amd_iommu.c 101.3 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56

57 58
#define AMD_IOMMU_MAPPING_ERROR	0

59 60
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

61
#define LOOP_TIMEOUT	100000
62

63 64 65 66
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

67 68 69 70 71 72
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

73 74 75 76 77 78
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
79
 * 512GB Pages are not supported due to a hardware bug
80
 */
J
Joerg Roedel 已提交
81
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
82

83 84
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

85 86 87 88
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

89 90
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
91
LIST_HEAD(acpihid_map);
92

93 94 95 96
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
97
const struct iommu_ops amd_iommu_ops;
98

99
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
100
int amd_iommu_max_glx_val = -1;
101

102
static const struct dma_map_ops amd_iommu_dma_ops;
103

104 105 106
/*
 * general struct to manage commands send to an IOMMU
 */
107
struct iommu_cmd {
108 109 110
	u32 data[4];
};

111 112
struct kmem_cache *amd_iommu_irq_cache;

113
static void update_domain(struct protection_domain *domain);
114
static int protection_domain_init(struct protection_domain *domain);
115
static void detach_device(struct device *dev);
116
static void iova_domain_flush_tlb(struct iova_domain *iovad);
117

118 119 120 121 122 123 124
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

125 126
	/* IOVA RB-Tree */
	struct iova_domain iovad;
127 128
};

129 130 131
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

132 133 134 135 136 137
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

138 139
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
140
{
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
156 157
}

158
static inline u16 get_pci_device_id(struct device *dev)
159 160 161 162 163 164
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

192 193 194 195 196
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

197 198 199 200 201 202
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

203
static struct iommu_dev_data *alloc_dev_data(u16 devid)
204 205 206 207 208 209 210 211
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

212
	dev_data->devid = devid;
213 214 215 216 217

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

218 219
	ratelimit_default_init(&dev_data->rs);

220 221 222
	return dev_data;
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

242 243 244 245 246 247 248 249 250 251 252
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

253
	/* The callers make sure that get_device_id() does not fail here */
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
295
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
296 297 298 299 300 301 302 303
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

304 305 306
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
307
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
308 309 310

	dev_data = search_dev_data(devid);

311
	if (dev_data == NULL) {
312 313
		dev_data = alloc_dev_data(devid);

314 315 316 317
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

318 319 320
	return dev_data;
}

321
struct iommu_dev_data *get_dev_data(struct device *dev)
322 323 324
{
	return dev->archdata.iommu;
}
325
EXPORT_SYMBOL(get_dev_data);
326

327 328 329 330
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
331
{
332
	struct acpihid_map_entry *p, *entry = NULL;
333
	int devid;
334 335 336 337 338 339 340 341 342 343 344 345

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
346 347
	else
		iommu_group_ref_get(entry->group);
348 349

	return entry->group;
350 351
}

352 353 354 355
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
356 357
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
358 359 360 361 362 363 364 365 366 367 368 369
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

370 371 372 373 374 375 376 377 378
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

379 380 381 382 383 384
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
385
	int devid;
386 387 388 389 390

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
391
	if (devid < 0)
392
		return false;
393 394 395 396 397 398 399 400 401 402 403

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

404
static void init_iommu_group(struct device *dev)
405 406 407
{
	struct iommu_group *group;

408
	group = iommu_group_get_for_dev(dev);
409 410 411 412
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
413 414 415 416 417
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
418
	struct amd_iommu *iommu;
419
	int devid;
420 421 422 423

	if (dev->archdata.iommu)
		return 0;

424
	devid = get_device_id(dev);
425
	if (devid < 0)
426 427
		return devid;

428 429
	iommu = amd_iommu_rlookup_table[devid];

430
	dev_data = find_dev_data(devid);
431 432 433
	if (!dev_data)
		return -ENOMEM;

434 435
	dev_data->alias = get_alias(dev);

436
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
437 438
		struct amd_iommu *iommu;

439
		iommu = amd_iommu_rlookup_table[dev_data->devid];
440 441 442
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

443 444
	dev->archdata.iommu = dev_data;

445
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
446

447 448 449
	return 0;
}

450 451
static void iommu_ignore_device(struct device *dev)
{
452 453
	u16 alias;
	int devid;
454 455

	devid = get_device_id(dev);
456
	if (devid < 0)
457 458
		return;

459
	alias = get_alias(dev);
460 461 462 463 464 465 466 467

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

468 469
static void iommu_uninit_device(struct device *dev)
{
470
	struct iommu_dev_data *dev_data;
471 472
	struct amd_iommu *iommu;
	int devid;
473

474
	devid = get_device_id(dev);
475
	if (devid < 0)
476
		return;
477

478 479
	iommu = amd_iommu_rlookup_table[devid];

480
	dev_data = search_dev_data(devid);
481 482 483
	if (!dev_data)
		return;

484 485 486
	if (dev_data->domain)
		detach_device(dev);

487
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
488

489 490
	iommu_group_remove_device(dev);

491
	/* Remove dma-ops */
492
	dev->dma_ops = NULL;
493

494
	/*
495 496
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
497
	 */
498
}
J
Joerg Roedel 已提交
499

500 501 502 503 504 505
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

506 507 508 509
static void dump_dte_entry(u16 devid)
{
	int i;

510 511
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
512 513 514
			amd_iommu_dev_table[devid].data[i]);
}

515 516
static void dump_command(unsigned long phys_addr)
{
517
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
518 519 520 521 522 523
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

	pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

547
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
548
{
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
570

571 572 573 574 575 576
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
577 578 579 580 581

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
582
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
583
		       address, flags);
584
		dump_dte_entry(devid);
585 586 587 588
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
589
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
590 591 592 593 594
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
595
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
596 597 598 599
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
600
		dump_command(address);
601 602 603 604 605 606 607 608
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
609
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
610 611 612 613 614
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
615
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
616 617 618 619 620
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
621 622

	memset(__evt, 0, 4 * sizeof(u32));
623 624 625 626 627 628 629 630 631 632
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
633
		iommu_print_event(iommu, iommu->evt_buf + head);
634
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
635 636 637 638 639
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

