amd_iommu.c 95.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35 36 37 38 39
#include <linux/irq.h>
#include <linux/msi.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
40
#include <asm/msidef.h>
41
#include <asm/proto.h>
42
#include <asm/iommu.h>
43
#include <asm/gart.h>
44
#include <asm/dma.h>
45 46 47

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
48
#include "irq_remapping.h"
49 50 51

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

52
#define LOOP_TIMEOUT	100000
53

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define AMD_IOMMU_PGSIZES	(~0xFFFUL)

72 73
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

74 75 76 77
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

78 79 80 81
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

82 83 84
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

85 86 87 88 89 90
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

91 92
static struct iommu_ops amd_iommu_ops;

93
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
94
int amd_iommu_max_glx_val = -1;
95

96 97
static struct dma_map_ops amd_iommu_dma_ops;

98 99 100
/*
 * general struct to manage commands send to an IOMMU
 */
101
struct iommu_cmd {
102 103 104
	u32 data[4];
};

105 106
struct kmem_cache *amd_iommu_irq_cache;

107
static void update_domain(struct protection_domain *domain);
108
static int __init alloc_passthrough_domain(void);
109

110 111 112 113 114 115
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

116
static struct iommu_dev_data *alloc_dev_data(u16 devid)
117 118 119 120 121 122 123 124
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

125
	dev_data->devid = devid;
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

177 178 179 180 181 182 183
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

184 185 186 187 188
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

189 190 191 192
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
193 194
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
195 196 197 198 199 200 201 202 203 204 205 206
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

207 208 209 210 211 212 213 214 215
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

244 245 246 247 248 249 250 251 252 253 254 255
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
256
	if (dev->bus != &pci_bus_type)
257 258 259 260 261 262 263 264 265 266 267 268 269 270
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

271 272 273 274 275 276 277 278
static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
{
	pci_dev_put(*from);
	*from = to;
}

#define REQ_ACS_FLAGS	(PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)

279 280
static int iommu_init_device(struct device *dev)
{
281
	struct pci_dev *dma_pdev, *pdev = to_pci_dev(dev);
282
	struct iommu_dev_data *dev_data;
283
	struct iommu_group *group;
284
	u16 alias;
285
	int ret;
286 287 288 289

	if (dev->archdata.iommu)
		return 0;

290
	dev_data = find_dev_data(get_device_id(dev));
291 292 293
	if (!dev_data)
		return -ENOMEM;

294
	alias = amd_iommu_alias_table[dev_data->devid];
295
	if (alias != dev_data->devid) {
296
		struct iommu_dev_data *alias_data;
297

298 299 300 301
		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
302 303 304
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
305
		dev_data->alias_data = alias_data;
306 307 308 309 310

		dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
	} else
		dma_pdev = pci_dev_get(pdev);

311
	/* Account for quirked devices */
312 313
	swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));

314 315 316 317
	/*
	 * If it's a multifunction device that does not support our
	 * required ACS flags, add to the same group as function 0.
	 */
318 319 320 321 322 323 324
	if (dma_pdev->multifunction &&
	    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
		swap_pci_ref(&dma_pdev,
			     pci_get_slot(dma_pdev->bus,
					  PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
					  0)));

325 326 327 328 329
	/*
	 * Devices on the root bus go through the iommu.  If that's not us,
	 * find the next upstream device and test ACS up to the root bus.
	 * Finding the next device may require skipping virtual buses.
	 */
330
	while (!pci_is_root_bus(dma_pdev->bus)) {
331 332 333 334 335 336 337 338 339 340
		struct pci_bus *bus = dma_pdev->bus;

		while (!bus->self) {
			if (!pci_is_root_bus(bus))
				bus = bus->parent;
			else
				goto root_bus;
		}

		if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
341 342
			break;

343
		swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
344 345
	}

346
root_bus:
347 348 349 350 351 352
	group = iommu_group_get(&dma_pdev->dev);
	pci_dev_put(dma_pdev);
	if (!group) {
		group = iommu_group_alloc();
		if (IS_ERR(group))
			return PTR_ERR(group);
353
	}
354

355 356 357 358 359 360 361
	ret = iommu_group_add_device(group, dev);

	iommu_group_put(group);

	if (ret)
		return ret;

362 363 364 365 366 367 368
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

369 370 371 372 373
	dev->archdata.iommu = dev_data;

	return 0;
}

374 375 376 377 378 379 380 381 382 383 384 385 386 387
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

388 389
static void iommu_uninit_device(struct device *dev)
{
390 391
	iommu_group_remove_device(dev);

392 393 394 395 396
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
397
}
J
Joerg Roedel 已提交
398 399 400

void __init amd_iommu_uninit_devices(void)
{
401
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
402 403 404 405 406 407 408 409 410
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
411 412 413 414

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
428 429 430
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
431 432 433 434 435 436 437 438 439 440 441
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
442 443 444 445 446 447
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

