	pte = fetch_pte(domain, iova, &pte_pgsize);
3067

3068
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3069 3070
		return 0;

3071 3072
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3073

3074
	return (__pte & ~offset_mask) | (iova & offset_mask);
3075 3076
}

3077
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3078
{
3079 3080
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3081
		return true;
3082
	case IOMMU_CAP_INTR_REMAP:
3083
		return (irq_remapping_enabled == 1);
3084 3085
	case IOMMU_CAP_NOEXEC:
		return false;
3086 3087
	}

3088
	return false;
S
Sheng Yang 已提交
3089 3090
}

3091 3092
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3093
{
3094
	struct iommu_resv_region *region;
3095
	struct unity_map_entry *entry;
3096
	int devid;
3097 3098

	devid = get_device_id(dev);
3099
	if (devid < 0)
3100
		return;
3101 3102

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3103 3104
		size_t length;
		int prot = 0;
3105 3106 3107 3108

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3109 3110 3111 3112 3113 3114 3115 3116 3117
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3118 3119 3120 3121 3122 3123 3124
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3125 3126 3127

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3128
					 0, IOMMU_RESV_MSI);
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3139 3140
}

3141
static void amd_iommu_put_resv_regions(struct device *dev,
3142 3143
				     struct list_head *head)
{
3144
	struct iommu_resv_region *entry, *next;
3145 3146 3147 3148 3149

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3150
static void amd_iommu_apply_resv_region(struct device *dev,
3151
				      struct iommu_domain *domain,
3152
				      struct iommu_resv_region *region)
3153
{
3154
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3155 3156 3157
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3158
	end   = IOVA_PFN(region->start + region->length - 1);
3159 3160 3161 3162

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3163 3164 3165 3166 3167 3168 3169
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct protection_domain *dom = to_pdomain(domain);

	domain_flush_tlb_pde(dom);
	domain_flush_complete(dom);
}

static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
				      unsigned long iova, size_t size)
{
}

3183
const struct iommu_ops amd_iommu_ops = {
3184
	.capable = amd_iommu_capable,
3185 3186
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3187 3188
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3189 3190
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3191
	.map_sg = default_iommu_map_sg,
3192
	.iova_to_phys = amd_iommu_iova_to_phys,
3193 3194
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3195
	.device_group = amd_iommu_device_group,
3196 3197 3198
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3199
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3200
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3201 3202 3203
	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
	.iotlb_range_add = amd_iommu_iotlb_range_add,
	.iotlb_sync = amd_iommu_flush_iotlb_all,
3204 3205
};

3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3228 3229 3230

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3231
	struct protection_domain *domain = to_pdomain(dom);
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3249 3250 3251

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3252
	struct protection_domain *domain = to_pdomain(dom);
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3313
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3330 3331 3332 3333 3334 3335
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3367
	struct protection_domain *domain = to_pdomain(dom);
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3387
	struct protection_domain *domain = to_pdomain(dom);
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3420
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3421 3422
		}

3423
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3467
	struct protection_domain *domain = to_pdomain(dom);
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3481
	struct protection_domain *domain = to_pdomain(dom);
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3509 3510 3511

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3512
	struct protection_domain *pdomain;
3513

3514 3515
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3516 3517 3518
		return NULL;

	/* Only return IOMMUv2 domains */
3519
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3520 3521
		return NULL;

3522
	return &pdomain->domain;
3523 3524
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3580 3581 3582 3583 3584 3585 3586 3587 3588

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3589 3590
static struct irq_chip amd_ir_chip;

3591 3592 3593 3594 3595 3596
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3597
	dte	|= iommu_virt_to_phys(table->table);
3598 3599 3600 3601 3602 3603 3604
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

3620
static struct irq_remap_table *alloc_irq_table(u16 devid)
3621 3622 3623 3624 3625 3626
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

3627
	spin_lock_irqsave(&iommu_table_lock, flags);
3628 3629 3630 3631 3632 3633 3634

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3635
		goto out_unlock;
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3649
		goto out_unlock;
3650

3651
	/* Initialize table spin-lock */
3652
	raw_spin_lock_init(&table->lock);
3653

3654 3655 3656
	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3657
		table = NULL;
3658
		goto out_unlock;
3659 3660
	}

