amd_iommu.c 100.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56

57 58
#define AMD_IOMMU_MAPPING_ERROR	0

59 60
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

61
#define LOOP_TIMEOUT	100000
62

63 64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84 85
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

86 87 88 89
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116
static void detach_device(struct device *dev);
117
static void iova_domain_flush_tlb(struct iova_domain *iovad);
118

119 120 121 122 123 124 125
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

126 127
	/* IOVA RB-Tree */
	struct iova_domain iovad;
128 129
};

130 131 132
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

133 134 135 136 137 138
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

139 140
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
141
{
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
157 158
}

159
static inline u16 get_pci_device_id(struct device *dev)
160 161 162 163 164 165
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

193 194 195 196 197
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

198 199 200 201 202 203
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

204
static struct iommu_dev_data *alloc_dev_data(u16 devid)
205 206 207 208 209 210 211 212
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

213
	dev_data->devid = devid;
214 215 216 217 218

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

219 220
	ratelimit_default_init(&dev_data->rs);

221 222 223
	return dev_data;
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

243 244 245 246 247 248 249 250 251 252 253
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

254
	/* The callers make sure that get_device_id() does not fail here */
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
296
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
297 298 299 300 301 302 303 304
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

305 306 307
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
308
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
309 310 311

	dev_data = search_dev_data(devid);

312
	if (dev_data == NULL) {
313 314
		dev_data = alloc_dev_data(devid);

315 316 317 318
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

319 320 321
	return dev_data;
}

322
struct iommu_dev_data *get_dev_data(struct device *dev)
323 324 325
{
	return dev->archdata.iommu;
}
326
EXPORT_SYMBOL(get_dev_data);
327

328 329 330 331
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
332
{
333
	struct acpihid_map_entry *p, *entry = NULL;
334
	int devid;
335 336 337 338 339 340 341 342 343 344 345 346

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
347 348
	else
		iommu_group_ref_get(entry->group);
349 350

	return entry->group;
351 352
}

353 354 355 356
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
357 358
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
359 360 361 362 363 364 365 366 367 368 369 370
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

371 372 373 374 375 376 377 378 379
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

380 381 382 383 384 385
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
386
	int devid;
387 388 389 390 391

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
392
	if (devid < 0)
393
		return false;
394 395 396 397 398 399 400 401 402 403 404

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

405
static void init_iommu_group(struct device *dev)
406 407 408
{
	struct iommu_group *group;

409
	group = iommu_group_get_for_dev(dev);
410 411 412 413
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
414 415 416 417 418
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
419
	struct amd_iommu *iommu;
420
	int devid;
421 422 423 424

	if (dev->archdata.iommu)
		return 0;

425
	devid = get_device_id(dev);
426
	if (devid < 0)
427 428
		return devid;

429 430
	iommu = amd_iommu_rlookup_table[devid];

431
	dev_data = find_dev_data(devid);
432 433 434
	if (!dev_data)
		return -ENOMEM;

435 436
	dev_data->alias = get_alias(dev);

437
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
438 439
		struct amd_iommu *iommu;

440
		iommu = amd_iommu_rlookup_table[dev_data->devid];
441 442 443
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

444 445
	dev->archdata.iommu = dev_data;

446
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
447

448 449 450
	return 0;
}

451 452
static void iommu_ignore_device(struct device *dev)
{
453 454
	u16 alias;
	int devid;
455 456

	devid = get_device_id(dev);
457
	if (devid < 0)
458 459
		return;

460
	alias = get_alias(dev);
461 462 463 464 465 466 467 468

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

469 470
static void iommu_uninit_device(struct device *dev)
{
471
	struct iommu_dev_data *dev_data;
472 473
	struct amd_iommu *iommu;
	int devid;
474

475
	devid = get_device_id(dev);
476
	if (devid < 0)
477
		return;
478

479 480
	iommu = amd_iommu_rlookup_table[devid];

481
	dev_data = search_dev_data(devid);
482 483 484
	if (!dev_data)
		return;

485 486 487
	if (dev_data->domain)
		detach_device(dev);

488
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
489

490 491
	iommu_group_remove_device(dev);

492
	/* Remove dma-ops */
493
	dev->dma_ops = NULL;
494

495
	/*
496 497
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
498
	 */
499
}
J
Joerg Roedel 已提交
500

501 502 503 504 505 506
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

507 508 509 510
static void dump_dte_entry(u16 devid)
{
	int i;

511 512
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
513 514 515
			amd_iommu_dev_table[devid].data[i]);
}

516 517
static void dump_command(unsigned long phys_addr)
{
518
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
519 520 521 522 523 524
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

	pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

548
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
549
{
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
571

572 573 574 575 576 577
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
578 579 580 581 582

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
583
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
584
		       address, flags);
585
		dump_dte_entry(devid);
586 587 588 589
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
590
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
591 592 593 594 595
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
596
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
597 598 599 600
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
601
		dump_command(address);
602 603 604 605 606 607 608 609
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
610
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
611 612 613 614 615
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
616
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
617 618 619 620 621
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
622 623

	memset(__evt, 0, 4 * sizeof(u32));
624 625 626 627 628 629 630 631 632 633
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
634
		iommu_print_event(iommu, iommu->evt_buf + head);
635
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
636 637 638 639 640
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

641
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
686

687 688 689
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
690

691 692 693 694 695 696 697
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
698 699
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
700 701 702 703 704 705

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
706 707 708 709
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

770
irqreturn_t amd_iommu_int_thread(int irq, void *data)
771
{
772 773
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
774

775 776 777
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
778
			iommu->mmio_base + MMIO_STATUS_OFFSET);
779

780 781 782 783
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
784

785 786 787 788
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
789

790 791 792 793 794 795 796
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
812
	return IRQ_HANDLED;
813 814
}