448
DECLARE_STATS_COUNTER(compl_wait);
449
DECLARE_STATS_COUNTER(cnt_map_single);
450
DECLARE_STATS_COUNTER(cnt_unmap_single);
451
DECLARE_STATS_COUNTER(cnt_map_sg);
452
DECLARE_STATS_COUNTER(cnt_unmap_sg);
453
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
454
DECLARE_STATS_COUNTER(cnt_free_coherent);
455
DECLARE_STATS_COUNTER(cross_page);
456
DECLARE_STATS_COUNTER(domain_flush_single);
457
DECLARE_STATS_COUNTER(domain_flush_all);
458
DECLARE_STATS_COUNTER(alloced_io_mem);
459
DECLARE_STATS_COUNTER(total_map_requests);
460 461 462 463 464
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
484
					 &amd_iommu_unmap_flush);
485 486

	amd_iommu_stats_add(&compl_wait);
487
	amd_iommu_stats_add(&cnt_map_single);
488
	amd_iommu_stats_add(&cnt_unmap_single);
489
	amd_iommu_stats_add(&cnt_map_sg);
490
	amd_iommu_stats_add(&cnt_unmap_sg);
491
	amd_iommu_stats_add(&cnt_alloc_coherent);
492
	amd_iommu_stats_add(&cnt_free_coherent);
493
	amd_iommu_stats_add(&cross_page);
494
	amd_iommu_stats_add(&domain_flush_single);
495
	amd_iommu_stats_add(&domain_flush_all);
496
	amd_iommu_stats_add(&alloced_io_mem);
497
	amd_iommu_stats_add(&total_map_requests);
498 499 500 501
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
502 503 504 505
}

#endif

506 507 508 509 510 511
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

512 513 514 515
static void dump_dte_entry(u16 devid)
{
	int i;

516 517
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
518 519 520
			amd_iommu_dev_table[devid].data[i]);
}

521 522 523 524 525 526 527 528 529
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

530
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
531
{
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
553

554
	printk(KERN_ERR "AMD-Vi: Event logged [");
555 556 557 558 559 560 561

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
562
		dump_dte_entry(devid);
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
584
		dump_command(address);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
605 606

	memset(__evt, 0, 4 * sizeof(u32));
607 608 609 610 611 612 613 614 615 616 617 618 619
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
620
		iommu_print_event(iommu, iommu->evt_buf + head);
621 622 623 624 625 626 627 628
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

629
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
630 631 632
{
	struct amd_iommu_fault fault;

633 634
	INC_STATS_COUNTER(pri_requests);

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	unsigned long flags;
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

657 658 659
	/* enable ppr interrupts again */
	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);

660 661 662 663 664 665
	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
682

683 684 685
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
686

687 688 689 690 691 692 693
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
694 695
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
696 697 698 699 700 701 702 703 704 705 706 707 708 709

		/*
		 * Release iommu->lock because ppr-handling might need to
		 * re-aquire it
		 */
		spin_unlock_irqrestore(&iommu->lock, flags);

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		spin_lock_irqsave(&iommu->lock, flags);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
710 711 712 713 714 715
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}

	spin_unlock_irqrestore(&iommu->lock, flags);
}

716
irqreturn_t amd_iommu_int_thread(int irq, void *data)
717
{
718 719
	struct amd_iommu *iommu;

720
	for_each_iommu(iommu) {
721
		iommu_poll_events(iommu);
722 723
		iommu_poll_ppr_log(iommu);
	}
724 725

	return IRQ_HANDLED;
726 727
}

728 729 730 731 732
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

733 734 735 736 737 738
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
759 760 761
{
	u8 *target;

762
	target = iommu->cmd_buf + tail;
763 764 765 766 767 768
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
769
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
770
}
771

772
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
773
{
774 775
	WARN_ON(address & 0x7ULL);

776
	memset(cmd, 0, sizeof(*cmd));
777 778 779
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
780 781 782
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

783 784 785 786 787 788 789
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = pasid & PASID_MASK;
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
	cmd->data[0] |= (pasid & 0xff) << 16;
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
		cmd->data[1]  = pasid & PASID_MASK;
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

906 907 908 909
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
910 911
}

912 913 914 915 916 917 918
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

919 920
/*
 * Writes the command to the IOMMUs command buffer and informs the
921
 * hardware about the new command.
922
 */
923 924 925
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
926
{
927
	u32 left, tail, head, next_tail;
928 929
	unsigned long flags;

930
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
931 932

again:
933 934
	spin_lock_irqsave(&iommu->lock, flags);

935 936 937 938
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
939

940 941 942 943
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
944

945 946
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
947

948 949 950 951 952 953
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
954 955
	}

956 957 958
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
959
	iommu->need_sync = sync;
960

961
	spin_unlock_irqrestore(&iommu->lock, flags);
962

963
	return 0;
964 965
}

966 967 968 969 970
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

971 972 973 974
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
975
static int iommu_completion_wait(struct amd_iommu *iommu)
976 977
{
	struct iommu_cmd cmd;
978
	volatile u64 sem = 0;
979
	int ret;
980

981
	if (!iommu->need_sync)
982
		return 0;
983

984
	build_completion_wait(&cmd, (u64)&sem);
985

986
	ret = iommu_queue_command_sync(iommu, &cmd, false);
987
	if (ret)
988
		return ret;
989

990
	return wait_on_sem(&sem);
991 992
}

993
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
994
{
995
	struct iommu_cmd cmd;
996

997
	build_inv_dte(&cmd, devid);
998

999 1000
	return iommu_queue_command(iommu, &cmd);
}
1001

1002 1003 1004
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1005

1006 1007
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1008

1009 1010
	iommu_completion_wait(iommu);
}
1011

1012 1013 1014 1015 1016 1017 1018
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1019

1020 1021 1022 1023 1024 1025
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1026

1027
	iommu_completion_wait(iommu);
1028 1029
}

1030
static void iommu_flush_all(struct amd_iommu *iommu)
1031
{
1032
	struct iommu_cmd cmd;
1033

1034
	build_inv_all(&cmd);
1035

1036 1037 1038 1039
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1059 1060
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1061 1062 1063 1064
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1065
		iommu_flush_irt_all(iommu);
1066
		iommu_flush_tlb_all(iommu);
1067 1068 1069
	}
}

1070
/*
1071
 * Command send function for flushing on-device TLB
1072
 */
1073 1074
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1075 1076
{
	struct amd_iommu *iommu;
1077
	struct iommu_cmd cmd;
1078
	int qdep;
1079

