amd_iommu.c 106.1 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56

57 58
#define AMD_IOMMU_MAPPING_ERROR	0

59 60
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

61
#define LOOP_TIMEOUT	100000
62

63 64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84 85
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

86 87 88 89
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107 108 109 110 111 112
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
113
	u16 alias;			  /* Alias Device ID */
114
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
115
	bool passthrough;		  /* Device is identity mapped */
116 117 118 119 120 121 122
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
123
	bool use_vapic;			  /* Enable device to use vapic mode */
124 125

	struct ratelimit_state rs;	  /* Ratelimit IOPF messages */
126 127
};

128 129 130
/*
 * general struct to manage commands send to an IOMMU
 */
131
struct iommu_cmd {
132 133 134
	u32 data[4];
};

135 136
struct kmem_cache *amd_iommu_irq_cache;

137
static void update_domain(struct protection_domain *domain);
138
static int protection_domain_init(struct protection_domain *domain);
139
static void detach_device(struct device *dev);
140

141 142 143 144 145
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
146
	u64 counter; /* Flush counter when this entry was added to the queue */
147 148 149 150 151
};

struct flush_queue {
	struct flush_queue_entry *entries;
	unsigned head, tail;
152
	spinlock_t lock;
153 154
};

155 156 157 158 159 160 161
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

162 163
	/* IOVA RB-Tree */
	struct iova_domain iovad;
164 165

	struct flush_queue __percpu *flush_queue;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

	/*
	 * We need two counter here to be race-free wrt. IOTLB flushing and
	 * adding entries to the flush queue.
	 *
	 * The flush_start_cnt is incremented _before_ the IOTLB flush starts.
	 * New entries added to the flush ring-buffer get their 'counter' value
	 * from here. This way we can make sure that entries added to the queue
	 * (or other per-cpu queues of the same domain) while the TLB is about
	 * to be flushed are not considered to be flushed already.
	 */
	atomic64_t flush_start_cnt;

	/*
	 * The flush_finish_cnt is incremented when an IOTLB flush is complete.
	 * This value is always smaller than flush_start_cnt. The queue_add
	 * function frees all IOVAs that have a counter value smaller than
	 * flush_finish_cnt. This makes sure that we only free IOVAs that are
	 * flushed out of the IOTLB of the domain.
	 */
	atomic64_t flush_finish_cnt;
187 188 189 190 191 192 193

	/*
	 * Timer to make sure we don't keep IOVAs around unflushed
	 * for too long
	 */
	struct timer_list flush_timer;
	atomic_t flush_timer_on;
194 195
};

196 197 198
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

199 200 201 202 203 204
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

205 206
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
207
{
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
223 224
}

225
static inline u16 get_pci_device_id(struct device *dev)
226 227 228 229 230 231
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

259 260 261 262 263
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

264 265 266 267 268 269
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

270
static struct iommu_dev_data *alloc_dev_data(u16 devid)
271 272 273 274 275 276 277 278
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

279
	dev_data->devid = devid;
280 281 282 283 284

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

285 286
	ratelimit_default_init(&dev_data->rs);

287 288 289
	return dev_data;
}

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

309 310 311 312 313 314 315 316 317 318 319
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

320
	/* The callers make sure that get_device_id() does not fail here */
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
362
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
363 364 365 366 367 368 369 370
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

371 372 373 374 375 376 377 378 379 380 381 382
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

383 384 385 386 387
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

388 389 390 391
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
392
{
393
	struct acpihid_map_entry *p, *entry = NULL;
394
	int devid;
395 396 397 398 399 400 401 402 403 404 405 406

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
407 408
	else
		iommu_group_ref_get(entry->group);
409 410

	return entry->group;
411 412
}

413 414 415 416
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
417 418
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
419 420 421 422 423 424 425 426 427 428 429 430
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

431 432 433 434 435 436 437 438 439
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

440 441 442 443 444 445
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
446
	int devid;
447 448 449 450 451

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
452
	if (devid < 0)
453
		return false;
454 455 456 457 458 459 460 461 462 463 464

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

465
static void init_iommu_group(struct device *dev)
466 467 468
{
	struct iommu_group *group;

469
	group = iommu_group_get_for_dev(dev);
470 471 472 473
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
474 475 476 477 478
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
479
	struct amd_iommu *iommu;
480
	int devid;
481 482 483 484

	if (dev->archdata.iommu)
		return 0;

485
	devid = get_device_id(dev);
486
	if (devid < 0)
487 488
		return devid;

489 490
	iommu = amd_iommu_rlookup_table[devid];

491
	dev_data = find_dev_data(devid);
492 493 494
	if (!dev_data)
		return -ENOMEM;

495 496
	dev_data->alias = get_alias(dev);

497
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
498 499
		struct amd_iommu *iommu;

500
		iommu = amd_iommu_rlookup_table[dev_data->devid];
501 502 503
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

504 505
	dev->archdata.iommu = dev_data;

506
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
507

508 509 510
	return 0;
}

511 512
static void iommu_ignore_device(struct device *dev)
{
513 514
	u16 alias;
	int devid;
515 516

	devid = get_device_id(dev);
517
	if (devid < 0)
518 519
		return;

520
	alias = get_alias(dev);
521 522 523 524 525 526 527 528

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

529 530
static void iommu_uninit_device(struct device *dev)
{
531
	struct iommu_dev_data *dev_data;
532 533
	struct amd_iommu *iommu;
	int devid;
534

535
	devid = get_device_id(dev);
536
	if (devid < 0)
537
		return;
538

539 540
	iommu = amd_iommu_rlookup_table[devid];

541
	dev_data = search_dev_data(devid);
542 543 544
	if (!dev_data)
		return;

545 546 547
	if (dev_data->domain)
		detach_device(dev);

548
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
549

550 551
	iommu_group_remove_device(dev);

552
	/* Remove dma-ops */
553
	dev->dma_ops = NULL;
554

555
	/*
556 557
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
558
	 */
559
}
J
Joerg Roedel 已提交
560

561 562 563 564 565 566
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

567 568 569 570
static void dump_dte_entry(u16 devid)
{
	int i;

571 572
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
573 574 575
			amd_iommu_dev_table[devid].data[i]);
}

576 577 578 579 580 581 582 583 584
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

	pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

608
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
609
{
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
631

632 633 634 635 636 637
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
638 639 640 641 642