815 816 817 818 819
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

820 821 822 823 824 825
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
844
			       struct iommu_cmd *cmd)
845 846 847
{
	u8 *target;

848 849 850 851
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
852 853 854 855 856

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
857
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
858
}
859

860
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
861
{
862 863
	u64 paddr = iommu_virt_to_phys((void *)address);

864 865
	WARN_ON(address & 0x7ULL);

866
	memset(cmd, 0, sizeof(*cmd));
867 868
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
869
	cmd->data[2] = 1;
870 871 872
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

873 874 875 876 877 878 879
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

880 881 882 883
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
884
	bool s;
885 886

	pages = iommu_num_pages(address, size, PAGE_SIZE);
887
	s     = false;
888 889 890 891 892 893 894

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
895
		s = true;
896 897 898 899 900 901 902 903 904 905 906
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
907
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
908 909 910
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

911 912 913 914
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
915
	bool s;
916 917

	pages = iommu_num_pages(address, size, PAGE_SIZE);
918
	s     = false;
919 920 921 922 923 924 925

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
926
		s = true;
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

942 943 944 945 946 947 948
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

949
	cmd->data[0]  = pasid;
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
968
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
969 970
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
971
	cmd->data[1] |= (pasid & 0xff) << 16;
972 973 974 975 976 977 978 979
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

980 981 982 983 984 985 986
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
987
		cmd->data[1]  = pasid;
988 989 990 991 992 993 994 995
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

996 997 998 999
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1000 1001
}

1002 1003 1004 1005 1006 1007 1008
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1009 1010
/*
 * Writes the command to the IOMMUs command buffer and informs the
1011
 * hardware about the new command.
1012
 */
1013 1014 1015
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1016
{
1017
	unsigned int count = 0;
1018
	u32 left, next_tail;
1019

1020
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1021
again:
1022
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1023

1024
	if (left <= 0x20) {
1025 1026 1027 1028 1029 1030
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1031

1032 1033
			udelay(1);
		}
1034

1035 1036 1037
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1038 1039

		goto again;
1040 1041
	}

1042
	copy_cmd_to_buffer(iommu, cmd);
1043

1044
	/* Do we need to make sure all commands are processed? */
1045
	iommu->need_sync = sync;
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1059
	spin_unlock_irqrestore(&iommu->lock, flags);
1060

1061
	return ret;
1062 1063
}

1064 1065 1066 1067 1068
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1069 1070 1071 1072
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1073
static int iommu_completion_wait(struct amd_iommu *iommu)
1074 1075
{
	struct iommu_cmd cmd;
1076
	unsigned long flags;
1077
	int ret;
1078

1079
	if (!iommu->need_sync)
1080
		return 0;
1081

1082

1083 1084 1085 1086 1087 1088 1089
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1090
	if (ret)
1091 1092 1093 1094 1095 1096
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1097

1098
	return ret;
1099 1100
}

1101
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1102
{
1103
	struct iommu_cmd cmd;
1104

1105
	build_inv_dte(&cmd, devid);
1106

1107 1108
	return iommu_queue_command(iommu, &cmd);
}
1109

1110
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1111 1112
{
	u32 devid;
1113

1114 1115
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1116

1117 1118
	iommu_completion_wait(iommu);
}
1119

1120 1121 1122 1123
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1124
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1125 1126
{
	u32 dom_id;
1127

1128 1129 1130 1131 1132 1133
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1134

1135
	iommu_completion_wait(iommu);
1136 1137
}

1138
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1139
{
1140
	struct iommu_cmd cmd;
1141

1142
	build_inv_all(&cmd);
1143

1144 1145 1146 1147
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1148 1149 1150 1151 1152 1153 1154 1155 1156
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1157
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1158 1159 1160 1161 1162 1163 1164 1165 1166
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1167 1168
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1169
	if (iommu_feature(iommu, FEATURE_IA)) {
1170
		amd_iommu_flush_all(iommu);
1171
	} else {
1172 1173 1174
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1175 1176 1177
	}
}

1178
/*
1179
 * Command send function for flushing on-device TLB
1180
 */
1181 1182
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1183 1184
{
	struct amd_iommu *iommu;
1185
	struct iommu_cmd cmd;
1186
	int qdep;
1187

1188 1189
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1190

1191
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1192 1193

	return iommu_queue_command(iommu, &cmd);
1194 1195
}

1196 1197 1198
/*
 * Command send function for invalidating a device table entry
 */
1199
static int device_flush_dte(struct iommu_dev_data *dev_data)
1200
{
1201
	struct amd_iommu *iommu;
1202
	u16 alias;
1203
	int ret;
1204

1205
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1206
	alias = dev_data->alias;
1207

1208
	ret = iommu_flush_dte(iommu, dev_data->devid);
1209 1210
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1211 1212 1213
	if (ret)
		return ret;

1214
	if (dev_data->ats.enabled)
1215
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1216 1217

	return ret;
1218 1219
}

1220 1221 1222 1223 1224
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1225 1226
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1227
{
1228
	struct iommu_dev_data *dev_data;
1229 1230
	struct iommu_cmd cmd;
	int ret = 0, i;
1231

1232
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1233

1234
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1235 1236 1237 1238 1239 1240 1241
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1242
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1243 1244
	}

1245 1246
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1247
		if (!dev_data->ats.enabled)
1248 1249
			continue;

1250
		ret |= device_flush_iotlb(dev_data, address, size);
1251 1252
	}

1253
	WARN_ON(ret);
1254 1255
}

1256 1257
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1258
{
1259
	__domain_flush_pages(domain, address, size, 0);
1260
}
1261

1262
/* Flush the whole IO/TLB for a given protection domain */
1263
static void domain_flush_tlb(struct protection_domain *domain)
1264
{
1265
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1266 1267
}