1080 1081
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1082

1083
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1084 1085

	return iommu_queue_command(iommu, &cmd);
1086 1087
}

1088 1089 1090
/*
 * Command send function for invalidating a device table entry
 */
1091
static int device_flush_dte(struct iommu_dev_data *dev_data)
1092
{
1093
	struct amd_iommu *iommu;
1094
	int ret;
1095

1096
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1097

1098
	ret = iommu_flush_dte(iommu, dev_data->devid);
1099 1100 1101
	if (ret)
		return ret;

1102
	if (dev_data->ats.enabled)
1103
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1104 1105

	return ret;
1106 1107
}

1108 1109 1110 1111 1112
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1113 1114
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1115
{
1116
	struct iommu_dev_data *dev_data;
1117 1118
	struct iommu_cmd cmd;
	int ret = 0, i;
1119

1120
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1121

1122 1123 1124 1125 1126 1127 1128 1129
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1130
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1131 1132
	}

1133 1134
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1135
		if (!dev_data->ats.enabled)
1136 1137
			continue;

1138
		ret |= device_flush_iotlb(dev_data, address, size);
1139 1140
	}

1141
	WARN_ON(ret);
1142 1143
}

1144 1145
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1146
{
1147
	__domain_flush_pages(domain, address, size, 0);
1148
}
1149

1150
/* Flush the whole IO/TLB for a given protection domain */
1151
static void domain_flush_tlb(struct protection_domain *domain)
1152
{
1153
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1154 1155
}

1156
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1157
static void domain_flush_tlb_pde(struct protection_domain *domain)
1158
{
1159
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1160 1161
}

1162
static void domain_flush_complete(struct protection_domain *domain)
1163
{
1164
	int i;
1165

1166 1167 1168
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1169

1170 1171 1172 1173 1174
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1175
	}
1176 1177
}

1178

1179
/*
1180
 * This function flushes the DTEs for all devices in domain
1181
 */
1182
static void domain_flush_devices(struct protection_domain *domain)
1183
{
1184
	struct iommu_dev_data *dev_data;
1185

1186
	list_for_each_entry(dev_data, &domain->dev_list, list)
1187
		device_flush_dte(dev_data);
1188 1189
}

1190 1191 1192 1193 1194 1195 1196
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1226
		      unsigned long page_size,
1227 1228 1229
		      u64 **pte_page,
		      gfp_t gfp)
{
1230
	int level, end_lvl;
1231
	u64 *pte, *page;
1232 1233

	BUG_ON(!is_power_of_2(page_size));
1234 1235 1236 1237

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1238 1239 1240 1241
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1242 1243 1244 1245 1246 1247 1248 1249 1250

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1251 1252 1253 1254
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1272
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1273 1274 1275 1276
{
	int level;
	u64 *pte;

1277 1278 1279 1280 1281
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1282

1283 1284 1285
	while (level > 0) {

		/* Not Present */
1286 1287 1288
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1308 1309
		level -= 1;

1310
		/* Walk to the next level */
1311 1312 1313 1314 1315 1316 1317
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1318 1319 1320 1321 1322 1323 1324
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1325 1326 1327
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1328
			  int prot,
1329
			  unsigned long page_size)
1330
{
1331
	u64 __pte, *pte;
1332
	int i, count;
1333

1334
	if (!(prot & IOMMU_PROT_MASK))
1335 1336
		return -EINVAL;

1337 1338 1339 1340 1341 1342 1343 1344
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1345

1346 1347 1348 1349 1350
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1351 1352 1353 1354 1355 1356

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1357 1358
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1359

1360 1361
	update_domain(dom);

1362 1363 1364
	return 0;
}

1365 1366 1367
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1368
{
1369 1370 1371 1372 1373 1374
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1405

1406
	return unmapped;
1407 1408
}

1409 1410 1411 1412
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1427 1428 1429 1430
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1431 1432 1433 1434 1435 1436 1437 1438
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1439
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1440
				     PAGE_SIZE);
1441 1442 1443 1444 1445 1446 1447
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1448
			__set_bit(addr >> PAGE_SHIFT,
1449
				  dma_dom->aperture[0]->bitmap);
1450 1451 1452 1453 1454
	}

	return 0;
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1477 1478 1479
/*
 * Inits the unity mappings required for a specific device
 */
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1497 1498 1499 1500 1501 1502 1503 1504 1505
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1506

1507
/*
1508
 * The address allocator core functions.
1509 1510 1511
 *
 * called with domain->lock held
 */
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1533 1534 1535 1536 1537
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1538
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1539 1540 1541
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1542
	struct amd_iommu *iommu;
1543
	unsigned long i, old_size;
1544

1545 1546 1547 1548
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1568
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1579
	old_size                = dma_dom->aperture_size;
1580 1581
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1594
	/* Initialize the exclusion range if necessary */
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1617
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1618 1619 1620
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1621
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1622 1623
	}

1624 1625
	update_domain(&dma_dom->domain);

1626 1627 1628
	return 0;

out_free:
1629 1630
	update_domain(&dma_dom->domain);

1631 1632 1633 1634 1635 1636 1637 1638
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1639 1640 1641 1642 1643 1644 1645
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1646
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1647 1648 1649 1650 1651 1652
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1653 1654
	next_bit >>= PAGE_SHIFT;

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1673
			dom->next_address = address + (pages << PAGE_SHIFT);
1674 1675 1676 1677 1678 1679 1680 1681 1682
			break;
		}

		next_bit = 0;
	}

	return address;
}

1683 1684
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1685
					     unsigned int pages,
1686 1687
					     unsigned long align_mask,
					     u64 dma_mask)
1688 1689 1690
{
	unsigned long address;

