amd_iommu.c 95.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37
#include <linux/irqdomain.h>
38
#include <linux/percpu.h>
39 40 41 42
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
43
#include <asm/msidef.h>
44
#include <asm/proto.h>
45
#include <asm/iommu.h>
46
#include <asm/gart.h>
47
#include <asm/dma.h>
48 49 50

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
51
#include "irq_remapping.h"
52 53 54

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

55
#define LOOP_TIMEOUT	100000
56

57 58 59 60 61 62
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
63
 * 512GB Pages are not supported due to a hardware bug
64
 */
J
Joerg Roedel 已提交
65
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
66

67 68
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

69 70 71 72
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

73 74 75
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

76 77 78 79
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
80
static const struct iommu_ops amd_iommu_ops;
81

82
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
83
int amd_iommu_max_glx_val = -1;
84

85 86
static struct dma_map_ops amd_iommu_dma_ops;

87 88 89 90 91 92 93 94
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
95
	u16 alias;			  /* Alias Device ID */
96
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
97
	bool passthrough;		  /* Device is identity mapped */
98 99 100 101 102 103 104 105 106
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

107 108 109
/*
 * general struct to manage commands send to an IOMMU
 */
110
struct iommu_cmd {
111 112 113
	u32 data[4];
};

114 115
struct kmem_cache *amd_iommu_irq_cache;

116
static void update_domain(struct protection_domain *domain);
117
static int protection_domain_init(struct protection_domain *domain);
118
static void detach_device(struct device *dev);
119

120 121 122 123 124 125
/*
 * For dynamic growth the aperture size is split into ranges of 128MB of
 * DMA address space each. This struct represents one such range.
 */
struct aperture_range {

126 127
	spinlock_t bitmap_lock;

128 129
	/* address allocation bitmap */
	unsigned long *bitmap;
130
	unsigned long offset;
131
	unsigned long next_bit;
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

	/*
	 * Array of PTE pages for the aperture. In this array we save all the
	 * leaf pages of the domain page table used for the aperture. This way
	 * we don't need to walk the page table to find a specific PTE. We can
	 * just calculate its address in constant time.
	 */
	u64 *pte_pages[64];
};

/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

	/* size of the aperture for the mappings */
	unsigned long aperture_size;

152
	/* aperture index we start searching for free addresses */
153
	u32 __percpu *next_index;
154 155 156 157 158

	/* address space relevant data */
	struct aperture_range *aperture[APERTURE_MAX_RANGES];
};

159 160 161 162 163 164
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

165 166 167 168 169
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

170 171 172 173 174 175 176
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

177
static struct iommu_dev_data *alloc_dev_data(u16 devid)
178 179 180 181 182 183 184 185
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

186
	dev_data->devid = devid;
187 188 189 190 191 192 193 194

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

276 277 278 279 280 281 282 283 284 285 286 287
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

288 289 290 291 292
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

293 294 295 296
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
297 298
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
299 300 301 302 303 304 305 306 307 308 309 310
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

311 312 313 314 315 316 317 318 319
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

320
/*
321 322
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
323
 */
324 325
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
326
{
327
	u64 addr;
328

329 330 331 332 333
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
334
	}
335
}
336

337 338 339 340 341 342 343 344
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
345

346
	devid = get_device_id(dev);
347

348 349 350 351 352
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
353 354
}

355 356 357 358 359 360 361 362 363 364 365
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

366 367
	/* No PCI device */
	if (!dev_is_pci(dev))
368 369 370 371 372 373 374 375 376 377 378 379 380 381
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

382
static void init_iommu_group(struct device *dev)
383
{
384 385
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
386 387
	struct iommu_group *group;

388
	group = iommu_group_get_for_dev(dev);
389 390 391 392 393 394 395 396 397 398 399 400
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
401 402 403 404 405 406 407 408 409 410 411 412 413 414
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

415 416
	dev_data->alias = get_alias(dev);

417 418 419 420 421 422 423
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

424 425
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
426 427 428
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

429 430 431
	return 0;
}

432 433 434 435 436
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
437
	alias = get_alias(dev);
438 439 440 441 442 443 444 445

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

446 447
static void iommu_uninit_device(struct device *dev)
{
448 449 450 451 452
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

453 454 455
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
456 457 458
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

459 460
	iommu_group_remove_device(dev);

461 462 463
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

464
	/*
465 466
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
467
	 */
468
}
J
Joerg Roedel 已提交
469

470 471 472 473 474 475
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

476
DECLARE_STATS_COUNTER(compl_wait);
477
DECLARE_STATS_COUNTER(cnt_map_single);
478
DECLARE_STATS_COUNTER(cnt_unmap_single);
479
DECLARE_STATS_COUNTER(cnt_map_sg);
480
DECLARE_STATS_COUNTER(cnt_unmap_sg);
481
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
482
DECLARE_STATS_COUNTER(cnt_free_coherent);
483
DECLARE_STATS_COUNTER(cross_page);
484
DECLARE_STATS_COUNTER(domain_flush_single);
485
DECLARE_STATS_COUNTER(domain_flush_all);
486
DECLARE_STATS_COUNTER(alloced_io_mem);
487
DECLARE_STATS_COUNTER(total_map_requests);
488 489 490 491 492
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
512
					 &amd_iommu_unmap_flush);
513 514

	amd_iommu_stats_add(&compl_wait);
515
	amd_iommu_stats_add(&cnt_map_single);
516
	amd_iommu_stats_add(&cnt_unmap_single);
517
	amd_iommu_stats_add(&cnt_map_sg);
518
	amd_iommu_stats_add(&cnt_unmap_sg);
519
	amd_iommu_stats_add(&cnt_alloc_coherent);
520
	amd_iommu_stats_add(&cnt_free_coherent);
521
	amd_iommu_stats_add(&cross_page);
522
	amd_iommu_stats_add(&domain_flush_single);
523
	amd_iommu_stats_add(&domain_flush_all);
524
	amd_iommu_stats_add(&alloced_io_mem);
525
	amd_iommu_stats_add(&total_map_requests);
526 527 528 529
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
530 531 532 533
}

#endif

534 535 536 537 538 539
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

540 541 542 543
static void dump_dte_entry(u16 devid)
{
	int i;