1268
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1269
static void domain_flush_tlb_pde(struct protection_domain *domain)
1270
{
1271
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1272 1273
}

1274
static void domain_flush_complete(struct protection_domain *domain)
1275
{
1276
	int i;
1277

1278
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1279
		if (domain && !domain->dev_iommu[i])
1280
			continue;
1281

1282 1283 1284 1285 1286
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1287
	}
1288 1289
}

1290

1291
/*
1292
 * This function flushes the DTEs for all devices in domain
1293
 */
1294
static void domain_flush_devices(struct protection_domain *domain)
1295
{
1296
	struct iommu_dev_data *dev_data;
1297

1298
	list_for_each_entry(dev_data, &domain->dev_list, list)
1299
		device_flush_dte(dev_data);
1300 1301
}

1302 1303 1304 1305 1306 1307 1308
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1328
					iommu_virt_to_phys(domain->pt_root));
1329 1330 1331 1332 1333 1334 1335 1336 1337
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1338
		      unsigned long page_size,
1339 1340 1341
		      u64 **pte_page,
		      gfp_t gfp)
{
1342
	int level, end_lvl;
1343
	u64 *pte, *page;
1344 1345

	BUG_ON(!is_power_of_2(page_size));
1346 1347 1348 1349

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1350 1351 1352 1353
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1354 1355

	while (level > end_lvl) {
1356 1357 1358 1359 1360
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1361 1362 1363
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1364

1365
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1366

1367 1368
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1369 1370 1371
				free_page((unsigned long)page);
				continue;
			}
1372 1373
		}

1374 1375 1376 1377
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1395 1396 1397
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1398 1399 1400 1401
{
	int level;
	u64 *pte;

1402 1403 1404
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1405 1406 1407
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1408

1409 1410 1411
	while (level > 0) {

		/* Not Present */
1412 1413 1414
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1415
		/* Large PTE */
1416 1417 1418
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1419 1420 1421 1422 1423

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1424 1425
		level -= 1;

1426
		/* Walk to the next level */
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1442 1443 1444 1445 1446
	}

	return pte;
}

1447 1448 1449 1450 1451 1452 1453
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1454 1455 1456
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1457
			  unsigned long page_size,
1458
			  int prot,
1459
			  gfp_t gfp)
1460
{
1461
	u64 __pte, *pte;
1462
	int i, count;
1463

1464 1465 1466
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1467
	if (!(prot & IOMMU_PROT_MASK))
1468 1469
		return -EINVAL;

1470
	count = PAGE_SIZE_PTE_COUNT(page_size);
1471
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1472

1473 1474 1475
	if (!pte)
		return -ENOMEM;

1476 1477 1478
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1479

1480
	if (count > 1) {
1481
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1482
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1483
	} else
1484
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1485 1486 1487 1488 1489 1490

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1491 1492
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1493

1494 1495
	update_domain(dom);

1496 1497 1498
	return 0;
}

1499 1500 1501
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1502
{
1503 1504
	unsigned long long unmapped;
	unsigned long unmap_size;
1505 1506 1507 1508 1509
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1510

1511 1512
	while (unmapped < page_size) {

1513 1514 1515 1516 1517 1518
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1519 1520 1521 1522 1523 1524 1525 1526
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1527
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1528

1529
	return unmapped;
1530 1531
}

1532 1533 1534
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1535
 * interface functions.
1536 1537
 *
 ****************************************************************************/
1538

1539

1540 1541 1542
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1543
{
1544
	unsigned long pfn = 0;
1545

1546
	pages = __roundup_pow_of_two(pages);
1547

1548 1549 1550
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1551

1552 1553
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1554

1555
	return (pfn << PAGE_SHIFT);
1556 1557
}

1558 1559 1560
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1561
{
1562 1563
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1564

1565
	free_iova_fast(&dma_dom->iovad, address, pages);
1566 1567
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1640
		/* PTE present? */				\
1641 1642 1643
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1644 1645 1646 1647 1648
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1661
static void free_pagetable(struct protection_domain *domain)
1662
{
1663
	unsigned long root = (unsigned long)domain->pt_root;
1664

1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1688 1689 1690
	}
}

1691 1692 1693 1694 1695 1696 1697 1698 1699
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1700
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1715
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1716 1717 1718 1719 1720

		free_gcr3_tbl_level1(ptr);
	}
}

1721 1722
static void free_gcr3_table(struct protection_domain *domain)
{
1723 1724 1725 1726
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1727 1728
	else
		BUG_ON(domain->glx != 0);
1729

1730 1731 1732
	free_page((unsigned long)domain->gcr3_tbl);
}

1733 1734 1735 1736
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1737 1738
}

1739
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1740
{
1741
	struct dma_ops_domain *dom;
1742

1743
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1744 1745 1746 1747

	dma_ops_domain_flush_tlb(dom);
}

1748 1749 1750 1751
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1752 1753 1754 1755 1756
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1757 1758
	del_domain_from_list(&dom->domain);

1759
	put_iova_domain(&dom->iovad);
1760

1761
	free_pagetable(&dom->domain);
1762

1763 1764 1765
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1766 1767 1768
	kfree(dom);
}

1769 1770
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1771
 * It also initializes the page table and the address allocator data
1772 1773
 * structures required for the dma_ops interface
 */
1774
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1775 1776 1777 1778 1779 1780 1781
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1782
	if (protection_domain_init(&dma_dom->domain))
1783
		goto free_dma_dom;
1784

1785
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1786
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1787
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1788 1789 1790
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1791 1792 1793
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1794
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1795 1796
		goto free_dma_dom;

1797 1798
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1799

1800 1801
	add_domain_to_list(&dma_dom->domain);