1691 1692 1693 1694
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1695

1696
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1697
				     dma_mask, dom->next_address);
1698

1699
	if (address == -1) {
1700
		dom->next_address = 0;
1701 1702
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1703 1704
		dom->need_flush = true;
	}
1705

1706
	if (unlikely(address == -1))
1707
		address = DMA_ERROR_CODE;
1708 1709 1710 1711 1712 1713

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1714 1715 1716 1717 1718
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1719 1720 1721 1722
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1723 1724
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1725

1726 1727
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1728 1729 1730 1731
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1732

1733
	if (address >= dom->next_address)
1734
		dom->need_flush = true;
1735 1736

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1737

A
Akinobu Mita 已提交
1738
	bitmap_clear(range->bitmap, address, pages);
1739

1740 1741
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1804
static void free_pagetable(struct protection_domain *domain)
1805 1806 1807 1808
{
	int i, j;
	u64 *p1, *p2, *p3;

1809
	p1 = domain->pt_root;
1810 1811 1812 1813 1814 1815 1816 1817 1818

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1819
		for (j = 0; j < 512; ++j) {
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1830 1831

	domain->pt_root = NULL;
1832 1833
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1864 1865
static void free_gcr3_table(struct protection_domain *domain)
{
1866 1867 1868 1869 1870 1871 1872
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1873 1874 1875
	free_page((unsigned long)domain->gcr3_tbl);
}

1876 1877 1878 1879
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1880 1881
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1882 1883
	int i;

1884 1885 1886
	if (!dom)
		return;

1887 1888
	del_domain_from_list(&dom->domain);

1889
	free_pagetable(&dom->domain);
1890

1891 1892 1893 1894 1895 1896
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1897 1898 1899 1900

	kfree(dom);
}

1901 1902
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1903
 * It also initializes the page table and the address allocator data
1904 1905
 * structures required for the dma_ops interface
 */
1906
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1919
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1920
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1921
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1922
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1923 1924 1925 1926
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1927
	dma_dom->need_flush = false;
1928
	dma_dom->target_dev = 0xffff;
1929

1930 1931
	add_domain_to_list(&dma_dom->domain);

1932
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1933 1934
		goto free_dma_dom;

1935
	/*
1936 1937
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1938
	 */
1939
	dma_dom->aperture[0]->bitmap[0] = 1;
1940
	dma_dom->next_address = 0;
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1951 1952 1953 1954 1955 1956 1957 1958 1959
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1960
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1961
{
1962
	u64 pte_root = 0;
1963
	u64 flags = 0;
1964

1965 1966 1967
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1968 1969 1970
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1971

1972 1973
	flags = amd_iommu_dev_table[devid].data[1];

1974 1975 1976
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2003 2004 2005 2006 2007
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2008 2009 2010 2011 2012 2013 2014 2015 2016
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2017 2018
}

2019 2020
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2021 2022
{
	struct amd_iommu *iommu;
2023
	bool ats;
2024

2025 2026
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2027 2028 2029 2030

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2031
	set_dte_entry(dev_data->devid, domain, ats);
2032 2033 2034 2035 2036 2037

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2038
	device_flush_dte(dev_data);
2039 2040
}

2041
static void do_detach(struct iommu_dev_data *dev_data)
2042 2043 2044
{
	struct amd_iommu *iommu;

2045
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2046 2047

	/* decrease reference counters */
2048 2049 2050 2051 2052 2053
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2054
	clear_dte_entry(dev_data->devid);
2055

2056
	/* Flush the DTE entry */
2057
	device_flush_dte(dev_data);
2058 2059 2060 2061 2062 2063
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2064
static int __attach_device(struct iommu_dev_data *dev_data,
2065
			   struct protection_domain *domain)
2066
{
2067
	int ret;
2068

2069 2070 2071
	/* lock domain */
	spin_lock(&domain->lock);

2072 2073
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2074

2075 2076 2077 2078 2079
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
2080

2081 2082 2083
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
2084

2085
		/* Do real assignment */
2086
		if (alias_data->domain == NULL)
2087
			do_attach(alias_data, domain);
2088 2089

		atomic_inc(&alias_data->bind);
2090
	}
2091

2092
	if (dev_data->domain == NULL)
2093
		do_attach(dev_data, domain);
2094

2095 2096
	atomic_inc(&dev_data->bind);

2097 2098 2099 2100
	ret = 0;

out_unlock:

2101 2102
	/* ready */
	spin_unlock(&domain->lock);
2103

2104
	return ret;
2105
}
2106

2107 2108 2109 2110 2111 2112 2113 2114

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2115 2116 2117 2118 2119 2120
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2121
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2122 2123 2124
	if (!pos)
		return -EINVAL;

2125 2126 2127
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2128 2129 2130 2131

	return 0;
}

2132 2133
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2134 2135 2136 2137 2138 2139 2140 2141
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2153 2154
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2155 2156 2157
	if (ret)
		goto out_err;

2158 2159 2160 2161 2162 2163
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2177
/* FIXME: Move this to PCI code */
2178
#define PCI_PRI_TLP_OFF		(1 << 15)
2179

J
Joerg Roedel 已提交
2180
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2181
{
2182
	u16 status;
2183 2184
	int pos;

2185
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2186 2187 2188
	if (!pos)
		return false;

2189
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2190

2191
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2192 2193
}

2194 2195 2196 2197
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2198 2199
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2200
{
2201
	struct pci_dev *pdev = to_pci_dev(dev);
2202
	struct iommu_dev_data *dev_data;
2203
	unsigned long flags;
2204
	int ret;
2205

