amd_iommu.c 93.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35
#include <linux/irq.h>
#include <linux/msi.h>
36
#include <linux/dma-contiguous.h>
37
#include <linux/irqdomain.h>
38 39 40 41
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
42
#include <asm/msidef.h>
43
#include <asm/proto.h>
44
#include <asm/iommu.h>
45
#include <asm/gart.h>
46
#include <asm/dma.h>
47 48 49

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
50
#include "irq_remapping.h"
51 52 53

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

54
#define LOOP_TIMEOUT	100000
55

56 57 58 59 60 61
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
62
 * 512GB Pages are not supported due to a hardware bug
63
 */
J
Joerg Roedel 已提交
64
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
65

66 67
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

68 69 70 71
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

72 73 74
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

75 76 77 78
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
79
static const struct iommu_ops amd_iommu_ops;
80

81
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
82
int amd_iommu_max_glx_val = -1;
83

84 85
static struct dma_map_ops amd_iommu_dma_ops;

86 87 88 89 90 91 92 93 94
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
95
	bool passthrough;		  /* Device is identity mapped */
96 97 98 99 100 101 102 103 104
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116

117 118 119 120 121 122
/*
 * For dynamic growth the aperture size is split into ranges of 128MB of
 * DMA address space each. This struct represents one such range.
 */
struct aperture_range {

123 124
	spinlock_t bitmap_lock;

125 126
	/* address allocation bitmap */
	unsigned long *bitmap;
127
	unsigned long offset;
128
	unsigned long next_bit;
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

	/*
	 * Array of PTE pages for the aperture. In this array we save all the
	 * leaf pages of the domain page table used for the aperture. This way
	 * we don't need to walk the page table to find a specific PTE. We can
	 * just calculate its address in constant time.
	 */
	u64 *pte_pages[64];
};

/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

	/* size of the aperture for the mappings */
	unsigned long aperture_size;

149 150
	/* aperture index we start searching for free addresses */
	unsigned long next_index;
151 152 153 154 155 156 157 158

	/* address space relevant data */
	struct aperture_range *aperture[APERTURE_MAX_RANGES];

	/* This will be set to true when TLB needs to be flushed */
	bool need_flush;
};

159 160 161 162 163 164
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

165 166 167 168 169
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

170
static struct iommu_dev_data *alloc_dev_data(u16 devid)
171 172 173 174 175 176 177 178
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

179
	dev_data->devid = devid;
180 181 182 183 184 185 186 187

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

219 220 221 222
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

223
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
224 225
}

226 227 228 229 230
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

231 232 233 234
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
235 236
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
237 238 239 240 241 242 243 244 245 246 247 248
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

249 250 251 252 253 254 255 256 257
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

258
/*
259 260
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
261
 */
262 263
static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
				struct unity_map_entry *e)
264
{
265
	u64 addr;
266

267 268 269 270 271
	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
		if (addr < dma_dom->aperture_size)
			__set_bit(addr >> PAGE_SHIFT,
				  dma_dom->aperture[0]->bitmap);
272
	}
273
}
274

275 276 277 278 279 280 281 282
/*
 * Inits the unity mappings required for a specific device
 */
static void init_unity_mappings_for_device(struct device *dev,
					   struct dma_ops_domain *dma_dom)
{
	struct unity_map_entry *e;
	u16 devid;
283

284
	devid = get_device_id(dev);
285

286 287 288 289 290
	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		alloc_unity_mapping(dma_dom, e);
	}
291 292
}

293 294 295 296 297 298 299 300 301 302 303
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

304 305
	/* No PCI device */
	if (!dev_is_pci(dev))
306 307 308 309 310 311 312 313 314 315 316 317 318 319
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

320
static void init_iommu_group(struct device *dev)
321
{
322 323
	struct dma_ops_domain *dma_domain;
	struct iommu_domain *domain;
324 325
	struct iommu_group *group;

326
	group = iommu_group_get_for_dev(dev);
327 328 329 330 331 332 333 334 335 336 337 338
	if (IS_ERR(group))
		return;

	domain = iommu_group_default_domain(group);
	if (!domain)
		goto out;

	dma_domain = to_pdomain(domain)->priv;

	init_unity_mappings_for_device(dev, dma_domain);
out:
	iommu_group_put(group);
339 340 341 342 343 344 345 346 347 348 349 350 351 352
}

static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

353 354 355 356 357 358 359
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

360 361
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
362 363 364
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

365 366 367
	return 0;
}

368 369 370 371 372 373 374 375 376 377 378 379 380 381
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

382 383
static void iommu_uninit_device(struct device *dev)
{
384 385 386 387 388
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
389 390 391
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

392 393
	iommu_group_remove_device(dev);

394 395 396
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

397
	/*
398 399
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
400
	 */
401
}
J
Joerg Roedel 已提交
402