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
643
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
644
		       address, flags);
645
		dump_dte_entry(devid);
646 647 648 649
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
650
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
651 652 653 654 655
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
656
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
657 658 659 660
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
661
		dump_command(address);
662 663 664 665 666 667 668 669
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
670
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
671 672 673 674 675
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
676
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
677 678 679 680 681
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
682 683

	memset(__evt, 0, 4 * sizeof(u32));
684 685 686 687 688 689 690 691 692 693
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
694
		iommu_print_event(iommu, iommu->evt_buf + head);
695
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
696 697 698 699 700
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

701
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
746

747 748 749
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
750

751 752 753 754 755 756 757
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
758 759
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
760 761 762 763 764 765

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
766 767 768 769
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

830
irqreturn_t amd_iommu_int_thread(int irq, void *data)
831
{
832 833
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
834

835 836 837
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
838
			iommu->mmio_base + MMIO_STATUS_OFFSET);
839

840 841 842 843
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
844

845 846 847 848
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
849

850 851 852 853 854 855 856
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
872
	return IRQ_HANDLED;
873 874
}

875 876 877 878 879
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

880 881 882 883 884 885
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
904
			       struct iommu_cmd *cmd)
905 906 907
{
	u8 *target;

908 909 910 911
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
912 913 914 915 916

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
917
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
918
}
919

920
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
921
{
922 923
	WARN_ON(address & 0x7ULL);

924
	memset(cmd, 0, sizeof(*cmd));
925 926 927
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
928 929 930
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

931 932 933 934 935 936 937
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

938 939 940 941
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
942
	bool s;
943 944

	pages = iommu_num_pages(address, size, PAGE_SIZE);
945
	s     = false;
946 947 948 949 950 951 952

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
953
		s = true;
954 955 956 957 958 959 960 961 962 963 964
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
965
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
966 967 968
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

969 970 971 972
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
973
	bool s;
974 975

	pages = iommu_num_pages(address, size, PAGE_SIZE);
976
	s     = false;
977 978 979 980 981 982 983

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
984
		s = true;
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

1000 1001 1002 1003 1004 1005 1006
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

1007
	cmd->data[0]  = pasid;
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
1026
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1027 1028
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
1029
	cmd->data[1] |= (pasid & 0xff) << 16;
1030 1031 1032 1033 1034 1035 1036 1037
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

1038 1039 1040 1041 1042 1043 1044
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1045
		cmd->data[1]  = pasid;
1046 1047 1048 1049 1050 1051 1052 1053
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1054 1055 1056 1057
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1058 1059
}

1060 1061 1062 1063 1064 1065 1066
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1067 1068
/*
 * Writes the command to the IOMMUs command buffer and informs the
1069
 * hardware about the new command.
1070
 */
1071 1072 1073
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1074
{
1075
	unsigned int count = 0;
1076
	u32 left, next_tail;
1077

1078
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1079
again:
1080
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1081

1082
	if (left <= 0x20) {
1083 1084 1085 1086 1087 1088
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1089

1090 1091
			udelay(1);
		}
1092

1093 1094 1095
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1096 1097

		goto again;
1098 1099
	}

1100
	copy_cmd_to_buffer(iommu, cmd);
1101

1102
	/* Do we need to make sure all commands are processed? */
1103
	iommu->need_sync = sync;
1104

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1117
	spin_unlock_irqrestore(&iommu->lock, flags);
1118

1119
	return ret;
1120 1121
}

1122 1123 1124 1125 1126
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1127 1128 1129 1130
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1131
static int iommu_completion_wait(struct amd_iommu *iommu)
1132 1133
{
	struct iommu_cmd cmd;
1134
	unsigned long flags;
1135
	int ret;
1136

1137
	if (!iommu->need_sync)
1138
		return 0;
1139

1140

1141 1142 1143 1144 1145 1146 1147
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1148
	if (ret)
1149 1150 1151 1152 1153 1154
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1155

1156
	return ret;
1157 1158
}

1159
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1160
{
1161
	struct iommu_cmd cmd;
1162

1163
	build_inv_dte(&cmd, devid);
1164

1165 1166
	return iommu_queue_command(iommu, &cmd);
}
1167

1168 1169 1170
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1171

1172 1173
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1174

1175 1176
	iommu_completion_wait(iommu);
}
1177

1178 1179 1180 1181 1182 1183 1184
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1185

1186 1187 1188 1189 1190 1191
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1192

1193
	iommu_completion_wait(iommu);
1194 1195
}

1196
static void iommu_flush_all(struct amd_iommu *iommu)
1197
{
1198
	struct iommu_cmd cmd;
1199

1200
	build_inv_all(&cmd);
1201

1202 1203 1204 1205
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1225 1226
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1227 1228 1229 1230
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1231
		iommu_flush_irt_all(iommu);
1232
		iommu_flush_tlb_all(iommu);
1233 1234 1235
	}
}

1236
/*
1237
 * Command send function for flushing on-device TLB
1238
 */
1239 1240
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1241 1242
{
	struct amd_iommu *iommu;
1243
	struct iommu_cmd cmd;
1244
	int qdep;
1245

1246 1247
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1248

1249
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1250 1251

	return iommu_queue_command(iommu, &cmd);
1252 1253
}

1254 1255 1256
/*
 * Command send function for invalidating a device table entry
 */
1257
static int device_flush_dte(struct iommu_dev_data *dev_data)
1258
{
1259
	struct amd_iommu *iommu;
1260
	u16 alias;
1261
	int ret;
1262

1263
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1264
	alias = dev_data->alias;
1265

1266
	ret = iommu_flush_dte(iommu, dev_data->devid);
1267 1268
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1269 1270 1271
	if (ret)
		return ret;

1272
	if (dev_data->ats.enabled)
1273
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1274 1275

	return ret;
1276 1277
}

1278 1279 1280 1281 1282
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1283 1284
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1285
{
1286
	struct iommu_dev_data *dev_data;
1287 1288
	struct iommu_cmd cmd;
	int ret = 0, i;
1289

1290
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1291

1292
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1293 1294 1295 1296 1297 1298 1299
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1300
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1301 1302
	}

1303 1304
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1305
		if (!dev_data->ats.enabled)
1306 1307
			continue;

1308
		ret |= device_flush_iotlb(dev_data, address, size);
1309 1310
	}

1311
	WARN_ON(ret);
1312 1313
}

1314 1315
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1316
{
1317
	__domain_flush_pages(domain, address, size, 0);
1318
}
1319