640
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
685

686 687 688
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
689

690 691 692 693 694 695 696
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
697 698
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
699 700 701 702 703 704

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
705 706 707 708
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

769
irqreturn_t amd_iommu_int_thread(int irq, void *data)
770
{
771 772
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
773

774 775 776
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
777
			iommu->mmio_base + MMIO_STATUS_OFFSET);
778

779 780 781 782
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
783

784 785 786 787
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
788

789 790 791 792 793 794 795
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
811
	return IRQ_HANDLED;
812 813
}

814 815 816 817 818
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

819 820 821 822 823 824
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
843
			       struct iommu_cmd *cmd)
844 845 846
{
	u8 *target;

847 848 849 850
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
851 852 853 854 855

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
856
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
857
}
858

859
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
860
{
861 862
	u64 paddr = iommu_virt_to_phys((void *)address);

863 864
	WARN_ON(address & 0x7ULL);

865
	memset(cmd, 0, sizeof(*cmd));
866 867
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
868
	cmd->data[2] = 1;
869 870 871
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

872 873 874 875 876 877 878
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

879 880 881 882
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
883
	bool s;
884 885

	pages = iommu_num_pages(address, size, PAGE_SIZE);
886
	s     = false;
887 888 889 890 891 892 893

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
894
		s = true;
895 896 897 898 899 900 901 902 903 904 905
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
906
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
907 908 909
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

910 911 912 913
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
914
	bool s;
915 916

	pages = iommu_num_pages(address, size, PAGE_SIZE);
917
	s     = false;
918 919 920 921 922 923 924

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
925
		s = true;
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

941 942 943 944 945 946 947
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

948
	cmd->data[0]  = pasid;
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
967
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
968 969
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
970
	cmd->data[1] |= (pasid & 0xff) << 16;
971 972 973 974 975 976 977 978
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

979 980 981 982 983 984 985
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
986
		cmd->data[1]  = pasid;
987 988 989 990 991 992 993 994
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

995 996 997 998
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
999 1000
}

1001 1002 1003 1004 1005 1006 1007
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1008 1009
/*
 * Writes the command to the IOMMUs command buffer and informs the
1010
 * hardware about the new command.
1011
 */
1012 1013 1014
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1015
{
1016
	unsigned int count = 0;
1017
	u32 left, next_tail;
1018

1019
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1020
again:
1021
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1022

1023
	if (left <= 0x20) {
1024 1025 1026 1027 1028 1029
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1030

1031 1032
			udelay(1);
		}
1033

1034 1035 1036
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1037 1038

		goto again;
1039 1040
	}

1041
	copy_cmd_to_buffer(iommu, cmd);
1042

1043
	/* Do we need to make sure all commands are processed? */
1044
	iommu->need_sync = sync;
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1058
	spin_unlock_irqrestore(&iommu->lock, flags);
1059

1060
	return ret;
1061 1062
}

1063 1064 1065 1066 1067
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1068 1069 1070 1071
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1072
static int iommu_completion_wait(struct amd_iommu *iommu)
1073 1074
{
	struct iommu_cmd cmd;
1075
	unsigned long flags;
1076
	int ret;
1077

1078
	if (!iommu->need_sync)
1079
		return 0;
1080

1081

1082 1083 1084 1085 1086 1087 1088
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1089
	if (ret)
1090 1091 1092 1093 1094 1095
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1096

1097
	return ret;
1098 1099
}

1100
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1101
{
1102
	struct iommu_cmd cmd;
1103

1104
	build_inv_dte(&cmd, devid);
1105

1106 1107
	return iommu_queue_command(iommu, &cmd);
}
1108

1109
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1110 1111
{
	u32 devid;
1112

1113 1114
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1115

1116 1117
	iommu_completion_wait(iommu);
}
1118

1119 1120 1121 1122
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1123
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1124 1125
{
	u32 dom_id;
1126

1127 1128 1129 1130 1131 1132
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1133

1134
	iommu_completion_wait(iommu);
1135 1136
}

1137
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1138
{
1139
	struct iommu_cmd cmd;
1140

1141
	build_inv_all(&cmd);
1142

1143 1144 1145 1146
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1147 1148 1149 1150 1151 1152 1153 1154 1155
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1156
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1157 1158 1159 1160 1161 1162 1163 1164 1165
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1166 1167
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1168
	if (iommu_feature(iommu, FEATURE_IA)) {
1169
		amd_iommu_flush_all(iommu);
1170
	} else {
1171 1172 1173
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1174 1175 1176
	}
}

1177
/*
1178
 * Command send function for flushing on-device TLB
1179
 */
1180 1181
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1182 1183
{
	struct amd_iommu *iommu;
1184
	struct iommu_cmd cmd;
1185
	int qdep;
1186

1187 1188
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1189

1190
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1191 1192

	return iommu_queue_command(iommu, &cmd);
1193 1194
}

1195 1196 1197
/*
 * Command send function for invalidating a device table entry
 */
1198
static int device_flush_dte(struct iommu_dev_data *dev_data)
1199
{
1200
	struct amd_iommu *iommu;
1201
	u16 alias;
1202
	int ret;
1203

1204
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1205
	alias = dev_data->alias;
1206

1207
	ret = iommu_flush_dte(iommu, dev_data->devid);
1208 1209
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1210 1211 1212
	if (ret)
		return ret;

1213
	if (dev_data->ats.enabled)
1214
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1215 1216

	return ret;
1217 1218
}

1219 1220 1221 1222 1223
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1224 1225
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1226
{
1227
	struct iommu_dev_data *dev_data;
1228 1229
	struct iommu_cmd cmd;
	int ret = 0, i;
1230

1231
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1232

1233
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1234 1235 1236 1237 1238 1239 1240
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1241
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1242 1243
	}