1802 1803 1804 1805 1806 1807 1808 1809
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1810 1811 1812 1813 1814 1815 1816 1817 1818
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1819
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1820
{
1821
	u64 pte_root = 0;
1822
	u64 flags = 0;
1823

1824
	if (domain->mode != PAGE_MODE_NONE)
1825
		pte_root = iommu_virt_to_phys(domain->pt_root);
1826

1827 1828
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1829
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1830

1831 1832
	flags = amd_iommu_dev_table[devid].data[1];

1833 1834 1835
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1836
	if (domain->flags & PD_IOMMUV2_MASK) {
1837
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1862
	flags &= ~DEV_DOMID_MASK;
1863 1864 1865 1866
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1867 1868 1869 1870 1871
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1872
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1873
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1874 1875

	amd_iommu_apply_erratum_63(devid);
1876 1877
}

1878 1879
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1880 1881
{
	struct amd_iommu *iommu;
1882
	u16 alias;
1883
	bool ats;
1884

1885
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1886
	alias = dev_data->alias;
1887
	ats   = dev_data->ats.enabled;
1888 1889 1890 1891 1892 1893 1894 1895 1896

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1897 1898 1899
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1900
		set_dte_entry(alias, domain, ats);
1901

1902
	device_flush_dte(dev_data);
1903 1904
}

1905
static void do_detach(struct iommu_dev_data *dev_data)
1906 1907
{
	struct amd_iommu *iommu;
1908
	u16 alias;
1909

1910 1911 1912 1913 1914 1915 1916 1917 1918
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1919
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1920
	alias = dev_data->alias;
1921 1922

	/* decrease reference counters */
1923 1924 1925 1926 1927 1928
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1929
	clear_dte_entry(dev_data->devid);
1930 1931
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1932

1933
	/* Flush the DTE entry */
1934
	device_flush_dte(dev_data);
1935 1936 1937 1938 1939 1940
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1941
static int __attach_device(struct iommu_dev_data *dev_data,
1942
			   struct protection_domain *domain)
1943
{
1944
	int ret;
1945

1946 1947 1948 1949 1950 1951
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1952 1953 1954
	/* lock domain */
	spin_lock(&domain->lock);

1955
	ret = -EBUSY;
1956
	if (dev_data->domain != NULL)
1957
		goto out_unlock;
1958

1959
	/* Attach alias group root */
1960
	do_attach(dev_data, domain);
1961

1962 1963 1964 1965
	ret = 0;

out_unlock:

1966 1967
	/* ready */
	spin_unlock(&domain->lock);
1968

1969
	return ret;
1970
}
1971

1972 1973 1974 1975 1976 1977 1978 1979

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1980 1981 1982 1983 1984 1985
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1986
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1987 1988 1989
	if (!pos)
		return -EINVAL;

1990 1991 1992
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1993 1994 1995 1996

	return 0;
}

1997 1998
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
1999 2000 2001 2002 2003 2004 2005 2006
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2018 2019
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2020 2021 2022
	if (ret)
		goto out_err;

2023 2024 2025 2026 2027 2028
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2042
/* FIXME: Move this to PCI code */
2043
#define PCI_PRI_TLP_OFF		(1 << 15)
2044

J
Joerg Roedel 已提交
2045
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2046
{
2047
	u16 status;
2048 2049
	int pos;

2050
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2051 2052 2053
	if (!pos)
		return false;

2054
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2055

2056
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2057 2058
}

2059
/*
F
Frank Arnold 已提交
2060
 * If a device is not yet associated with a domain, this function
2061 2062
 * assigns it visible for the hardware
 */
2063 2064
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2065
{
2066
	struct pci_dev *pdev;
2067
	struct iommu_dev_data *dev_data;
2068
	unsigned long flags;
2069
	int ret;
2070

2071 2072
	dev_data = get_dev_data(dev);

2073 2074 2075 2076
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2077
	if (domain->flags & PD_IOMMUV2_MASK) {
2078
		if (!dev_data->passthrough)
2079 2080
			return -EINVAL;

2081 2082 2083
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2084

2085 2086 2087 2088
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2089 2090
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2091 2092 2093
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2094

2095
skip_ats_check:
2096
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2097
	ret = __attach_device(dev_data, domain);
2098 2099
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2100 2101 2102 2103 2104
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2105
	domain_flush_tlb_pde(domain);
2106 2107

	return ret;
2108 2109
}

2110 2111 2112
/*
 * Removes a device from a protection domain (unlocked)
 */
2113
static void __detach_device(struct iommu_dev_data *dev_data)
2114
{
2115
	struct protection_domain *domain;
2116

2117 2118 2119 2120 2121
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2122

2123 2124
	if (WARN_ON(!dev_data->domain))
		return;
2125

2126
	domain = dev_data->domain;
2127

2128
	spin_lock(&domain->lock);
2129

2130
	do_detach(dev_data);
2131

2132
	spin_unlock(&domain->lock);
2133 2134 2135 2136 2137
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2138
static void detach_device(struct device *dev)
2139
{
2140
	struct protection_domain *domain;
2141
	struct iommu_dev_data *dev_data;
2142 2143
	unsigned long flags;

2144
	dev_data = get_dev_data(dev);
2145
	domain   = dev_data->domain;
2146

2147 2148
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2149
	__detach_device(dev_data);
2150
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2151

2152 2153 2154
	if (!dev_is_pci(dev))
		return;

2155
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2156 2157
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2158
		pci_disable_ats(to_pci_dev(dev));
2159 2160

	dev_data->ats.enabled = false;
2161
}
2162

2163
static int amd_iommu_add_device(struct device *dev)
2164
{
2165
	struct iommu_dev_data *dev_data;
2166
	struct iommu_domain *domain;
2167
	struct amd_iommu *iommu;
2168
	int ret, devid;
2169

