amd_iommu.c 102.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56

57 58
#define AMD_IOMMU_MAPPING_ERROR	0

59 60
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

61
#define LOOP_TIMEOUT	100000
62

63 64 65 66
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

67 68 69 70 71 72
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

73 74 75 76 77 78
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
79
 * 512GB Pages are not supported due to a hardware bug
80
 */
J
Joerg Roedel 已提交
81
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
82

83 84
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

85 86 87 88
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

89 90
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
91
LIST_HEAD(acpihid_map);
92

93 94 95 96
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
97
const struct iommu_ops amd_iommu_ops;
98

99
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
100
int amd_iommu_max_glx_val = -1;
101

102
static const struct dma_map_ops amd_iommu_dma_ops;
103

104 105 106
/*
 * general struct to manage commands send to an IOMMU
 */
107
struct iommu_cmd {
108 109 110
	u32 data[4];
};

111 112
struct kmem_cache *amd_iommu_irq_cache;

113
static void update_domain(struct protection_domain *domain);
114
static int protection_domain_init(struct protection_domain *domain);
115
static void detach_device(struct device *dev);
116
static void iova_domain_flush_tlb(struct iova_domain *iovad);
117

118 119 120 121 122 123 124
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

125 126
	/* IOVA RB-Tree */
	struct iova_domain iovad;
127 128
};

129 130 131
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

132 133 134 135 136 137
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

138 139
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
140
{
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
156 157
}

158
static inline u16 get_pci_device_id(struct device *dev)
159 160 161 162 163 164
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

192 193 194 195 196
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

197 198 199 200 201 202
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

203
static struct iommu_dev_data *alloc_dev_data(u16 devid)
204 205 206 207 208 209 210 211
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

212
	dev_data->devid = devid;
213 214 215 216 217

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

218 219
	ratelimit_default_init(&dev_data->rs);

220 221 222
	return dev_data;
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

242 243 244 245 246 247 248 249 250 251 252
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

253
	/* The callers make sure that get_device_id() does not fail here */
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
295
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
296 297 298 299 300 301 302 303
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

304 305 306
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
307
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
308 309 310

	dev_data = search_dev_data(devid);

311
	if (dev_data == NULL) {
312 313
		dev_data = alloc_dev_data(devid);

314 315 316 317
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

318 319 320
	return dev_data;
}

321
struct iommu_dev_data *get_dev_data(struct device *dev)
322 323 324
{
	return dev->archdata.iommu;
}
325
EXPORT_SYMBOL(get_dev_data);
326

327 328 329 330
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
331
{
332
	struct acpihid_map_entry *p, *entry = NULL;
333
	int devid;
334 335 336 337 338 339 340 341 342 343 344 345

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
346 347
	else
		iommu_group_ref_get(entry->group);
348 349

	return entry->group;
350 351
}

352 353 354 355
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
356 357
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
358 359 360 361 362 363 364 365 366 367 368 369
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

370 371 372 373 374 375 376 377 378
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

379 380 381 382 383 384
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
385
	int devid;
386 387 388 389 390

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
391
	if (devid < 0)
392
		return false;
393 394 395 396 397 398 399 400 401 402 403

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

404
static void init_iommu_group(struct device *dev)
405 406 407
{
	struct iommu_group *group;

408
	group = iommu_group_get_for_dev(dev);
409 410 411 412
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
413 414 415 416 417
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
418
	struct amd_iommu *iommu;
419
	int devid;
420 421 422 423

	if (dev->archdata.iommu)
		return 0;

424
	devid = get_device_id(dev);
425
	if (devid < 0)
426 427
		return devid;

428 429
	iommu = amd_iommu_rlookup_table[devid];

430
	dev_data = find_dev_data(devid);
431 432 433
	if (!dev_data)
		return -ENOMEM;

434 435
	dev_data->alias = get_alias(dev);

436
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
437 438
		struct amd_iommu *iommu;

439
		iommu = amd_iommu_rlookup_table[dev_data->devid];
440 441 442
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

443 444
	dev->archdata.iommu = dev_data;

445
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
446

447 448 449
	return 0;
}

450 451
static void iommu_ignore_device(struct device *dev)
{
452 453
	u16 alias;
	int devid;
454 455

	devid = get_device_id(dev);
456
	if (devid < 0)
457 458
		return;

459
	alias = get_alias(dev);
460 461 462 463 464 465 466 467

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

468 469
static void iommu_uninit_device(struct device *dev)
{
470
	struct iommu_dev_data *dev_data;
471 472
	struct amd_iommu *iommu;
	int devid;
473

474
	devid = get_device_id(dev);
475
	if (devid < 0)
476
		return;
477

478 479
	iommu = amd_iommu_rlookup_table[devid];

480
	dev_data = search_dev_data(devid);
481 482 483
	if (!dev_data)
		return;

484 485 486
	if (dev_data->domain)
		detach_device(dev);

487
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
488

489 490
	iommu_group_remove_device(dev);

491
	/* Remove dma-ops */
492
	dev->dma_ops = NULL;
493

494
	/*
495 496
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
497
	 */
498
}
J
Joerg Roedel 已提交
499

500 501 502 503 504 505
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

506 507 508 509
static void dump_dte_entry(u16 devid)
{
	int i;

510 511
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
512 513 514
			amd_iommu_dev_table[devid].data[i]);
}

515 516
static void dump_command(unsigned long phys_addr)
{
517
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
518 519 520 521 522 523
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

524 525 526 527 528 529
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

530 531
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

548
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
549
{
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
571

572 573 574 575 576 577
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
578 579 580 581 582

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
583
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
584
		       address, flags);
585
		dump_dte_entry(devid);
586 587 588 589
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
590
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
591 592 593 594 595
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
596
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
597 598 599 600
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
601
		dump_command(address);
602 603 604 605 606 607 608 609
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
610
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
611 612 613 614 615
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
616
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
617 618 619
		       address, flags);
		break;
	default:
620 621 622
		printk(KERN_ERR "UNKNOWN type=0x%02x event[0]=0x%08x "
		       "event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
		       type, event[0], event[1], event[2], event[3]);
623
	}
624 625

	memset(__evt, 0, 4 * sizeof(u32));
626 627 628 629 630 631 632 633 634 635
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
636
		iommu_print_event(iommu, iommu->evt_buf + head);
637
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
638 639 640 641 642
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