2206 2207
	dev_data = get_dev_data(dev);

2208 2209 2210 2211 2212 2213 2214 2215 2216
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2217
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2218 2219
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2220 2221 2222
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2223

2224
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2225
	ret = __attach_device(dev_data, domain);
2226 2227
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2228 2229 2230 2231 2232
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2233
	domain_flush_tlb_pde(domain);
2234 2235

	return ret;
2236 2237
}

2238 2239 2240
/*
 * Removes a device from a protection domain (unlocked)
 */
2241
static void __detach_device(struct iommu_dev_data *dev_data)
2242
{
2243
	struct protection_domain *domain;
2244
	unsigned long flags;
2245

2246
	BUG_ON(!dev_data->domain);
2247

2248 2249 2250
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2251

2252 2253 2254
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2255
		if (atomic_dec_and_test(&alias_data->bind))
2256
			do_detach(alias_data);
2257 2258
	}

2259
	if (atomic_dec_and_test(&dev_data->bind))
2260
		do_detach(dev_data);
2261

2262
	spin_unlock_irqrestore(&domain->lock, flags);
2263 2264 2265

	/*
	 * If we run in passthrough mode the device must be assigned to the
2266 2267
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2268
	 */
2269
	if (dev_data->passthrough &&
2270
	    (dev_data->domain == NULL && domain != pt_domain))
2271
		__attach_device(dev_data, pt_domain);
2272 2273 2274 2275 2276
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2277
static void detach_device(struct device *dev)
2278
{
2279
	struct protection_domain *domain;
2280
	struct iommu_dev_data *dev_data;
2281 2282
	unsigned long flags;

2283
	dev_data = get_dev_data(dev);
2284
	domain   = dev_data->domain;
2285

2286 2287
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2288
	__detach_device(dev_data);
2289
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2290

2291 2292 2293
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2294
		pci_disable_ats(to_pci_dev(dev));
2295 2296

	dev_data->ats.enabled = false;
2297
}
2298

2299 2300 2301 2302 2303 2304
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2305
	struct iommu_dev_data *dev_data;
2306
	struct protection_domain *dom = NULL;
2307 2308
	unsigned long flags;

2309
	dev_data   = get_dev_data(dev);
2310

2311 2312
	if (dev_data->domain)
		return dev_data->domain;
2313

2314 2315
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2316 2317 2318 2319 2320 2321 2322 2323

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2324 2325 2326 2327

	return dom;
}

2328 2329 2330 2331
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2332 2333 2334
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2335
	struct amd_iommu *iommu;
2336
	unsigned long flags;
2337
	u16 devid;
2338

2339 2340
	if (!check_device(dev))
		return 0;
2341

2342 2343 2344
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2345 2346

	switch (action) {
2347
	case BUS_NOTIFY_UNBOUND_DRIVER:
2348 2349 2350

		domain = domain_for_device(dev);

2351 2352
		if (!domain)
			goto out;
2353
		if (dev_data->passthrough)
2354
			break;
2355
		detach_device(dev);
2356 2357
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2358 2359 2360

		iommu_init_device(dev);

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2373 2374
		domain = domain_for_device(dev);

2375 2376 2377 2378
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
2379
		dma_domain = dma_ops_domain_alloc();
2380 2381 2382 2383 2384 2385 2386 2387
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

2388 2389
		dev_data = get_dev_data(dev);

2390
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2391

2392
		break;
2393 2394 2395 2396
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2407
static struct notifier_block device_nb = {
2408 2409
	.notifier_call = device_change_notifier,
};
2410

2411 2412 2413 2414 2415
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2429
static struct protection_domain *get_domain(struct device *dev)
2430
{
2431
	struct protection_domain *domain;
2432
	struct dma_ops_domain *dma_dom;
2433
	u16 devid = get_device_id(dev);
2434

2435
	if (!check_device(dev))
2436
		return ERR_PTR(-EINVAL);
2437

2438 2439 2440
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2441

2442 2443
	if (domain != NULL)
		return domain;
2444

2445
	/* Device not bount yet - bind it */
2446
	dma_dom = find_protection_domain(devid);
2447
	if (!dma_dom)
2448 2449
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2450
	DUMP_printk("Using protection domain %d for device %s\n",
2451
		    dma_dom->domain.id, dev_name(dev));
2452

2453
	return &dma_dom->domain;
2454 2455
}

2456 2457
static void update_device_table(struct protection_domain *domain)
{
2458
	struct iommu_dev_data *dev_data;
2459

2460 2461
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2462 2463 2464 2465 2466 2467 2468 2469
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2470 2471 2472

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2473 2474 2475 2476

	domain->updated = false;
}

2477 2478 2479 2480 2481 2482
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2483
	struct aperture_range *aperture;
2484 2485
	u64 *pte, *pte_page;

2486 2487 2488 2489 2490
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2491
	if (!pte) {
2492
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2493
				GFP_ATOMIC);
2494 2495
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2496
		pte += PM_LEVEL_INDEX(0, address);
2497

2498
	update_domain(&dom->domain);
2499 2500 2501 2502

	return pte;
}

2503 2504 2505 2506
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2507
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2518
	pte  = dma_ops_get_pte(dom, address);
2519
	if (!pte)
2520
		return DMA_ERROR_CODE;
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2538 2539 2540
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2541
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2542 2543
				 unsigned long address)
{
2544
	struct aperture_range *aperture;
2545 2546 2547 2548 2549
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2550 2551 2552 2553 2554 2555 2556
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2557