3661 3662 3663 3664 3665 3666
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3667 3668 3669 3670 3671 3672 3673


	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3674
		set_dte_irq_entry(alias, table);
3675 3676 3677 3678 3679 3680 3681
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
3682
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3683 3684 3685 3686

	return table;
}

3687
static int alloc_irq_index(u16 devid, int count, bool align)
3688 3689
{
	struct irq_remap_table *table;
3690
	int index, c, alignment = 1;
3691
	unsigned long flags;
3692 3693 3694 3695
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3696

3697
	table = alloc_irq_table(devid);
3698 3699 3700
	if (!table)
		return -ENODEV;

3701 3702 3703
	if (align)
		alignment = roundup_pow_of_two(count);

3704
	raw_spin_lock_irqsave(&table->lock, flags);
3705 3706

	/* Scan table for free entries */
3707
	for (index = ALIGN(table->min_index, alignment), c = 0;
3708
	     index < MAX_IRQS_PER_TABLE;) {
3709
		if (!iommu->irte_ops->is_allocated(table, index)) {
3710
			c += 1;
3711 3712
		} else {
			c     = 0;
3713
			index = ALIGN(index + 1, alignment);
3714 3715
			continue;
		}
3716 3717 3718

		if (c == count)	{
			for (; c != 0; --c)
3719
				iommu->irte_ops->set_allocated(table, index - c + 1);
3720 3721 3722 3723

			index -= count - 1;
			goto out;
		}
3724 3725

		index++;
3726 3727 3728 3729 3730
	}

	index = -ENOSPC;

out:
3731
	raw_spin_unlock_irqrestore(&table->lock, flags);
3732 3733 3734 3735

	return index;
}

3736 3737
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3738 3739 3740 3741
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3742
	struct irte_ga *entry;
3743 3744 3745 3746 3747

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3748
	table = get_irq_table(devid);
3749 3750 3751
	if (!table)
		return -ENOMEM;

3752
	raw_spin_lock_irqsave(&table->lock, flags);
3753 3754 3755 3756 3757 3758 3759

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3760 3761
	if (data)
		data->ref = entry;
3762

3763
	raw_spin_unlock_irqrestore(&table->lock, flags);
3764 3765 3766 3767 3768 3769 3770 3771

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3772 3773 3774 3775 3776 3777 3778 3779 3780
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3781
	table = get_irq_table(devid);
3782 3783 3784
	if (!table)
		return -ENOMEM;

3785
	raw_spin_lock_irqsave(&table->lock, flags);
3786
	table->table[index] = irte->val;
3787
	raw_spin_unlock_irqrestore(&table->lock, flags);
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3805
	table = get_irq_table(devid);
3806 3807 3808
	if (!table)
		return;

3809
	raw_spin_lock_irqsave(&table->lock, flags);
3810
	iommu->irte_ops->clear_allocated(table, index);
3811
	raw_spin_unlock_irqrestore(&table->lock, flags);
3812 3813 3814 3815 3816

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3817 3818
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3819
			 u8 vector, u32 dest_apicid, int devid)
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3833
			    u8 vector, u32 dest_apicid, int devid)
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3859
	modify_irte_ga(devid, index, irte, NULL);
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3875
	modify_irte_ga(devid, index, irte, NULL);
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3893
	if (!irte->lo.fields_remap.guest_mode) {
3894 3895 3896 3897
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
3898 3899
}

3900
#define IRTE_ALLOCATED (~1U)
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3946
static int get_devid(struct irq_alloc_info *info)
3947
{
3948
	int devid = -1;
3949

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3965

3966 3967
	return devid;
}
3968

3969 3970 3971 3972
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3973

3974 3975
	if (!info)
		return NULL;
3976

3977 3978 3979 3980 3981 3982
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3983

3984
	return NULL;
3985 3986
}

3987
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3988
{
3989 3990
	struct amd_iommu *iommu;
	int devid;
3991

3992 3993
	if (!info)
		return NULL;
3994

3995 3996 3997 3998
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3999
		if (devid < 0)
4000 4001
			return NULL;

4002 4003 4004
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4005 4006 4007 4008
		break;
	default:
		break;
	}
4009