643
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
688

689 690 691
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
692

693 694 695 696 697 698 699
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
700 701
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
702 703 704 705 706 707

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
708 709 710 711
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

772
irqreturn_t amd_iommu_int_thread(int irq, void *data)
773
{
774 775
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
776

777 778 779
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
780
			iommu->mmio_base + MMIO_STATUS_OFFSET);
781

782 783 784 785
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
786

787 788 789 790
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
791

792 793 794 795 796 797 798
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
814
	return IRQ_HANDLED;
815 816
}

817 818 819 820 821
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

822 823 824 825 826 827
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
846
			       struct iommu_cmd *cmd)
847 848 849
{
	u8 *target;

850 851 852 853
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
854 855 856 857 858

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
859
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
860
}
861

862
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
863
{
864 865
	u64 paddr = iommu_virt_to_phys((void *)address);

866 867
	WARN_ON(address & 0x7ULL);

868
	memset(cmd, 0, sizeof(*cmd));
869 870
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
871
	cmd->data[2] = 1;
872 873 874
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

875 876 877 878 879 880 881
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

882 883 884 885
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
886
	bool s;
887 888

	pages = iommu_num_pages(address, size, PAGE_SIZE);
889
	s     = false;
890 891 892 893 894 895 896

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
897
		s = true;
898 899 900 901 902 903 904 905 906 907 908
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
909
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
910 911 912
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

913 914 915 916
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
917
	bool s;
918 919

	pages = iommu_num_pages(address, size, PAGE_SIZE);
920
	s     = false;
921 922 923 924 925 926 927

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
928
		s = true;
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

944 945 946 947 948 949 950
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

951
	cmd->data[0]  = pasid;
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
970
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
971 972
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
973
	cmd->data[1] |= (pasid & 0xff) << 16;
974 975 976 977 978 979 980 981
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

982 983 984 985 986 987 988
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
989
		cmd->data[1]  = pasid;
990 991 992 993 994 995 996 997
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

998 999 1000 1001
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1002 1003
}

1004 1005 1006 1007 1008 1009 1010
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1011 1012
/*
 * Writes the command to the IOMMUs command buffer and informs the
1013
 * hardware about the new command.
1014
 */
1015 1016 1017
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1018
{
1019
	unsigned int count = 0;
1020
	u32 left, next_tail;
1021

1022
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1023
again:
1024
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1025

1026
	if (left <= 0x20) {
1027 1028 1029 1030 1031 1032
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1033

1034 1035
			udelay(1);
		}
1036

1037 1038 1039
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1040 1041

		goto again;
1042 1043
	}

1044
	copy_cmd_to_buffer(iommu, cmd);
1045

1046
	/* Do we need to make sure all commands are processed? */
1047
	iommu->need_sync = sync;
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1059
	raw_spin_lock_irqsave(&iommu->lock, flags);
1060
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1061
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1062

1063
	return ret;
1064 1065
}

1066 1067 1068 1069 1070
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1071 1072 1073 1074
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1075
static int iommu_completion_wait(struct amd_iommu *iommu)
1076 1077
{
	struct iommu_cmd cmd;
1078
	unsigned long flags;
1079
	int ret;
1080

1081
	if (!iommu->need_sync)
1082
		return 0;
1083

1084

1085 1086
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1087
	raw_spin_lock_irqsave(&iommu->lock, flags);
1088 1089 1090 1091

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1092
	if (ret)
1093 1094 1095 1096 1097
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1098
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1099

1100
	return ret;
1101 1102
}

1103
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1104
{
1105
	struct iommu_cmd cmd;
1106

1107
	build_inv_dte(&cmd, devid);
1108

1109 1110
	return iommu_queue_command(iommu, &cmd);
}
1111

1112
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1113 1114
{
	u32 devid;
1115

1116 1117
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1118

1119 1120
	iommu_completion_wait(iommu);
}
1121

1122 1123 1124 1125
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1126
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1127 1128
{
	u32 dom_id;
1129

1130 1131 1132 1133 1134 1135
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1136

1137
	iommu_completion_wait(iommu);
1138 1139
}

1140
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1141
{
1142
	struct iommu_cmd cmd;
1143

1144
	build_inv_all(&cmd);
1145

1146 1147 1148 1149
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1150 1151 1152 1153 1154 1155 1156 1157 1158
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1159
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1160 1161 1162 1163 1164 1165 1166 1167 1168
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1169 1170
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1171
	if (iommu_feature(iommu, FEATURE_IA)) {
1172
		amd_iommu_flush_all(iommu);
1173
	} else {
1174 1175 1176
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1177 1178 1179
	}
}

1180
/*
1181
 * Command send function for flushing on-device TLB
1182
 */
1183 1184
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1185 1186
{
	struct amd_iommu *iommu;
1187
	struct iommu_cmd cmd;
1188
	int qdep;
1189

1190 1191
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1192

1193
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1194 1195

	return iommu_queue_command(iommu, &cmd);
1196 1197
}

1198 1199 1200
/*
 * Command send function for invalidating a device table entry
 */
1201
static int device_flush_dte(struct iommu_dev_data *dev_data)
1202
{
1203
	struct amd_iommu *iommu;
1204
	u16 alias;
1205
	int ret;
1206

1207
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1208
	alias = dev_data->alias;
1209

1210
	ret = iommu_flush_dte(iommu, dev_data->devid);
1211 1212
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1213 1214 1215
	if (ret)
		return ret;

1216
	if (dev_data->ats.enabled)
1217
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1218 1219

	return ret;
1220 1221
}

1222 1223 1224 1225 1226
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1227 1228
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1229
{
1230
	struct iommu_dev_data *dev_data;
1231 1232
	struct iommu_cmd cmd;
	int ret = 0, i;
1233

1234
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1235

1236
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1237 1238 1239 1240 1241 1242 1243
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1244
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1245 1246
	}

1247 1248
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1249
		if (!dev_data->ats.enabled)
1250 1251
			continue;

1252
		ret |= device_flush_iotlb(dev_data, address, size);
1253 1254
	}

1255
	WARN_ON(ret);
1256 1257
}

1258 1259
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1260
{
1261
	__domain_flush_pages(domain, address, size, 0);
1262
}
1263