544 545
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
546 547 548
			amd_iommu_dev_table[devid].data[i]);
}

549 550 551 552 553 554 555 556 557
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

558
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
559
{
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
581

582
	printk(KERN_ERR "AMD-Vi: Event logged [");
583 584 585 586 587

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
588
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
589
		       address, flags);
590
		dump_dte_entry(devid);
591 592 593 594
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
595
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
596 597 598 599 600
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
601
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
602 603 604 605 606
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
607
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
608 609 610 611
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
612
		dump_command(address);
613 614 615 616 617 618 619 620
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
621
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
622 623 624 625 626
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
627
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628 629 630 631 632
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
633 634

	memset(__evt, 0, 4 * sizeof(u32));
635 636 637 638 639 640 641 642 643 644
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
645
		iommu_print_event(iommu, iommu->evt_buf + head);
646
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
647 648 649 650 651
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

652
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
653 654 655
{
	struct amd_iommu_fault fault;

656 657
	INC_STATS_COUNTER(pri_requests);

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
699

700 701 702
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
703

704 705 706 707 708 709 710
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
711 712
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
713 714 715 716 717 718

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
719 720 721 722
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

723
irqreturn_t amd_iommu_int_thread(int irq, void *data)
724
{
725 726
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
727

728 729 730 731
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
732

733 734 735 736
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
737

738 739 740 741
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
742

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
758
	return IRQ_HANDLED;
759 760
}

761 762 763 764 765
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

766 767 768 769 770 771
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
792 793 794
{
	u8 *target;

795
	target = iommu->cmd_buf + tail;
796
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
797 798 799 800 801

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
802
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
803
}
804

805
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
806
{
807 808
	WARN_ON(address & 0x7ULL);

809
	memset(cmd, 0, sizeof(*cmd));
810 811 812
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
813 814 815
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

816 817 818 819 820 821 822
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

823 824 825 826
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
827
	bool s;
828 829

	pages = iommu_num_pages(address, size, PAGE_SIZE);
830
	s     = false;
831 832 833 834 835 836 837

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
838
		s = true;
839 840 841 842 843 844 845 846 847 848 849
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
850
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
851 852 853
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

854 855 856 857
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
858
	bool s;
859 860

	pages = iommu_num_pages(address, size, PAGE_SIZE);
861
	s     = false;
862 863 864 865 866 867 868

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
869
		s = true;
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

885 886 887 888 889 890 891
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

892
	cmd->data[0]  = pasid;
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
911
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
912 913
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
914
	cmd->data[1] |= (pasid & 0xff) << 16;
915 916 917 918 919 920 921 922
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

923 924 925 926 927 928 929
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
930
		cmd->data[1]  = pasid;
931 932 933 934 935 936 937 938
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

939 940 941 942
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
943 944
}

945 946 947 948 949 950 951
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

952 953
/*
 * Writes the command to the IOMMUs command buffer and informs the
954
 * hardware about the new command.
955
 */
956 957 958
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
959
{
960
	u32 left, tail, head, next_tail;
961 962
	unsigned long flags;

963
again:
964 965
	spin_lock_irqsave(&iommu->lock, flags);

966 967
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
968 969
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
970

971 972 973 974
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
975

976 977
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
978

979 980 981 982 983 984
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
985 986
	}

987 988 989
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
990
	iommu->need_sync = sync;
991

992
	spin_unlock_irqrestore(&iommu->lock, flags);
993

994
	return 0;
995 996
}

997 998 999 1000 1001
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1002 1003 1004 1005
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1006
static int iommu_completion_wait(struct amd_iommu *iommu)
1007 1008
{
	struct iommu_cmd cmd;
1009
	volatile u64 sem = 0;
1010
	int ret;
1011

1012
	if (!iommu->need_sync)
1013
		return 0;
1014

1015
	build_completion_wait(&cmd, (u64)&sem);
1016

1017
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1018
	if (ret)
1019
		return ret;
1020

1021
	return wait_on_sem(&sem);
1022 1023
}

1024
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1025
{
1026
	struct iommu_cmd cmd;
1027

1028
	build_inv_dte(&cmd, devid);
1029

1030 1031
	return iommu_queue_command(iommu, &cmd);
}
1032

1033 1034 1035
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1036

1037 1038
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1039

1040 1041
	iommu_completion_wait(iommu);
}
1042

1043 1044 1045 1046 1047 1048 1049
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1050

1051 1052 1053 1054 1055 1056
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1057

1058
	iommu_completion_wait(iommu);
1059 1060
}

1061
static void iommu_flush_all(struct amd_iommu *iommu)
1062
{
1063
	struct iommu_cmd cmd;
1064

1065
	build_inv_all(&cmd);
1066

1067 1068 1069 1070
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1090 1091
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1092 1093 1094 1095
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1096
		iommu_flush_irt_all(iommu);
1097
		iommu_flush_tlb_all(iommu);
1098 1099 1100
	}
}

1101
/*
1102
 * Command send function for flushing on-device TLB
1103
 */
1104 1105
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1106 1107
{
	struct amd_iommu *iommu;
1108
	struct iommu_cmd cmd;
1109
	int qdep;
1110

1111 1112
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1113

1114
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1115 1116

	return iommu_queue_command(iommu, &cmd);
1117 1118
}

1119 1120 1121
/*
 * Command send function for invalidating a device table entry
 */
1122
static int device_flush_dte(struct iommu_dev_data *dev_data)
1123
{
1124
	struct amd_iommu *iommu;
1125
	u16 alias;
1126
	int ret;
1127

1128
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1129
	alias = dev_data->alias;
1130

1131
	ret = iommu_flush_dte(iommu, dev_data->devid);
1132 1133
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1134 1135 1136
	if (ret)
		return ret;

1137
	if (dev_data->ats.enabled)
1138
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1139 1140

	return ret;
1141 1142
}

1143 1144 1145 1146 1147
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1148 1149
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1150
{
1151
	struct iommu_dev_data *dev_data;
1152 1153
	struct iommu_cmd cmd;
	int ret = 0, i;
1154

1155
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1156

1157 1158 1159 1160 1161 1162 1163 1164
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1165
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1166 1167
	}

