amd_iommu.c 102.5 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56

57 58
#define AMD_IOMMU_MAPPING_ERROR	0

59 60
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

61
#define LOOP_TIMEOUT	100000
62

63 64 65 66
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

67 68 69 70 71 72
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

73 74 75 76 77 78
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
79
 * 512GB Pages are not supported due to a hardware bug
80
 */
J
Joerg Roedel 已提交
81
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
82

83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);
84
static DEFINE_SPINLOCK(pd_bitmap_lock);
85

86
/* List of all available dev_data structures */
87
static LLIST_HEAD(dev_data_list);
88

89 90
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
91
LIST_HEAD(acpihid_map);
92

93 94 95 96
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
97
const struct iommu_ops amd_iommu_ops;
98

99
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
100
int amd_iommu_max_glx_val = -1;
101

102
static const struct dma_map_ops amd_iommu_dma_ops;
103

104 105 106
/*
 * general struct to manage commands send to an IOMMU
 */
107
struct iommu_cmd {
108 109 110
	u32 data[4];
};

111 112
struct kmem_cache *amd_iommu_irq_cache;

113
static void update_domain(struct protection_domain *domain);
114
static int protection_domain_init(struct protection_domain *domain);
115
static void detach_device(struct device *dev);
116
static void iova_domain_flush_tlb(struct iova_domain *iovad);
117

118 119 120 121 122 123 124
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

125 126
	/* IOVA RB-Tree */
	struct iova_domain iovad;
127 128
};

129 130 131
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

132 133 134 135 136 137
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

138 139
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
140
{
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
156 157
}

158
static inline u16 get_pci_device_id(struct device *dev)
159 160 161 162 163 164
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

192 193 194 195 196
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

197 198 199 200 201 202
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

203
static struct iommu_dev_data *alloc_dev_data(u16 devid)
204 205 206 207 208 209 210
{
	struct iommu_dev_data *dev_data;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

211
	dev_data->devid = devid;
212 213
	ratelimit_default_init(&dev_data->rs);

214
	llist_add(&dev_data->dev_data_list, &dev_data_list);
215 216 217
	return dev_data;
}

218 219 220
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
221 222 223 224
	struct llist_node *node;

	if (llist_empty(&dev_data_list))
		return NULL;
225

226 227
	node = dev_data_list.first;
	llist_for_each_entry(dev_data, node, dev_data_list) {
228
		if (dev_data->devid == devid)
229
			return dev_data;
230 231
	}

232
	return NULL;
233 234
}

235 236 237 238 239 240 241 242 243 244 245
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

246
	/* The callers make sure that get_device_id() does not fail here */
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
288
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
289 290 291 292 293 294 295 296
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

297 298 299
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
300
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
301 302 303

	dev_data = search_dev_data(devid);

304
	if (dev_data == NULL) {
305
		dev_data = alloc_dev_data(devid);
306 307
		if (!dev_data)
			return NULL;
308

309 310 311 312
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

313 314 315
	return dev_data;
}

316
struct iommu_dev_data *get_dev_data(struct device *dev)
317 318 319
{
	return dev->archdata.iommu;
}
320
EXPORT_SYMBOL(get_dev_data);
321

322 323 324 325
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
326
{
327
	struct acpihid_map_entry *p, *entry = NULL;
328
	int devid;
329 330 331 332 333 334 335 336 337 338 339 340

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
341 342
	else
		iommu_group_ref_get(entry->group);
343 344

	return entry->group;
345 346
}

347 348 349 350
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
351 352
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
353 354 355 356 357 358 359 360 361 362 363 364
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

365 366 367 368 369 370 371 372 373
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

374 375 376 377 378 379
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
380
	int devid;
381 382 383 384 385

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
386
	if (devid < 0)
387
		return false;
388 389 390 391 392 393 394 395 396 397 398

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

399
static void init_iommu_group(struct device *dev)
400 401 402
{
	struct iommu_group *group;

403
	group = iommu_group_get_for_dev(dev);
404 405 406 407
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
408 409 410 411 412
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
413
	struct amd_iommu *iommu;
414
	int devid;
415 416 417 418

	if (dev->archdata.iommu)
		return 0;

419
	devid = get_device_id(dev);
420
	if (devid < 0)
421 422
		return devid;

423 424
	iommu = amd_iommu_rlookup_table[devid];

425
	dev_data = find_dev_data(devid);
426 427 428
	if (!dev_data)
		return -ENOMEM;

429 430
	dev_data->alias = get_alias(dev);

431
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
432 433
		struct amd_iommu *iommu;

434
		iommu = amd_iommu_rlookup_table[dev_data->devid];
435 436 437
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

438 439
	dev->archdata.iommu = dev_data;

440
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
441

442 443 444
	return 0;
}

445 446
static void iommu_ignore_device(struct device *dev)
{
447 448
	u16 alias;
	int devid;
449 450

	devid = get_device_id(dev);
451
	if (devid < 0)
452 453
		return;

454
	alias = get_alias(dev);
455 456 457 458 459 460 461 462

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

463 464
static void iommu_uninit_device(struct device *dev)
{
465
	struct iommu_dev_data *dev_data;
466 467
	struct amd_iommu *iommu;
	int devid;
468

469
	devid = get_device_id(dev);
470
	if (devid < 0)
471
		return;
472

473 474
	iommu = amd_iommu_rlookup_table[devid];

475
	dev_data = search_dev_data(devid);
476 477 478
	if (!dev_data)
		return;

479 480 481
	if (dev_data->domain)
		detach_device(dev);

482
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
483

484 485
	iommu_group_remove_device(dev);

486
	/* Remove dma-ops */
487
	dev->dma_ops = NULL;
488

489
	/*
490 491
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
492
	 */
493
}
J
Joerg Roedel 已提交
494

495 496 497 498 499 500
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

501 502 503 504
static void dump_dte_entry(u16 devid)
{
	int i;

505 506
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
507 508 509
			amd_iommu_dev_table[devid].data[i]);
}

510 511
static void dump_command(unsigned long phys_addr)
{
512
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
513 514 515 516 517 518
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

519 520 521 522 523 524
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

525 526
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

543
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
544
{
545
	struct device *dev = iommu->iommu.dev;
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
567

568 569 570 571
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
572
		dev_err(dev, "AMD-Vi: Event logged [");
573
	}
574 575 576