1264
/* Flush the whole IO/TLB for a given protection domain */
1265
static void domain_flush_tlb(struct protection_domain *domain)
1266
{
1267
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1268 1269
}

1270
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1271
static void domain_flush_tlb_pde(struct protection_domain *domain)
1272
{
1273
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1274 1275
}

1276
static void domain_flush_complete(struct protection_domain *domain)
1277
{
1278
	int i;
1279

1280
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1281
		if (domain && !domain->dev_iommu[i])
1282
			continue;
1283

1284 1285 1286 1287 1288
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1289
	}
1290 1291
}

1292

1293
/*
1294
 * This function flushes the DTEs for all devices in domain
1295
 */
1296
static void domain_flush_devices(struct protection_domain *domain)
1297
{
1298
	struct iommu_dev_data *dev_data;
1299

1300
	list_for_each_entry(dev_data, &domain->dev_list, list)
1301
		device_flush_dte(dev_data);
1302 1303
}

1304 1305 1306 1307 1308 1309 1310
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1330
					iommu_virt_to_phys(domain->pt_root));
1331 1332 1333 1334 1335 1336 1337 1338 1339
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1340
		      unsigned long page_size,
1341 1342 1343
		      u64 **pte_page,
		      gfp_t gfp)
{
1344
	int level, end_lvl;
1345
	u64 *pte, *page;
1346 1347

	BUG_ON(!is_power_of_2(page_size));
1348 1349 1350 1351

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1352 1353 1354 1355
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1356 1357

	while (level > end_lvl) {
1358 1359 1360 1361 1362
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1363 1364 1365
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1366

1367
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1368

1369 1370
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1371 1372 1373
				free_page((unsigned long)page);
				continue;
			}
1374 1375
		}

1376 1377 1378 1379
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1397 1398 1399
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1400 1401 1402 1403
{
	int level;
	u64 *pte;

1404 1405 1406
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1407 1408 1409
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1410

1411 1412 1413
	while (level > 0) {

		/* Not Present */
1414 1415 1416
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1417
		/* Large PTE */
1418 1419 1420
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1421 1422 1423 1424 1425

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1426 1427
		level -= 1;

1428
		/* Walk to the next level */
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1444 1445 1446 1447 1448
	}

	return pte;
}

1449 1450 1451 1452 1453 1454 1455
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1456 1457 1458
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1459
			  unsigned long page_size,
1460
			  int prot,
1461
			  gfp_t gfp)
1462
{
1463
	u64 __pte, *pte;
1464
	int i, count;
1465

1466 1467 1468
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1469
	if (!(prot & IOMMU_PROT_MASK))
1470 1471
		return -EINVAL;

1472
	count = PAGE_SIZE_PTE_COUNT(page_size);
1473
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1474

1475 1476 1477
	if (!pte)
		return -ENOMEM;

1478 1479 1480
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1481

1482
	if (count > 1) {
1483
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1484
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1485
	} else
1486
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1487 1488 1489 1490 1491 1492

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1493 1494
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1495

1496 1497
	update_domain(dom);

1498 1499 1500
	return 0;
}

1501 1502 1503
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1504
{
1505 1506
	unsigned long long unmapped;
	unsigned long unmap_size;
1507 1508 1509 1510 1511
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1512

1513 1514
	while (unmapped < page_size) {

1515 1516 1517 1518 1519 1520
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1521 1522 1523 1524 1525 1526 1527 1528
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1529
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1530

1531
	return unmapped;
1532 1533
}

1534 1535 1536
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1537
 * interface functions.
1538 1539
 *
 ****************************************************************************/
1540

1541

1542 1543 1544
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1545
{
1546
	unsigned long pfn = 0;
1547

1548
	pages = __roundup_pow_of_two(pages);
1549

1550 1551
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1552
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1553

1554
	if (!pfn)
1555 1556
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1557

1558
	return (pfn << PAGE_SHIFT);
1559 1560
}

1561 1562 1563
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1564
{
1565 1566
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1567

1568
	free_iova_fast(&dma_dom->iovad, address, pages);
1569 1570
}

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1643
		/* PTE present? */				\
1644 1645 1646
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1647 1648 1649 1650 1651
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1664
static void free_pagetable(struct protection_domain *domain)
1665
{
1666
	unsigned long root = (unsigned long)domain->pt_root;
1667

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1691 1692 1693
	}
}

1694 1695 1696 1697 1698 1699 1700 1701 1702
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1703
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1718
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1719 1720 1721 1722 1723

		free_gcr3_tbl_level1(ptr);
	}
}

1724 1725
static void free_gcr3_table(struct protection_domain *domain)
{
1726 1727 1728 1729
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1730 1731
	else
		BUG_ON(domain->glx != 0);
1732

1733 1734 1735
	free_page((unsigned long)domain->gcr3_tbl);
}

1736 1737 1738 1739
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1740 1741
}

1742
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1743
{
1744
	struct dma_ops_domain *dom;
1745

1746
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1747 1748 1749 1750

	dma_ops_domain_flush_tlb(dom);
}

1751 1752 1753 1754
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1755 1756 1757 1758 1759
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1760 1761
	del_domain_from_list(&dom->domain);

1762
	put_iova_domain(&dom->iovad);
1763

1764
	free_pagetable(&dom->domain);
1765

1766 1767 1768
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1769 1770 1771
	kfree(dom);
}

1772 1773
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1774
 * It also initializes the page table and the address allocator data
1775 1776
 * structures required for the dma_ops interface
 */
1777
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1778 1779 1780 1781 1782 1783 1784
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1785
	if (protection_domain_init(&dma_dom->domain))
1786
		goto free_dma_dom;
1787

1788
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1789
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1790
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1791 1792 1793
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1794
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1795

1796
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1797 1798
		goto free_dma_dom;

1799 1800
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1801

1802 1803
	add_domain_to_list(&dma_dom->domain);

1804 1805 1806 1807 1808 1809 1810 1811
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1812 1813 1814 1815 1816 1817 1818 1819 1820
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1821 1822
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1823
{
1824
	u64 pte_root = 0;
1825
	u64 flags = 0;
1826