1168 1169
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1170
		if (!dev_data->ats.enabled)
1171 1172
			continue;

1173
		ret |= device_flush_iotlb(dev_data, address, size);
1174 1175
	}

1176
	WARN_ON(ret);
1177 1178
}

1179 1180
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1181
{
1182
	__domain_flush_pages(domain, address, size, 0);
1183
}
1184

1185
/* Flush the whole IO/TLB for a given protection domain */
1186
static void domain_flush_tlb(struct protection_domain *domain)
1187
{
1188
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1189 1190
}

1191
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1192
static void domain_flush_tlb_pde(struct protection_domain *domain)
1193
{
1194
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1195 1196
}

1197
static void domain_flush_complete(struct protection_domain *domain)
1198
{
1199
	int i;
1200

1201 1202 1203
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1204

1205 1206 1207 1208 1209
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1210
	}
1211 1212
}

1213

1214
/*
1215
 * This function flushes the DTEs for all devices in domain
1216
 */
1217
static void domain_flush_devices(struct protection_domain *domain)
1218
{
1219
	struct iommu_dev_data *dev_data;
1220

1221
	list_for_each_entry(dev_data, &domain->dev_list, list)
1222
		device_flush_dte(dev_data);
1223 1224
}

1225 1226 1227 1228 1229 1230 1231
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1261
		      unsigned long page_size,
1262 1263 1264
		      u64 **pte_page,
		      gfp_t gfp)
{
1265
	int level, end_lvl;
1266
	u64 *pte, *page;
1267 1268

	BUG_ON(!is_power_of_2(page_size));
1269 1270 1271 1272

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1273 1274 1275 1276
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1277 1278

	while (level > end_lvl) {
1279 1280 1281 1282 1283
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1284 1285 1286
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1287 1288 1289 1290 1291 1292 1293

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

			if (cmpxchg64(pte, __pte, __npte)) {
				free_page((unsigned long)page);
				continue;
			}
1294 1295
		}

1296 1297 1298 1299
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1317 1318 1319
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1320 1321 1322 1323
{
	int level;
	u64 *pte;

1324 1325 1326
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1327 1328 1329
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1330

1331 1332 1333
	while (level > 0) {

		/* Not Present */
1334 1335 1336
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1337
		/* Large PTE */
1338 1339 1340
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1341 1342 1343 1344 1345

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1346 1347
		level -= 1;

1348
		/* Walk to the next level */
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1364 1365 1366 1367 1368
	}

	return pte;
}

1369 1370 1371 1372 1373 1374 1375
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1376 1377 1378
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1379
			  int prot,
1380
			  unsigned long page_size)
1381
{
1382
	u64 __pte, *pte;
1383
	int i, count;
1384

1385 1386 1387
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1388
	if (!(prot & IOMMU_PROT_MASK))
1389 1390
		return -EINVAL;

1391 1392
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1393

1394 1395 1396
	if (!pte)
		return -ENOMEM;

1397 1398 1399
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1400

1401
	if (count > 1) {
1402 1403 1404 1405
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1406 1407 1408 1409 1410 1411

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1412 1413
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1414

1415 1416
	update_domain(dom);

1417 1418 1419
	return 0;
}

1420 1421 1422
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1423
{
1424 1425
	unsigned long long unmapped;
	unsigned long unmap_size;
1426 1427 1428 1429 1430
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1431

1432 1433
	while (unmapped < page_size) {

1434 1435 1436 1437 1438 1439
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1440 1441 1442 1443 1444 1445 1446 1447
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1448
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1449

1450
	return unmapped;
1451 1452
}

1453 1454 1455 1456 1457 1458 1459 1460 1461
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1462

1463
/*
1464
 * The address allocator core functions.
1465 1466 1467
 *
 * called with domain->lock held
 */
1468

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1489 1490 1491 1492 1493
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1494
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1495 1496 1497
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1498
	unsigned long i, old_size, pte_pgsize;
1499 1500 1501
	struct aperture_range *range;
	struct amd_iommu *iommu;
	unsigned long flags;
1502

1503 1504 1505 1506
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1507 1508 1509
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

1510 1511
	range = kzalloc(sizeof(struct aperture_range), gfp);
	if (!range)
1512 1513
		return -ENOMEM;

1514 1515
	range->bitmap = (void *)get_zeroed_page(gfp);
	if (!range->bitmap)
1516 1517
		goto out_free;

1518
	range->offset = dma_dom->aperture_size;
1519

1520
	spin_lock_init(&range->bitmap_lock);
1521

1522 1523 1524 1525 1526 1527
	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1528
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1529 1530 1531 1532
					&pte_page, gfp);
			if (!pte)
				goto out_free;

1533
			range->pte_pages[i] = pte_page;
1534 1535 1536 1537 1538

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1539 1540
	spin_lock_irqsave(&dma_dom->domain.lock, flags);

1541
	/* First take the bitmap_lock and then publish the range */
1542
	spin_lock(&range->bitmap_lock);
1543 1544 1545 1546

	old_size                 = dma_dom->aperture_size;
	dma_dom->aperture[index] = range;
	dma_dom->aperture_size  += APERTURE_RANGE_SIZE;
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1560
	/* Initialize the exclusion range if necessary */
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1582
	     i += pte_pgsize) {
1583
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1584 1585 1586
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1587 1588
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1589 1590
	}

1591 1592
	update_domain(&dma_dom->domain);

1593 1594 1595
	spin_unlock(&range->bitmap_lock);

	spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
1596

1597 1598 1599
	return 0;

out_free:
1600 1601
	update_domain(&dma_dom->domain);

1602
	free_page((unsigned long)range->bitmap);
1603

1604
	kfree(range);
1605 1606 1607 1608

	return -ENOMEM;
}

1609 1610
static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
					 struct aperture_range *range,
1611 1612 1613
					 unsigned long pages,
					 unsigned long dma_mask,
					 unsigned long boundary_size,
1614 1615
					 unsigned long align_mask,
					 bool trylock)
1616 1617 1618
{
	unsigned long offset, limit, flags;
	dma_addr_t address;
1619
	bool flush = false;
1620 1621 1622 1623 1624

	offset = range->offset >> PAGE_SHIFT;
	limit  = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					dma_mask >> PAGE_SHIFT);