1244 1245
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1246
		if (!dev_data->ats.enabled)
1247 1248
			continue;

1249
		ret |= device_flush_iotlb(dev_data, address, size);
1250 1251
	}

1252
	WARN_ON(ret);
1253 1254
}

1255 1256
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1257
{
1258
	__domain_flush_pages(domain, address, size, 0);
1259
}
1260

1261
/* Flush the whole IO/TLB for a given protection domain */
1262
static void domain_flush_tlb(struct protection_domain *domain)
1263
{
1264
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1265 1266
}

1267
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1268
static void domain_flush_tlb_pde(struct protection_domain *domain)
1269
{
1270
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1271 1272
}

1273
static void domain_flush_complete(struct protection_domain *domain)
1274
{
1275
	int i;
1276

1277
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1278
		if (domain && !domain->dev_iommu[i])
1279
			continue;
1280

1281 1282 1283 1284 1285
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1286
	}
1287 1288
}

1289

1290
/*
1291
 * This function flushes the DTEs for all devices in domain
1292
 */
1293
static void domain_flush_devices(struct protection_domain *domain)
1294
{
1295
	struct iommu_dev_data *dev_data;
1296

1297
	list_for_each_entry(dev_data, &domain->dev_list, list)
1298
		device_flush_dte(dev_data);
1299 1300
}

1301 1302 1303 1304 1305 1306 1307
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1327
					iommu_virt_to_phys(domain->pt_root));
1328 1329 1330 1331 1332 1333 1334 1335 1336
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1337
		      unsigned long page_size,
1338 1339 1340
		      u64 **pte_page,
		      gfp_t gfp)
{
1341
	int level, end_lvl;
1342
	u64 *pte, *page;
1343 1344

	BUG_ON(!is_power_of_2(page_size));
1345 1346 1347 1348

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1349 1350 1351 1352
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1353 1354

	while (level > end_lvl) {
1355 1356 1357 1358 1359
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1360 1361 1362
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1363

1364
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1365

1366 1367
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1368 1369 1370
				free_page((unsigned long)page);
				continue;
			}
1371 1372
		}

1373 1374 1375 1376
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1394 1395 1396
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1397 1398 1399 1400
{
	int level;
	u64 *pte;

1401 1402 1403
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1404 1405 1406
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1407

1408 1409 1410
	while (level > 0) {

		/* Not Present */
1411 1412 1413
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1414
		/* Large PTE */
1415 1416 1417
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1418 1419 1420 1421 1422

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1423 1424
		level -= 1;

1425
		/* Walk to the next level */
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1441 1442 1443 1444 1445
	}

	return pte;
}

1446 1447 1448 1449 1450 1451 1452
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1453 1454 1455
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1456
			  unsigned long page_size,
1457
			  int prot,
1458
			  gfp_t gfp)
1459
{
1460
	u64 __pte, *pte;
1461
	int i, count;
1462

1463 1464 1465
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1466
	if (!(prot & IOMMU_PROT_MASK))
1467 1468
		return -EINVAL;

1469
	count = PAGE_SIZE_PTE_COUNT(page_size);
1470
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1471

1472 1473 1474
	if (!pte)
		return -ENOMEM;

1475 1476 1477
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1478

1479
	if (count > 1) {
1480
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1481
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1482
	} else
1483
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1484 1485 1486 1487 1488 1489

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1490 1491
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1492

1493 1494
	update_domain(dom);

1495 1496 1497
	return 0;
}

1498 1499 1500
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1501
{
1502 1503
	unsigned long long unmapped;
	unsigned long unmap_size;
1504 1505 1506 1507 1508
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1509

1510 1511
	while (unmapped < page_size) {

1512 1513 1514 1515 1516 1517
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1518 1519 1520 1521 1522 1523 1524 1525
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1526
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1527

1528
	return unmapped;
1529 1530
}

1531 1532 1533
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1534
 * interface functions.
1535 1536
 *
 ****************************************************************************/
1537

1538

1539 1540 1541
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1542
{
1543
	unsigned long pfn = 0;
1544

1545
	pages = __roundup_pow_of_two(pages);
1546

1547 1548
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1549
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1550

1551
	if (!pfn)
1552 1553
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1554

1555
	return (pfn << PAGE_SHIFT);
1556 1557
}

1558 1559 1560
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1561
{
1562 1563
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1564

1565
	free_iova_fast(&dma_dom->iovad, address, pages);
1566 1567
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1640
		/* PTE present? */				\
1641 1642 1643
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1644 1645 1646 1647 1648
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1661
static void free_pagetable(struct protection_domain *domain)
1662
{
1663
	unsigned long root = (unsigned long)domain->pt_root;
1664

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1688 1689 1690
	}
}

1691 1692 1693 1694 1695 1696 1697 1698 1699
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1700
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1715
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1716 1717 1718 1719 1720

		free_gcr3_tbl_level1(ptr);
	}
}

1721 1722
static void free_gcr3_table(struct protection_domain *domain)
{
1723 1724 1725 1726
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1727 1728
	else
		BUG_ON(domain->glx != 0);
1729

1730 1731 1732
	free_page((unsigned long)domain->gcr3_tbl);
}

1733 1734 1735 1736
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1737 1738
}

1739
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1740
{
1741
	struct dma_ops_domain *dom;
1742

1743
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1744 1745 1746 1747

	dma_ops_domain_flush_tlb(dom);
}

1748 1749 1750 1751
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1752 1753 1754 1755 1756
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1757 1758
	del_domain_from_list(&dom->domain);

1759
	put_iova_domain(&dom->iovad);
1760

1761
	free_pagetable(&dom->domain);
1762

1763 1764 1765
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1766 1767 1768
	kfree(dom);
}

1769 1770
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1771
 * It also initializes the page table and the address allocator data
1772 1773
 * structures required for the dma_ops interface
 */
1774
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1775 1776 1777 1778 1779 1780 1781
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1782
	if (protection_domain_init(&dma_dom->domain))
1783
		goto free_dma_dom;
1784