2170
	if (!check_device(dev) || get_dev_data(dev))
2171
		return 0;
2172

2173
	devid = get_device_id(dev);
2174
	if (devid < 0)
2175 2176
		return devid;

2177
	iommu = amd_iommu_rlookup_table[devid];
2178

2179
	ret = iommu_init_device(dev);
2180 2181 2182 2183
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2184

2185
		iommu_ignore_device(dev);
2186
		dev->dma_ops = &nommu_dma_ops;
2187 2188 2189
		goto out;
	}
	init_iommu_group(dev);
2190

2191
	dev_data = get_dev_data(dev);
2192

2193
	BUG_ON(!dev_data);
2194

2195
	if (iommu_pass_through || dev_data->iommu_v2)
2196
		iommu_request_dm_for_dev(dev);
2197

2198 2199
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2200
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2201
		dev_data->passthrough = true;
2202
	else
2203
		dev->dma_ops = &amd_iommu_dma_ops;
2204

2205
out:
2206 2207 2208 2209 2210
	iommu_completion_wait(iommu);

	return 0;
}

2211
static void amd_iommu_remove_device(struct device *dev)
2212
{
2213
	struct amd_iommu *iommu;
2214
	int devid;
2215 2216 2217 2218 2219

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2220
	if (devid < 0)
2221 2222
		return;

2223 2224 2225 2226
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2227 2228
}

2229 2230 2231 2232 2233 2234 2235 2236
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2250
static struct protection_domain *get_domain(struct device *dev)
2251
{
2252
	struct protection_domain *domain;
2253
	struct iommu_domain *io_domain;
2254

2255
	if (!check_device(dev))
2256
		return ERR_PTR(-EINVAL);
2257

2258
	domain = get_dev_data(dev)->domain;
2259 2260 2261 2262 2263 2264
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2265 2266 2267
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2268
	if (!dma_ops_domain(domain))
2269
		return ERR_PTR(-EBUSY);
2270

2271
	return domain;
2272 2273
}

2274 2275
static void update_device_table(struct protection_domain *domain)
{
2276
	struct iommu_dev_data *dev_data;
2277

2278
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2279
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2280 2281 2282 2283 2284 2285 2286

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2287 2288 2289 2290 2291 2292 2293 2294
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2295 2296 2297

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2298 2299 2300 2301

	domain->updated = false;
}

2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2313

2314 2315
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2316 2317
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2318 2319
 * Must be called with the domain lock held.
 */
2320 2321 2322 2323
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2324
			       enum dma_data_direction direction,
2325
			       u64 dma_mask)
2326 2327
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2328
	dma_addr_t address, start, ret;
2329
	unsigned int pages;
2330
	int prot = 0;
2331 2332
	int i;

2333
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2334 2335
	paddr &= PAGE_MASK;

2336
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2337
	if (address == AMD_IOMMU_MAPPING_ERROR)
2338
		goto out;
2339

2340
	prot = dir2prot(direction);
2341

2342 2343
	start = address;
	for (i = 0; i < pages; ++i) {
2344 2345 2346
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2347 2348
			goto out_unmap;

2349 2350 2351 2352 2353
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2354
	if (unlikely(amd_iommu_np_cache)) {
2355
		domain_flush_pages(&dma_dom->domain, address, size);
2356 2357
		domain_flush_complete(&dma_dom->domain);
	}
2358

2359 2360
out:
	return address;
2361 2362 2363 2364 2365

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2366
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2367 2368
	}

2369 2370 2371 2372
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2373

2374
	return AMD_IOMMU_MAPPING_ERROR;
2375 2376
}

2377 2378 2379 2380
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2381
static void __unmap_single(struct dma_ops_domain *dma_dom,
2382 2383 2384 2385
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2386
	dma_addr_t flush_addr;
2387 2388 2389
	dma_addr_t i, start;
	unsigned int pages;

2390
	flush_addr = dma_addr;
2391
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2392 2393 2394 2395
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2396
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2397 2398 2399
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2400 2401 2402 2403 2404
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
2405 2406
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2407
	}
2408 2409
}

2410 2411 2412
/*
 * The exported map_single function for dma_ops.
 */
2413 2414 2415
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2416
			   unsigned long attrs)
2417
{
2418
	phys_addr_t paddr = page_to_phys(page) + offset;
2419
	struct protection_domain *domain;
2420
	struct dma_ops_domain *dma_dom;
2421
	u64 dma_mask;
2422

2423 2424
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2425
		return (dma_addr_t)paddr;
2426
	else if (IS_ERR(domain))
2427
		return AMD_IOMMU_MAPPING_ERROR;
2428

2429
	dma_mask = *dev->dma_mask;
2430
	dma_dom = to_dma_ops_domain(domain);
2431

2432
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2433 2434
}

2435 2436 2437
/*
 * The exported unmap_single function for dma_ops.
 */
2438
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2439
		       enum dma_data_direction dir, unsigned long attrs)
2440 2441
{
	struct protection_domain *domain;
2442
	struct dma_ops_domain *dma_dom;
2443

2444 2445
	domain = get_domain(dev);
	if (IS_ERR(domain))
2446 2447
		return;

2448 2449 2450
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2451 2452
}

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2479 2480 2481 2482
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2483
static int map_sg(struct device *dev, struct scatterlist *sglist,
2484
		  int nelems, enum dma_data_direction direction,
2485
		  unsigned long attrs)
2486
{
2487
	int mapped_pages = 0, npages = 0, prot = 0, i;
2488
	struct protection_domain *domain;
2489
	struct dma_ops_domain *dma_dom;
2490
	struct scatterlist *s;
2491
	unsigned long address;
2492
	u64 dma_mask;
2493