1625 1626 1627 1628 1629 1630 1631
	if (trylock) {
		if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
			return -1;
	} else {
		spin_lock_irqsave(&range->bitmap_lock, flags);
	}

1632 1633
	address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
				   pages, offset, boundary_size, align_mask);
1634
	if (address == -1) {
1635 1636 1637 1638
		/* Nothing found, retry one time */
		address = iommu_area_alloc(range->bitmap, limit,
					   0, pages, offset, boundary_size,
					   align_mask);
1639 1640
		flush = true;
	}
1641 1642 1643 1644

	if (address != -1)
		range->next_bit = address + pages;

1645 1646
	spin_unlock_irqrestore(&range->bitmap_lock, flags);

1647 1648 1649 1650 1651
	if (flush) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}

1652 1653 1654
	return address;
}

1655 1656 1657 1658
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
1659
					u64 dma_mask)
1660
{
1661
	unsigned long boundary_size, mask;
1662
	unsigned long address = -1;
1663
	bool first = true;
1664 1665 1666
	u32 start, i;

	preempt_disable();
1667

1668 1669
	mask = dma_get_seg_boundary(dev);

1670
again:
1671 1672 1673 1674 1675 1676 1677 1678
	start = this_cpu_read(*dom->next_index);

	/* Sanity check - is it really necessary? */
	if (unlikely(start > APERTURE_MAX_RANGES)) {
		start = 0;
		this_cpu_write(*dom->next_index, 0);
	}

1679 1680
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1681

1682 1683
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		struct aperture_range *range;
1684 1685 1686
		int index;

		index = (start + i) % APERTURE_MAX_RANGES;
1687

1688
		range = dom->aperture[index];
1689 1690 1691

		if (!range || range->offset >= dma_mask)
			continue;
1692

1693
		address = dma_ops_aperture_alloc(dom, range, pages,
1694
						 dma_mask, boundary_size,
1695
						 align_mask, first);
1696
		if (address != -1) {
1697
			address = range->offset + (address << PAGE_SHIFT);
1698
			this_cpu_write(*dom->next_index, index);
1699 1700 1701 1702
			break;
		}
	}

1703 1704 1705 1706 1707
	if (address == -1 && first) {
		first = false;
		goto again;
	}

1708 1709
	preempt_enable();

1710 1711 1712
	return address;
}

1713 1714
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1715
					     unsigned int pages,
1716 1717
					     unsigned long align_mask,
					     u64 dma_mask)
1718
{
1719
	unsigned long address = -1;
1720

1721 1722 1723 1724
	while (address == -1) {
		address = dma_ops_area_alloc(dev, dom, pages,
					     align_mask, dma_mask);

1725
		if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
1726 1727
			break;
	}
1728

1729
	if (unlikely(address == -1))
1730
		address = DMA_ERROR_CODE;
1731 1732 1733 1734 1735 1736

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1737 1738 1739 1740 1741
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1742 1743 1744 1745
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1746 1747
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1748
	unsigned long flags;
1749

1750 1751
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1752 1753 1754 1755
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1756

1757
	if (amd_iommu_unmap_flush) {
1758 1759 1760
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}
1761 1762

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1763

1764
	spin_lock_irqsave(&range->bitmap_lock, flags);
1765 1766
	if (address + pages > range->next_bit)
		range->next_bit = address + pages;
A
Akinobu Mita 已提交
1767
	bitmap_clear(range->bitmap, address, pages);
1768
	spin_unlock_irqrestore(&range->bitmap_lock, flags);
1769

1770 1771
}

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1844
		/* PTE present? */				\
1845 1846 1847
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1848 1849 1850 1851 1852
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1865
static void free_pagetable(struct protection_domain *domain)
1866
{
1867
	unsigned long root = (unsigned long)domain->pt_root;
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1892 1893 1894
	}
}

1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1925 1926
static void free_gcr3_table(struct protection_domain *domain)
{
1927 1928 1929 1930
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1931 1932
	else
		BUG_ON(domain->glx != 0);
1933

1934 1935 1936
	free_page((unsigned long)domain->gcr3_tbl);
}

1937 1938 1939 1940
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1941 1942
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1943 1944
	int i;

1945 1946 1947
	if (!dom)
		return;

1948 1949
	free_percpu(dom->next_index);

1950 1951
	del_domain_from_list(&dom->domain);

1952
	free_pagetable(&dom->domain);
1953

1954 1955 1956 1957 1958 1959
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1960 1961 1962 1963

	kfree(dom);
}

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
					  int max_apertures)
{
	int ret, i, apertures;

	apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
	ret       = 0;

	for (i = apertures; i < max_apertures; ++i) {
		ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
		if (ret)
			break;
	}

	return ret;
}

1981 1982
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1983
 * It also initializes the page table and the address allocator data
1984 1985
 * structures required for the dma_ops interface
 */
1986
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1987 1988
{
	struct dma_ops_domain *dma_dom;
1989
	int cpu;
1990 1991 1992 1993 1994

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1995
	if (protection_domain_init(&dma_dom->domain))
1996
		goto free_dma_dom;
1997

1998 1999 2000 2001
	dma_dom->next_index = alloc_percpu(u32);
	if (!dma_dom->next_index)
		goto free_dma_dom;

2002
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2003
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2004
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2005 2006 2007 2008
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2009 2010
	add_domain_to_list(&dma_dom->domain);

2011
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2012 2013
		goto free_dma_dom;

2014
	/*
2015 2016
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2017
	 */
2018
	dma_dom->aperture[0]->bitmap[0] = 1;
2019

2020 2021
	for_each_possible_cpu(cpu)
		*per_cpu_ptr(dma_dom->next_index, cpu) = 0;
2022 2023 2024 2025 2026 2027 2028 2029 2030

	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2031 2032 2033 2034 2035 2036 2037 2038 2039
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2040
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2041
{
2042
	u64 pte_root = 0;
2043
	u64 flags = 0;
2044

2045 2046 2047
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2048 2049 2050
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2051

2052 2053
	flags = amd_iommu_dev_table[devid].data[1];