1320
/* Flush the whole IO/TLB for a given protection domain */
1321
static void domain_flush_tlb(struct protection_domain *domain)
1322
{
1323
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1324 1325
}

1326
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1327
static void domain_flush_tlb_pde(struct protection_domain *domain)
1328
{
1329
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1330 1331
}

1332
static void domain_flush_complete(struct protection_domain *domain)
1333
{
1334
	int i;
1335

1336
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1337
		if (domain && !domain->dev_iommu[i])
1338
			continue;
1339

1340 1341 1342 1343 1344
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1345
	}
1346 1347
}

1348

1349
/*
1350
 * This function flushes the DTEs for all devices in domain
1351
 */
1352
static void domain_flush_devices(struct protection_domain *domain)
1353
{
1354
	struct iommu_dev_data *dev_data;
1355

1356
	list_for_each_entry(dev_data, &domain->dev_list, list)
1357
		device_flush_dte(dev_data);
1358 1359
}

1360 1361 1362 1363 1364 1365 1366
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1396
		      unsigned long page_size,
1397 1398 1399
		      u64 **pte_page,
		      gfp_t gfp)
{
1400
	int level, end_lvl;
1401
	u64 *pte, *page;
1402 1403

	BUG_ON(!is_power_of_2(page_size));
1404 1405 1406 1407

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1408 1409 1410 1411
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1412 1413

	while (level > end_lvl) {
1414 1415 1416 1417 1418
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1419 1420 1421
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1422 1423 1424

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1425 1426
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1427 1428 1429
				free_page((unsigned long)page);
				continue;
			}
1430 1431
		}

1432 1433 1434 1435
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1453 1454 1455
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1456 1457 1458 1459
{
	int level;
	u64 *pte;

1460 1461 1462
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1463 1464 1465
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1466

1467 1468 1469
	while (level > 0) {

		/* Not Present */
1470 1471 1472
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1473
		/* Large PTE */
1474 1475 1476
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1477 1478 1479 1480 1481

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1482 1483
		level -= 1;

1484
		/* Walk to the next level */
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1500 1501 1502 1503 1504
	}

	return pte;
}

1505 1506 1507 1508 1509 1510 1511
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1512 1513 1514
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1515
			  unsigned long page_size,
1516
			  int prot,
1517
			  gfp_t gfp)
1518
{
1519
	u64 __pte, *pte;
1520
	int i, count;
1521

1522 1523 1524
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1525
	if (!(prot & IOMMU_PROT_MASK))
1526 1527
		return -EINVAL;

1528
	count = PAGE_SIZE_PTE_COUNT(page_size);
1529
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1530

1531 1532 1533
	if (!pte)
		return -ENOMEM;

1534 1535 1536
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1537

1538
	if (count > 1) {
1539
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1540
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1541
	} else
1542
		__pte = phys_addr | IOMMU_PTE_PR | IOMMU_PTE_FC;
1543 1544 1545 1546 1547 1548

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1549 1550
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1551

1552 1553
	update_domain(dom);

1554 1555 1556
	return 0;
}

1557 1558 1559
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1560
{
1561 1562
	unsigned long long unmapped;
	unsigned long unmap_size;
1563 1564 1565 1566 1567
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1568

1569 1570
	while (unmapped < page_size) {

1571 1572 1573 1574 1575 1576
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1577 1578 1579 1580 1581 1582 1583 1584
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1585
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1586

1587
	return unmapped;
1588 1589
}

1590 1591 1592
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1593
 * interface functions.
1594 1595
 *
 ****************************************************************************/
1596

1597

1598 1599 1600
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1601
{
1602
	unsigned long pfn = 0;
1603

1604
	pages = __roundup_pow_of_two(pages);
1605

1606 1607 1608
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1609

1610 1611
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1612

1613
	return (pfn << PAGE_SHIFT);
1614 1615
}

1616 1617 1618
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1619
{
1620 1621
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1622

1623
	free_iova_fast(&dma_dom->iovad, address, pages);
1624 1625
}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1698
		/* PTE present? */				\
1699 1700 1701
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1702 1703 1704 1705 1706
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1719
static void free_pagetable(struct protection_domain *domain)
1720
{
1721
	unsigned long root = (unsigned long)domain->pt_root;
1722

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1746 1747 1748
	}
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1779 1780
static void free_gcr3_table(struct protection_domain *domain)
{
1781 1782 1783 1784
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1785 1786
	else
		BUG_ON(domain->glx != 0);
1787

1788 1789 1790
	free_page((unsigned long)domain->gcr3_tbl);
}

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
static void dma_ops_domain_free_flush_queue(struct dma_ops_domain *dom)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		kfree(queue->entries);
	}

	free_percpu(dom->flush_queue);

	dom->flush_queue = NULL;
}

static int dma_ops_domain_alloc_flush_queue(struct dma_ops_domain *dom)
{
	int cpu;

1811 1812 1813
	atomic64_set(&dom->flush_start_cnt,  0);
	atomic64_set(&dom->flush_finish_cnt, 0);

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	dom->flush_queue = alloc_percpu(struct flush_queue);
	if (!dom->flush_queue)
		return -ENOMEM;

	/* First make sure everything is cleared */
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		queue->head    = 0;
		queue->tail    = 0;
		queue->entries = NULL;
	}

	/* Now start doing the allocation */
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		queue->entries = kzalloc(FLUSH_QUEUE_SIZE * sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries) {
			dma_ops_domain_free_flush_queue(dom);
			return -ENOMEM;
		}
1839 1840

		spin_lock_init(&queue->lock);
1841 1842 1843 1844 1845
	}

	return 0;
}

1846 1847 1848 1849 1850 1851 1852 1853
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	atomic64_inc(&dom->flush_start_cnt);
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
	atomic64_inc(&dom->flush_finish_cnt);
}

1854 1855
static inline bool queue_ring_full(struct flush_queue *queue)
{
1856 1857
	assert_spin_locked(&queue->lock);

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
	return (((queue->tail + 1) % FLUSH_QUEUE_SIZE) == queue->head);
}

#define queue_ring_for_each(i, q) \
	for (i = (q)->head; i != (q)->tail; i = (i + 1) % FLUSH_QUEUE_SIZE)

static inline unsigned queue_ring_add(struct flush_queue *queue)
{
	unsigned idx = queue->tail;