1827
	if (domain->mode != PAGE_MODE_NONE)
1828
		pte_root = iommu_virt_to_phys(domain->pt_root);
1829

1830 1831
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1832
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1833

1834 1835
	flags = amd_iommu_dev_table[devid].data[1];

1836 1837 1838
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1839 1840 1841 1842 1843 1844 1845
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1846
	if (domain->flags & PD_IOMMUV2_MASK) {
1847
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1872
	flags &= ~DEV_DOMID_MASK;
1873 1874 1875 1876
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1877 1878 1879 1880 1881
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1882
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1883
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1884 1885

	amd_iommu_apply_erratum_63(devid);
1886 1887
}

1888 1889
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1890 1891
{
	struct amd_iommu *iommu;
1892
	u16 alias;
1893
	bool ats;
1894

1895
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1896
	alias = dev_data->alias;
1897
	ats   = dev_data->ats.enabled;
1898 1899 1900 1901 1902 1903 1904 1905 1906

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1907
	/* Update device table */
1908
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1909
	if (alias != dev_data->devid)
1910
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1911

1912
	device_flush_dte(dev_data);
1913 1914
}

1915
static void do_detach(struct iommu_dev_data *dev_data)
1916 1917
{
	struct amd_iommu *iommu;
1918
	u16 alias;
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1929
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1930
	alias = dev_data->alias;
1931 1932

	/* decrease reference counters */
1933 1934 1935 1936 1937 1938
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1939
	clear_dte_entry(dev_data->devid);
1940 1941
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1942

1943
	/* Flush the DTE entry */
1944
	device_flush_dte(dev_data);
1945 1946 1947 1948 1949 1950
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1951
static int __attach_device(struct iommu_dev_data *dev_data,
1952
			   struct protection_domain *domain)
1953
{
1954
	int ret;
1955

1956 1957 1958 1959 1960 1961
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1962 1963 1964
	/* lock domain */
	spin_lock(&domain->lock);

1965
	ret = -EBUSY;
1966
	if (dev_data->domain != NULL)
1967
		goto out_unlock;
1968

1969
	/* Attach alias group root */
1970
	do_attach(dev_data, domain);
1971

1972 1973 1974 1975
	ret = 0;

out_unlock:

1976 1977
	/* ready */
	spin_unlock(&domain->lock);
1978

1979
	return ret;
1980
}
1981

1982 1983 1984 1985 1986 1987 1988 1989

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1990 1991 1992 1993 1994 1995
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1996
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1997 1998 1999
	if (!pos)
		return -EINVAL;

2000 2001 2002
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2003 2004 2005 2006

	return 0;
}

2007 2008
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2009 2010 2011 2012 2013 2014 2015 2016
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2028 2029
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2030 2031 2032
	if (ret)
		goto out_err;

2033 2034 2035 2036 2037 2038
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2052
/* FIXME: Move this to PCI code */
2053
#define PCI_PRI_TLP_OFF		(1 << 15)
2054

J
Joerg Roedel 已提交
2055
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2056
{
2057
	u16 status;
2058 2059
	int pos;

2060
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2061 2062 2063
	if (!pos)
		return false;

2064
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2065

2066
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2067 2068
}

2069
/*
F
Frank Arnold 已提交
2070
 * If a device is not yet associated with a domain, this function
2071 2072
 * assigns it visible for the hardware
 */
2073 2074
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2075
{
2076
	struct pci_dev *pdev;
2077
	struct iommu_dev_data *dev_data;
2078
	unsigned long flags;
2079
	int ret;
2080

2081 2082
	dev_data = get_dev_data(dev);

2083 2084 2085 2086
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2087
	if (domain->flags & PD_IOMMUV2_MASK) {
2088
		if (!dev_data->passthrough)
2089 2090
			return -EINVAL;

2091 2092 2093
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2094

2095 2096 2097 2098
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2099 2100
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2101 2102 2103
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2104

2105
skip_ats_check:
2106
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2107
	ret = __attach_device(dev_data, domain);
2108 2109
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2110 2111 2112 2113 2114
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2115
	domain_flush_tlb_pde(domain);
2116 2117

	return ret;
2118 2119
}

2120 2121 2122
/*
 * Removes a device from a protection domain (unlocked)
 */
2123
static void __detach_device(struct iommu_dev_data *dev_data)
2124
{
2125
	struct protection_domain *domain;
2126

2127 2128 2129 2130 2131
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2132

2133 2134
	if (WARN_ON(!dev_data->domain))
		return;
2135

2136
	domain = dev_data->domain;
2137

2138
	spin_lock(&domain->lock);
2139

2140
	do_detach(dev_data);
2141

2142
	spin_unlock(&domain->lock);
2143 2144 2145 2146 2147
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2148
static void detach_device(struct device *dev)
2149
{
2150
	struct protection_domain *domain;
2151
	struct iommu_dev_data *dev_data;
2152 2153
	unsigned long flags;

2154
	dev_data = get_dev_data(dev);
2155
	domain   = dev_data->domain;
2156

2157 2158
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2159
	__detach_device(dev_data);
2160
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2161

2162 2163 2164
	if (!dev_is_pci(dev))
		return;

2165
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2166 2167
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2168
		pci_disable_ats(to_pci_dev(dev));
2169 2170

	dev_data->ats.enabled = false;
2171
}
2172

2173
static int amd_iommu_add_device(struct device *dev)
2174
{
2175
	struct iommu_dev_data *dev_data;
2176
	struct iommu_domain *domain;
2177
	struct amd_iommu *iommu;
2178
	int ret, devid;
2179

2180
	if (!check_device(dev) || get_dev_data(dev))
2181
		return 0;
2182

2183
	devid = get_device_id(dev);
2184
	if (devid < 0)
2185 2186
		return devid;

2187
	iommu = amd_iommu_rlookup_table[devid];
2188

2189
	ret = iommu_init_device(dev);
2190 2191 2192 2193
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2194

2195
		iommu_ignore_device(dev);
2196
		dev->dma_ops = &nommu_dma_ops;
2197 2198 2199
		goto out;
	}
	init_iommu_group(dev);
2200

2201
	dev_data = get_dev_data(dev);
2202

2203
	BUG_ON(!dev_data);
2204

2205
	if (iommu_pass_through || dev_data->iommu_v2)
2206
		iommu_request_dm_for_dev(dev);
2207