2054 2055 2056
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2083 2084 2085 2086 2087
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2088 2089 2090 2091 2092
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
2093 2094
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2095 2096

	amd_iommu_apply_erratum_63(devid);
2097 2098
}

2099 2100
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2101 2102
{
	struct amd_iommu *iommu;
2103
	u16 alias;
2104
	bool ats;
2105

2106
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2107
	alias = dev_data->alias;
2108
	ats   = dev_data->ats.enabled;
2109 2110 2111 2112 2113 2114 2115 2116 2117

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

2118 2119 2120
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
2121
		set_dte_entry(alias, domain, ats);
2122

2123
	device_flush_dte(dev_data);
2124 2125
}

2126
static void do_detach(struct iommu_dev_data *dev_data)
2127 2128
{
	struct amd_iommu *iommu;
2129
	u16 alias;
2130

2131 2132 2133 2134 2135 2136 2137 2138 2139
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2140
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2141
	alias = dev_data->alias;
2142 2143

	/* decrease reference counters */
2144 2145 2146 2147 2148 2149
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2150
	clear_dte_entry(dev_data->devid);
2151 2152
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2153

2154
	/* Flush the DTE entry */
2155
	device_flush_dte(dev_data);
2156 2157 2158 2159 2160 2161
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2162
static int __attach_device(struct iommu_dev_data *dev_data,
2163
			   struct protection_domain *domain)
2164
{
2165
	int ret;
2166

2167 2168 2169 2170 2171 2172
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2173 2174 2175
	/* lock domain */
	spin_lock(&domain->lock);

2176
	ret = -EBUSY;
2177
	if (dev_data->domain != NULL)
2178
		goto out_unlock;
2179

2180
	/* Attach alias group root */
2181
	do_attach(dev_data, domain);
2182

2183 2184 2185 2186
	ret = 0;

out_unlock:

2187 2188
	/* ready */
	spin_unlock(&domain->lock);
2189

2190
	return ret;
2191
}
2192

2193 2194 2195 2196 2197 2198 2199 2200

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2201 2202 2203 2204 2205 2206
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2207
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2208 2209 2210
	if (!pos)
		return -EINVAL;

2211 2212 2213
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2214 2215 2216 2217

	return 0;
}

2218 2219
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2220 2221 2222 2223 2224 2225 2226 2227
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2239 2240
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2241 2242 2243
	if (ret)
		goto out_err;

2244 2245 2246 2247 2248 2249
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2263
/* FIXME: Move this to PCI code */
2264
#define PCI_PRI_TLP_OFF		(1 << 15)
2265

J
Joerg Roedel 已提交
2266
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2267
{
2268
	u16 status;
2269 2270
	int pos;

2271
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2272 2273 2274
	if (!pos)
		return false;

2275
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2276

2277
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2278 2279
}

2280
/*
F
Frank Arnold 已提交
2281
 * If a device is not yet associated with a domain, this function
2282 2283
 * assigns it visible for the hardware
 */
2284 2285
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2286
{
2287
	struct pci_dev *pdev = to_pci_dev(dev);
2288
	struct iommu_dev_data *dev_data;
2289
	unsigned long flags;
2290
	int ret;
2291

2292 2293
	dev_data = get_dev_data(dev);

2294
	if (domain->flags & PD_IOMMUV2_MASK) {
2295
		if (!dev_data->passthrough)
2296 2297
			return -EINVAL;

2298 2299 2300
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2301

2302 2303 2304 2305
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2306 2307
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2308 2309 2310
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2311

2312
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2313
	ret = __attach_device(dev_data, domain);
2314 2315
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2316 2317 2318 2319 2320
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2321
	domain_flush_tlb_pde(domain);
2322 2323

	return ret;
2324 2325
}

2326 2327 2328
/*
 * Removes a device from a protection domain (unlocked)
 */
2329
static void __detach_device(struct iommu_dev_data *dev_data)
2330
{
2331
	struct protection_domain *domain;
2332

2333 2334 2335 2336 2337
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2338

2339 2340
	if (WARN_ON(!dev_data->domain))
		return;
2341

2342
	domain = dev_data->domain;
2343

2344
	spin_lock(&domain->lock);
2345

2346
	do_detach(dev_data);
2347

2348
	spin_unlock(&domain->lock);
2349 2350 2351 2352 2353
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2354
static void detach_device(struct device *dev)
2355
{
2356
	struct protection_domain *domain;
2357
	struct iommu_dev_data *dev_data;
2358 2359
	unsigned long flags;

2360
	dev_data = get_dev_data(dev);
2361
	domain   = dev_data->domain;
2362

2363 2364
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2365
	__detach_device(dev_data);
2366
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2367

2368
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2369 2370
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2371
		pci_disable_ats(to_pci_dev(dev));
2372 2373

	dev_data->ats.enabled = false;
2374
}
2375

2376
static int amd_iommu_add_device(struct device *dev)
2377
{
2378
	struct iommu_dev_data *dev_data;
2379
	struct iommu_domain *domain;
2380
	struct amd_iommu *iommu;
2381
	u16 devid;
2382
	int ret;
2383

2384
	if (!check_device(dev) || get_dev_data(dev))
2385
		return 0;
2386

2387 2388
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2389

2390
	ret = iommu_init_device(dev);
2391 2392 2393 2394
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2395

2396
		iommu_ignore_device(dev);
2397
		dev->archdata.dma_ops = &nommu_dma_ops;
2398 2399 2400
		goto out;
	}
	init_iommu_group(dev);
2401

2402
	dev_data = get_dev_data(dev);
2403

2404
	BUG_ON(!dev_data);
2405

2406
	if (iommu_pass_through || dev_data->iommu_v2)
2407
		iommu_request_dm_for_dev(dev);
2408

2409 2410
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2411
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2412
		dev_data->passthrough = true;
2413
	else
2414
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2415

2416
out:
2417 2418 2419 2420 2421
	iommu_completion_wait(iommu);

	return 0;
}

2422
static void amd_iommu_remove_device(struct device *dev)
2423
{
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2435 2436
}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2450
static struct protection_domain *get_domain(struct device *dev)
2451
{
2452
	struct protection_domain *domain;
2453
	struct iommu_domain *io_domain;
2454