1785
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1786
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1787
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1788 1789 1790
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1791
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1792

1793
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1794 1795
		goto free_dma_dom;

1796 1797
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1798

1799 1800
	add_domain_to_list(&dma_dom->domain);

1801 1802 1803 1804 1805 1806 1807 1808
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1809 1810 1811 1812 1813 1814 1815 1816 1817
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1818
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1819
{
1820
	u64 pte_root = 0;
1821
	u64 flags = 0;
1822

1823
	if (domain->mode != PAGE_MODE_NONE)
1824
		pte_root = iommu_virt_to_phys(domain->pt_root);
1825

1826 1827
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1828
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1829

1830 1831
	flags = amd_iommu_dev_table[devid].data[1];

1832 1833 1834
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1835
	if (domain->flags & PD_IOMMUV2_MASK) {
1836
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1861
	flags &= ~DEV_DOMID_MASK;
1862 1863 1864 1865
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1866 1867 1868 1869 1870
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1871
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1872
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1873 1874

	amd_iommu_apply_erratum_63(devid);
1875 1876
}

1877 1878
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1879 1880
{
	struct amd_iommu *iommu;
1881
	u16 alias;
1882
	bool ats;
1883

1884
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1885
	alias = dev_data->alias;
1886
	ats   = dev_data->ats.enabled;
1887 1888 1889 1890 1891 1892 1893 1894 1895

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1896 1897 1898
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1899
		set_dte_entry(alias, domain, ats);
1900

1901
	device_flush_dte(dev_data);
1902 1903
}

1904
static void do_detach(struct iommu_dev_data *dev_data)
1905 1906
{
	struct amd_iommu *iommu;
1907
	u16 alias;
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1918
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1919
	alias = dev_data->alias;
1920 1921

	/* decrease reference counters */
1922 1923 1924 1925 1926 1927
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1928
	clear_dte_entry(dev_data->devid);
1929 1930
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1931

1932
	/* Flush the DTE entry */
1933
	device_flush_dte(dev_data);
1934 1935 1936 1937 1938 1939
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1940
static int __attach_device(struct iommu_dev_data *dev_data,
1941
			   struct protection_domain *domain)
1942
{
1943
	int ret;
1944

1945 1946 1947 1948 1949 1950
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1951 1952 1953
	/* lock domain */
	spin_lock(&domain->lock);

1954
	ret = -EBUSY;
1955
	if (dev_data->domain != NULL)
1956
		goto out_unlock;
1957

1958
	/* Attach alias group root */
1959
	do_attach(dev_data, domain);
1960

1961 1962 1963 1964
	ret = 0;

out_unlock:

1965 1966
	/* ready */
	spin_unlock(&domain->lock);
1967

1968
	return ret;
1969
}
1970

1971 1972 1973 1974 1975 1976 1977 1978

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1979 1980 1981 1982 1983 1984
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1985
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1986 1987 1988
	if (!pos)
		return -EINVAL;

1989 1990 1991
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1992 1993 1994 1995

	return 0;
}

1996 1997
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
1998 1999 2000 2001 2002 2003 2004 2005
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2017 2018
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2019 2020 2021
	if (ret)
		goto out_err;

2022 2023 2024 2025 2026 2027
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2041
/* FIXME: Move this to PCI code */
2042
#define PCI_PRI_TLP_OFF		(1 << 15)
2043

J
Joerg Roedel 已提交
2044
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2045
{
2046
	u16 status;
2047 2048
	int pos;

2049
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2050 2051 2052
	if (!pos)
		return false;

2053
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2054

2055
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2056 2057
}

2058
/*
F
Frank Arnold 已提交
2059
 * If a device is not yet associated with a domain, this function
2060 2061
 * assigns it visible for the hardware
 */
2062 2063
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2064
{
2065
	struct pci_dev *pdev;
2066
	struct iommu_dev_data *dev_data;
2067
	unsigned long flags;
2068
	int ret;
2069

2070 2071
	dev_data = get_dev_data(dev);

2072 2073 2074 2075
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2076
	if (domain->flags & PD_IOMMUV2_MASK) {
2077
		if (!dev_data->passthrough)
2078 2079
			return -EINVAL;

2080 2081 2082
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2083

2084 2085 2086 2087
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2088 2089
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2090 2091 2092
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2093

2094
skip_ats_check:
2095
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2096
	ret = __attach_device(dev_data, domain);
2097 2098
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2099 2100 2101 2102 2103
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2104
	domain_flush_tlb_pde(domain);
2105 2106

	return ret;
2107 2108
}

2109 2110 2111
/*
 * Removes a device from a protection domain (unlocked)
 */
2112
static void __detach_device(struct iommu_dev_data *dev_data)
2113
{
2114
	struct protection_domain *domain;
2115

2116 2117 2118 2119 2120
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2121

2122 2123
	if (WARN_ON(!dev_data->domain))
		return;
2124

2125
	domain = dev_data->domain;
2126

2127
	spin_lock(&domain->lock);
2128

2129
	do_detach(dev_data);
2130

2131
	spin_unlock(&domain->lock);
2132 2133 2134 2135 2136
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2137
static void detach_device(struct device *dev)
2138
{
2139
	struct protection_domain *domain;
2140
	struct iommu_dev_data *dev_data;
2141 2142
	unsigned long flags;

2143
	dev_data = get_dev_data(dev);
2144
	domain   = dev_data->domain;
2145

2146 2147
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2148
	__detach_device(dev_data);
2149
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2150

2151 2152 2153
	if (!dev_is_pci(dev))
		return;

2154
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2155 2156
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2157
		pci_disable_ats(to_pci_dev(dev));
2158 2159

	dev_data->ats.enabled = false;
2160
}
2161

2162
static int amd_iommu_add_device(struct device *dev)
2163
{
2164
	struct iommu_dev_data *dev_data;
2165
	struct iommu_domain *domain;
2166
	struct amd_iommu *iommu;
2167
	int ret, devid;
2168