1868
	assert_spin_locked(&queue->lock);
1869 1870 1871 1872 1873
	queue->tail = (idx + 1) % FLUSH_QUEUE_SIZE;

	return idx;
}

1874 1875 1876 1877 1878 1879
static inline void queue_ring_remove_head(struct flush_queue *queue)
{
	assert_spin_locked(&queue->lock);
	queue->head = (queue->head + 1) % FLUSH_QUEUE_SIZE;
}

1880 1881
static void queue_ring_free_flushed(struct dma_ops_domain *dom,
				    struct flush_queue *queue)
1882
{
1883
	u64 counter = atomic64_read(&dom->flush_finish_cnt);
1884 1885
	int idx;

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
	queue_ring_for_each(idx, queue) {
		/*
		 * This assumes that counter values in the ring-buffer are
		 * monotonously rising.
		 */
		if (queue->entries[idx].counter >= counter)
			break;

		free_iova_fast(&dom->iovad,
			       queue->entries[idx].iova_pfn,
			       queue->entries[idx].pages);

		queue_ring_remove_head(queue);
	}
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
}

static void queue_add(struct dma_ops_domain *dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(dom->flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

1915 1916 1917 1918 1919 1920
	/*
	 * First remove the enries from the ring-buffer that are already
	 * flushed to make the below queue_ring_full() check less likely
	 */
	queue_ring_free_flushed(dom, queue);

1921 1922 1923 1924 1925
	/*
	 * When ring-queue is full, flush the entries from the IOTLB so
	 * that we can free all entries with queue_ring_free_flushed()
	 * below.
	 */
1926
	if (queue_ring_full(queue)) {
1927
		dma_ops_domain_flush_tlb(dom);
1928 1929
		queue_ring_free_flushed(dom, queue);
	}
1930 1931 1932 1933 1934

	idx = queue_ring_add(queue);

	queue->entries[idx].iova_pfn = address;
	queue->entries[idx].pages    = pages;
1935
	queue->entries[idx].counter  = atomic64_read(&dom->flush_start_cnt);
1936

1937
	spin_unlock_irqrestore(&queue->lock, flags);
1938 1939 1940 1941

	if (atomic_cmpxchg(&dom->flush_timer_on, 0, 1) == 0)
		mod_timer(&dom->flush_timer, jiffies + msecs_to_jiffies(10));

1942 1943 1944
	put_cpu_ptr(dom->flush_queue);
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
static void queue_flush_timeout(unsigned long data)
{
	struct dma_ops_domain *dom = (struct dma_ops_domain *)data;
	int cpu;

	atomic_set(&dom->flush_timer_on, 0);

	dma_ops_domain_flush_tlb(dom);

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		queue_ring_free_flushed(dom, queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

1965 1966 1967 1968
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1969 1970 1971 1972 1973
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1974 1975
	del_domain_from_list(&dom->domain);

1976 1977 1978
	if (timer_pending(&dom->flush_timer))
		del_timer(&dom->flush_timer);

1979 1980
	dma_ops_domain_free_flush_queue(dom);

1981
	put_iova_domain(&dom->iovad);
1982

1983
	free_pagetable(&dom->domain);
1984

1985 1986 1987
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1988 1989 1990
	kfree(dom);
}

1991 1992
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1993
 * It also initializes the page table and the address allocator data
1994 1995
 * structures required for the dma_ops interface
 */
1996
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1997 1998 1999 2000 2001 2002 2003
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

2004
	if (protection_domain_init(&dma_dom->domain))
2005
		goto free_dma_dom;
2006

2007
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
2008
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2009
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2010 2011 2012
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2013 2014 2015
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

2016 2017 2018
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

2019 2020 2021
	if (dma_ops_domain_alloc_flush_queue(dma_dom))
		goto free_dma_dom;

2022 2023 2024 2025 2026
	setup_timer(&dma_dom->flush_timer, queue_flush_timeout,
		    (unsigned long)dma_dom);

	atomic_set(&dma_dom->flush_timer_on, 0);

2027 2028
	add_domain_to_list(&dma_dom->domain);

2029 2030 2031 2032 2033 2034 2035 2036
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2037 2038 2039 2040 2041 2042 2043 2044 2045
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2046
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2047
{
2048
	u64 pte_root = 0;
2049
	u64 flags = 0;
2050

2051 2052 2053
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2054 2055
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
2056
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
2057

2058 2059
	flags = amd_iommu_dev_table[devid].data[1];

2060 2061 2062
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2089
	flags &= ~(0xffffUL);
2090 2091 2092 2093
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2094 2095 2096 2097 2098
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
2099
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
2100
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2101 2102

	amd_iommu_apply_erratum_63(devid);
2103 2104
}

2105 2106
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2107 2108
{
	struct amd_iommu *iommu;
2109
	u16 alias;
2110
	bool ats;
2111

2112
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2113
	alias = dev_data->alias;
2114
	ats   = dev_data->ats.enabled;
2115 2116 2117 2118 2119 2120 2121 2122 2123

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

2124 2125 2126
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
2127
		set_dte_entry(alias, domain, ats);
2128

2129
	device_flush_dte(dev_data);
2130 2131
}

2132
static void do_detach(struct iommu_dev_data *dev_data)
2133 2134
{
	struct amd_iommu *iommu;
2135
	u16 alias;
2136

2137 2138 2139 2140 2141 2142 2143 2144 2145
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2146
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2147
	alias = dev_data->alias;
2148 2149

	/* decrease reference counters */
2150 2151 2152 2153 2154 2155
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2156
	clear_dte_entry(dev_data->devid);
2157 2158
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2159

2160
	/* Flush the DTE entry */
2161
	device_flush_dte(dev_data);
2162 2163 2164 2165 2166 2167
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2168
static int __attach_device(struct iommu_dev_data *dev_data,
2169
			   struct protection_domain *domain)
2170
{
2171
	int ret;
2172

2173 2174 2175 2176 2177 2178
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2179 2180 2181
	/* lock domain */
	spin_lock(&domain->lock);

2182
	ret = -EBUSY;
2183
	if (dev_data->domain != NULL)
2184
		goto out_unlock;
2185

2186
	/* Attach alias group root */
2187
	do_attach(dev_data, domain);
2188

2189 2190 2191 2192
	ret = 0;

out_unlock:

2193 2194
	/* ready */
	spin_unlock(&domain->lock);
2195

2196
	return ret;
2197
}
2198

2199 2200 2201 2202 2203 2204 2205 2206

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2207 2208 2209 2210 2211 2212
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2213
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2214 2215 2216
	if (!pos)
		return -EINVAL;