2208 2209
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2210
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2211
		dev_data->passthrough = true;
2212
	else
2213
		dev->dma_ops = &amd_iommu_dma_ops;
2214

2215
out:
2216 2217 2218 2219 2220
	iommu_completion_wait(iommu);

	return 0;
}

2221
static void amd_iommu_remove_device(struct device *dev)
2222
{
2223
	struct amd_iommu *iommu;
2224
	int devid;
2225 2226 2227 2228 2229

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2230
	if (devid < 0)
2231 2232
		return;

2233 2234 2235 2236
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2237 2238
}

2239 2240 2241 2242 2243 2244 2245 2246
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2260
static struct protection_domain *get_domain(struct device *dev)
2261
{
2262
	struct protection_domain *domain;
2263
	struct iommu_domain *io_domain;
2264

2265
	if (!check_device(dev))
2266
		return ERR_PTR(-EINVAL);
2267

2268
	domain = get_dev_data(dev)->domain;
2269 2270 2271 2272 2273 2274
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2275 2276 2277
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2278
	if (!dma_ops_domain(domain))
2279
		return ERR_PTR(-EBUSY);
2280

2281
	return domain;
2282 2283
}

2284 2285
static void update_device_table(struct protection_domain *domain)
{
2286
	struct iommu_dev_data *dev_data;
2287

2288
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2289 2290
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2291 2292 2293 2294 2295

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2296 2297
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2298
	}
2299 2300 2301 2302 2303 2304 2305 2306
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2307 2308 2309

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2310 2311 2312 2313

	domain->updated = false;
}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2325

2326 2327
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2328 2329
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2330 2331
 * Must be called with the domain lock held.
 */
2332 2333 2334 2335
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2336
			       enum dma_data_direction direction,
2337
			       u64 dma_mask)
2338 2339
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2340
	dma_addr_t address, start, ret;
2341
	unsigned int pages;
2342
	int prot = 0;
2343 2344
	int i;

2345
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2346 2347
	paddr &= PAGE_MASK;

2348
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2349
	if (address == AMD_IOMMU_MAPPING_ERROR)
2350
		goto out;
2351

2352
	prot = dir2prot(direction);
2353

2354 2355
	start = address;
	for (i = 0; i < pages; ++i) {
2356 2357 2358
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2359 2360
			goto out_unmap;

2361 2362 2363 2364 2365
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2366
	if (unlikely(amd_iommu_np_cache)) {
2367
		domain_flush_pages(&dma_dom->domain, address, size);
2368 2369
		domain_flush_complete(&dma_dom->domain);
	}
2370

2371 2372
out:
	return address;
2373 2374 2375 2376 2377

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2378
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2379 2380
	}

2381 2382 2383 2384
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2385

2386
	return AMD_IOMMU_MAPPING_ERROR;
2387 2388
}

2389 2390 2391 2392
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2393
static void __unmap_single(struct dma_ops_domain *dma_dom,
2394 2395 2396 2397 2398 2399 2400
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2401
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2402 2403 2404 2405
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2406
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2407 2408 2409
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2410 2411 2412 2413 2414
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
2415 2416
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2417
	}
2418 2419
}

2420 2421 2422
/*
 * The exported map_single function for dma_ops.
 */
2423 2424 2425
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2426
			   unsigned long attrs)
2427
{
2428
	phys_addr_t paddr = page_to_phys(page) + offset;
2429
	struct protection_domain *domain;
2430
	struct dma_ops_domain *dma_dom;
2431
	u64 dma_mask;
2432

2433 2434
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2435
		return (dma_addr_t)paddr;
2436
	else if (IS_ERR(domain))
2437
		return AMD_IOMMU_MAPPING_ERROR;
2438

2439
	dma_mask = *dev->dma_mask;
2440
	dma_dom = to_dma_ops_domain(domain);
2441

2442
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2443 2444
}

2445 2446 2447
/*
 * The exported unmap_single function for dma_ops.
 */
2448
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2449
		       enum dma_data_direction dir, unsigned long attrs)
2450 2451
{
	struct protection_domain *domain;
2452
	struct dma_ops_domain *dma_dom;
2453

2454 2455
	domain = get_domain(dev);
	if (IS_ERR(domain))
2456 2457
		return;

2458 2459 2460
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2461 2462
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2489 2490 2491 2492
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2493
static int map_sg(struct device *dev, struct scatterlist *sglist,
2494
		  int nelems, enum dma_data_direction direction,
2495
		  unsigned long attrs)
2496
{
2497
	int mapped_pages = 0, npages = 0, prot = 0, i;
2498
	struct protection_domain *domain;
2499
	struct dma_ops_domain *dma_dom;
2500
	struct scatterlist *s;
2501
	unsigned long address;
2502
	u64 dma_mask;
2503

2504
	domain = get_domain(dev);
2505
	if (IS_ERR(domain))
2506
		return 0;
2507

2508
	dma_dom  = to_dma_ops_domain(domain);
2509
	dma_mask = *dev->dma_mask;
2510

2511 2512 2513
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2514
	if (address == AMD_IOMMU_MAPPING_ERROR)
2515 2516 2517 2518 2519
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2520
	for_each_sg(sglist, s, nelems, i) {
2521 2522 2523 2524 2525
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2526

2527 2528 2529 2530 2531
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2532

2533 2534
			mapped_pages += 1;
		}
2535 2536
	}

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2554

2555 2556 2557 2558 2559 2560
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2561 2562
	}

2563 2564 2565 2566
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2567
	return 0;
2568 2569
}

2570 2571 2572 2573
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2574
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2575
		     int nelems, enum dma_data_direction dir,
2576
		     unsigned long attrs)
2577 2578
{
	struct protection_domain *domain;
2579
	struct dma_ops_domain *dma_dom;
2580 2581
	unsigned long startaddr;
	int npages = 2;
2582

2583 2584
	domain = get_domain(dev);
	if (IS_ERR(domain))
2585 2586
		return;

2587
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2588
	dma_dom   = to_dma_ops_domain(domain);
2589 2590
	npages    = sg_num_pages(dev, sglist, nelems);