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
577 578 579 580
		dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
581
		dump_dte_entry(devid);
582 583
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
584 585 586 587
		dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
588 589
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
590 591 592 593
		dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domid, address, flags);
594 595
		break;
	case EVENT_TYPE_ILL_CMD:
596
		dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
597
		dump_command(address);
598 599
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
600 601
		dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx "
			"flags=0x%04x]\n", address, flags);
602 603
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
604 605 606 607
		dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
			"address=0x%016llx]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address);
608 609
		break;
	case EVENT_TYPE_INV_DEV_REQ:
610 611 612 613
		dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
614 615
		break;
	default:
616 617 618
		dev_err(dev, KERN_ERR "UNKNOWN event[0]=0x%08x event[1]=0x%08x "
			"event[2]=0x%08x event[3]=0x%08x\n",
			event[0], event[1], event[2], event[3]);
619
	}
620 621

	memset(__evt, 0, 4 * sizeof(u32));
622 623 624 625 626 627 628 629 630 631
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
632
		iommu_print_event(iommu, iommu->evt_buf + head);
633
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
634 635 636 637 638
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

639
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
684

685 686 687
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
688

689 690 691 692 693 694 695
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
696 697
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
698 699 700 701 702 703

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
704 705 706 707
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

768
irqreturn_t amd_iommu_int_thread(int irq, void *data)
769
{
770 771
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
772

773 774 775
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
776
			iommu->mmio_base + MMIO_STATUS_OFFSET);
777

778 779 780 781
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
782

783 784 785 786
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
787

788 789 790 791 792 793 794
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
810
	return IRQ_HANDLED;
811 812
}

813 814 815 816 817
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

818 819 820 821 822 823
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
842
			       struct iommu_cmd *cmd)
843 844 845
{
	u8 *target;

846 847 848 849
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
850 851 852 853 854

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
855
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
856
}
857

858
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
859
{
860 861
	u64 paddr = iommu_virt_to_phys((void *)address);

862 863
	WARN_ON(address & 0x7ULL);

864
	memset(cmd, 0, sizeof(*cmd));
865 866
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
867
	cmd->data[2] = 1;
868 869 870
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

871 872 873 874 875 876 877
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

878 879 880 881
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
882
	bool s;
883 884

	pages = iommu_num_pages(address, size, PAGE_SIZE);
885
	s     = false;
886 887 888 889 890 891 892

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
893
		s = true;
894 895 896 897 898 899 900 901 902 903 904
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
905
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
906 907 908
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

909 910 911 912
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
913
	bool s;
914 915

	pages = iommu_num_pages(address, size, PAGE_SIZE);
916
	s     = false;
917 918 919 920 921 922 923

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
924
		s = true;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

940 941 942 943 944 945 946
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

947
	cmd->data[0]  = pasid;
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
966
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
967 968
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
969
	cmd->data[1] |= (pasid & 0xff) << 16;
970 971 972 973 974 975 976 977
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

978 979 980 981 982 983 984
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
985
		cmd->data[1]  = pasid;
986 987 988 989 990 991 992 993
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

994 995 996 997
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
998 999
}

1000 1001 1002 1003 1004 1005 1006
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1007 1008
/*
 * Writes the command to the IOMMUs command buffer and informs the
1009
 * hardware about the new command.
1010
 */
1011 1012 1013
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1014
{
1015
	unsigned int count = 0;
1016
	u32 left, next_tail;
1017

1018
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1019
again:
1020
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1021

1022
	if (left <= 0x20) {
1023 1024 1025 1026 1027 1028
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1029

1030 1031
			udelay(1);
		}
1032

1033 1034 1035
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1036 1037

		goto again;
1038 1039
	}

1040
	copy_cmd_to_buffer(iommu, cmd);
1041

1042
	/* Do we need to make sure all commands are processed? */
1043
	iommu->need_sync = sync;
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1055
	raw_spin_lock_irqsave(&iommu->lock, flags);
1056
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1057
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1058

1059
	return ret;
1060 1061
}

1062 1063 1064 1065 1066
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1067 1068 1069 1070
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1071
static int iommu_completion_wait(struct amd_iommu *iommu)
1072 1073
{
	struct iommu_cmd cmd;
1074
	unsigned long flags;
1075
	int ret;
1076

1077
	if (!iommu->need_sync)
1078
		return 0;
1079

1080

1081 1082
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1083
	raw_spin_lock_irqsave(&iommu->lock, flags);
1084 1085 1086 1087

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1088
	if (ret)
1089 1090 1091 1092 1093
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1094
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1095

1096
	return ret;
1097 1098
}

1099
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1100
{
1101
	struct iommu_cmd cmd;
1102

1103
	build_inv_dte(&cmd, devid);
1104

1105 1106
	return iommu_queue_command(iommu, &cmd);
}
1107

1108
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1109 1110
{
	u32 devid;
1111

1112 1113
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1114

1115 1116
	iommu_completion_wait(iommu);
}
1117

1118 1119 1120 1121
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1122
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1123 1124
{
	u32 dom_id;
1125

1126 1127 1128 1129 1130 1131
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1132

1133
	iommu_completion_wait(iommu);
1134 1135
}

1136
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1137
{
1138
	struct iommu_cmd cmd;
1139

1140
	build_inv_all(&cmd);
1141

1142 1143 1144 1145
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1146 1147 1148 1149 1150 1151 1152 1153 1154
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1155
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1156 1157 1158 1159 1160 1161 1162 1163 1164
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1165 1166
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1167
	if (iommu_feature(iommu, FEATURE_IA)) {
1168
		amd_iommu_flush_all(iommu);
1169
	} else {
1170 1171 1172
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1173 1174 1175
	}
}

1176
/*
1177
 * Command send function for flushing on-device TLB
1178
 */
1179 1180
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1181 1182
{
	struct amd_iommu *iommu;
1183
	struct iommu_cmd cmd;
1184
	int qdep;
1185

1186 1187
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1188

1189
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1190 1191

	return iommu_queue_command(iommu, &cmd);
1192 1193
}

1194 1195 1196
/*
 * Command send function for invalidating a device table entry
 */
1197
static int device_flush_dte(struct iommu_dev_data *dev_data)
1198
{
1199
	struct amd_iommu *iommu;
1200
	u16 alias;
1201
	int ret;
1202

1203
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1204
	alias = dev_data->alias;
1205

1206
	ret = iommu_flush_dte(iommu, dev_data->devid);
1207 1208
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1209 1210 1211
	if (ret)
		return ret;