2494
	domain = get_domain(dev);
2495
	if (IS_ERR(domain))
2496
		return 0;
2497

2498
	dma_dom  = to_dma_ops_domain(domain);
2499
	dma_mask = *dev->dma_mask;
2500

2501 2502 2503
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2504
	if (address == AMD_IOMMU_MAPPING_ERROR)
2505 2506 2507 2508 2509
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2510
	for_each_sg(sglist, s, nelems, i) {
2511 2512 2513 2514 2515
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2516

2517 2518 2519 2520 2521
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2522

2523 2524
			mapped_pages += 1;
		}
2525 2526
	}

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2544

2545 2546 2547 2548 2549 2550
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2551 2552
	}

2553 2554 2555 2556
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2557
	return 0;
2558 2559
}

2560 2561 2562 2563
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2564
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2565
		     int nelems, enum dma_data_direction dir,
2566
		     unsigned long attrs)
2567 2568
{
	struct protection_domain *domain;
2569
	struct dma_ops_domain *dma_dom;
2570 2571
	unsigned long startaddr;
	int npages = 2;
2572

2573 2574
	domain = get_domain(dev);
	if (IS_ERR(domain))
2575 2576
		return;

2577
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2578
	dma_dom   = to_dma_ops_domain(domain);
2579 2580
	npages    = sg_num_pages(dev, sglist, nelems);

2581
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2582 2583
}

2584 2585 2586
/*
 * The exported alloc_coherent function for dma_ops.
 */
2587
static void *alloc_coherent(struct device *dev, size_t size,
2588
			    dma_addr_t *dma_addr, gfp_t flag,
2589
			    unsigned long attrs)
2590
{
2591
	u64 dma_mask = dev->coherent_dma_mask;
2592
	struct protection_domain *domain;
2593
	struct dma_ops_domain *dma_dom;
2594
	struct page *page;
2595

2596 2597
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2598 2599 2600
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2601 2602
	} else if (IS_ERR(domain))
		return NULL;
2603

2604
	dma_dom   = to_dma_ops_domain(domain);
2605
	size	  = PAGE_ALIGN(size);
2606 2607
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2608
	flag     |= __GFP_ZERO;
2609

2610 2611
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2612
		if (!gfpflags_allow_blocking(flag))
2613
			return NULL;
2614

2615
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2616
						 get_order(size), flag);
2617 2618 2619
		if (!page)
			return NULL;
	}
2620

2621 2622 2623
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2624
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2625
				 size, DMA_BIDIRECTIONAL, dma_mask);
2626

2627
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2628
		goto out_free;
2629

2630
	return page_address(page);
2631 2632 2633

out_free:

2634 2635
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2636 2637

	return NULL;
2638 2639
}

2640 2641 2642
/*
 * The exported free_coherent function for dma_ops.
 */
2643
static void free_coherent(struct device *dev, size_t size,
2644
			  void *virt_addr, dma_addr_t dma_addr,
2645
			  unsigned long attrs)
2646 2647
{
	struct protection_domain *domain;
2648
	struct dma_ops_domain *dma_dom;
2649
	struct page *page;
2650

2651 2652 2653
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2654 2655
	domain = get_domain(dev);
	if (IS_ERR(domain))
2656 2657
		goto free_mem;

2658 2659 2660
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2661 2662

free_mem:
2663 2664
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2665 2666
}

2667 2668 2669 2670 2671 2672
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2673 2674
	if (!x86_dma_supported(dev, mask))
		return 0;
2675
	return check_device(dev);
2676 2677
}

2678 2679 2680 2681 2682
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2683
static const struct dma_map_ops amd_iommu_dma_ops = {
2684 2685 2686 2687 2688 2689 2690
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2691
	.mapping_error	= amd_iommu_mapping_error,
2692 2693
};

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2747
int __init amd_iommu_init_api(void)
2748
{
2749
	int ret, err = 0;
2750 2751 2752 2753

	ret = iova_cache_get();
	if (ret)
		return ret;
2754

2755 2756 2757 2758
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2759 2760 2761 2762 2763 2764 2765 2766
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2767 2768 2769
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2770

2771
	return 0;
2772 2773
}

2774 2775
int __init amd_iommu_init_dma_ops(void)
{
2776
	swiotlb        = iommu_pass_through ? 1 : 0;
2777 2778
	iommu_detected = 1;

2779 2780 2781 2782 2783 2784 2785 2786 2787
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2788 2789 2790 2791 2792
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2793
	return 0;
2794

2795
}
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2809
	struct iommu_dev_data *entry;
2810 2811 2812 2813
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2814 2815 2816 2817
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2818
	}
2819 2820 2821 2822

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2823 2824 2825 2826 2827
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2828 2829
	del_domain_from_list(domain);

2830 2831 2832 2833 2834 2835
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2848
static struct protection_domain *protection_domain_alloc(void)
2849 2850 2851 2852 2853
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2854
		return NULL;
2855

2856
	if (protection_domain_init(domain))
2857 2858
		goto out_err;

2859 2860
	add_domain_to_list(domain);

2861 2862 2863 2864 2865 2866 2867 2868
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2869
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2870
{
2871
	struct protection_domain *pdomain;
2872
	struct dma_ops_domain *dma_domain;
2873

2874 2875 2876 2877 2878
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2879

2880 2881 2882 2883 2884 2885
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2886

2887 2888 2889
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2890

2891 2892 2893 2894 2895 2896 2897 2898 2899
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2900 2901 2902 2903
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2904

2905 2906
		pdomain->mode = PAGE_MODE_NONE;
		break;
2907 2908 2909
	default:
		return NULL;
	}
2910

2911
	return &pdomain->domain;
2912 2913
}

2914
static void amd_iommu_domain_free(struct iommu_domain *dom)
2915
{
2916
	struct protection_domain *domain;
2917
	struct dma_ops_domain *dma_dom;
2918