2217 2218 2219
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2220 2221 2222 2223

	return 0;
}

2224 2225
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2226 2227 2228 2229 2230 2231 2232 2233
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2245 2246
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2247 2248 2249
	if (ret)
		goto out_err;

2250 2251 2252 2253 2254 2255
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2269
/* FIXME: Move this to PCI code */
2270
#define PCI_PRI_TLP_OFF		(1 << 15)
2271

J
Joerg Roedel 已提交
2272
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2273
{
2274
	u16 status;
2275 2276
	int pos;

2277
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2278 2279 2280
	if (!pos)
		return false;

2281
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2282

2283
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2284 2285
}

2286
/*
F
Frank Arnold 已提交
2287
 * If a device is not yet associated with a domain, this function
2288 2289
 * assigns it visible for the hardware
 */
2290 2291
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2292
{
2293
	struct pci_dev *pdev;
2294
	struct iommu_dev_data *dev_data;
2295
	unsigned long flags;
2296
	int ret;
2297

2298 2299
	dev_data = get_dev_data(dev);

2300 2301 2302 2303
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2304
	if (domain->flags & PD_IOMMUV2_MASK) {
2305
		if (!dev_data->passthrough)
2306 2307
			return -EINVAL;

2308 2309 2310
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2311

2312 2313 2314 2315
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2316 2317
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2318 2319 2320
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2321

2322
skip_ats_check:
2323
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2324
	ret = __attach_device(dev_data, domain);
2325 2326
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2327 2328 2329 2330 2331
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2332
	domain_flush_tlb_pde(domain);
2333 2334

	return ret;
2335 2336
}

2337 2338 2339
/*
 * Removes a device from a protection domain (unlocked)
 */
2340
static void __detach_device(struct iommu_dev_data *dev_data)
2341
{
2342
	struct protection_domain *domain;
2343

2344 2345 2346 2347 2348
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2349

2350 2351
	if (WARN_ON(!dev_data->domain))
		return;
2352

2353
	domain = dev_data->domain;
2354

2355
	spin_lock(&domain->lock);
2356

2357
	do_detach(dev_data);
2358

2359
	spin_unlock(&domain->lock);
2360 2361 2362 2363 2364
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2365
static void detach_device(struct device *dev)
2366
{
2367
	struct protection_domain *domain;
2368
	struct iommu_dev_data *dev_data;
2369 2370
	unsigned long flags;

2371
	dev_data = get_dev_data(dev);
2372
	domain   = dev_data->domain;
2373

2374 2375
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2376
	__detach_device(dev_data);
2377
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2378

2379 2380 2381
	if (!dev_is_pci(dev))
		return;

2382
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2383 2384
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2385
		pci_disable_ats(to_pci_dev(dev));
2386 2387

	dev_data->ats.enabled = false;
2388
}
2389

2390
static int amd_iommu_add_device(struct device *dev)
2391
{
2392
	struct iommu_dev_data *dev_data;
2393
	struct iommu_domain *domain;
2394
	struct amd_iommu *iommu;
2395
	int ret, devid;
2396

2397
	if (!check_device(dev) || get_dev_data(dev))
2398
		return 0;
2399

2400
	devid = get_device_id(dev);
2401
	if (devid < 0)
2402 2403
		return devid;

2404
	iommu = amd_iommu_rlookup_table[devid];
2405

2406
	ret = iommu_init_device(dev);
2407 2408 2409 2410
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2411

2412
		iommu_ignore_device(dev);
2413
		dev->dma_ops = &nommu_dma_ops;
2414 2415 2416
		goto out;
	}
	init_iommu_group(dev);
2417

2418
	dev_data = get_dev_data(dev);
2419

2420
	BUG_ON(!dev_data);
2421

2422
	if (iommu_pass_through || dev_data->iommu_v2)
2423
		iommu_request_dm_for_dev(dev);
2424

2425 2426
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2427
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2428
		dev_data->passthrough = true;
2429
	else
2430
		dev->dma_ops = &amd_iommu_dma_ops;
2431

2432
out:
2433 2434 2435 2436 2437
	iommu_completion_wait(iommu);

	return 0;
}

2438
static void amd_iommu_remove_device(struct device *dev)
2439
{
2440
	struct amd_iommu *iommu;
2441
	int devid;
2442 2443 2444 2445 2446

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2447
	if (devid < 0)
2448 2449
		return;

2450 2451 2452 2453
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2454 2455
}

2456 2457 2458 2459 2460 2461 2462 2463
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2477
static struct protection_domain *get_domain(struct device *dev)
2478
{
2479
	struct protection_domain *domain;
2480

2481
	if (!check_device(dev))
2482
		return ERR_PTR(-EINVAL);
2483

2484
	domain = get_dev_data(dev)->domain;
2485
	if (!dma_ops_domain(domain))
2486
		return ERR_PTR(-EBUSY);
2487

2488
	return domain;
2489 2490
}

2491 2492
static void update_device_table(struct protection_domain *domain)
{
2493
	struct iommu_dev_data *dev_data;
2494

2495
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2496
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2497 2498 2499 2500 2501 2502 2503

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2504 2505 2506 2507 2508 2509 2510 2511
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2512 2513 2514

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2515 2516 2517 2518

	domain->updated = false;
}

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2530 2531
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2532 2533
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2534 2535
 * Must be called with the domain lock held.
 */
2536 2537 2538 2539
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2540
			       enum dma_data_direction direction,
2541
			       u64 dma_mask)
2542 2543
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2544
	dma_addr_t address, start, ret;
2545
	unsigned int pages;
2546
	int prot = 0;
2547 2548
	int i;

2549
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2550 2551
	paddr &= PAGE_MASK;

2552
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2553
	if (address == AMD_IOMMU_MAPPING_ERROR)
2554
		goto out;
2555

2556
	prot = dir2prot(direction);
2557

2558 2559
	start = address;
	for (i = 0; i < pages; ++i) {
2560 2561 2562
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2563 2564
			goto out_unmap;

2565 2566 2567 2568 2569
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2570
	if (unlikely(amd_iommu_np_cache)) {
2571
		domain_flush_pages(&dma_dom->domain, address, size);
2572 2573
		domain_flush_complete(&dma_dom->domain);
	}
2574

2575 2576
out:
	return address;
2577 2578 2579 2580 2581

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2582
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2583 2584
	}