403 404 405 406 407 408
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

409
DECLARE_STATS_COUNTER(compl_wait);
410
DECLARE_STATS_COUNTER(cnt_map_single);
411
DECLARE_STATS_COUNTER(cnt_unmap_single);
412
DECLARE_STATS_COUNTER(cnt_map_sg);
413
DECLARE_STATS_COUNTER(cnt_unmap_sg);
414
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
415
DECLARE_STATS_COUNTER(cnt_free_coherent);
416
DECLARE_STATS_COUNTER(cross_page);
417
DECLARE_STATS_COUNTER(domain_flush_single);
418
DECLARE_STATS_COUNTER(domain_flush_all);
419
DECLARE_STATS_COUNTER(alloced_io_mem);
420
DECLARE_STATS_COUNTER(total_map_requests);
421 422 423 424 425
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
445
					 &amd_iommu_unmap_flush);
446 447

	amd_iommu_stats_add(&compl_wait);
448
	amd_iommu_stats_add(&cnt_map_single);
449
	amd_iommu_stats_add(&cnt_unmap_single);
450
	amd_iommu_stats_add(&cnt_map_sg);
451
	amd_iommu_stats_add(&cnt_unmap_sg);
452
	amd_iommu_stats_add(&cnt_alloc_coherent);
453
	amd_iommu_stats_add(&cnt_free_coherent);
454
	amd_iommu_stats_add(&cross_page);
455
	amd_iommu_stats_add(&domain_flush_single);
456
	amd_iommu_stats_add(&domain_flush_all);
457
	amd_iommu_stats_add(&alloced_io_mem);
458
	amd_iommu_stats_add(&total_map_requests);
459 460 461 462
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
463 464 465 466
}

#endif

467 468 469 470 471 472
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

473 474 475 476
static void dump_dte_entry(u16 devid)
{
	int i;

477 478
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
479 480 481
			amd_iommu_dev_table[devid].data[i]);
}

482 483 484 485 486 487 488 489 490
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

491
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
492
{
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
514

515
	printk(KERN_ERR "AMD-Vi: Event logged [");
516 517 518 519 520

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
521
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
522
		       address, flags);
523
		dump_dte_entry(devid);
524 525 526 527
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
528
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
529 530 531 532 533
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
534
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
535 536 537 538 539
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
540
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
541 542 543 544
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
545
		dump_command(address);
546 547 548 549 550 551 552 553
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
554
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
555 556 557 558 559
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
560
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
561 562 563 564 565
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
566 567

	memset(__evt, 0, 4 * sizeof(u32));
568 569 570 571 572 573 574 575 576 577
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
578
		iommu_print_event(iommu, iommu->evt_buf + head);
579
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
580 581 582 583 584
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

585
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
586 587 588
{
	struct amd_iommu_fault fault;

589 590
	INC_STATS_COUNTER(pri_requests);

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
632

633 634 635
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
636

637 638 639 640 641 642 643
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
644 645
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
646 647 648 649 650 651

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
652 653 654 655
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

656
irqreturn_t amd_iommu_int_thread(int irq, void *data)
657
{
658 659
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
660

661 662 663 664
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
665

666 667 668 669
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
670

671 672 673 674
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
675

676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
691
	return IRQ_HANDLED;
692 693
}

694 695 696 697 698
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

699 700 701 702 703 704
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
725 726 727
{
	u8 *target;

728
	target = iommu->cmd_buf + tail;
729
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
730 731 732 733 734

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
735
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
736
}
737

738
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
739
{
740 741
	WARN_ON(address & 0x7ULL);

742
	memset(cmd, 0, sizeof(*cmd));
743 744 745
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
746 747 748
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

749 750 751 752 753 754 755
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

756 757 758 759
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
760
	bool s;
761 762

	pages = iommu_num_pages(address, size, PAGE_SIZE);
763
	s     = false;
764 765 766 767 768 769 770

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
771
		s = true;
772 773 774 775 776 777 778 779 780 781 782
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
783
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
784 785 786
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

787 788 789 790
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
791
	bool s;
792 793

	pages = iommu_num_pages(address, size, PAGE_SIZE);
794
	s     = false;
795 796 797 798 799 800 801

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
802
		s = true;
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

818 819 820 821 822 823 824
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

825
	cmd->data[0]  = pasid;
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
844
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
845 846
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
847
	cmd->data[1] |= (pasid & 0xff) << 16;
848 849 850 851 852 853 854 855
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

856 857 858 859 860 861 862
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
863
		cmd->data[1]  = pasid;
864 865 866 867 868 869 870 871
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

872 873 874 875
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
876 877
}

878 879 880 881 882 883 884
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

885 886
/*
 * Writes the command to the IOMMUs command buffer and informs the
887
 * hardware about the new command.
888
 */
889 890 891
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
892
{
893
	u32 left, tail, head, next_tail;
894 895
	unsigned long flags;

896
again:
897 898
	spin_lock_irqsave(&iommu->lock, flags);

899 900
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
901 902
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
903

904 905 906 907
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
908

909 910
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
911

912 913 914 915 916 917
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
918 919
	}

920 921 922
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
923
	iommu->need_sync = sync;
924