2169
	if (!check_device(dev) || get_dev_data(dev))
2170
		return 0;
2171

2172
	devid = get_device_id(dev);
2173
	if (devid < 0)
2174 2175
		return devid;

2176
	iommu = amd_iommu_rlookup_table[devid];
2177

2178
	ret = iommu_init_device(dev);
2179 2180 2181 2182
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2183

2184
		iommu_ignore_device(dev);
2185
		dev->dma_ops = &nommu_dma_ops;
2186 2187 2188
		goto out;
	}
	init_iommu_group(dev);
2189

2190
	dev_data = get_dev_data(dev);
2191

2192
	BUG_ON(!dev_data);
2193

2194
	if (iommu_pass_through || dev_data->iommu_v2)
2195
		iommu_request_dm_for_dev(dev);
2196

2197 2198
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2199
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2200
		dev_data->passthrough = true;
2201
	else
2202
		dev->dma_ops = &amd_iommu_dma_ops;
2203

2204
out:
2205 2206 2207 2208 2209
	iommu_completion_wait(iommu);

	return 0;
}

2210
static void amd_iommu_remove_device(struct device *dev)
2211
{
2212
	struct amd_iommu *iommu;
2213
	int devid;
2214 2215 2216 2217 2218

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2219
	if (devid < 0)
2220 2221
		return;

2222 2223 2224 2225
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2226 2227
}

2228 2229 2230 2231 2232 2233 2234 2235
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2249
static struct protection_domain *get_domain(struct device *dev)
2250
{
2251
	struct protection_domain *domain;
2252
	struct iommu_domain *io_domain;
2253

2254
	if (!check_device(dev))
2255
		return ERR_PTR(-EINVAL);
2256

2257
	domain = get_dev_data(dev)->domain;
2258 2259 2260 2261 2262 2263
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2264 2265 2266
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2267
	if (!dma_ops_domain(domain))
2268
		return ERR_PTR(-EBUSY);
2269

2270
	return domain;
2271 2272
}

2273 2274
static void update_device_table(struct protection_domain *domain)
{
2275
	struct iommu_dev_data *dev_data;
2276

2277
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2278
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2279 2280 2281 2282 2283 2284 2285

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2286 2287 2288 2289 2290 2291 2292 2293
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2294 2295 2296

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2297 2298 2299 2300

	domain->updated = false;
}

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2312

2313 2314
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2315 2316
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2317 2318
 * Must be called with the domain lock held.
 */
2319 2320 2321 2322
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2323
			       enum dma_data_direction direction,
2324
			       u64 dma_mask)
2325 2326
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2327
	dma_addr_t address, start, ret;
2328
	unsigned int pages;
2329
	int prot = 0;
2330 2331
	int i;

2332
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2333 2334
	paddr &= PAGE_MASK;

2335
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2336
	if (address == AMD_IOMMU_MAPPING_ERROR)
2337
		goto out;
2338

2339
	prot = dir2prot(direction);
2340

2341 2342
	start = address;
	for (i = 0; i < pages; ++i) {
2343 2344 2345
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2346 2347
			goto out_unmap;

2348 2349 2350 2351 2352
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2353
	if (unlikely(amd_iommu_np_cache)) {
2354
		domain_flush_pages(&dma_dom->domain, address, size);
2355 2356
		domain_flush_complete(&dma_dom->domain);
	}
2357

2358 2359
out:
	return address;
2360 2361 2362 2363 2364

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2365
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2366 2367
	}

2368 2369 2370 2371
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2372

2373
	return AMD_IOMMU_MAPPING_ERROR;
2374 2375
}

2376 2377 2378 2379
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2380
static void __unmap_single(struct dma_ops_domain *dma_dom,
2381 2382 2383 2384
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2385
	dma_addr_t flush_addr;
2386 2387 2388
	dma_addr_t i, start;
	unsigned int pages;

2389
	flush_addr = dma_addr;
2390
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2391 2392 2393 2394
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2395
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2396 2397 2398
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2399 2400 2401 2402 2403
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
2404 2405
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2406
	}
2407 2408
}

2409 2410 2411
/*
 * The exported map_single function for dma_ops.
 */
2412 2413 2414
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2415
			   unsigned long attrs)
2416
{
2417
	phys_addr_t paddr = page_to_phys(page) + offset;
2418
	struct protection_domain *domain;
2419
	struct dma_ops_domain *dma_dom;
2420
	u64 dma_mask;
2421

2422 2423
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2424
		return (dma_addr_t)paddr;
2425
	else if (IS_ERR(domain))
2426
		return AMD_IOMMU_MAPPING_ERROR;
2427

2428
	dma_mask = *dev->dma_mask;
2429
	dma_dom = to_dma_ops_domain(domain);
2430

2431
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2432 2433
}

2434 2435 2436
/*
 * The exported unmap_single function for dma_ops.
 */
2437
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2438
		       enum dma_data_direction dir, unsigned long attrs)
2439 2440
{
	struct protection_domain *domain;
2441
	struct dma_ops_domain *dma_dom;
2442

2443 2444
	domain = get_domain(dev);
	if (IS_ERR(domain))
2445 2446
		return;

2447 2448 2449
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2450 2451
}

2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2478 2479 2480 2481
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2482
static int map_sg(struct device *dev, struct scatterlist *sglist,
2483
		  int nelems, enum dma_data_direction direction,
2484
		  unsigned long attrs)
2485
{
2486
	int mapped_pages = 0, npages = 0, prot = 0, i;
2487
	struct protection_domain *domain;
2488
	struct dma_ops_domain *dma_dom;
2489
	struct scatterlist *s;
2490
	unsigned long address;
2491
	u64 dma_mask;
2492

2493
	domain = get_domain(dev);
2494
	if (IS_ERR(domain))
2495
		return 0;
2496

2497
	dma_dom  = to_dma_ops_domain(domain);
2498
	dma_mask = *dev->dma_mask;
2499