2591
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2592 2593
}

2594 2595 2596
/*
 * The exported alloc_coherent function for dma_ops.
 */
2597
static void *alloc_coherent(struct device *dev, size_t size,
2598
			    dma_addr_t *dma_addr, gfp_t flag,
2599
			    unsigned long attrs)
2600
{
2601
	u64 dma_mask = dev->coherent_dma_mask;
2602
	struct protection_domain *domain;
2603
	struct dma_ops_domain *dma_dom;
2604
	struct page *page;
2605

2606 2607
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2608 2609 2610
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2611 2612
	} else if (IS_ERR(domain))
		return NULL;
2613

2614
	dma_dom   = to_dma_ops_domain(domain);
2615
	size	  = PAGE_ALIGN(size);
2616 2617
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2618
	flag     |= __GFP_ZERO;
2619

2620 2621
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2622
		if (!gfpflags_allow_blocking(flag))
2623
			return NULL;
2624

2625
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2626
						 get_order(size), flag);
2627 2628 2629
		if (!page)
			return NULL;
	}
2630

2631 2632 2633
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2634
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2635
				 size, DMA_BIDIRECTIONAL, dma_mask);
2636

2637
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2638
		goto out_free;
2639

2640
	return page_address(page);
2641 2642 2643

out_free:

2644 2645
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2646 2647

	return NULL;
2648 2649
}

2650 2651 2652
/*
 * The exported free_coherent function for dma_ops.
 */
2653
static void free_coherent(struct device *dev, size_t size,
2654
			  void *virt_addr, dma_addr_t dma_addr,
2655
			  unsigned long attrs)
2656 2657
{
	struct protection_domain *domain;
2658
	struct dma_ops_domain *dma_dom;
2659
	struct page *page;
2660

2661 2662 2663
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2664 2665
	domain = get_domain(dev);
	if (IS_ERR(domain))
2666 2667
		goto free_mem;

2668 2669 2670
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2671 2672

free_mem:
2673 2674
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2675 2676
}

2677 2678 2679 2680 2681 2682
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2683 2684
	if (!x86_dma_supported(dev, mask))
		return 0;
2685
	return check_device(dev);
2686 2687
}

2688 2689 2690 2691 2692
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2693
static const struct dma_map_ops amd_iommu_dma_ops = {
2694 2695 2696 2697 2698 2699 2700
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2701
	.mapping_error	= amd_iommu_mapping_error,
2702 2703
};

2704 2705 2706 2707 2708
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2709
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2756
int __init amd_iommu_init_api(void)
2757
{
2758
	int ret, err = 0;
2759 2760 2761 2762

	ret = iova_cache_get();
	if (ret)
		return ret;
2763

2764 2765 2766 2767
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2768 2769 2770 2771 2772 2773 2774 2775
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2776 2777 2778
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2779

2780
	return 0;
2781 2782
}

2783 2784
int __init amd_iommu_init_dma_ops(void)
{
2785
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2786 2787
	iommu_detected = 1;

2788 2789
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2790 2791 2792 2793 2794
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2795 2796 2797 2798
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2799 2800 2801 2802 2803
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2804
	return 0;
2805

2806
}
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2820
	struct iommu_dev_data *entry;
2821 2822 2823 2824
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2825 2826 2827 2828
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2829
	}
2830 2831 2832 2833

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2834 2835 2836 2837 2838
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2839 2840
	del_domain_from_list(domain);

2841 2842 2843 2844 2845 2846
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2859
static struct protection_domain *protection_domain_alloc(void)
2860 2861 2862 2863 2864
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2865
		return NULL;
2866

2867
	if (protection_domain_init(domain))
2868 2869
		goto out_err;

2870 2871
	add_domain_to_list(domain);

2872 2873 2874 2875 2876 2877 2878 2879
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2880
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2881
{
2882
	struct protection_domain *pdomain;
2883
	struct dma_ops_domain *dma_domain;
2884

2885 2886 2887 2888 2889
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2890

2891 2892 2893 2894 2895 2896
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2897

2898 2899 2900
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2901

2902 2903 2904 2905 2906 2907 2908 2909 2910
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2911 2912 2913 2914
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2915

2916 2917
		pdomain->mode = PAGE_MODE_NONE;
		break;
2918 2919 2920
	default:
		return NULL;
	}
2921

2922
	return &pdomain->domain;
2923 2924
}

2925
static void amd_iommu_domain_free(struct iommu_domain *dom)
2926
{
2927
	struct protection_domain *domain;
2928
	struct dma_ops_domain *dma_dom;
2929

2930 2931
	domain = to_pdomain(dom);

2932 2933 2934 2935 2936
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2937 2938
	if (!dom)
		return;
2939

2940 2941
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2942
		/* Now release the domain */
2943
		dma_dom = to_dma_ops_domain(domain);
2944 2945 2946 2947 2948
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2949

2950 2951 2952 2953 2954 2955
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2956 2957
}

2958 2959 2960
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2961
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2962
	struct amd_iommu *iommu;
2963
	int devid;
2964

2965
	if (!check_device(dev))
2966 2967
		return;

2968
	devid = get_device_id(dev);
2969
	if (devid < 0)
2970
		return;
2971

2972
	if (dev_data->domain != NULL)
2973
		detach_device(dev);
2974 2975 2976 2977 2978

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2979 2980 2981 2982 2983 2984
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2985 2986 2987
	iommu_completion_wait(iommu);
}

2988 2989 2990
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2991
	struct protection_domain *domain = to_pdomain(dom);
2992
	struct iommu_dev_data *dev_data;
2993
	struct amd_iommu *iommu;
2994
	int ret;
2995

2996
	if (!check_device(dev))
2997 2998
		return -EINVAL;

2999 3000
	dev_data = dev->archdata.iommu;

3001
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3002 3003 3004
	if (!iommu)
		return -EINVAL;

3005
	if (dev_data->domain)
3006
		detach_device(dev);
3007

3008
	ret = attach_device(dev, domain);
3009

3010 3011 3012 3013 3014 3015 3016 3017 3018
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3019 3020
	iommu_completion_wait(iommu);

3021
	return ret;
3022 3023
}

3024
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3025
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3026
{
3027
	struct protection_domain *domain = to_pdomain(dom);
3028 3029 3030
	int prot = 0;
	int ret;