1212
	if (dev_data->ats.enabled)
1213
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1214 1215

	return ret;
1216 1217
}

1218 1219 1220 1221 1222
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1223 1224
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1225
{
1226
	struct iommu_dev_data *dev_data;
1227 1228
	struct iommu_cmd cmd;
	int ret = 0, i;
1229

1230
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1231

1232
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1233 1234 1235 1236 1237 1238 1239
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1240
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1241 1242
	}

1243 1244
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1245
		if (!dev_data->ats.enabled)
1246 1247
			continue;

1248
		ret |= device_flush_iotlb(dev_data, address, size);
1249 1250
	}

1251
	WARN_ON(ret);
1252 1253
}

1254 1255
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1256
{
1257
	__domain_flush_pages(domain, address, size, 0);
1258
}
1259

1260
/* Flush the whole IO/TLB for a given protection domain */
1261
static void domain_flush_tlb(struct protection_domain *domain)
1262
{
1263
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1264 1265
}

1266
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1267
static void domain_flush_tlb_pde(struct protection_domain *domain)
1268
{
1269
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1270 1271
}

1272
static void domain_flush_complete(struct protection_domain *domain)
1273
{
1274
	int i;
1275

1276
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1277
		if (domain && !domain->dev_iommu[i])
1278
			continue;
1279

1280 1281 1282 1283 1284
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1285
	}
1286 1287
}

1288

1289
/*
1290
 * This function flushes the DTEs for all devices in domain
1291
 */
1292
static void domain_flush_devices(struct protection_domain *domain)
1293
{
1294
	struct iommu_dev_data *dev_data;
1295

1296
	list_for_each_entry(dev_data, &domain->dev_list, list)
1297
		device_flush_dte(dev_data);
1298 1299
}

1300 1301 1302 1303 1304 1305 1306
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1326
					iommu_virt_to_phys(domain->pt_root));
1327 1328 1329 1330 1331 1332 1333 1334 1335
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1336
		      unsigned long page_size,
1337 1338 1339
		      u64 **pte_page,
		      gfp_t gfp)
{
1340
	int level, end_lvl;
1341
	u64 *pte, *page;
1342 1343

	BUG_ON(!is_power_of_2(page_size));
1344 1345 1346 1347

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1348 1349 1350 1351
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1352 1353

	while (level > end_lvl) {
1354 1355 1356 1357 1358
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1359 1360 1361
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1362

1363
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1364

1365 1366
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1367 1368 1369
				free_page((unsigned long)page);
				continue;
			}
1370 1371
		}

1372 1373 1374 1375
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1393 1394 1395
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1396 1397 1398 1399
{
	int level;
	u64 *pte;

1400 1401 1402
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1403 1404 1405
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1406

1407 1408 1409
	while (level > 0) {

		/* Not Present */
1410 1411 1412
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1413
		/* Large PTE */
1414 1415 1416
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1417 1418 1419 1420 1421

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1422 1423
		level -= 1;

1424
		/* Walk to the next level */
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1440 1441 1442 1443 1444
	}

	return pte;
}

1445 1446 1447 1448 1449 1450 1451
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1452 1453 1454
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1455
			  unsigned long page_size,
1456
			  int prot,
1457
			  gfp_t gfp)
1458
{
1459
	u64 __pte, *pte;
1460
	int i, count;
1461

1462 1463 1464
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1465
	if (!(prot & IOMMU_PROT_MASK))
1466 1467
		return -EINVAL;

1468
	count = PAGE_SIZE_PTE_COUNT(page_size);
1469
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1470

1471 1472 1473
	if (!pte)
		return -ENOMEM;

1474 1475 1476
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1477

1478
	if (count > 1) {
1479
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1480
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1481
	} else
1482
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1483 1484 1485 1486 1487 1488

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1489 1490
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1491

1492 1493
	update_domain(dom);

1494 1495 1496
	return 0;
}

1497 1498 1499
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1500
{
1501 1502
	unsigned long long unmapped;
	unsigned long unmap_size;
1503 1504 1505 1506 1507
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1508

1509 1510
	while (unmapped < page_size) {

1511 1512 1513 1514 1515 1516
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1517 1518 1519 1520 1521 1522 1523 1524
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1525
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1526

1527
	return unmapped;
1528 1529
}

1530 1531 1532
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1533
 * interface functions.
1534 1535
 *
 ****************************************************************************/
1536

1537

1538 1539 1540
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1541
{
1542
	unsigned long pfn = 0;
1543

1544
	pages = __roundup_pow_of_two(pages);
1545

1546 1547
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1548
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1549

1550
	if (!pfn)
1551 1552
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1553

1554
	return (pfn << PAGE_SHIFT);
1555 1556
}

1557 1558 1559
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1560
{
1561 1562
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1563

1564
	free_iova_fast(&dma_dom->iovad, address, pages);
1565 1566
}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1602 1603 1604 1605
static u16 domain_id_alloc(void)
{
	int id;

1606
	spin_lock(&pd_bitmap_lock);
1607 1608 1609 1610 1611 1612
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
1613
	spin_unlock(&pd_bitmap_lock);
1614 1615 1616 1617

	return id;
}

1618 1619
static void domain_id_free(int id)
{
1620
	spin_lock(&pd_bitmap_lock);
1621 1622
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1623
	spin_unlock(&pd_bitmap_lock);
1624 1625
}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1636
		/* PTE present? */				\
1637 1638 1639
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1640 1641 1642 1643 1644
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1657
static void free_pagetable(struct protection_domain *domain)
1658
{
1659
	unsigned long root = (unsigned long)domain->pt_root;
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1684 1685 1686
	}
}

1687 1688 1689 1690 1691 1692 1693 1694 1695
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1696
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1711
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1712 1713 1714 1715 1716

		free_gcr3_tbl_level1(ptr);
	}
}

1717 1718
static void free_gcr3_table(struct protection_domain *domain)
{
1719 1720 1721 1722
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1723 1724
	else
		BUG_ON(domain->glx != 0);
1725

1726 1727 1728
	free_page((unsigned long)domain->gcr3_tbl);
}

1729 1730 1731 1732
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1733 1734
}

1735
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1736
{
1737
	struct dma_ops_domain *dom;
1738

1739
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1740 1741 1742 1743

	dma_ops_domain_flush_tlb(dom);
}

1744 1745 1746 1747
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1748 1749 1750 1751 1752
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1753 1754
	del_domain_from_list(&dom->domain);

1755
	put_iova_domain(&dom->iovad);
1756

1757
	free_pagetable(&dom->domain);
1758

1759 1760 1761
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1762 1763 1764
	kfree(dom);
}