2558
	pte += PM_LEVEL_INDEX(0, address);
2559 2560 2561 2562 2563 2564

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2565 2566
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2567 2568
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2569 2570
 * Must be called with the domain lock held.
 */
2571 2572 2573 2574
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2575
			       int dir,
2576 2577
			       bool align,
			       u64 dma_mask)
2578 2579
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2580
	dma_addr_t address, start, ret;
2581
	unsigned int pages;
2582
	unsigned long align_mask = 0;
2583 2584
	int i;

2585
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2586 2587
	paddr &= PAGE_MASK;

2588 2589
	INC_STATS_COUNTER(total_map_requests);

2590 2591 2592
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2593 2594 2595
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2596
retry:
2597 2598
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2599
	if (unlikely(address == DMA_ERROR_CODE)) {
2600 2601 2602 2603 2604 2605 2606
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2607
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2608 2609 2610
			goto out;

		/*
2611
		 * aperture was successfully enlarged by 128 MB, try
2612 2613 2614 2615
		 * allocation again
		 */
		goto retry;
	}
2616 2617 2618

	start = address;
	for (i = 0; i < pages; ++i) {
2619
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2620
		if (ret == DMA_ERROR_CODE)
2621 2622
			goto out_unmap;

2623 2624 2625 2626 2627
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2628 2629
	ADD_STATS_COUNTER(alloced_io_mem, size);

2630
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2631
		domain_flush_tlb(&dma_dom->domain);
2632
		dma_dom->need_flush = false;
2633
	} else if (unlikely(amd_iommu_np_cache))
2634
		domain_flush_pages(&dma_dom->domain, address, size);
2635

2636 2637
out:
	return address;
2638 2639 2640 2641 2642

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2643
		dma_ops_domain_unmap(dma_dom, start);
2644 2645 2646 2647
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2648
	return DMA_ERROR_CODE;
2649 2650
}

2651 2652 2653 2654
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2655
static void __unmap_single(struct dma_ops_domain *dma_dom,
2656 2657 2658 2659
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2660
	dma_addr_t flush_addr;
2661 2662 2663
	dma_addr_t i, start;
	unsigned int pages;

2664
	if ((dma_addr == DMA_ERROR_CODE) ||
2665
	    (dma_addr + size > dma_dom->aperture_size))
2666 2667
		return;

2668
	flush_addr = dma_addr;
2669
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2670 2671 2672 2673
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2674
		dma_ops_domain_unmap(dma_dom, start);
2675 2676 2677
		start += PAGE_SIZE;
	}

2678 2679
	SUB_STATS_COUNTER(alloced_io_mem, size);

2680
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2681

2682
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2683
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2684 2685
		dma_dom->need_flush = false;
	}
2686 2687
}

2688 2689 2690
/*
 * The exported map_single function for dma_ops.
 */
2691 2692 2693 2694
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2695 2696 2697 2698
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2699
	u64 dma_mask;
2700
	phys_addr_t paddr = page_to_phys(page) + offset;
2701

2702 2703
	INC_STATS_COUNTER(cnt_map_single);

2704 2705
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2706
		return (dma_addr_t)paddr;
2707 2708
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2709

2710 2711
	dma_mask = *dev->dma_mask;

2712
	spin_lock_irqsave(&domain->lock, flags);
2713

2714
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2715
			    dma_mask);
2716
	if (addr == DMA_ERROR_CODE)
2717 2718
		goto out;

2719
	domain_flush_complete(domain);
2720 2721 2722 2723 2724 2725 2726

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2727 2728 2729
/*
 * The exported unmap_single function for dma_ops.
 */
2730 2731
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2732 2733 2734 2735
{
	unsigned long flags;
	struct protection_domain *domain;

2736 2737
	INC_STATS_COUNTER(cnt_unmap_single);

2738 2739
	domain = get_domain(dev);
	if (IS_ERR(domain))
2740 2741
		return;

2742 2743
	spin_lock_irqsave(&domain->lock, flags);

2744
	__unmap_single(domain->priv, dma_addr, size, dir);
2745

2746
	domain_flush_complete(domain);
2747 2748 2749 2750

	spin_unlock_irqrestore(&domain->lock, flags);
}

2751 2752 2753 2754
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2769 2770 2771 2772
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2773
static int map_sg(struct device *dev, struct scatterlist *sglist,
2774 2775
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2776 2777 2778 2779 2780 2781 2782
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2783
	u64 dma_mask;
2784

2785 2786
	INC_STATS_COUNTER(cnt_map_sg);

2787 2788
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2789
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2790 2791
	else if (IS_ERR(domain))
		return 0;
2792

2793
	dma_mask = *dev->dma_mask;
2794 2795 2796 2797 2798 2799

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2800
		s->dma_address = __map_single(dev, domain->priv,
2801 2802
					      paddr, s->length, dir, false,
					      dma_mask);
2803 2804 2805 2806 2807 2808 2809 2810

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2811
	domain_flush_complete(domain);
2812 2813 2814 2815 2816 2817 2818 2819

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2820
			__unmap_single(domain->priv, s->dma_address,
2821 2822 2823 2824 2825 2826 2827 2828 2829
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2830 2831 2832 2833
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2834
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2835 2836
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2837 2838 2839 2840 2841 2842
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2843 2844
	INC_STATS_COUNTER(cnt_unmap_sg);

2845 2846
	domain = get_domain(dev);
	if (IS_ERR(domain))
2847 2848
		return;

2849 2850 2851
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2852
		__unmap_single(domain->priv, s->dma_address,
2853 2854 2855 2856
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2857
	domain_flush_complete(domain);
2858 2859 2860 2861

	spin_unlock_irqrestore(&domain->lock, flags);
}

2862 2863 2864
/*
 * The exported alloc_coherent function for dma_ops.
 */
2865
static void *alloc_coherent(struct device *dev, size_t size,
2866 2867
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2868 2869 2870 2871 2872
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2873
	u64 dma_mask = dev->coherent_dma_mask;
2874