4010 4011
	return NULL;
}
4012

4013 4014 4015 4016 4017 4018
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4019 4020 4021
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4022

4023 4024 4025 4026 4027 4028 4029 4030
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4031 4032 4033 4034
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4035

4036 4037
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4038 4039
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4040
				 irq_cfg->dest_apicid, devid);
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4056

4057 4058 4059 4060 4061 4062 4063
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4064

4065 4066 4067 4068
	default:
		BUG_ON(1);
		break;
	}
4069 4070
}

4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4091 4092
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4093
{
4094 4095
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4096
	struct amd_ir_data *data = NULL;
4097
	struct irq_cfg *cfg;
4098 4099
	int i, ret, devid;
	int index = -1;
4100

4101 4102 4103 4104
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4105 4106
		return -EINVAL;

4107 4108 4109 4110 4111 4112
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4113

4114 4115 4116
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4117

4118 4119 4120
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4121

4122
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
		struct irq_remap_table *table;
		struct amd_iommu *iommu;

		table = alloc_irq_table(devid);
		if (table) {
			if (!table->min_index) {
				/*
				 * Keep the first 32 indexes free for IOAPIC
				 * interrupts.
				 */
				table->min_index = 32;
				iommu = amd_iommu_rlookup_table[devid];
				for (i = 0; i < 32; ++i)
					iommu->irte_ops->set_allocated(table, i);
			}
			WARN_ON(table->min_index != 32);
4139
			index = info->ioapic_pin;
4140
		} else {
4141
			ret = -ENOMEM;
4142
		}
4143
	} else {
4144 4145 4146
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4147 4148 4149
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4150
		ret = index;
4151 4152
		goto out_free_parent;
	}
4153

4154 4155 4156 4157 4158 4159 4160
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4161

4162 4163 4164 4165 4166
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4177 4178 4179 4180 4181 4182
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4183

4184
	return 0;
4185

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4197 4198
}

4199 4200
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4201
{
4202 4203 4204 4205
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4206

4207 4208 4209 4210 4211 4212
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4213
			kfree(data->entry);
4214 4215 4216 4217 4218
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4219

4220 4221 4222 4223 4224
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4225
static int irq_remapping_activate(struct irq_domain *domain,
4226
				  struct irq_data *irq_data, bool reserve)
4227 4228 4229
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4230
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4231
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4232

4233 4234 4235 4236 4237 4238
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4239
	return 0;
4240 4241
}

4242 4243
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4244
{
4245 4246
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4247
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4248

4249 4250 4251
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4252
}
4253

4254
static const struct irq_domain_ops amd_ir_domain_ops = {
4255 4256 4257 4258
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4259
};
4260

4261 4262 4263 4264 4265 4266 4267 4268
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4269 4270 4271 4272 4273 4274 4275 4276
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4299
		irte->lo.fields_vapic.ga_log_intr = 1;
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4342 4343 4344 4345 4346 4347 4348
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4349
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4350
	int ret;
4351

4352 4353 4354
	if (!iommu)
		return -ENODEV;

4355 4356 4357
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4358

4359
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4360 4361 4362 4363 4364
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4365
	send_cleanup_vector(cfg);
4366 4367

	return IRQ_SET_MASK_OK_DONE;
4368 4369
}

4370
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4371
{
4372
	struct amd_ir_data *ir_data = irq_data->chip_data;
4373

4374 4375
	*msg = ir_data->msi_entry;
}
4376

4377
static struct irq_chip amd_ir_chip = {
4378 4379 4380 4381 4382
	.name			= "AMD-IR",
	.irq_ack		= ir_ack_apic_edge,
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4383
};
4384

4385 4386
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4387 4388 4389 4390 4391 4392 4393
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4394 4395
	if (!iommu->ir_domain)
		return -ENOMEM;
4396

4397
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4398 4399 4400
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4401 4402
	return 0;
}
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4422
	irt = get_irq_table(devid);
4423 4424 4425
	if (!irt)
		return -ENODEV;

4426
	raw_spin_lock_irqsave(&irt->lock, flags);
4427 4428 4429 4430 4431 4432 4433 4434

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4435
	raw_spin_unlock_irqrestore(&irt->lock, flags);
4436 4437 4438 4439 4440 4441

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4442
#endif