1765 1766
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1767
 * It also initializes the page table and the address allocator data
1768 1769
 * structures required for the dma_ops interface
 */
1770
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1771 1772 1773 1774 1775 1776 1777
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1778
	if (protection_domain_init(&dma_dom->domain))
1779
		goto free_dma_dom;
1780

1781
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1782
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1783
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1784 1785 1786
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1787
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1788

1789
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1790 1791
		goto free_dma_dom;

1792 1793
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1794

1795 1796
	add_domain_to_list(&dma_dom->domain);

1797 1798 1799 1800 1801 1802 1803 1804
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1805 1806 1807 1808 1809 1810 1811 1812 1813
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1814 1815
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1816
{
1817
	u64 pte_root = 0;
1818
	u64 flags = 0;
1819

1820
	if (domain->mode != PAGE_MODE_NONE)
1821
		pte_root = iommu_virt_to_phys(domain->pt_root);
1822

1823 1824
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1825
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1826

1827 1828
	flags = amd_iommu_dev_table[devid].data[1];

1829 1830 1831
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1832 1833 1834 1835 1836 1837 1838
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1839
	if (domain->flags & PD_IOMMUV2_MASK) {
1840
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1865
	flags &= ~DEV_DOMID_MASK;
1866 1867 1868 1869
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1870 1871 1872 1873 1874
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1875
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1876
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1877 1878

	amd_iommu_apply_erratum_63(devid);
1879 1880
}

1881 1882
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1883 1884
{
	struct amd_iommu *iommu;
1885
	u16 alias;
1886
	bool ats;
1887

1888
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1889
	alias = dev_data->alias;
1890
	ats   = dev_data->ats.enabled;
1891 1892 1893 1894 1895 1896 1897 1898 1899

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1900
	/* Update device table */
1901
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1902
	if (alias != dev_data->devid)
1903
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1904

1905
	device_flush_dte(dev_data);
1906 1907
}

1908
static void do_detach(struct iommu_dev_data *dev_data)
1909 1910
{
	struct amd_iommu *iommu;
1911
	u16 alias;
1912

1913 1914 1915 1916 1917 1918 1919 1920 1921
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1922
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1923
	alias = dev_data->alias;
1924 1925

	/* decrease reference counters */
1926 1927 1928 1929 1930 1931
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1932
	clear_dte_entry(dev_data->devid);
1933 1934
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1935

1936
	/* Flush the DTE entry */
1937
	device_flush_dte(dev_data);
1938 1939 1940 1941 1942 1943
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1944
static int __attach_device(struct iommu_dev_data *dev_data,
1945
			   struct protection_domain *domain)
1946
{
1947
	int ret;
1948

1949 1950 1951 1952 1953 1954
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1955 1956 1957
	/* lock domain */
	spin_lock(&domain->lock);

1958
	ret = -EBUSY;
1959
	if (dev_data->domain != NULL)
1960
		goto out_unlock;
1961

1962
	/* Attach alias group root */
1963
	do_attach(dev_data, domain);
1964

1965 1966 1967 1968
	ret = 0;

out_unlock:

1969 1970
	/* ready */
	spin_unlock(&domain->lock);
1971

1972
	return ret;
1973
}
1974

1975 1976 1977 1978 1979 1980 1981 1982

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1983 1984 1985 1986 1987 1988
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1989
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1990 1991 1992
	if (!pos)
		return -EINVAL;

1993 1994 1995
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1996 1997 1998 1999

	return 0;
}

2000 2001
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2002 2003 2004 2005 2006 2007 2008 2009
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2021 2022
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2023 2024 2025
	if (ret)
		goto out_err;

2026 2027 2028 2029 2030 2031
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2045
/* FIXME: Move this to PCI code */
2046
#define PCI_PRI_TLP_OFF		(1 << 15)
2047

J
Joerg Roedel 已提交
2048
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2049
{
2050
	u16 status;
2051 2052
	int pos;

2053
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2054 2055 2056
	if (!pos)
		return false;

2057
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2058

2059
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2060 2061
}

2062
/*
F
Frank Arnold 已提交
2063
 * If a device is not yet associated with a domain, this function
2064 2065
 * assigns it visible for the hardware
 */
2066 2067
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2068
{
2069
	struct pci_dev *pdev;
2070
	struct iommu_dev_data *dev_data;
2071
	unsigned long flags;
2072
	int ret;
2073

2074 2075
	dev_data = get_dev_data(dev);

2076 2077 2078 2079
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2080
	if (domain->flags & PD_IOMMUV2_MASK) {
2081
		if (!dev_data->passthrough)
2082 2083
			return -EINVAL;

2084 2085 2086
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2087

2088 2089 2090 2091
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2092 2093
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2094 2095 2096
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2097

2098
skip_ats_check:
2099
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2100
	ret = __attach_device(dev_data, domain);
2101 2102
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2103 2104 2105 2106 2107
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2108
	domain_flush_tlb_pde(domain);
2109 2110

	return ret;
2111 2112
}

2113 2114 2115
/*
 * Removes a device from a protection domain (unlocked)
 */
2116
static void __detach_device(struct iommu_dev_data *dev_data)
2117
{
2118
	struct protection_domain *domain;
2119

2120 2121 2122 2123 2124
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2125

2126 2127
	if (WARN_ON(!dev_data->domain))
		return;
2128

2129
	domain = dev_data->domain;
2130

2131
	spin_lock(&domain->lock);
2132

2133
	do_detach(dev_data);
2134

2135
	spin_unlock(&domain->lock);
2136 2137 2138 2139 2140
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2141
static void detach_device(struct device *dev)
2142
{
2143
	struct protection_domain *domain;
2144
	struct iommu_dev_data *dev_data;
2145 2146
	unsigned long flags;

2147
	dev_data = get_dev_data(dev);
2148
	domain   = dev_data->domain;
2149

2150 2151
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2152
	__detach_device(dev_data);
2153
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2154

2155 2156 2157
	if (!dev_is_pci(dev))
		return;

2158
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2159 2160
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2161
		pci_disable_ats(to_pci_dev(dev));
2162 2163

	dev_data->ats.enabled = false;
2164
}
2165

2166
static int amd_iommu_add_device(struct device *dev)
2167
{
2168
	struct iommu_dev_data *dev_data;
2169
	struct iommu_domain *domain;
2170
	struct amd_iommu *iommu;
2171
	int ret, devid;
2172