2875 2876
	INC_STATS_COUNTER(cnt_alloc_coherent);

2877 2878
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2879 2880 2881
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2882 2883
	} else if (IS_ERR(domain))
		return NULL;
2884

2885 2886 2887
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2888 2889 2890

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2891
		return NULL;
2892 2893 2894

	paddr = virt_to_phys(virt_addr);

2895 2896 2897
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2898 2899
	spin_lock_irqsave(&domain->lock, flags);

2900
	*dma_addr = __map_single(dev, domain->priv, paddr,
2901
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2902

2903
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2904
		spin_unlock_irqrestore(&domain->lock, flags);
2905
		goto out_free;
J
Jiri Slaby 已提交
2906
	}
2907

2908
	domain_flush_complete(domain);
2909 2910 2911 2912

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2913 2914 2915 2916 2917 2918

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2919 2920
}

2921 2922 2923
/*
 * The exported free_coherent function for dma_ops.
 */
2924
static void free_coherent(struct device *dev, size_t size,
2925 2926
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2927 2928 2929 2930
{
	unsigned long flags;
	struct protection_domain *domain;

2931 2932
	INC_STATS_COUNTER(cnt_free_coherent);

2933 2934
	domain = get_domain(dev);
	if (IS_ERR(domain))
2935 2936
		goto free_mem;

2937 2938
	spin_lock_irqsave(&domain->lock, flags);

2939
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2940

2941
	domain_flush_complete(domain);
2942 2943 2944 2945 2946 2947 2948

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2949 2950 2951 2952 2953 2954
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2955
	return check_device(dev);
2956 2957
}

2958
/*
2959 2960
 * The function for pre-allocating protection domains.
 *
2961 2962 2963 2964
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
2965
static void __init prealloc_protection_domains(void)
2966
{
2967
	struct iommu_dev_data *dev_data;
2968
	struct dma_ops_domain *dma_dom;
2969
	struct pci_dev *dev = NULL;
2970
	u16 devid;
2971

2972
	for_each_pci_dev(dev) {
2973 2974 2975

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2976
			continue;
2977

2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
			pr_info("AMD-Vi: Using passthough domain for device %s\n",
				dev_name(&dev->dev));
		}

2988
		/* Is there already any domain for it? */
2989
		if (domain_for_device(&dev->dev))
2990
			continue;
2991 2992 2993

		devid = get_device_id(&dev->dev);

2994
		dma_dom = dma_ops_domain_alloc();
2995 2996 2997
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2998 2999
		dma_dom->target_dev = devid;

3000
		attach_device(&dev->dev, &dma_dom->domain);
3001

3002
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3003 3004 3005
	}
}

3006
static struct dma_map_ops amd_iommu_dma_ops = {
3007 3008
	.alloc = alloc_coherent,
	.free = free_coherent,
3009 3010
	.map_page = map_page,
	.unmap_page = unmap_page,
3011 3012
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3013
	.dma_supported = amd_iommu_dma_supported,
3014 3015
};

3016 3017
static unsigned device_dma_ops_init(void)
{
3018
	struct iommu_dev_data *dev_data;
3019 3020 3021 3022 3023
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3024 3025 3026

			iommu_ignore_device(&pdev->dev);

3027 3028 3029 3030
			unhandled += 1;
			continue;
		}

3031 3032 3033 3034 3035 3036
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3037 3038 3039 3040 3041
	}

	return unhandled;
}

3042 3043 3044
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3045 3046 3047

void __init amd_iommu_init_api(void)
{
3048
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3049 3050
}

3051 3052 3053
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3054
	int ret, unhandled;
3055

3056 3057 3058 3059 3060
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3061
	for_each_iommu(iommu) {
3062
		iommu->default_dom = dma_ops_domain_alloc();
3063 3064
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3065
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3066 3067 3068 3069 3070
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3071
	/*
3072
	 * Pre-allocate the protection domains for each device.
3073
	 */
3074
	prealloc_protection_domains();
3075 3076

	iommu_detected = 1;
3077
	swiotlb = 0;
3078

3079
	/* Make the driver finally visible to the drivers */
3080 3081 3082 3083 3084
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3085

3086 3087
	amd_iommu_stats_init();

3088 3089 3090 3091 3092
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3093 3094 3095 3096
	return 0;

free_domains:

3097
	for_each_iommu(iommu) {
3098 3099 3100 3101 3102 3103
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3117
	struct iommu_dev_data *dev_data, *next;
3118 3119 3120 3121
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3122
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3123
		__detach_device(dev_data);
3124 3125
		atomic_set(&dev_data->bind, 0);
	}
3126 3127 3128 3129

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3130 3131 3132 3133 3134
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3135 3136
	del_domain_from_list(domain);

3137 3138 3139 3140 3141 3142 3143
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3144 3145 3146 3147 3148
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3149
		return NULL;
3150 3151

	spin_lock_init(&domain->lock);
3152
	mutex_init(&domain->api_lock);
3153 3154
	domain->id = domain_id_alloc();
	if (!domain->id)
3155
		goto out_err;
3156
	INIT_LIST_HEAD(&domain->dev_list);
3157

3158 3159
	add_domain_to_list(domain);

3160 3161 3162 3163 3164 3165 3166 3167
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3182 3183 3184 3185 3186 3187
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3188
		goto out_free;
3189 3190

	domain->mode    = PAGE_MODE_3_LEVEL;
3191 3192 3193 3194
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3195 3196
	domain->iommu_domain = dom;

3197 3198
	dom->priv = domain;