2585 2586 2587 2588
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2589

2590
	return AMD_IOMMU_MAPPING_ERROR;
2591 2592
}

2593 2594 2595 2596
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2597
static void __unmap_single(struct dma_ops_domain *dma_dom,
2598 2599 2600 2601
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2602
	dma_addr_t flush_addr;
2603 2604 2605
	dma_addr_t i, start;
	unsigned int pages;

2606
	flush_addr = dma_addr;
2607
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2608 2609 2610 2611
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2612
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2613 2614 2615
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2616 2617 2618 2619 2620 2621 2622
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2623 2624
}

2625 2626 2627
/*
 * The exported map_single function for dma_ops.
 */
2628 2629 2630
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2631
			   unsigned long attrs)
2632
{
2633
	phys_addr_t paddr = page_to_phys(page) + offset;
2634
	struct protection_domain *domain;
2635
	struct dma_ops_domain *dma_dom;
2636
	u64 dma_mask;
2637

2638 2639
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2640
		return (dma_addr_t)paddr;
2641
	else if (IS_ERR(domain))
2642
		return AMD_IOMMU_MAPPING_ERROR;
2643

2644
	dma_mask = *dev->dma_mask;
2645
	dma_dom = to_dma_ops_domain(domain);
2646

2647
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2648 2649
}

2650 2651 2652
/*
 * The exported unmap_single function for dma_ops.
 */
2653
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2654
		       enum dma_data_direction dir, unsigned long attrs)
2655 2656
{
	struct protection_domain *domain;
2657
	struct dma_ops_domain *dma_dom;
2658

2659 2660
	domain = get_domain(dev);
	if (IS_ERR(domain))
2661 2662
		return;

2663 2664 2665
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2666 2667
}

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2694 2695 2696 2697
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2698
static int map_sg(struct device *dev, struct scatterlist *sglist,
2699
		  int nelems, enum dma_data_direction direction,
2700
		  unsigned long attrs)
2701
{
2702
	int mapped_pages = 0, npages = 0, prot = 0, i;
2703
	struct protection_domain *domain;
2704
	struct dma_ops_domain *dma_dom;
2705
	struct scatterlist *s;
2706
	unsigned long address;
2707
	u64 dma_mask;
2708

2709
	domain = get_domain(dev);
2710
	if (IS_ERR(domain))
2711
		return 0;
2712

2713
	dma_dom  = to_dma_ops_domain(domain);
2714
	dma_mask = *dev->dma_mask;
2715

2716 2717 2718
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2719
	if (address == AMD_IOMMU_MAPPING_ERROR)
2720 2721 2722 2723 2724
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2725
	for_each_sg(sglist, s, nelems, i) {
2726 2727 2728 2729 2730
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2731

2732 2733 2734 2735 2736
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2737

2738 2739
			mapped_pages += 1;
		}
2740 2741
	}

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2759

2760 2761 2762 2763 2764 2765
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2766 2767
	}

2768 2769 2770 2771
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2772
	return 0;
2773 2774
}

2775 2776 2777 2778
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2779
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2780
		     int nelems, enum dma_data_direction dir,
2781
		     unsigned long attrs)
2782 2783
{
	struct protection_domain *domain;
2784
	struct dma_ops_domain *dma_dom;
2785 2786
	unsigned long startaddr;
	int npages = 2;
2787

2788 2789
	domain = get_domain(dev);
	if (IS_ERR(domain))
2790 2791
		return;

2792
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2793
	dma_dom   = to_dma_ops_domain(domain);
2794 2795
	npages    = sg_num_pages(dev, sglist, nelems);

2796
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2797 2798
}

2799 2800 2801
/*
 * The exported alloc_coherent function for dma_ops.
 */
2802
static void *alloc_coherent(struct device *dev, size_t size,
2803
			    dma_addr_t *dma_addr, gfp_t flag,
2804
			    unsigned long attrs)
2805
{
2806
	u64 dma_mask = dev->coherent_dma_mask;
2807
	struct protection_domain *domain;
2808
	struct dma_ops_domain *dma_dom;
2809
	struct page *page;
2810

2811 2812
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2813 2814 2815
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2816 2817
	} else if (IS_ERR(domain))
		return NULL;
2818

2819
	dma_dom   = to_dma_ops_domain(domain);
2820
	size	  = PAGE_ALIGN(size);
2821 2822
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2823
	flag     |= __GFP_ZERO;
2824

2825 2826
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2827
		if (!gfpflags_allow_blocking(flag))
2828
			return NULL;
2829

2830
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2831
						 get_order(size), flag);
2832 2833 2834
		if (!page)
			return NULL;
	}
2835

2836 2837 2838
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2839
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2840
				 size, DMA_BIDIRECTIONAL, dma_mask);
2841

2842
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2843
		goto out_free;
2844

2845
	return page_address(page);
2846 2847 2848

out_free:

2849 2850
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2851 2852

	return NULL;
2853 2854
}

2855 2856 2857
/*
 * The exported free_coherent function for dma_ops.
 */
2858
static void free_coherent(struct device *dev, size_t size,
2859
			  void *virt_addr, dma_addr_t dma_addr,
2860
			  unsigned long attrs)
2861 2862
{
	struct protection_domain *domain;
2863
	struct dma_ops_domain *dma_dom;
2864
	struct page *page;
2865

2866 2867 2868
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2869 2870
	domain = get_domain(dev);
	if (IS_ERR(domain))
2871 2872
		goto free_mem;

2873 2874 2875
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2876 2877

free_mem:
2878 2879
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2880 2881
}

2882 2883 2884 2885 2886 2887
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2888 2889
	if (!x86_dma_supported(dev, mask))
		return 0;
2890
	return check_device(dev);
2891 2892
}

2893 2894 2895 2896 2897
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2898
static const struct dma_map_ops amd_iommu_dma_ops = {
2899 2900 2901 2902 2903 2904 2905
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2906
	.mapping_error	= amd_iommu_mapping_error,
2907 2908
};

2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2962
int __init amd_iommu_init_api(void)
2963
{
2964
	int ret, err = 0;
2965 2966 2967 2968

	ret = iova_cache_get();
	if (ret)
		return ret;
2969

2970 2971 2972 2973
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2974 2975 2976 2977 2978 2979 2980 2981
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2982 2983 2984
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2985

2986
	return 0;
2987 2988
}

2989 2990
int __init amd_iommu_init_dma_ops(void)
{
2991
	swiotlb        = iommu_pass_through ? 1 : 0;
2992 2993
	iommu_detected = 1;