2500 2501 2502
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2503
	if (address == AMD_IOMMU_MAPPING_ERROR)
2504 2505 2506 2507 2508
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2509
	for_each_sg(sglist, s, nelems, i) {
2510 2511 2512 2513 2514
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2515

2516 2517 2518 2519 2520
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2521

2522 2523
			mapped_pages += 1;
		}
2524 2525
	}

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2543

2544 2545 2546 2547 2548 2549
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2550 2551
	}

2552 2553 2554 2555
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2556
	return 0;
2557 2558
}

2559 2560 2561 2562
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2563
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2564
		     int nelems, enum dma_data_direction dir,
2565
		     unsigned long attrs)
2566 2567
{
	struct protection_domain *domain;
2568
	struct dma_ops_domain *dma_dom;
2569 2570
	unsigned long startaddr;
	int npages = 2;
2571

2572 2573
	domain = get_domain(dev);
	if (IS_ERR(domain))
2574 2575
		return;

2576
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2577
	dma_dom   = to_dma_ops_domain(domain);
2578 2579
	npages    = sg_num_pages(dev, sglist, nelems);

2580
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2581 2582
}

2583 2584 2585
/*
 * The exported alloc_coherent function for dma_ops.
 */
2586
static void *alloc_coherent(struct device *dev, size_t size,
2587
			    dma_addr_t *dma_addr, gfp_t flag,
2588
			    unsigned long attrs)
2589
{
2590
	u64 dma_mask = dev->coherent_dma_mask;
2591
	struct protection_domain *domain;
2592
	struct dma_ops_domain *dma_dom;
2593
	struct page *page;
2594

2595 2596
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2597 2598 2599
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2600 2601
	} else if (IS_ERR(domain))
		return NULL;
2602

2603
	dma_dom   = to_dma_ops_domain(domain);
2604
	size	  = PAGE_ALIGN(size);
2605 2606
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2607
	flag     |= __GFP_ZERO;
2608

2609 2610
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2611
		if (!gfpflags_allow_blocking(flag))
2612
			return NULL;
2613

2614
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2615
						 get_order(size), flag);
2616 2617 2618
		if (!page)
			return NULL;
	}
2619

2620 2621 2622
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2623
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2624
				 size, DMA_BIDIRECTIONAL, dma_mask);
2625

2626
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2627
		goto out_free;
2628

2629
	return page_address(page);
2630 2631 2632

out_free:

2633 2634
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2635 2636

	return NULL;
2637 2638
}

2639 2640 2641
/*
 * The exported free_coherent function for dma_ops.
 */
2642
static void free_coherent(struct device *dev, size_t size,
2643
			  void *virt_addr, dma_addr_t dma_addr,
2644
			  unsigned long attrs)
2645 2646
{
	struct protection_domain *domain;
2647
	struct dma_ops_domain *dma_dom;
2648
	struct page *page;
2649

2650 2651 2652
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2653 2654
	domain = get_domain(dev);
	if (IS_ERR(domain))
2655 2656
		goto free_mem;

2657 2658 2659
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2660 2661

free_mem:
2662 2663
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2664 2665
}

2666 2667 2668 2669 2670 2671
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2672 2673
	if (!x86_dma_supported(dev, mask))
		return 0;
2674
	return check_device(dev);
2675 2676
}

2677 2678 2679 2680 2681
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2682
static const struct dma_map_ops amd_iommu_dma_ops = {
2683 2684 2685 2686 2687 2688 2689
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2690
	.mapping_error	= amd_iommu_mapping_error,
2691 2692
};

2693 2694 2695 2696 2697
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2698
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2745
int __init amd_iommu_init_api(void)
2746
{
2747
	int ret, err = 0;
2748 2749 2750 2751

	ret = iova_cache_get();
	if (ret)
		return ret;
2752

2753 2754 2755 2756
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2757 2758 2759 2760 2761 2762 2763 2764
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2765 2766 2767
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2768

2769
	return 0;
2770 2771
}

2772 2773
int __init amd_iommu_init_dma_ops(void)
{
2774
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2775 2776
	iommu_detected = 1;

2777 2778
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2779 2780 2781 2782 2783
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2784 2785 2786 2787
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2788 2789 2790 2791 2792
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2793
	return 0;
2794

2795
}
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2809
	struct iommu_dev_data *entry;
2810 2811 2812 2813
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2814 2815 2816 2817
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2818
	}
2819 2820 2821 2822

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2823 2824 2825 2826 2827
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2828 2829
	del_domain_from_list(domain);

2830 2831 2832 2833 2834 2835
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2848
static struct protection_domain *protection_domain_alloc(void)
2849 2850 2851 2852 2853
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2854
		return NULL;
2855

2856
	if (protection_domain_init(domain))
2857 2858
		goto out_err;

2859 2860
	add_domain_to_list(domain);

2861 2862 2863 2864 2865 2866 2867 2868
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2869
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2870
{
2871
	struct protection_domain *pdomain;
2872
	struct dma_ops_domain *dma_domain;
2873

2874 2875 2876 2877 2878
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2879

2880 2881 2882 2883 2884 2885
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2886

2887 2888 2889
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2890

2891 2892 2893 2894 2895 2896 2897 2898 2899
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2900 2901 2902 2903
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2904

2905 2906
		pdomain->mode = PAGE_MODE_NONE;
		break;
2907 2908 2909
	default:
		return NULL;
	}
2910

2911
	return &pdomain->domain;
2912 2913
}

2914
static void amd_iommu_domain_free(struct iommu_domain *dom)
2915
{
2916
	struct protection_domain *domain;
2917
	struct dma_ops_domain *dma_dom;
2918

2919 2920
	domain = to_pdomain(dom);

2921 2922 2923 2924 2925
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2926 2927
	if (!dom)
		return;
2928