3199 3200 3201 3202
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3203 3204 3205
	return 0;

out_free:
3206
	protection_domain_free(domain);
3207 3208 3209 3210

	return -ENOMEM;
}

3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3223 3224
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3225

3226 3227 3228
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3229
	protection_domain_free(domain);
3230 3231 3232 3233

	dom->priv = NULL;
}

3234 3235 3236
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3237
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3238 3239 3240
	struct amd_iommu *iommu;
	u16 devid;

3241
	if (!check_device(dev))
3242 3243
		return;

3244
	devid = get_device_id(dev);
3245

3246
	if (dev_data->domain != NULL)
3247
		detach_device(dev);
3248 3249 3250 3251 3252 3253 3254 3255

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3256 3257 3258 3259
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3260
	struct iommu_dev_data *dev_data;
3261
	struct amd_iommu *iommu;
3262
	int ret;
3263

3264
	if (!check_device(dev))
3265 3266
		return -EINVAL;

3267 3268
	dev_data = dev->archdata.iommu;

3269
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3270 3271 3272
	if (!iommu)
		return -EINVAL;

3273
	if (dev_data->domain)
3274
		detach_device(dev);
3275

3276
	ret = attach_device(dev, domain);
3277 3278 3279

	iommu_completion_wait(iommu);

3280
	return ret;
3281 3282
}

3283
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3284
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3285 3286 3287 3288 3289
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3290 3291 3292
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3293 3294 3295 3296 3297
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3298
	mutex_lock(&domain->api_lock);
3299
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3300 3301
	mutex_unlock(&domain->api_lock);

3302
	return ret;
3303 3304
}

3305 3306
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3307 3308
{
	struct protection_domain *domain = dom->priv;
3309
	size_t unmap_size;
3310

3311 3312 3313
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3314
	mutex_lock(&domain->api_lock);
3315
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3316
	mutex_unlock(&domain->api_lock);
3317

3318
	domain_flush_tlb_pde(domain);
3319

3320
	return unmap_size;
3321 3322
}

3323 3324 3325 3326
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
3327
	unsigned long offset_mask;
3328
	phys_addr_t paddr;
3329
	u64 *pte, __pte;
3330

3331 3332 3333
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3334
	pte = fetch_pte(domain, iova);
3335

3336
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3337 3338
		return 0;

3339 3340 3341 3342 3343 3344 3345
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3346 3347 3348 3349

	return paddr;
}

S
Sheng Yang 已提交
3350 3351 3352
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3353 3354 3355 3356 3357
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
3358 3359 3360
	return 0;
}

3361 3362 3363 3364 3365
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3366 3367
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3368
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3369
	.domain_has_cap = amd_iommu_domain_has_cap,
3370
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3371 3372
};

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3385
	struct iommu_dev_data *dev_data;
3386
	struct pci_dev *dev = NULL;
3387
	struct amd_iommu *iommu;
3388
	u16 devid;
3389
	int ret;
3390

3391 3392 3393
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3394

3395
	for_each_pci_dev(dev) {
3396
		if (!check_device(&dev->dev))
3397 3398
			continue;

3399 3400 3401
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3402 3403
		devid = get_device_id(&dev->dev);

3404
		iommu = amd_iommu_rlookup_table[devid];
3405 3406 3407
		if (!iommu)
			continue;

3408
		attach_device(&dev->dev, pt_domain);
3409 3410
	}

J
Joerg Roedel 已提交
3411 3412
	amd_iommu_stats_init();

3413 3414 3415 3416
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3558 3559
	INC_STATS_COUNTER(invalidate_iotlb);

3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3580 3581
	INC_STATS_COUNTER(invalidate_iotlb_all);

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3693 3694 3695 3696 3697 3698 3699 3700

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3701 3702
	INC_STATS_COUNTER(complete_ppr);

3703 3704 3705 3706 3707 3708 3709 3710 3711
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			struct irq_2_iommu *irte_info;

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

			irte_info             = &cfg->irq_2_iommu;
			irte_info->sub_handle = devid;
			irte_info->irte_index = index;
			irte_info->iommu      = (void *)cfg;

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	irte_info = &cfg->irq_2_iommu;
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
	irte_info->sub_handle = devid;
	irte_info->irte_index = index;
	irte_info->iommu      = (void *)cfg;

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
	struct irq_2_iommu *irte_info;
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

	cfg       = data->chip_data;
	irq       = data->irq;
	irte_info = &cfg->irq_2_iommu;

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

	if (get_irte(irte_info->sub_handle, irte_info->irte_index, &irte))
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

	modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	irte_info = &cfg->irq_2_iommu;

	free_irte(irte_info->sub_handle, irte_info->irte_index);

	return 0;
}

4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	union irte irte;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return;

	irte_info = &cfg->irq_2_iommu;

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

	modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
	msg->data       = irte_info->irte_index;
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
	irte_info	= &cfg->irq_2_iommu;

	irte_info->sub_handle = devid;
	irte_info->irte_index = index + offset;
	irte_info->iommu      = (void *)cfg;

	return 0;
}

4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
static int setup_hpet_msi(unsigned int irq, unsigned int id)
{
	struct irq_2_iommu *irte_info;
	struct irq_cfg *cfg;
	int index, devid;

	cfg = irq_get_chip_data(irq);
	if (!cfg)
		return -EINVAL;

	irte_info = &cfg->irq_2_iommu;
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

	irte_info->sub_handle = devid;
	irte_info->irte_index = index;
	irte_info->iommu      = (void *)cfg;

	return 0;
}

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
struct irq_remap_ops amd_iommu_irq_ops = {
	.supported		= amd_iommu_supported,
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
	.setup_hpet_msi		= setup_hpet_msi,
};
4245
#endif