2455
	if (!check_device(dev))
2456
		return ERR_PTR(-EINVAL);
2457

2458
	io_domain = iommu_get_domain_for_dev(dev);
2459 2460
	if (!io_domain)
		return NULL;
2461

2462 2463
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2464
		return ERR_PTR(-EBUSY);
2465

2466
	return domain;
2467 2468
}

2469 2470
static void update_device_table(struct protection_domain *domain)
{
2471
	struct iommu_dev_data *dev_data;
2472

2473 2474
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2475 2476 2477 2478 2479 2480 2481 2482
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2483 2484 2485

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2486 2487 2488 2489

	domain->updated = false;
}

2490 2491 2492 2493 2494 2495
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2496
	struct aperture_range *aperture;
2497 2498
	u64 *pte, *pte_page;

2499 2500 2501 2502 2503
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2504
	if (!pte) {
2505
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2506
				GFP_ATOMIC);
2507 2508
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2509
		pte += PM_LEVEL_INDEX(0, address);
2510

2511
	update_domain(&dom->domain);
2512 2513 2514 2515

	return pte;
}

2516 2517 2518 2519
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2520
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2531
	pte  = dma_ops_get_pte(dom, address);
2532
	if (!pte)
2533
		return DMA_ERROR_CODE;
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

2544
	WARN_ON_ONCE(*pte);
2545 2546 2547 2548 2549 2550

	*pte = __pte;

	return (dma_addr_t)address;
}

2551 2552 2553
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2554
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2555 2556
				 unsigned long address)
{
2557
	struct aperture_range *aperture;
2558 2559 2560 2561 2562
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2563 2564 2565 2566 2567 2568 2569
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2570

2571
	pte += PM_LEVEL_INDEX(0, address);
2572

2573
	WARN_ON_ONCE(!*pte);
2574 2575 2576 2577

	*pte = 0ULL;
}

2578 2579
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2580 2581
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2582 2583
 * Must be called with the domain lock held.
 */
2584 2585 2586 2587
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2588
			       int dir,
2589 2590
			       bool align,
			       u64 dma_mask)
2591 2592
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2593
	dma_addr_t address, start, ret;
2594
	unsigned int pages;
2595
	unsigned long align_mask = 0;
2596 2597
	int i;

2598
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2599 2600
	paddr &= PAGE_MASK;

2601 2602
	INC_STATS_COUNTER(total_map_requests);

2603 2604 2605
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2606 2607 2608
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2609 2610
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2611

2612 2613
	if (address == DMA_ERROR_CODE)
		goto out;
2614 2615 2616

	start = address;
	for (i = 0; i < pages; ++i) {
2617
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2618
		if (ret == DMA_ERROR_CODE)
2619 2620
			goto out_unmap;

2621 2622 2623 2624 2625
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2626 2627
	ADD_STATS_COUNTER(alloced_io_mem, size);

2628
	if (unlikely(amd_iommu_np_cache)) {
2629
		domain_flush_pages(&dma_dom->domain, address, size);
2630 2631
		domain_flush_complete(&dma_dom->domain);
	}
2632

2633 2634
out:
	return address;
2635 2636 2637 2638 2639

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2640
		dma_ops_domain_unmap(dma_dom, start);
2641 2642 2643 2644
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2645
	return DMA_ERROR_CODE;
2646 2647
}

2648 2649 2650 2651
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2652
static void __unmap_single(struct dma_ops_domain *dma_dom,
2653 2654 2655 2656
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2657
	dma_addr_t flush_addr;
2658 2659 2660
	dma_addr_t i, start;
	unsigned int pages;

2661
	if ((dma_addr == DMA_ERROR_CODE) ||
2662
	    (dma_addr + size > dma_dom->aperture_size))
2663 2664
		return;

2665
	flush_addr = dma_addr;
2666
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2667 2668 2669 2670
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2671
		dma_ops_domain_unmap(dma_dom, start);
2672 2673 2674
		start += PAGE_SIZE;
	}

2675 2676 2677
	SUB_STATS_COUNTER(alloced_io_mem, size);

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2678 2679
}

2680 2681 2682
/*
 * The exported map_single function for dma_ops.
 */
2683 2684 2685 2686
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2687
{
2688
	phys_addr_t paddr = page_to_phys(page) + offset;
2689
	struct protection_domain *domain;
2690
	u64 dma_mask;
2691

2692 2693
	INC_STATS_COUNTER(cnt_map_single);

2694 2695
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2696
		return (dma_addr_t)paddr;
2697 2698
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2699

2700 2701
	dma_mask = *dev->dma_mask;

2702
	return __map_single(dev, domain->priv, paddr, size, dir, false,
2703
			    dma_mask);
2704 2705
}

2706 2707 2708
/*
 * The exported unmap_single function for dma_ops.
 */
2709 2710
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2711 2712 2713
{
	struct protection_domain *domain;

2714 2715
	INC_STATS_COUNTER(cnt_unmap_single);

2716 2717
	domain = get_domain(dev);
	if (IS_ERR(domain))
2718 2719
		return;

2720
	__unmap_single(domain->priv, dma_addr, size, dir);
2721 2722
}

2723 2724 2725 2726
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2727
static int map_sg(struct device *dev, struct scatterlist *sglist,
2728 2729
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2730 2731 2732 2733 2734 2735
{
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2736
	u64 dma_mask;
2737

2738 2739
	INC_STATS_COUNTER(cnt_map_sg);

2740
	domain = get_domain(dev);
2741
	if (IS_ERR(domain))
2742
		return 0;
2743

2744
	dma_mask = *dev->dma_mask;
2745 2746 2747 2748

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2749
		s->dma_address = __map_single(dev, domain->priv,
2750 2751
					      paddr, s->length, dir, false,
					      dma_mask);
2752 2753 2754 2755 2756 2757 2758 2759 2760

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

	return mapped_elems;
2761

2762 2763 2764
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2765
			__unmap_single(domain->priv, s->dma_address,
2766 2767 2768 2769
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2770
	return 0;
2771 2772
}

2773 2774 2775 2776
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2777
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2778 2779
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2780 2781 2782 2783 2784
{
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2785 2786
	INC_STATS_COUNTER(cnt_unmap_sg);