2173
	if (!check_device(dev) || get_dev_data(dev))
2174
		return 0;
2175

2176
	devid = get_device_id(dev);
2177
	if (devid < 0)
2178 2179
		return devid;

2180
	iommu = amd_iommu_rlookup_table[devid];
2181

2182
	ret = iommu_init_device(dev);
2183 2184 2185 2186
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2187

2188
		iommu_ignore_device(dev);
2189
		dev->dma_ops = &nommu_dma_ops;
2190 2191 2192
		goto out;
	}
	init_iommu_group(dev);
2193

2194
	dev_data = get_dev_data(dev);
2195

2196
	BUG_ON(!dev_data);
2197

2198
	if (iommu_pass_through || dev_data->iommu_v2)
2199
		iommu_request_dm_for_dev(dev);
2200

2201 2202
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2203
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2204
		dev_data->passthrough = true;
2205
	else
2206
		dev->dma_ops = &amd_iommu_dma_ops;
2207

2208
out:
2209 2210 2211 2212 2213
	iommu_completion_wait(iommu);

	return 0;
}

2214
static void amd_iommu_remove_device(struct device *dev)
2215
{
2216
	struct amd_iommu *iommu;
2217
	int devid;
2218 2219 2220 2221 2222

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2223
	if (devid < 0)
2224 2225
		return;

2226 2227 2228 2229
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2230 2231
}

2232 2233 2234 2235 2236 2237 2238 2239
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2253
static struct protection_domain *get_domain(struct device *dev)
2254
{
2255
	struct protection_domain *domain;
2256
	struct iommu_domain *io_domain;
2257

2258
	if (!check_device(dev))
2259
		return ERR_PTR(-EINVAL);
2260

2261
	domain = get_dev_data(dev)->domain;
2262 2263 2264 2265 2266 2267
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2268 2269 2270
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2271
	if (!dma_ops_domain(domain))
2272
		return ERR_PTR(-EBUSY);
2273

2274
	return domain;
2275 2276
}

2277 2278
static void update_device_table(struct protection_domain *domain)
{
2279
	struct iommu_dev_data *dev_data;
2280

2281
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2282 2283
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2284 2285 2286 2287 2288

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2289 2290
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2291
	}
2292 2293 2294 2295 2296 2297 2298 2299
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2300 2301 2302

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2303 2304 2305 2306

	domain->updated = false;
}

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2318

2319 2320
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2321 2322
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2323 2324
 * Must be called with the domain lock held.
 */
2325 2326 2327 2328
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2329
			       enum dma_data_direction direction,
2330
			       u64 dma_mask)
2331 2332
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2333
	dma_addr_t address, start, ret;
2334
	unsigned int pages;
2335
	int prot = 0;
2336 2337
	int i;

2338
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2339 2340
	paddr &= PAGE_MASK;

2341
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2342
	if (address == AMD_IOMMU_MAPPING_ERROR)
2343
		goto out;
2344

2345
	prot = dir2prot(direction);
2346

2347 2348
	start = address;
	for (i = 0; i < pages; ++i) {
2349 2350 2351
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2352 2353
			goto out_unmap;

2354 2355 2356 2357 2358
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2359
	if (unlikely(amd_iommu_np_cache)) {
2360
		domain_flush_pages(&dma_dom->domain, address, size);
2361 2362
		domain_flush_complete(&dma_dom->domain);
	}
2363

2364 2365
out:
	return address;
2366 2367 2368 2369 2370

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2371
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2372 2373
	}

2374 2375 2376 2377
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2378

2379
	return AMD_IOMMU_MAPPING_ERROR;
2380 2381
}

2382 2383 2384 2385
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2386
static void __unmap_single(struct dma_ops_domain *dma_dom,
2387 2388 2389 2390 2391 2392 2393
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2394
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2395 2396 2397 2398
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2399
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2400 2401 2402
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2403 2404 2405 2406 2407
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
2408 2409
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2410
	}
2411 2412
}

2413 2414 2415
/*
 * The exported map_single function for dma_ops.
 */
2416 2417 2418
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2419
			   unsigned long attrs)
2420
{
2421
	phys_addr_t paddr = page_to_phys(page) + offset;
2422
	struct protection_domain *domain;
2423
	struct dma_ops_domain *dma_dom;
2424
	u64 dma_mask;
2425

2426 2427
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2428
		return (dma_addr_t)paddr;
2429
	else if (IS_ERR(domain))
2430
		return AMD_IOMMU_MAPPING_ERROR;
2431

2432
	dma_mask = *dev->dma_mask;
2433
	dma_dom = to_dma_ops_domain(domain);
2434

2435
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2436 2437
}

2438 2439 2440
/*
 * The exported unmap_single function for dma_ops.
 */
2441
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2442
		       enum dma_data_direction dir, unsigned long attrs)
2443 2444
{
	struct protection_domain *domain;
2445
	struct dma_ops_domain *dma_dom;
2446

2447 2448
	domain = get_domain(dev);
	if (IS_ERR(domain))
2449 2450
		return;

2451 2452 2453
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2454 2455
}

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2482 2483 2484 2485
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2486
static int map_sg(struct device *dev, struct scatterlist *sglist,
2487
		  int nelems, enum dma_data_direction direction,
2488
		  unsigned long attrs)
2489
{
2490
	int mapped_pages = 0, npages = 0, prot = 0, i;
2491
	struct protection_domain *domain;
2492
	struct dma_ops_domain *dma_dom;
2493
	struct scatterlist *s;
2494
	unsigned long address;
2495
	u64 dma_mask;
2496

2497
	domain = get_domain(dev);
2498
	if (IS_ERR(domain))
2499
		return 0;
2500

2501
	dma_dom  = to_dma_ops_domain(domain);
2502
	dma_mask = *dev->dma_mask;
2503

2504 2505 2506
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2507
	if (address == AMD_IOMMU_MAPPING_ERROR)
2508 2509 2510 2511 2512
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2513
	for_each_sg(sglist, s, nelems, i) {
2514 2515 2516 2517 2518
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2519

2520 2521 2522 2523 2524
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2525

2526 2527
			mapped_pages += 1;
		}
2528 2529
	}

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2547

2548 2549 2550 2551 2552 2553
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2554 2555
	}

2556 2557 2558 2559
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2560
	return 0;
2561 2562
}

2563 2564 2565 2566
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2567
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2568
		     int nelems, enum dma_data_direction dir,
2569
		     unsigned long attrs)
2570 2571
{
	struct protection_domain *domain;
2572
	struct dma_ops_domain *dma_dom;
2573 2574
	unsigned long startaddr;
	int npages = 2;
2575