3031 3032 3033
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3034 3035 3036 3037 3038
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3039
	mutex_lock(&domain->api_lock);
3040
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3041 3042
	mutex_unlock(&domain->api_lock);

3043
	return ret;
3044 3045
}

3046 3047
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3048
{
3049
	struct protection_domain *domain = to_pdomain(dom);
3050
	size_t unmap_size;
3051

3052 3053 3054
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3055
	mutex_lock(&domain->api_lock);
3056
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3057
	mutex_unlock(&domain->api_lock);
3058

3059
	domain_flush_tlb_pde(domain);
3060
	domain_flush_complete(domain);
3061

3062
	return unmap_size;
3063 3064
}

3065
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3066
					  dma_addr_t iova)
3067
{
3068
	struct protection_domain *domain = to_pdomain(dom);
3069
	unsigned long offset_mask, pte_pgsize;
3070
	u64 *pte, __pte;
3071

3072 3073 3074
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3075
	pte = fetch_pte(domain, iova, &pte_pgsize);
3076

3077
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3078 3079
		return 0;

3080 3081
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3082

3083
	return (__pte & ~offset_mask) | (iova & offset_mask);
3084 3085
}

3086
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3087
{
3088 3089
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3090
		return true;
3091
	case IOMMU_CAP_INTR_REMAP:
3092
		return (irq_remapping_enabled == 1);
3093 3094
	case IOMMU_CAP_NOEXEC:
		return false;
3095 3096
	}

3097
	return false;
S
Sheng Yang 已提交
3098 3099
}

3100 3101
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3102
{
3103
	struct iommu_resv_region *region;
3104
	struct unity_map_entry *entry;
3105
	int devid;
3106 3107

	devid = get_device_id(dev);
3108
	if (devid < 0)
3109
		return;
3110 3111

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3112 3113
		size_t length;
		int prot = 0;
3114 3115 3116 3117

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3118 3119 3120 3121 3122 3123 3124 3125 3126
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3127 3128 3129 3130 3131 3132 3133
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3134 3135 3136

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3137
					 0, IOMMU_RESV_MSI);
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3148 3149
}

3150
static void amd_iommu_put_resv_regions(struct device *dev,
3151 3152
				     struct list_head *head)
{
3153
	struct iommu_resv_region *entry, *next;
3154 3155 3156 3157 3158

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3159
static void amd_iommu_apply_resv_region(struct device *dev,
3160
				      struct iommu_domain *domain,
3161
				      struct iommu_resv_region *region)
3162
{
3163
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3164 3165 3166
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3167
	end   = IOVA_PFN(region->start + region->length - 1);
3168 3169 3170 3171

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3172 3173 3174 3175 3176 3177 3178
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3179
const struct iommu_ops amd_iommu_ops = {
3180
	.capable = amd_iommu_capable,
3181 3182
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3183 3184
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3185 3186
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3187
	.map_sg = default_iommu_map_sg,
3188
	.iova_to_phys = amd_iommu_iova_to_phys,
3189 3190
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3191
	.device_group = amd_iommu_device_group,
3192 3193 3194
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3195
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3196
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3197 3198
};

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3221 3222 3223

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3224
	struct protection_domain *domain = to_pdomain(dom);
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3242 3243 3244

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3245
	struct protection_domain *domain = to_pdomain(dom);
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3306
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3323 3324 3325 3326 3327 3328
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3360
	struct protection_domain *domain = to_pdomain(dom);
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3380
	struct protection_domain *domain = to_pdomain(dom);
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3413
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3414 3415
		}

3416
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3460
	struct protection_domain *domain = to_pdomain(dom);
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3474
	struct protection_domain *domain = to_pdomain(dom);
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3502 3503 3504

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3505
	struct protection_domain *pdomain;
3506

3507 3508
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3509 3510 3511
		return NULL;

	/* Only return IOMMUv2 domains */
3512
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3513 3514
		return NULL;

3515
	return &pdomain->domain;
3516 3517
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3573 3574 3575 3576 3577 3578 3579 3580 3581

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3582 3583
static struct irq_chip amd_ir_chip;

3584 3585 3586 3587 3588 3589
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3590
	dte	|= iommu_virt_to_phys(table->table);
3591 3592 3593 3594 3595 3596 3597
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

static struct irq_remap_table *alloc_irq_table(u16 devid, bool ioapic)
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3628
		goto out_unlock;
3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3642
		goto out_unlock;
3643

3644
	/* Initialize table spin-lock */
3645
	raw_spin_lock_init(&table->lock);
3646

3647 3648 3649 3650 3651 3652 3653
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3654
		table = NULL;
3655
		goto out_unlock;
3656 3657
	}

3658 3659 3660 3661 3662 3663
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3664 3665 3666 3667 3668

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3669
			iommu->irte_ops->set_allocated(table, i);
3670 3671 3672 3673 3674 3675 3676
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3677
		set_dte_irq_entry(alias, table);
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3690
static int alloc_irq_index(u16 devid, int count, bool align)
3691 3692
{
	struct irq_remap_table *table;
3693
	int index, c, alignment = 1;
3694
	unsigned long flags;
3695 3696 3697 3698
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3699

3700
	table = alloc_irq_table(devid, false);
3701 3702 3703
	if (!table)
		return -ENODEV;

3704 3705 3706
	if (align)
		alignment = roundup_pow_of_two(count);

3707
	raw_spin_lock_irqsave(&table->lock, flags);
3708 3709

	/* Scan table for free entries */
3710
	for (index = ALIGN(table->min_index, alignment), c = 0;
3711
	     index < MAX_IRQS_PER_TABLE;) {
3712
		if (!iommu->irte_ops->is_allocated(table, index)) {
3713
			c += 1;
3714 3715
		} else {
			c     = 0;
3716
			index = ALIGN(index + 1, alignment);
3717 3718
			continue;
		}
3719 3720 3721

		if (c == count)	{
			for (; c != 0; --c)
3722
				iommu->irte_ops->set_allocated(table, index - c + 1);
3723 3724 3725 3726

			index -= count - 1;
			goto out;
		}
3727 3728

		index++;
3729 3730 3731 3732 3733
	}

	index = -ENOSPC;

out:
3734
	raw_spin_unlock_irqrestore(&table->lock, flags);
3735 3736 3737 3738

	return index;
}

3739 3740
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3741 3742 3743 3744
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3745
	struct irte_ga *entry;
3746 3747 3748 3749 3750