2787 2788
	domain = get_domain(dev);
	if (IS_ERR(domain))
2789 2790
		return;

2791
	for_each_sg(sglist, s, nelems, i) {
2792
		__unmap_single(domain->priv, s->dma_address,
2793 2794 2795 2796 2797
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}
}

2798 2799 2800
/*
 * The exported alloc_coherent function for dma_ops.
 */
2801
static void *alloc_coherent(struct device *dev, size_t size,
2802 2803
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2804
{
2805
	u64 dma_mask = dev->coherent_dma_mask;
2806 2807
	struct protection_domain *domain;
	struct page *page;
2808

2809 2810
	INC_STATS_COUNTER(cnt_alloc_coherent);

2811 2812
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2813 2814 2815
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2816 2817
	} else if (IS_ERR(domain))
		return NULL;
2818

2819
	size	  = PAGE_ALIGN(size);
2820 2821
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2822
	flag     |= __GFP_ZERO;
2823

2824 2825
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2826
		if (!gfpflags_allow_blocking(flag))
2827
			return NULL;
2828

2829 2830 2831 2832 2833
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2834

2835 2836 2837
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2838
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2839
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2840

2841
	if (*dma_addr == DMA_ERROR_CODE)
2842
		goto out_free;
2843

2844
	return page_address(page);
2845 2846 2847

out_free:

2848 2849
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2850 2851

	return NULL;
2852 2853
}

2854 2855 2856
/*
 * The exported free_coherent function for dma_ops.
 */
2857
static void free_coherent(struct device *dev, size_t size,
2858 2859
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2860 2861
{
	struct protection_domain *domain;
2862
	struct page *page;
2863

2864 2865
	INC_STATS_COUNTER(cnt_free_coherent);

2866 2867 2868
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2869 2870
	domain = get_domain(dev);
	if (IS_ERR(domain))
2871 2872
		goto free_mem;

2873
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2874 2875

free_mem:
2876 2877
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2878 2879
}

2880 2881 2882 2883 2884 2885
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2886
	return check_device(dev);
2887 2888
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
static int set_dma_mask(struct device *dev, u64 mask)
{
	struct protection_domain *domain;
	int max_apertures = 1;

	domain = get_domain(dev);
	if (IS_ERR(domain))
		return PTR_ERR(domain);

	if (mask == DMA_BIT_MASK(64))
		max_apertures = 8;
	else if (mask > DMA_BIT_MASK(32))
		max_apertures = 4;

	/*
	 * To prevent lock contention it doesn't make sense to allocate more
	 * apertures than online cpus
	 */
	if (max_apertures > num_online_cpus())
		max_apertures = num_online_cpus();

	if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
		dev_err(dev, "Can't allocate %d iommu apertures\n",
			max_apertures);

	return 0;
}

2917
static struct dma_map_ops amd_iommu_dma_ops = {
2918 2919 2920 2921 2922 2923 2924 2925
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
	.set_dma_mask	= set_dma_mask,
2926 2927
};

2928
int __init amd_iommu_init_api(void)
2929
{
2930
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2931 2932
}

2933 2934
int __init amd_iommu_init_dma_ops(void)
{
2935
	swiotlb        = iommu_pass_through ? 1 : 0;
2936 2937
	iommu_detected = 1;

2938 2939 2940 2941 2942 2943 2944 2945 2946
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2947 2948
	amd_iommu_stats_init();

2949 2950 2951 2952 2953
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2954 2955
	return 0;
}
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2969
	struct iommu_dev_data *entry;
2970 2971 2972 2973
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2974 2975 2976 2977
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2978
	}
2979 2980 2981 2982

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2983 2984 2985 2986 2987
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2988 2989
	del_domain_from_list(domain);

2990 2991 2992 2993 2994 2995
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

3008
static struct protection_domain *protection_domain_alloc(void)
3009 3010 3011 3012 3013
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3014
		return NULL;
3015

3016
	if (protection_domain_init(domain))
3017 3018
		goto out_err;

3019 3020
	add_domain_to_list(domain);

3021 3022 3023 3024 3025 3026 3027 3028
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3029
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3030
{
3031
	struct protection_domain *pdomain;
3032
	struct dma_ops_domain *dma_domain;
3033

3034 3035 3036 3037 3038
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3039

3040 3041 3042 3043 3044 3045
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
3046

3047 3048 3049
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
3050

3051 3052 3053 3054 3055 3056 3057 3058 3059
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
3060 3061 3062 3063
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3064

3065 3066
		pdomain->mode = PAGE_MODE_NONE;
		break;
3067 3068 3069
	default:
		return NULL;
	}
3070

3071
	return &pdomain->domain;
3072 3073
}

3074
static void amd_iommu_domain_free(struct iommu_domain *dom)
3075
{
3076
	struct protection_domain *domain;
3077

3078
	if (!dom)
3079 3080
		return;

3081 3082
	domain = to_pdomain(dom);

3083 3084 3085 3086 3087
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3088 3089
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3090

3091 3092 3093
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3094
	protection_domain_free(domain);
3095 3096
}

3097 3098 3099
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3100
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3101 3102 3103
	struct amd_iommu *iommu;
	u16 devid;

3104
	if (!check_device(dev))
3105 3106
		return;

3107
	devid = get_device_id(dev);
3108

3109
	if (dev_data->domain != NULL)
3110
		detach_device(dev);
3111 3112 3113 3114 3115 3116 3117 3118

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3119 3120 3121
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3122
	struct protection_domain *domain = to_pdomain(dom);
3123
	struct iommu_dev_data *dev_data;
3124
	struct amd_iommu *iommu;
3125
	int ret;
3126

3127
	if (!check_device(dev))
3128 3129
		return -EINVAL;

3130 3131
	dev_data = dev->archdata.iommu;

3132
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3133 3134 3135
	if (!iommu)
		return -EINVAL;

3136
	if (dev_data->domain)
3137
		detach_device(dev);
3138

3139
	ret = attach_device(dev, domain);
3140 3141 3142

	iommu_completion_wait(iommu);

3143
	return ret;
3144 3145
}

3146
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3147
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3148
{
3149
	struct protection_domain *domain = to_pdomain(dom);
3150 3151 3152
	int prot = 0;
	int ret;