2919 2920
	domain = to_pdomain(dom);

2921 2922 2923 2924 2925
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2926 2927
	if (!dom)
		return;
2928

2929 2930
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2931
		/* Now release the domain */
2932
		dma_dom = to_dma_ops_domain(domain);
2933 2934 2935 2936 2937
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2938

2939 2940 2941 2942 2943 2944
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2945 2946
}

2947 2948 2949
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2950
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2951
	struct amd_iommu *iommu;
2952
	int devid;
2953

2954
	if (!check_device(dev))
2955 2956
		return;

2957
	devid = get_device_id(dev);
2958
	if (devid < 0)
2959
		return;
2960

2961
	if (dev_data->domain != NULL)
2962
		detach_device(dev);
2963 2964 2965 2966 2967

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2968 2969 2970 2971 2972 2973
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2974 2975 2976
	iommu_completion_wait(iommu);
}

2977 2978 2979
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2980
	struct protection_domain *domain = to_pdomain(dom);
2981
	struct iommu_dev_data *dev_data;
2982
	struct amd_iommu *iommu;
2983
	int ret;
2984

2985
	if (!check_device(dev))
2986 2987
		return -EINVAL;

2988 2989
	dev_data = dev->archdata.iommu;

2990
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2991 2992 2993
	if (!iommu)
		return -EINVAL;

2994
	if (dev_data->domain)
2995
		detach_device(dev);
2996

2997
	ret = attach_device(dev, domain);
2998

2999 3000 3001 3002 3003 3004 3005 3006 3007
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3008 3009
	iommu_completion_wait(iommu);

3010
	return ret;
3011 3012
}

3013
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3014
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3015
{
3016
	struct protection_domain *domain = to_pdomain(dom);
3017 3018 3019
	int prot = 0;
	int ret;

3020 3021 3022
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3023 3024 3025 3026 3027
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3028
	mutex_lock(&domain->api_lock);
3029
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3030 3031
	mutex_unlock(&domain->api_lock);

3032
	return ret;
3033 3034
}

3035 3036
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3037
{
3038
	struct protection_domain *domain = to_pdomain(dom);
3039
	size_t unmap_size;
3040

3041 3042 3043
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3044
	mutex_lock(&domain->api_lock);
3045
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3046
	mutex_unlock(&domain->api_lock);
3047

3048
	domain_flush_tlb_pde(domain);
3049

3050
	return unmap_size;
3051 3052
}

3053
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3054
					  dma_addr_t iova)
3055
{
3056
	struct protection_domain *domain = to_pdomain(dom);
3057
	unsigned long offset_mask, pte_pgsize;
3058
	u64 *pte, __pte;
3059

3060 3061 3062
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3063
	pte = fetch_pte(domain, iova, &pte_pgsize);
3064

3065
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3066 3067
		return 0;

3068 3069
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3070

3071
	return (__pte & ~offset_mask) | (iova & offset_mask);
3072 3073
}

3074
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3075
{
3076 3077
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3078
		return true;
3079
	case IOMMU_CAP_INTR_REMAP:
3080
		return (irq_remapping_enabled == 1);
3081 3082
	case IOMMU_CAP_NOEXEC:
		return false;
3083 3084
	}

3085
	return false;
S
Sheng Yang 已提交
3086 3087
}

3088 3089
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3090
{
3091
	struct iommu_resv_region *region;
3092
	struct unity_map_entry *entry;
3093
	int devid;
3094 3095

	devid = get_device_id(dev);
3096
	if (devid < 0)
3097
		return;
3098 3099

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3100 3101
		size_t length;
		int prot = 0;
3102 3103 3104 3105

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3106 3107 3108 3109 3110 3111 3112 3113 3114
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3115 3116 3117 3118 3119 3120 3121
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3122 3123 3124

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3125
					 0, IOMMU_RESV_MSI);
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3136 3137
}

3138
static void amd_iommu_put_resv_regions(struct device *dev,
3139 3140
				     struct list_head *head)
{
3141
	struct iommu_resv_region *entry, *next;
3142 3143 3144 3145 3146

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3147
static void amd_iommu_apply_resv_region(struct device *dev,
3148
				      struct iommu_domain *domain,
3149
				      struct iommu_resv_region *region)
3150
{
3151
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3152 3153 3154 3155 3156 3157 3158 3159
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3160 3161 3162 3163 3164 3165 3166
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3167
const struct iommu_ops amd_iommu_ops = {
3168
	.capable = amd_iommu_capable,
3169 3170
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3171 3172
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3173 3174
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3175
	.map_sg = default_iommu_map_sg,
3176
	.iova_to_phys = amd_iommu_iova_to_phys,
3177 3178
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3179
	.device_group = amd_iommu_device_group,
3180 3181 3182
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3183
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3184
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3185 3186
};

3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3209 3210 3211

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3212
	struct protection_domain *domain = to_pdomain(dom);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3230 3231 3232

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3233
	struct protection_domain *domain = to_pdomain(dom);
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3294
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3311 3312 3313 3314 3315 3316
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3348
	struct protection_domain *domain = to_pdomain(dom);
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3368
	struct protection_domain *domain = to_pdomain(dom);
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3401
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3402 3403
		}

3404
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3448
	struct protection_domain *domain = to_pdomain(dom);
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3462
	struct protection_domain *domain = to_pdomain(dom);
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3490 3491 3492

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3493
	struct protection_domain *pdomain;
3494

3495 3496
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3497 3498 3499
		return NULL;

	/* Only return IOMMUv2 domains */
3500
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3501 3502
		return NULL;

3503
	return &pdomain->domain;
3504 3505
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3561 3562 3563 3564 3565 3566 3567 3568 3569