2576 2577
	domain = get_domain(dev);
	if (IS_ERR(domain))
2578 2579
		return;

2580
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2581
	dma_dom   = to_dma_ops_domain(domain);
2582 2583
	npages    = sg_num_pages(dev, sglist, nelems);

2584
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2585 2586
}

2587 2588 2589
/*
 * The exported alloc_coherent function for dma_ops.
 */
2590
static void *alloc_coherent(struct device *dev, size_t size,
2591
			    dma_addr_t *dma_addr, gfp_t flag,
2592
			    unsigned long attrs)
2593
{
2594
	u64 dma_mask = dev->coherent_dma_mask;
2595
	struct protection_domain *domain;
2596
	struct dma_ops_domain *dma_dom;
2597
	struct page *page;
2598

2599 2600
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2601 2602 2603
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2604 2605
	} else if (IS_ERR(domain))
		return NULL;
2606

2607
	dma_dom   = to_dma_ops_domain(domain);
2608
	size	  = PAGE_ALIGN(size);
2609 2610
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2611
	flag     |= __GFP_ZERO;
2612

2613 2614
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2615
		if (!gfpflags_allow_blocking(flag))
2616
			return NULL;
2617

2618
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2619
						 get_order(size), flag);
2620 2621 2622
		if (!page)
			return NULL;
	}
2623

2624 2625 2626
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2627
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2628
				 size, DMA_BIDIRECTIONAL, dma_mask);
2629

2630
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2631
		goto out_free;
2632

2633
	return page_address(page);
2634 2635 2636

out_free:

2637 2638
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2639 2640

	return NULL;
2641 2642
}

2643 2644 2645
/*
 * The exported free_coherent function for dma_ops.
 */
2646
static void free_coherent(struct device *dev, size_t size,
2647
			  void *virt_addr, dma_addr_t dma_addr,
2648
			  unsigned long attrs)
2649 2650
{
	struct protection_domain *domain;
2651
	struct dma_ops_domain *dma_dom;
2652
	struct page *page;
2653

2654 2655 2656
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2657 2658
	domain = get_domain(dev);
	if (IS_ERR(domain))
2659 2660
		goto free_mem;

2661 2662 2663
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2664 2665

free_mem:
2666 2667
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2668 2669
}

2670 2671 2672 2673 2674 2675
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2676 2677
	if (!x86_dma_supported(dev, mask))
		return 0;
2678
	return check_device(dev);
2679 2680
}

2681 2682 2683 2684 2685
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2686
static const struct dma_map_ops amd_iommu_dma_ops = {
2687 2688 2689 2690 2691 2692 2693
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2694
	.mapping_error	= amd_iommu_mapping_error,
2695 2696
};

2697 2698 2699 2700 2701
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2702
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2749
int __init amd_iommu_init_api(void)
2750
{
2751
	int ret, err = 0;
2752 2753 2754 2755

	ret = iova_cache_get();
	if (ret)
		return ret;
2756

2757 2758 2759 2760
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2761 2762 2763 2764 2765 2766 2767 2768
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2769 2770 2771
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2772

2773
	return 0;
2774 2775
}

2776 2777
int __init amd_iommu_init_dma_ops(void)
{
2778
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2779 2780
	iommu_detected = 1;

2781 2782
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2783 2784 2785 2786 2787
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2788 2789 2790 2791
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2792 2793 2794 2795 2796
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2797
	return 0;
2798

2799
}
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2813
	struct iommu_dev_data *entry;
2814 2815 2816 2817
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2818 2819 2820 2821
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2822
	}
2823 2824 2825 2826

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2827 2828 2829 2830 2831
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2832 2833
	del_domain_from_list(domain);

2834 2835 2836 2837 2838 2839
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2852
static struct protection_domain *protection_domain_alloc(void)
2853 2854 2855 2856 2857
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2858
		return NULL;
2859

2860
	if (protection_domain_init(domain))
2861 2862
		goto out_err;

2863 2864
	add_domain_to_list(domain);

2865 2866 2867 2868 2869 2870 2871 2872
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2873
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2874
{
2875
	struct protection_domain *pdomain;
2876
	struct dma_ops_domain *dma_domain;
2877

2878 2879 2880 2881 2882
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2883

2884 2885 2886 2887 2888 2889
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2890

2891 2892 2893
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2894

2895 2896 2897 2898 2899 2900 2901 2902 2903
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2904 2905 2906 2907
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2908

2909 2910
		pdomain->mode = PAGE_MODE_NONE;
		break;
2911 2912 2913
	default:
		return NULL;
	}
2914

2915
	return &pdomain->domain;
2916 2917
}

2918
static void amd_iommu_domain_free(struct iommu_domain *dom)
2919
{
2920
	struct protection_domain *domain;
2921
	struct dma_ops_domain *dma_dom;
2922

2923 2924
	domain = to_pdomain(dom);

2925 2926 2927 2928 2929
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2930 2931
	if (!dom)
		return;
2932

2933 2934
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2935
		/* Now release the domain */
2936
		dma_dom = to_dma_ops_domain(domain);
2937 2938 2939 2940 2941
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2942

2943 2944 2945 2946 2947 2948
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2949 2950
}

2951 2952 2953
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2954
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2955
	struct amd_iommu *iommu;
2956
	int devid;
2957

2958
	if (!check_device(dev))
2959 2960
		return;

2961
	devid = get_device_id(dev);
2962
	if (devid < 0)
2963
		return;
2964

2965
	if (dev_data->domain != NULL)
2966
		detach_device(dev);
2967 2968 2969 2970 2971

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2972 2973 2974 2975 2976 2977
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2978 2979 2980
	iommu_completion_wait(iommu);
}

2981 2982 2983
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2984
	struct protection_domain *domain = to_pdomain(dom);
2985
	struct iommu_dev_data *dev_data;
2986
	struct amd_iommu *iommu;
2987
	int ret;
2988

2989
	if (!check_device(dev))
2990 2991
		return -EINVAL;

2992 2993
	dev_data = dev->archdata.iommu;

2994
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2995 2996 2997
	if (!iommu)
		return -EINVAL;

2998
	if (dev_data->domain)
2999
		detach_device(dev);
3000

3001
	ret = attach_device(dev, domain);
3002

3003 3004 3005 3006 3007 3008 3009 3010 3011
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3012 3013
	iommu_completion_wait(iommu);