3153 3154 3155
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3156 3157 3158 3159 3160
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3161
	mutex_lock(&domain->api_lock);
3162
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3163 3164
	mutex_unlock(&domain->api_lock);

3165
	return ret;
3166 3167
}

3168 3169
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3170
{
3171
	struct protection_domain *domain = to_pdomain(dom);
3172
	size_t unmap_size;
3173

3174 3175 3176
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3177
	mutex_lock(&domain->api_lock);
3178
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3179
	mutex_unlock(&domain->api_lock);
3180

3181
	domain_flush_tlb_pde(domain);
3182

3183
	return unmap_size;
3184 3185
}

3186
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3187
					  dma_addr_t iova)
3188
{
3189
	struct protection_domain *domain = to_pdomain(dom);
3190
	unsigned long offset_mask, pte_pgsize;
3191
	u64 *pte, __pte;
3192

3193 3194 3195
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3196
	pte = fetch_pte(domain, iova, &pte_pgsize);
3197

3198
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3199 3200
		return 0;

3201 3202
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3203

3204
	return (__pte & ~offset_mask) | (iova & offset_mask);
3205 3206
}

3207
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3208
{
3209 3210
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3211
		return true;
3212
	case IOMMU_CAP_INTR_REMAP:
3213
		return (irq_remapping_enabled == 1);
3214 3215
	case IOMMU_CAP_NOEXEC:
		return false;
3216 3217
	}

3218
	return false;
S
Sheng Yang 已提交
3219 3220
}

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3262
static const struct iommu_ops amd_iommu_ops = {
3263
	.capable = amd_iommu_capable,
3264 3265
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3266 3267
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3268 3269
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3270
	.map_sg = default_iommu_map_sg,
3271
	.iova_to_phys = amd_iommu_iova_to_phys,
3272 3273
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3274
	.device_group = pci_device_group,
3275 3276
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3277
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3278 3279
};

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3302 3303 3304

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3305
	struct protection_domain *domain = to_pdomain(dom);
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3323 3324 3325

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3326
	struct protection_domain *domain = to_pdomain(dom);
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3404 3405 3406 3407 3408 3409
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3435 3436
	INC_STATS_COUNTER(invalidate_iotlb);

3437 3438 3439 3440 3441 3442
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3443
	struct protection_domain *domain = to_pdomain(dom);
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3457 3458
	INC_STATS_COUNTER(invalidate_iotlb_all);

3459 3460 3461 3462 3463 3464
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3465
	struct protection_domain *domain = to_pdomain(dom);
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3545
	struct protection_domain *domain = to_pdomain(dom);
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3559
	struct protection_domain *domain = to_pdomain(dom);
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3570 3571 3572 3573 3574 3575 3576 3577

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3578 3579
	INC_STATS_COUNTER(complete_ppr);

3580 3581 3582 3583 3584 3585 3586 3587 3588
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3589 3590 3591

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3592
	struct protection_domain *pdomain;
3593

3594 3595
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3596 3597 3598
		return NULL;

	/* Only return IOMMUv2 domains */
3599
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3600 3601
		return NULL;

3602
	return &pdomain->domain;
3603 3604
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3684 3685 3686 3687 3688
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3751 3752 3753
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3754 3755 3756 3757 3758 3759 3760
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3761
		table = NULL;
3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3779
		set_dte_irq_entry(alias, table);
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3792
static int alloc_irq_index(u16 devid, int count)
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3876
static int get_devid(struct irq_alloc_info *info)
3877
{
3878
	int devid = -1;
3879

3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3895

3896 3897
	return devid;
}
3898

3899 3900 3901 3902
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3903

3904 3905
	if (!info)
		return NULL;
3906

3907 3908 3909 3910 3911 3912
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3913

3914
	return NULL;
3915 3916
}

3917
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3918
{
3919 3920
	struct amd_iommu *iommu;
	int devid;
3921

3922 3923
	if (!info)
		return NULL;
3924

3925 3926 3927 3928
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3929 3930 3931
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3932 3933 3934 3935
		break;
	default:
		break;
	}
3936

3937 3938
	return NULL;
}
3939

3940 3941 3942 3943 3944 3945
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3946 3947 3948
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3949

3950 3951 3952 3953 3954 3955 3956 3957 3958
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3959

3960 3961
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3962

3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3985

3986 3987 3988 3989 3990 3991 3992
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3993

3994 3995 3996 3997
	default:
		BUG_ON(1);
		break;
	}
3998 3999
}

4000 4001
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4002
{
4003 4004 4005
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
4006
	struct irq_cfg *cfg;
4007 4008
	int i, ret, devid;
	int index = -1;
4009

4010 4011 4012 4013
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4014 4015
		return -EINVAL;

4016 4017 4018 4019 4020 4021
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4022

4023 4024 4025
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4026

4027 4028 4029
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4030

4031 4032 4033 4034 4035 4036
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4037
		index = alloc_irq_index(devid, nr_irqs);
4038 4039 4040 4041 4042
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
4043

4044 4045 4046 4047 4048 4049 4050
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4051

4052 4053 4054 4055 4056
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4057 4058 4059 4060 4061 4062
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4063

4064
	return 0;
4065

4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4077 4078
}

4079 4080
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4081
{
4082 4083 4084 4085
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4086

4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4098

4099 4100 4101 4102 4103
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4104

4105
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4106 4107
}

4108 4109
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4110
{
4111 4112 4113
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
4114

4115 4116 4117
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
4118

4119 4120 4121 4122 4123
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4124
};
4125

4126 4127 4128 4129 4130 4131 4132 4133
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
4134

4135 4136 4137
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4138

4139 4140 4141 4142 4143 4144 4145
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4146

4147 4148 4149 4150 4151
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4152
	send_cleanup_vector(cfg);
4153 4154

	return IRQ_SET_MASK_OK_DONE;
4155 4156
}

4157
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4158
{
4159
	struct amd_ir_data *ir_data = irq_data->chip_data;
4160

4161 4162
	*msg = ir_data->msi_entry;
}
4163

4164 4165 4166 4167 4168
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4169

4170 4171 4172 4173 4174
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4175

4176 4177
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4178 4179 4180

	return 0;
}
4181
#endif