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3570 3571
static struct irq_chip amd_ir_chip;

3572 3573 3574 3575 3576 3577
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3578
	dte	|= iommu_virt_to_phys(table->table);
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3601
		goto out_unlock;
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3615
		goto out_unlock;
3616

3617 3618 3619
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3620 3621 3622 3623 3624 3625 3626
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3627
		table = NULL;
3628
		goto out_unlock;
3629 3630
	}

3631 3632 3633 3634 3635 3636
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3637 3638 3639 3640 3641

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3642
			iommu->irte_ops->set_allocated(table, i);
3643 3644 3645 3646 3647 3648 3649
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3650
		set_dte_irq_entry(alias, table);
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3663
static int alloc_irq_index(u16 devid, int count)
3664 3665 3666 3667
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3668 3669 3670 3671
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3683
		if (!iommu->irte_ops->is_allocated(table, index))
3684 3685 3686 3687 3688 3689
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3690
				iommu->irte_ops->set_allocated(table, index - c + 1);
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3705 3706
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3707 3708 3709 3710
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3711
	struct irte_ga *entry;
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3722 3723 3724 3725 3726 3727 3728

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3729 3730
	if (data)
		data->ref = entry;
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3755
	table->table[index] = irte->val;
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3779
	iommu->irte_ops->clear_allocated(table, index);
3780 3781 3782 3783 3784 3785
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3786 3787
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3788
			 u8 vector, u32 dest_apicid, int devid)
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3802
			    u8 vector, u32 dest_apicid, int devid)
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3828
	modify_irte_ga(devid, index, irte, NULL);
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3844
	modify_irte_ga(devid, index, irte, NULL);
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3861
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3862

3863 3864
	if (!dev_data || !dev_data->use_vapic ||
	    !irte->lo.fields_remap.guest_mode) {
3865 3866 3867 3868
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
3869 3870
}

3871
#define IRTE_ALLOCATED (~1U)
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3917
static int get_devid(struct irq_alloc_info *info)
3918
{
3919
	int devid = -1;
3920

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3936

3937 3938
	return devid;
}
3939

3940 3941 3942 3943
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3944

3945 3946
	if (!info)
		return NULL;
3947

3948 3949 3950 3951 3952 3953
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3954

3955
	return NULL;
3956 3957
}

3958
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3959
{
3960 3961
	struct amd_iommu *iommu;
	int devid;
3962

3963 3964
	if (!info)
		return NULL;
3965

3966 3967 3968 3969
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3970
		if (devid < 0)
3971 3972
			return NULL;

3973 3974 3975
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3976 3977 3978 3979
		break;
	default:
		break;
	}
3980

3981 3982
	return NULL;
}
3983

3984 3985 3986 3987 3988 3989
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3990 3991 3992
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3993

3994 3995 3996 3997 3998 3999 4000 4001
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4002 4003 4004 4005
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4006

4007 4008
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4009 4010
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4011
				 irq_cfg->dest_apicid, devid);
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4027

4028 4029 4030 4031 4032 4033 4034
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4035

4036 4037 4038 4039
	default:
		BUG_ON(1);
		break;
	}
4040 4041
}

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4062 4063
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4064
{
4065 4066
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4067
	struct amd_ir_data *data = NULL;
4068
	struct irq_cfg *cfg;
4069 4070
	int i, ret, devid;
	int index = -1;
4071

4072 4073 4074 4075
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4076 4077
		return -EINVAL;

4078 4079 4080 4081 4082 4083
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4084

4085 4086 4087
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4088

4089 4090 4091
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4092

4093 4094 4095 4096 4097 4098
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4099
		index = alloc_irq_index(devid, nr_irqs);
4100 4101 4102
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4103
		ret = index;
4104 4105
		goto out_free_parent;
	}
4106

4107 4108 4109 4110 4111 4112 4113
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4114

4115 4116 4117 4118 4119
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4130 4131 4132 4133 4134 4135
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4136

4137
	return 0;
4138

4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4150 4151
}

4152 4153
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4154
{
4155 4156 4157 4158
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4159

4160 4161 4162 4163 4164 4165
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4166
			kfree(data->entry);
4167 4168 4169 4170 4171
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4172

4173 4174 4175 4176 4177
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4178
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4179

4180 4181 4182
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4183 4184
}

4185 4186
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4187
{
4188 4189
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4190
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4191

4192 4193 4194
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4195
}
4196

4197
static const struct irq_domain_ops amd_ir_domain_ops = {
4198 4199 4200 4201
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4202
};
4203

4204 4205 4206 4207 4208 4209 4210 4211
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4212 4213 4214 4215 4216 4217 4218 4219
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4242
		irte->lo.fields_vapic.ga_log_intr = 1;
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4269 4270 4271 4272 4273 4274 4275
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4276
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4277
	int ret;
4278

4279 4280 4281
	if (!iommu)
		return -ENODEV;

4282 4283 4284
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4285

4286 4287 4288 4289
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4290 4291
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4292

4293 4294 4295 4296 4297
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4298
	send_cleanup_vector(cfg);
4299 4300

	return IRQ_SET_MASK_OK_DONE;
4301 4302
}

4303
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4304
{
4305
	struct amd_ir_data *ir_data = irq_data->chip_data;
4306

4307 4308
	*msg = ir_data->msi_entry;
}
4309

4310
static struct irq_chip amd_ir_chip = {
4311 4312 4313 4314 4315
	.name			= "AMD-IR",
	.irq_ack		= ir_ack_apic_edge,
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4316
};
4317

4318 4319
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4320 4321 4322 4323 4324 4325 4326
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4327 4328
	if (!iommu->ir_domain)
		return -ENOMEM;
4329

4330
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4331 4332 4333
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4334 4335
	return 0;
}
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4375
#endif