3014
	return ret;
3015 3016
}

3017
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3018
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3019
{
3020
	struct protection_domain *domain = to_pdomain(dom);
3021 3022 3023
	int prot = 0;
	int ret;

3024 3025 3026
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3027 3028 3029 3030 3031
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3032
	mutex_lock(&domain->api_lock);
3033
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3034 3035
	mutex_unlock(&domain->api_lock);

3036
	return ret;
3037 3038
}

3039 3040
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3041
{
3042
	struct protection_domain *domain = to_pdomain(dom);
3043
	size_t unmap_size;
3044

3045 3046 3047
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3048
	mutex_lock(&domain->api_lock);
3049
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3050
	mutex_unlock(&domain->api_lock);
3051

3052
	return unmap_size;
3053 3054
}

3055
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3056
					  dma_addr_t iova)
3057
{
3058
	struct protection_domain *domain = to_pdomain(dom);
3059
	unsigned long offset_mask, pte_pgsize;
3060
	u64 *pte, __pte;
3061

3062 3063 3064
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3065
	pte = fetch_pte(domain, iova, &pte_pgsize);
3066

3067
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3068 3069
		return 0;

3070 3071
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3072

3073
	return (__pte & ~offset_mask) | (iova & offset_mask);
3074 3075
}

3076
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3077
{
3078 3079
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3080
		return true;
3081
	case IOMMU_CAP_INTR_REMAP:
3082
		return (irq_remapping_enabled == 1);
3083 3084
	case IOMMU_CAP_NOEXEC:
		return false;
3085 3086
	}

3087
	return false;
S
Sheng Yang 已提交
3088 3089
}

3090 3091
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3092
{
3093
	struct iommu_resv_region *region;
3094
	struct unity_map_entry *entry;
3095
	int devid;
3096 3097

	devid = get_device_id(dev);
3098
	if (devid < 0)
3099
		return;
3100 3101

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3102 3103
		size_t length;
		int prot = 0;
3104 3105 3106 3107

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3108 3109 3110 3111 3112 3113 3114 3115 3116
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3117 3118 3119 3120 3121 3122 3123
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3124 3125 3126

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3127
					 0, IOMMU_RESV_MSI);
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3138 3139
}

3140
static void amd_iommu_put_resv_regions(struct device *dev,
3141 3142
				     struct list_head *head)
{
3143
	struct iommu_resv_region *entry, *next;
3144 3145 3146 3147 3148

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3149
static void amd_iommu_apply_resv_region(struct device *dev,
3150
				      struct iommu_domain *domain,
3151
				      struct iommu_resv_region *region)
3152
{
3153
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3154 3155 3156
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3157
	end   = IOVA_PFN(region->start + region->length - 1);
3158 3159 3160 3161

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3162 3163 3164 3165 3166 3167 3168
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct protection_domain *dom = to_pdomain(domain);

	domain_flush_tlb_pde(dom);
	domain_flush_complete(dom);
}

static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
				      unsigned long iova, size_t size)
{
}

3182
const struct iommu_ops amd_iommu_ops = {
3183
	.capable = amd_iommu_capable,
3184 3185
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3186 3187
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3188 3189
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3190
	.map_sg = default_iommu_map_sg,
3191
	.iova_to_phys = amd_iommu_iova_to_phys,
3192 3193
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3194
	.device_group = amd_iommu_device_group,
3195 3196 3197
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3198
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3199
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3200 3201 3202
	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
	.iotlb_range_add = amd_iommu_iotlb_range_add,
	.iotlb_sync = amd_iommu_flush_iotlb_all,
3203 3204
};

3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3227 3228 3229

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3230
	struct protection_domain *domain = to_pdomain(dom);
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3248 3249 3250

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3251
	struct protection_domain *domain = to_pdomain(dom);
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3312
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3329 3330 3331 3332 3333 3334
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3366
	struct protection_domain *domain = to_pdomain(dom);
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3386
	struct protection_domain *domain = to_pdomain(dom);
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3419
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3420 3421
		}

3422
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3466
	struct protection_domain *domain = to_pdomain(dom);
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3480
	struct protection_domain *domain = to_pdomain(dom);
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3508 3509 3510

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3511
	struct protection_domain *pdomain;
3512

3513 3514
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3515 3516 3517
		return NULL;

	/* Only return IOMMUv2 domains */
3518
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3519 3520
		return NULL;

3521
	return &pdomain->domain;
3522 3523
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3579 3580 3581 3582 3583 3584 3585 3586 3587

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3588 3589
static struct irq_chip amd_ir_chip;

3590 3591 3592 3593 3594 3595
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3596
	dte	|= iommu_virt_to_phys(table->table);
3597 3598 3599 3600 3601 3602 3603
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

static struct irq_remap_table *alloc_irq_table(u16 devid, bool ioapic)
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3634
		goto out_unlock;
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3648
		goto out_unlock;
3649

3650
	/* Initialize table spin-lock */
3651
	raw_spin_lock_init(&table->lock);
3652

3653 3654 3655 3656 3657 3658 3659
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3660
		table = NULL;
3661
		goto out_unlock;
3662 3663
	}

3664 3665 3666 3667 3668 3669
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3670 3671 3672 3673 3674

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3675
			iommu->irte_ops->set_allocated(table, i);
3676 3677 3678 3679 3680 3681 3682
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3683
		set_dte_irq_entry(alias, table);
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3696
static int alloc_irq_index(u16 devid, int count, bool align)
3697 3698
{
	struct irq_remap_table *table;
3699
	int index, c, alignment = 1;
3700
	unsigned long flags;
3701 3702 3703 3704
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3705

3706
	table = alloc_irq_table(devid, false);
3707 3708 3709
	if (!table)
		return -ENODEV;

3710 3711 3712
	if (align)
		alignment = roundup_pow_of_two(count);

3713
	raw_spin_lock_irqsave(&table->lock, flags);
3714 3715

	/* Scan table for free entries */
3716
	for (index = ALIGN(table->min_index, alignment), c = 0;
3717
	     index < MAX_IRQS_PER_TABLE;) {
3718
		if (!iommu->irte_ops->is_allocated(table, index)) {
3719
			c += 1;
3720 3721
		} else {
			c     = 0;
3722
			index = ALIGN(index + 1, alignment);
3723 3724
			continue;
		}
3725 3726 3727

		if (c == count)	{
			for (; c != 0; --c)
3728
				iommu->irte_ops->set_allocated(table, index - c + 1);
3729 3730 3731 3732

			index -= count - 1;
			goto out;
		}
3733 3734

		index++;
3735 3736 3737 3738 3739
	}

	index = -ENOSPC;

out:
3740
	raw_spin_unlock_irqrestore(&table->lock, flags);
3741 3742 3743 3744

	return index;
}

3745 3746
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3747 3748 3749 3750
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3751
	struct irte_ga *entry;
3752 3753 3754 3755 3756