2994 2995 2996 2997 2998 2999 3000 3001 3002
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

3003 3004 3005 3006 3007
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3008
	return 0;
3009

3010
}
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3024
	struct iommu_dev_data *entry;
3025 3026 3027 3028
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3029 3030 3031 3032
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3033
	}
3034 3035 3036 3037

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3038 3039 3040 3041 3042
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3043 3044
	del_domain_from_list(domain);

3045 3046 3047 3048 3049 3050
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

3063
static struct protection_domain *protection_domain_alloc(void)
3064 3065 3066 3067 3068
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3069
		return NULL;
3070

3071
	if (protection_domain_init(domain))
3072 3073
		goto out_err;

3074 3075
	add_domain_to_list(domain);

3076 3077 3078 3079 3080 3081 3082 3083
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3084
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3085
{
3086
	struct protection_domain *pdomain;
3087
	struct dma_ops_domain *dma_domain;
3088

3089 3090 3091 3092 3093
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3094

3095 3096 3097 3098 3099 3100
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
3101

3102 3103 3104
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
3105

3106 3107 3108 3109 3110 3111 3112 3113 3114
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
3115 3116 3117 3118
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3119

3120 3121
		pdomain->mode = PAGE_MODE_NONE;
		break;
3122 3123 3124
	default:
		return NULL;
	}
3125

3126
	return &pdomain->domain;
3127 3128
}

3129
static void amd_iommu_domain_free(struct iommu_domain *dom)
3130
{
3131
	struct protection_domain *domain;
3132
	struct dma_ops_domain *dma_dom;
3133

3134 3135
	domain = to_pdomain(dom);

3136 3137 3138 3139 3140
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3141 3142
	if (!dom)
		return;
3143

3144 3145
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
3146
		/* Now release the domain */
3147
		dma_dom = to_dma_ops_domain(domain);
3148 3149 3150 3151 3152
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
3153

3154 3155 3156 3157 3158 3159
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
3160 3161
}

3162 3163 3164
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3165
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3166
	struct amd_iommu *iommu;
3167
	int devid;
3168

3169
	if (!check_device(dev))
3170 3171
		return;

3172
	devid = get_device_id(dev);
3173
	if (devid < 0)
3174
		return;
3175

3176
	if (dev_data->domain != NULL)
3177
		detach_device(dev);
3178 3179 3180 3181 3182

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3183 3184 3185 3186 3187 3188
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3189 3190 3191
	iommu_completion_wait(iommu);
}

3192 3193 3194
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3195
	struct protection_domain *domain = to_pdomain(dom);
3196
	struct iommu_dev_data *dev_data;
3197
	struct amd_iommu *iommu;
3198
	int ret;
3199

3200
	if (!check_device(dev))
3201 3202
		return -EINVAL;

3203 3204
	dev_data = dev->archdata.iommu;

3205
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3206 3207 3208
	if (!iommu)
		return -EINVAL;

3209
	if (dev_data->domain)
3210
		detach_device(dev);
3211

3212
	ret = attach_device(dev, domain);
3213

3214 3215 3216 3217 3218 3219 3220 3221 3222
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3223 3224
	iommu_completion_wait(iommu);

3225
	return ret;
3226 3227
}

3228
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3229
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3230
{
3231
	struct protection_domain *domain = to_pdomain(dom);
3232 3233 3234
	int prot = 0;
	int ret;

3235 3236 3237
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3238 3239 3240 3241 3242
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3243
	mutex_lock(&domain->api_lock);
3244
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3245 3246
	mutex_unlock(&domain->api_lock);

3247
	return ret;
3248 3249
}

3250 3251
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3252
{
3253
	struct protection_domain *domain = to_pdomain(dom);
3254
	size_t unmap_size;
3255

3256 3257 3258
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3259
	mutex_lock(&domain->api_lock);
3260
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3261
	mutex_unlock(&domain->api_lock);
3262

3263
	domain_flush_tlb_pde(domain);
3264

3265
	return unmap_size;
3266 3267
}

3268
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3269
					  dma_addr_t iova)
3270
{
3271
	struct protection_domain *domain = to_pdomain(dom);
3272
	unsigned long offset_mask, pte_pgsize;
3273
	u64 *pte, __pte;
3274

3275 3276 3277
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3278
	pte = fetch_pte(domain, iova, &pte_pgsize);
3279

3280
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3281 3282
		return 0;

3283 3284
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3285

3286
	return (__pte & ~offset_mask) | (iova & offset_mask);
3287 3288
}

3289
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3290
{
3291 3292
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3293
		return true;
3294
	case IOMMU_CAP_INTR_REMAP:
3295
		return (irq_remapping_enabled == 1);
3296 3297
	case IOMMU_CAP_NOEXEC:
		return false;
3298 3299
	}

3300
	return false;
S
Sheng Yang 已提交
3301 3302
}

3303 3304
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3305
{
3306
	struct iommu_resv_region *region;
3307
	struct unity_map_entry *entry;
3308
	int devid;
3309 3310

	devid = get_device_id(dev);
3311
	if (devid < 0)
3312
		return;
3313 3314

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3315 3316
		size_t length;
		int prot = 0;
3317 3318 3319 3320

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3321 3322 3323 3324 3325 3326 3327 3328 3329
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3330 3331 3332 3333 3334 3335 3336
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3337 3338 3339

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3340
					 0, IOMMU_RESV_MSI);
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3351 3352
}

3353
static void amd_iommu_put_resv_regions(struct device *dev,
3354 3355
				     struct list_head *head)
{
3356
	struct iommu_resv_region *entry, *next;
3357 3358 3359 3360 3361

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3362
static void amd_iommu_apply_resv_region(struct device *dev,
3363
				      struct iommu_domain *domain,
3364
				      struct iommu_resv_region *region)
3365
{
3366
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3367 3368 3369 3370 3371 3372 3373 3374
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3375
const struct iommu_ops amd_iommu_ops = {
3376
	.capable = amd_iommu_capable,
3377 3378
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3379 3380
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3381 3382
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3383
	.map_sg = default_iommu_map_sg,
3384
	.iova_to_phys = amd_iommu_iova_to_phys,
3385 3386
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3387
	.device_group = amd_iommu_device_group,
3388 3389 3390
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3391
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3392 3393
};

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3416 3417 3418

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3419
	struct protection_domain *domain = to_pdomain(dom);
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3437 3438 3439