2929 2930
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2931
		/* Now release the domain */
2932
		dma_dom = to_dma_ops_domain(domain);
2933 2934 2935 2936 2937
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2938

2939 2940 2941 2942 2943 2944
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2945 2946
}

2947 2948 2949
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2950
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2951
	struct amd_iommu *iommu;
2952
	int devid;
2953

2954
	if (!check_device(dev))
2955 2956
		return;

2957
	devid = get_device_id(dev);
2958
	if (devid < 0)
2959
		return;
2960

2961
	if (dev_data->domain != NULL)
2962
		detach_device(dev);
2963 2964 2965 2966 2967

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2968 2969 2970 2971 2972 2973
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2974 2975 2976
	iommu_completion_wait(iommu);
}

2977 2978 2979
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2980
	struct protection_domain *domain = to_pdomain(dom);
2981
	struct iommu_dev_data *dev_data;
2982
	struct amd_iommu *iommu;
2983
	int ret;
2984

2985
	if (!check_device(dev))
2986 2987
		return -EINVAL;

2988 2989
	dev_data = dev->archdata.iommu;

2990
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2991 2992 2993
	if (!iommu)
		return -EINVAL;

2994
	if (dev_data->domain)
2995
		detach_device(dev);
2996

2997
	ret = attach_device(dev, domain);
2998

2999 3000 3001 3002 3003 3004 3005 3006 3007
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3008 3009
	iommu_completion_wait(iommu);

3010
	return ret;
3011 3012
}

3013
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3014
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3015
{
3016
	struct protection_domain *domain = to_pdomain(dom);
3017 3018 3019
	int prot = 0;
	int ret;

3020 3021 3022
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3023 3024 3025 3026 3027
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3028
	mutex_lock(&domain->api_lock);
3029
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3030 3031
	mutex_unlock(&domain->api_lock);

3032
	return ret;
3033 3034
}

3035 3036
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3037
{
3038
	struct protection_domain *domain = to_pdomain(dom);
3039
	size_t unmap_size;
3040

3041 3042 3043
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3044
	mutex_lock(&domain->api_lock);
3045
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3046
	mutex_unlock(&domain->api_lock);
3047

3048
	domain_flush_tlb_pde(domain);
3049
	domain_flush_complete(domain);
3050

3051
	return unmap_size;
3052 3053
}

3054
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3055
					  dma_addr_t iova)
3056
{
3057
	struct protection_domain *domain = to_pdomain(dom);
3058
	unsigned long offset_mask, pte_pgsize;
3059
	u64 *pte, __pte;
3060

3061 3062 3063
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3064
	pte = fetch_pte(domain, iova, &pte_pgsize);
3065

3066
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3067 3068
		return 0;

3069 3070
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3071

3072
	return (__pte & ~offset_mask) | (iova & offset_mask);
3073 3074
}

3075
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3076
{
3077 3078
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3079
		return true;
3080
	case IOMMU_CAP_INTR_REMAP:
3081
		return (irq_remapping_enabled == 1);
3082 3083
	case IOMMU_CAP_NOEXEC:
		return false;
3084 3085
	}

3086
	return false;
S
Sheng Yang 已提交
3087 3088
}

3089 3090
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3091
{
3092
	struct iommu_resv_region *region;
3093
	struct unity_map_entry *entry;
3094
	int devid;
3095 3096

	devid = get_device_id(dev);
3097
	if (devid < 0)
3098
		return;
3099 3100

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3101 3102
		size_t length;
		int prot = 0;
3103 3104 3105 3106

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3107 3108 3109 3110 3111 3112 3113 3114 3115
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3116 3117 3118 3119 3120 3121 3122
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3123 3124 3125

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3126
					 0, IOMMU_RESV_MSI);
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3137 3138
}

3139
static void amd_iommu_put_resv_regions(struct device *dev,
3140 3141
				     struct list_head *head)
{
3142
	struct iommu_resv_region *entry, *next;
3143 3144 3145 3146 3147

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3148
static void amd_iommu_apply_resv_region(struct device *dev,
3149
				      struct iommu_domain *domain,
3150
				      struct iommu_resv_region *region)
3151
{
3152
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3153 3154 3155 3156 3157 3158 3159 3160
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3161 3162 3163 3164 3165 3166 3167
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3168
const struct iommu_ops amd_iommu_ops = {
3169
	.capable = amd_iommu_capable,
3170 3171
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3172 3173
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3174 3175
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3176
	.map_sg = default_iommu_map_sg,
3177
	.iova_to_phys = amd_iommu_iova_to_phys,
3178 3179
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3180
	.device_group = amd_iommu_device_group,
3181 3182 3183
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3184
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3185
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3186 3187
};

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3210 3211 3212

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3213
	struct protection_domain *domain = to_pdomain(dom);
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3231 3232 3233

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3234
	struct protection_domain *domain = to_pdomain(dom);
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3295
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3312 3313 3314 3315 3316 3317
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3349
	struct protection_domain *domain = to_pdomain(dom);
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3369
	struct protection_domain *domain = to_pdomain(dom);
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3402
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3403 3404
		}

3405
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3449
	struct protection_domain *domain = to_pdomain(dom);
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3463
	struct protection_domain *domain = to_pdomain(dom);
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3491 3492 3493

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3494
	struct protection_domain *pdomain;
3495

3496 3497
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3498 3499 3500
		return NULL;

	/* Only return IOMMUv2 domains */
3501
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3502 3503
		return NULL;

3504
	return &pdomain->domain;
3505 3506
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3562 3563 3564 3565 3566 3567 3568 3569 3570

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3571 3572
static struct irq_chip amd_ir_chip;

3573 3574 3575 3576 3577 3578
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3579
	dte	|= iommu_virt_to_phys(table->table);
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3602
		goto out_unlock;
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3616
		goto out_unlock;
3617

3618 3619 3620
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3621 3622 3623 3624 3625 3626 3627
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3628
		table = NULL;
3629
		goto out_unlock;
3630 3631
	}