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3757
	table = get_irq_table(devid);
3758 3759 3760
	if (!table)
		return -ENOMEM;

3761
	raw_spin_lock_irqsave(&table->lock, flags);
3762 3763 3764 3765 3766 3767 3768

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3769 3770
	if (data)
		data->ref = entry;
3771

3772
	raw_spin_unlock_irqrestore(&table->lock, flags);
3773 3774 3775 3776 3777 3778 3779 3780

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3781 3782 3783 3784 3785 3786 3787 3788 3789
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3790
	table = get_irq_table(devid);
3791 3792 3793
	if (!table)
		return -ENOMEM;

3794
	raw_spin_lock_irqsave(&table->lock, flags);
3795
	table->table[index] = irte->val;
3796
	raw_spin_unlock_irqrestore(&table->lock, flags);
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3814
	table = get_irq_table(devid);
3815 3816 3817
	if (!table)
		return;

3818
	raw_spin_lock_irqsave(&table->lock, flags);
3819
	iommu->irte_ops->clear_allocated(table, index);
3820
	raw_spin_unlock_irqrestore(&table->lock, flags);
3821 3822 3823 3824 3825

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3826 3827
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3828
			 u8 vector, u32 dest_apicid, int devid)
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3842
			    u8 vector, u32 dest_apicid, int devid)
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3868
	modify_irte_ga(devid, index, irte, NULL);
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3884
	modify_irte_ga(devid, index, irte, NULL);
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3902
	if (!irte->lo.fields_remap.guest_mode) {
3903 3904 3905 3906
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
3907 3908
}

3909
#define IRTE_ALLOCATED (~1U)
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3955
static int get_devid(struct irq_alloc_info *info)
3956
{
3957
	int devid = -1;
3958

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3974

3975 3976
	return devid;
}
3977

3978 3979 3980 3981
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3982

3983 3984
	if (!info)
		return NULL;
3985

3986 3987 3988 3989 3990 3991
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3992

3993
	return NULL;
3994 3995
}

3996
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3997
{
3998 3999
	struct amd_iommu *iommu;
	int devid;
4000

4001 4002
	if (!info)
		return NULL;
4003

4004 4005 4006 4007
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4008
		if (devid < 0)
4009 4010
			return NULL;

4011 4012 4013
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4014 4015 4016 4017
		break;
	default:
		break;
	}
4018

4019 4020
	return NULL;
}
4021

4022 4023 4024 4025 4026 4027
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4028 4029 4030
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4031

4032 4033 4034 4035 4036 4037 4038 4039
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4040 4041 4042 4043
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4044

4045 4046
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4047 4048
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4049
				 irq_cfg->dest_apicid, devid);
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4065

4066 4067 4068 4069 4070 4071 4072
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4073

4074 4075 4076 4077
	default:
		BUG_ON(1);
		break;
	}
4078 4079
}

4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4100 4101
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4102
{
4103 4104
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4105
	struct amd_ir_data *data = NULL;
4106
	struct irq_cfg *cfg;
4107 4108
	int i, ret, devid;
	int index = -1;
4109

4110 4111 4112 4113
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4114 4115
		return -EINVAL;

4116 4117 4118 4119 4120 4121
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4122

4123 4124 4125
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4126

4127 4128 4129
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4130

4131
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4132
		if (alloc_irq_table(devid, true))
4133 4134 4135 4136
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4137 4138 4139
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4140 4141 4142
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4143
		ret = index;
4144 4145
		goto out_free_parent;
	}
4146

4147 4148 4149 4150 4151 4152 4153
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4154

4155 4156 4157 4158 4159
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4170 4171 4172 4173 4174 4175
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4176

4177
	return 0;
4178

4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4190 4191
}

4192 4193
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4194
{
4195 4196 4197 4198
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4199

4200 4201 4202 4203 4204 4205
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4206
			kfree(data->entry);
4207 4208 4209 4210 4211
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4212

4213 4214 4215 4216 4217
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4218
static int irq_remapping_activate(struct irq_domain *domain,
4219
				  struct irq_data *irq_data, bool reserve)
4220 4221 4222
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4223
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4224
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4225

4226 4227 4228 4229 4230 4231
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4232
	return 0;
4233 4234
}

4235 4236
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4237
{
4238 4239
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4240
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4241

4242 4243 4244
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4245
}
4246

4247
static const struct irq_domain_ops amd_ir_domain_ops = {
4248 4249 4250 4251
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4252
};
4253

4254 4255 4256 4257 4258 4259 4260 4261
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4262 4263 4264 4265 4266 4267 4268 4269
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4292
		irte->lo.fields_vapic.ga_log_intr = 1;
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4335 4336 4337 4338 4339 4340 4341
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4342
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4343
	int ret;
4344

4345 4346 4347
	if (!iommu)
		return -ENODEV;

4348 4349 4350
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4351

4352
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4353 4354 4355 4356 4357
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4358
	send_cleanup_vector(cfg);
4359 4360

	return IRQ_SET_MASK_OK_DONE;
4361 4362
}

4363
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4364
{
4365
	struct amd_ir_data *ir_data = irq_data->chip_data;
4366

4367 4368
	*msg = ir_data->msi_entry;
}
4369

4370
static struct irq_chip amd_ir_chip = {
4371 4372 4373 4374 4375
	.name			= "AMD-IR",
	.irq_ack		= ir_ack_apic_edge,
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4376
};
4377

4378 4379
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4380 4381 4382 4383 4384 4385 4386
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4387 4388
	if (!iommu->ir_domain)
		return -ENOMEM;
4389

4390
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4391 4392 4393
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4394 4395
	return 0;
}
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4415
	irt = get_irq_table(devid);
4416 4417 4418
	if (!irt)
		return -ENODEV;

4419
	raw_spin_lock_irqsave(&irt->lock, flags);
4420 4421 4422 4423 4424 4425 4426 4427

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4428
	raw_spin_unlock_irqrestore(&irt->lock, flags);
4429 4430 4431 4432 4433 4434

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4435
#endif