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3440
	struct protection_domain *domain = to_pdomain(dom);
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3501
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3518 3519 3520 3521 3522 3523
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3555
	struct protection_domain *domain = to_pdomain(dom);
3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3575
	struct protection_domain *domain = to_pdomain(dom);
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3655
	struct protection_domain *domain = to_pdomain(dom);
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3669
	struct protection_domain *domain = to_pdomain(dom);
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3697 3698 3699

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3700
	struct protection_domain *pdomain;
3701

3702 3703
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3704 3705 3706
		return NULL;

	/* Only return IOMMUv2 domains */
3707
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3708 3709
		return NULL;

3710
	return &pdomain->domain;
3711 3712
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3768 3769 3770 3771 3772 3773 3774 3775 3776

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3777 3778
static struct irq_chip amd_ir_chip;

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3813
		goto out_unlock;
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3827
		goto out_unlock;
3828

3829 3830 3831
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3832 3833 3834 3835 3836 3837 3838
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3839
		table = NULL;
3840
		goto out_unlock;
3841 3842
	}

3843 3844 3845 3846 3847 3848
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3849 3850 3851 3852 3853

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3854
			iommu->irte_ops->set_allocated(table, i);
3855 3856 3857 3858 3859 3860 3861
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3862
		set_dte_irq_entry(alias, table);
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3875
static int alloc_irq_index(u16 devid, int count)
3876 3877 3878 3879
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3880 3881 3882 3883
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3895
		if (!iommu->irte_ops->is_allocated(table, index))
3896 3897 3898 3899 3900 3901
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3902
				iommu->irte_ops->set_allocated(table, index - c + 1);
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3917 3918
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3919 3920 3921 3922
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3923
	struct irte_ga *entry;
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3934 3935 3936 3937 3938 3939 3940

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3941 3942
	if (data)
		data->ref = entry;
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3967
	table->table[index] = irte->val;
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3991
	iommu->irte_ops->clear_allocated(table, index);
3992 3993 3994 3995 3996 3997
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3998 3999
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
4000
			 u8 vector, u32 dest_apicid, int devid)
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
4014
			    u8 vector, u32 dest_apicid, int devid)
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
4040
	modify_irte_ga(devid, index, irte, NULL);
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
4056
	modify_irte_ga(devid, index, irte, NULL);
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
4073
	struct iommu_dev_data *dev_data = search_dev_data(devid);
4074

4075 4076
	if (!dev_data || !dev_data->use_vapic ||
	    !irte->lo.fields_remap.guest_mode) {
4077 4078 4079 4080
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
4081 4082
}

4083
#define IRTE_ALLOCATED (~1U)
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

4129
static int get_devid(struct irq_alloc_info *info)
4130
{
4131
	int devid = -1;
4132

4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4148

4149 4150
	return devid;
}
4151

4152 4153 4154 4155
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4156

4157 4158
	if (!info)
		return NULL;
4159

4160 4161 4162 4163 4164 4165
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4166

4167
	return NULL;
4168 4169
}

4170
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4171
{
4172 4173
	struct amd_iommu *iommu;
	int devid;
4174

4175 4176
	if (!info)
		return NULL;
4177

4178 4179 4180 4181
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4182
		if (devid < 0)
4183 4184
			return NULL;

4185 4186 4187
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4188 4189 4190 4191
		break;
	default:
		break;
	}
4192

4193 4194
	return NULL;
}
4195

4196 4197 4198 4199 4200 4201
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4202 4203 4204
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4205

4206 4207 4208 4209 4210 4211 4212 4213
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4214 4215 4216 4217
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4218

4219 4220
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4221 4222
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4223
				 irq_cfg->dest_apicid, devid);
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4239

4240 4241 4242 4243 4244 4245 4246
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4247

4248 4249 4250 4251
	default:
		BUG_ON(1);
		break;
	}
4252 4253
}

4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4274 4275
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4276
{
4277 4278
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4279
	struct amd_ir_data *data = NULL;
4280
	struct irq_cfg *cfg;
4281 4282
	int i, ret, devid;
	int index = -1;
4283

4284 4285 4286 4287
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4288 4289
		return -EINVAL;

4290 4291 4292 4293 4294 4295
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4296

4297 4298 4299
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4300

4301 4302 4303
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4304

4305 4306 4307 4308 4309 4310
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4311
		index = alloc_irq_index(devid, nr_irqs);
4312 4313 4314
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4315
		ret = index;
4316 4317
		goto out_free_parent;
	}
4318

4319 4320 4321 4322 4323 4324 4325
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4326

4327 4328 4329 4330 4331
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4342 4343 4344 4345 4346 4347
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4348

4349
	return 0;
4350

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4362 4363
}

4364 4365
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4366
{
4367 4368 4369 4370
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4371

4372 4373 4374 4375 4376 4377
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4378
			kfree(data->entry);
4379 4380 4381 4382 4383
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4384

4385 4386 4387 4388 4389
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4390
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4391

4392 4393 4394
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4395 4396
}

4397 4398
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4399
{
4400 4401
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4402
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4403

4404 4405 4406
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4407
}
4408

4409
static const struct irq_domain_ops amd_ir_domain_ops = {
4410 4411 4412 4413
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4414
};
4415

4416 4417 4418 4419 4420 4421 4422 4423
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4424 4425 4426 4427 4428 4429 4430 4431
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4454
		irte->lo.fields_vapic.ga_log_intr = 1;
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4481 4482 4483 4484 4485 4486 4487
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4488
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4489
	int ret;
4490

4491 4492 4493
	if (!iommu)
		return -ENODEV;

4494 4495 4496
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4497

4498 4499 4500 4501
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4502 4503
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4504

4505 4506 4507 4508 4509
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4510
	send_cleanup_vector(cfg);
4511 4512

	return IRQ_SET_MASK_OK_DONE;
4513 4514
}

4515
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4516
{
4517
	struct amd_ir_data *ir_data = irq_data->chip_data;
4518

4519 4520
	*msg = ir_data->msi_entry;
}
4521

4522
static struct irq_chip amd_ir_chip = {
4523 4524 4525 4526 4527
	.name			= "AMD-IR",
	.irq_ack		= ir_ack_apic_edge,
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4528
};
4529

4530 4531
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4532 4533 4534 4535 4536 4537 4538
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4539 4540
	if (!iommu->ir_domain)
		return -ENOMEM;
4541

4542
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4543 4544 4545
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4546 4547
	return 0;
}
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4587
#endif