3632 3633 3634 3635 3636 3637
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3638 3639 3640 3641 3642

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3643
			iommu->irte_ops->set_allocated(table, i);
3644 3645 3646 3647 3648 3649 3650
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3651
		set_dte_irq_entry(alias, table);
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3664
static int alloc_irq_index(u16 devid, int count, bool align)
3665 3666
{
	struct irq_remap_table *table;
3667
	int index, c, alignment = 1;
3668
	unsigned long flags;
3669 3670 3671 3672
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3673 3674 3675 3676 3677

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

3678 3679 3680
	if (align)
		alignment = roundup_pow_of_two(count);

3681 3682 3683
	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
3684
	for (index = ALIGN(table->min_index, alignment), c = 0;
3685
	     index < MAX_IRQS_PER_TABLE;
3686 3687
	     index++) {
		if (!iommu->irte_ops->is_allocated(table, index)) {
3688
			c += 1;
3689 3690 3691 3692 3693
		} else {
			c     = 0;
			index = ALIGN(index, alignment);
			continue;
		}
3694 3695 3696

		if (c == count)	{
			for (; c != 0; --c)
3697
				iommu->irte_ops->set_allocated(table, index - c + 1);
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3712 3713
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3714 3715 3716 3717
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3718
	struct irte_ga *entry;
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3729 3730 3731 3732 3733 3734 3735

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3736 3737
	if (data)
		data->ref = entry;
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3762
	table->table[index] = irte->val;
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3786
	iommu->irte_ops->clear_allocated(table, index);
3787 3788 3789 3790 3791 3792
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3793 3794
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3795
			 u8 vector, u32 dest_apicid, int devid)
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3809
			    u8 vector, u32 dest_apicid, int devid)
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3835
	modify_irte_ga(devid, index, irte, NULL);
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3851
	modify_irte_ga(devid, index, irte, NULL);
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3868
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3869

3870 3871
	if (!dev_data || !dev_data->use_vapic ||
	    !irte->lo.fields_remap.guest_mode) {
3872 3873 3874 3875
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
3876 3877
}

3878
#define IRTE_ALLOCATED (~1U)
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3924
static int get_devid(struct irq_alloc_info *info)
3925
{
3926
	int devid = -1;
3927

3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3943

3944 3945
	return devid;
}
3946

3947 3948 3949 3950
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3951

3952 3953
	if (!info)
		return NULL;
3954

3955 3956 3957 3958 3959 3960
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3961

3962
	return NULL;
3963 3964
}

3965
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3966
{
3967 3968
	struct amd_iommu *iommu;
	int devid;
3969

3970 3971
	if (!info)
		return NULL;
3972

3973 3974 3975 3976
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3977
		if (devid < 0)
3978 3979
			return NULL;

3980 3981 3982
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3983 3984 3985 3986
		break;
	default:
		break;
	}
3987

3988 3989
	return NULL;
}
3990

3991 3992 3993 3994 3995 3996
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3997 3998 3999
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4000

4001 4002 4003 4004 4005 4006 4007 4008
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4009 4010 4011 4012
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4013

4014 4015
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4016 4017
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4018
				 irq_cfg->dest_apicid, devid);
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4034

4035 4036 4037 4038 4039 4040 4041
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4042

4043 4044 4045 4046
	default:
		BUG_ON(1);
		break;
	}
4047 4048
}

4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4069 4070
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4071
{
4072 4073
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4074
	struct amd_ir_data *data = NULL;
4075
	struct irq_cfg *cfg;
4076 4077
	int i, ret, devid;
	int index = -1;
4078

4079 4080 4081 4082
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4083 4084
		return -EINVAL;

4085 4086 4087 4088 4089 4090
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4091

4092 4093 4094
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4095

4096 4097 4098
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4099

4100 4101 4102 4103 4104 4105
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4106 4107 4108
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4109 4110 4111
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4112
		ret = index;
4113 4114
		goto out_free_parent;
	}
4115

4116 4117 4118 4119 4120 4121 4122
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4123

4124 4125 4126 4127 4128
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4139 4140 4141 4142 4143 4144
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4145

4146
	return 0;
4147

4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4159 4160
}

4161 4162
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4163
{
4164 4165 4166 4167
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4168

4169 4170 4171 4172 4173 4174
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4175
			kfree(data->entry);
4176 4177 4178 4179 4180
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4181

4182 4183 4184 4185 4186
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4187
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4188

4189 4190 4191
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4192 4193
}

4194 4195
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4196
{
4197 4198
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4199
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4200

4201 4202 4203
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4204
}
4205

4206
static const struct irq_domain_ops amd_ir_domain_ops = {
4207 4208 4209 4210
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4211
};
4212

4213 4214 4215 4216 4217 4218 4219 4220
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4221 4222 4223 4224 4225 4226 4227 4228
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4251
		irte->lo.fields_vapic.ga_log_intr = 1;
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4278 4279 4280 4281 4282 4283 4284
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4285
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4286
	int ret;
4287

4288 4289 4290
	if (!iommu)
		return -ENODEV;

4291 4292 4293
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4294

4295 4296 4297 4298
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4299 4300
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4301

4302 4303 4304 4305 4306
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4307
	send_cleanup_vector(cfg);
4308 4309

	return IRQ_SET_MASK_OK_DONE;
4310 4311
}

4312
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4313
{
4314
	struct amd_ir_data *ir_data = irq_data->chip_data;
4315

4316 4317
	*msg = ir_data->msi_entry;
}
4318

4319
static struct irq_chip amd_ir_chip = {
4320 4321 4322 4323 4324
	.name			= "AMD-IR",
	.irq_ack		= ir_ack_apic_edge,
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4325
};
4326

4327 4328
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4329 4330 4331 4332 4333 4334 4335
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4336 4337
	if (!iommu->ir_domain)
		return -ENOMEM;
4338

4339
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4340 4341 4342
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4343 4344
	return 0;
}
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4384
#endif