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3751
	table = get_irq_table(devid);
3752 3753 3754
	if (!table)
		return -ENOMEM;

3755
	raw_spin_lock_irqsave(&table->lock, flags);
3756 3757 3758 3759 3760 3761 3762

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3763 3764
	if (data)
		data->ref = entry;
3765

3766
	raw_spin_unlock_irqrestore(&table->lock, flags);
3767 3768 3769 3770 3771 3772 3773 3774

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3775 3776 3777 3778 3779 3780 3781 3782 3783
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3784
	table = get_irq_table(devid);
3785 3786 3787
	if (!table)
		return -ENOMEM;

3788
	raw_spin_lock_irqsave(&table->lock, flags);
3789
	table->table[index] = irte->val;
3790
	raw_spin_unlock_irqrestore(&table->lock, flags);
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3808
	table = get_irq_table(devid);
3809 3810 3811
	if (!table)
		return;

3812
	raw_spin_lock_irqsave(&table->lock, flags);
3813
	iommu->irte_ops->clear_allocated(table, index);
3814
	raw_spin_unlock_irqrestore(&table->lock, flags);
3815 3816 3817 3818 3819

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3820 3821
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3822
			 u8 vector, u32 dest_apicid, int devid)
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3836
			    u8 vector, u32 dest_apicid, int devid)
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3862
	modify_irte_ga(devid, index, irte, NULL);
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3878
	modify_irte_ga(devid, index, irte, NULL);
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3896
	if (!irte->lo.fields_remap.guest_mode) {
3897 3898 3899 3900
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
3901 3902
}

3903
#define IRTE_ALLOCATED (~1U)
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3949
static int get_devid(struct irq_alloc_info *info)
3950
{
3951
	int devid = -1;
3952

3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3968

3969 3970
	return devid;
}
3971

3972 3973 3974 3975
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3976

3977 3978
	if (!info)
		return NULL;
3979

3980 3981 3982 3983 3984 3985
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3986

3987
	return NULL;
3988 3989
}

3990
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3991
{
3992 3993
	struct amd_iommu *iommu;
	int devid;
3994

3995 3996
	if (!info)
		return NULL;
3997

3998 3999 4000 4001
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4002
		if (devid < 0)
4003 4004
			return NULL;

4005 4006 4007
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4008 4009 4010 4011
		break;
	default:
		break;
	}
4012

4013 4014
	return NULL;
}
4015

4016 4017 4018 4019 4020 4021
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4022 4023 4024
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4025

4026 4027 4028 4029 4030 4031 4032 4033
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4034 4035 4036 4037
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4038

4039 4040
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4041 4042
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4043
				 irq_cfg->dest_apicid, devid);
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4059

4060 4061 4062 4063 4064 4065 4066
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4067

4068 4069 4070 4071
	default:
		BUG_ON(1);
		break;
	}
4072 4073
}

4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4094 4095
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4096
{
4097 4098
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4099
	struct amd_ir_data *data = NULL;
4100
	struct irq_cfg *cfg;
4101 4102
	int i, ret, devid;
	int index = -1;
4103

4104 4105 4106 4107
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4108 4109
		return -EINVAL;

4110 4111 4112 4113 4114 4115
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4116

4117 4118 4119
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4120

4121 4122 4123
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4124

4125
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4126
		if (alloc_irq_table(devid, true))
4127 4128 4129 4130
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4131 4132 4133
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4134 4135 4136
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4137
		ret = index;
4138 4139
		goto out_free_parent;
	}
4140

4141 4142 4143 4144 4145 4146 4147
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4148

4149 4150 4151 4152 4153
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4164 4165 4166 4167 4168 4169
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4170

4171
	return 0;
4172

4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4184 4185
}

4186 4187
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4188
{
4189 4190 4191 4192
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4193

4194 4195 4196 4197 4198 4199
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4200
			kfree(data->entry);
4201 4202 4203 4204 4205
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4206

4207 4208 4209 4210 4211
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4212
static int irq_remapping_activate(struct irq_domain *domain,
4213
				  struct irq_data *irq_data, bool reserve)
4214 4215 4216
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4217
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4218
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4219

4220 4221 4222 4223 4224 4225
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4226
	return 0;
4227 4228
}

4229 4230
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4231
{
4232 4233
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4234
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4235

4236 4237 4238
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4239
}
4240

4241
static const struct irq_domain_ops amd_ir_domain_ops = {
4242 4243 4244 4245
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4246
};
4247

4248 4249 4250 4251 4252 4253 4254 4255
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4256 4257 4258 4259 4260 4261 4262 4263
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4286
		irte->lo.fields_vapic.ga_log_intr = 1;
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4329 4330 4331 4332 4333 4334 4335
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4336
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4337
	int ret;
4338

4339 4340 4341
	if (!iommu)
		return -ENODEV;

4342 4343 4344
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4345

4346
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4347 4348 4349 4350 4351
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4352
	send_cleanup_vector(cfg);
4353 4354

	return IRQ_SET_MASK_OK_DONE;
4355 4356
}

4357
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4358
{
4359
	struct amd_ir_data *ir_data = irq_data->chip_data;
4360

4361 4362
	*msg = ir_data->msi_entry;
}
4363

4364
static struct irq_chip amd_ir_chip = {
4365 4366 4367 4368 4369
	.name			= "AMD-IR",
	.irq_ack		= ir_ack_apic_edge,
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4370
};
4371

4372 4373
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4374 4375 4376 4377 4378 4379 4380
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4381 4382
	if (!iommu->ir_domain)
		return -ENOMEM;
4383

4384
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4385 4386 4387
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4388 4389
	return 0;
}
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4409
	irt = get_irq_table(devid);
4410 4411 4412
	if (!irt)
		return -ENODEV;

4413
	raw_spin_lock_irqsave(&irt->lock, flags);
4414 4415 4416 4417 4418 4419 4420 4421

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4422
	raw_spin_unlock_irqrestore(&irt->lock, flags);
4423 4424 4425 4426 4427 4428

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4429
#endif