925
	spin_unlock_irqrestore(&iommu->lock, flags);
926

927
	return 0;
928 929
}

930 931 932 933 934
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

935 936 937 938
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
939
static int iommu_completion_wait(struct amd_iommu *iommu)
940 941
{
	struct iommu_cmd cmd;
942
	volatile u64 sem = 0;
943
	int ret;
944

945
	if (!iommu->need_sync)
946
		return 0;
947

948
	build_completion_wait(&cmd, (u64)&sem);
949

950
	ret = iommu_queue_command_sync(iommu, &cmd, false);
951
	if (ret)
952
		return ret;
953

954
	return wait_on_sem(&sem);
955 956
}

957
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
958
{
959
	struct iommu_cmd cmd;
960

961
	build_inv_dte(&cmd, devid);
962

963 964
	return iommu_queue_command(iommu, &cmd);
}
965

966 967 968
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
969

970 971
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
972

973 974
	iommu_completion_wait(iommu);
}
975

976 977 978 979 980 981 982
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
983

984 985 986 987 988 989
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
990

991
	iommu_completion_wait(iommu);
992 993
}

994
static void iommu_flush_all(struct amd_iommu *iommu)
995
{
996
	struct iommu_cmd cmd;
997

998
	build_inv_all(&cmd);
999

1000 1001 1002 1003
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1023 1024
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1025 1026 1027 1028
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1029
		iommu_flush_irt_all(iommu);
1030
		iommu_flush_tlb_all(iommu);
1031 1032 1033
	}
}

1034
/*
1035
 * Command send function for flushing on-device TLB
1036
 */
1037 1038
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1039 1040
{
	struct amd_iommu *iommu;
1041
	struct iommu_cmd cmd;
1042
	int qdep;
1043

1044 1045
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1046

1047
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1048 1049

	return iommu_queue_command(iommu, &cmd);
1050 1051
}

1052 1053 1054
/*
 * Command send function for invalidating a device table entry
 */
1055
static int device_flush_dte(struct iommu_dev_data *dev_data)
1056
{
1057
	struct amd_iommu *iommu;
1058
	u16 alias;
1059
	int ret;
1060

1061
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1062
	alias = amd_iommu_alias_table[dev_data->devid];
1063

1064
	ret = iommu_flush_dte(iommu, dev_data->devid);
1065 1066
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1067 1068 1069
	if (ret)
		return ret;

1070
	if (dev_data->ats.enabled)
1071
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1072 1073

	return ret;
1074 1075
}

1076 1077 1078 1079 1080
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1081 1082
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1083
{
1084
	struct iommu_dev_data *dev_data;
1085 1086
	struct iommu_cmd cmd;
	int ret = 0, i;
1087

1088
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1089

1090 1091 1092 1093 1094 1095 1096 1097
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1098
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1099 1100
	}

1101 1102
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1103
		if (!dev_data->ats.enabled)
1104 1105
			continue;

1106
		ret |= device_flush_iotlb(dev_data, address, size);
1107 1108
	}

1109
	WARN_ON(ret);
1110 1111
}

1112 1113
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1114
{
1115
	__domain_flush_pages(domain, address, size, 0);
1116
}
1117

1118
/* Flush the whole IO/TLB for a given protection domain */
1119
static void domain_flush_tlb(struct protection_domain *domain)
1120
{
1121
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1122 1123
}

1124
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1125
static void domain_flush_tlb_pde(struct protection_domain *domain)
1126
{
1127
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1128 1129
}

1130
static void domain_flush_complete(struct protection_domain *domain)
1131
{
1132
	int i;
1133

1134 1135 1136
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1137

1138 1139 1140 1141 1142
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1143
	}
1144 1145
}

1146

1147
/*
1148
 * This function flushes the DTEs for all devices in domain
1149
 */
1150
static void domain_flush_devices(struct protection_domain *domain)
1151
{
1152
	struct iommu_dev_data *dev_data;
1153

1154
	list_for_each_entry(dev_data, &domain->dev_list, list)
1155
		device_flush_dte(dev_data);
1156 1157
}

1158 1159 1160 1161 1162 1163 1164
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1194
		      unsigned long page_size,
1195 1196 1197
		      u64 **pte_page,
		      gfp_t gfp)
{
1198
	int level, end_lvl;
1199
	u64 *pte, *page;
1200 1201

	BUG_ON(!is_power_of_2(page_size));
1202 1203 1204 1205

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1206 1207 1208 1209
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1210 1211 1212 1213 1214 1215 1216 1217 1218

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1219 1220 1221 1222
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1240 1241 1242
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1243 1244 1245 1246
{
	int level;
	u64 *pte;

1247 1248 1249
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1250 1251 1252
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1253

1254 1255 1256
	while (level > 0) {

		/* Not Present */
1257 1258 1259
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1260
		/* Large PTE */
1261 1262 1263
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1264 1265 1266 1267 1268

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1269 1270
		level -= 1;

1271
		/* Walk to the next level */
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1287 1288 1289 1290 1291
	}

	return pte;
}

1292 1293 1294 1295 1296 1297 1298
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1299 1300 1301
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1302
			  int prot,
1303
			  unsigned long page_size)
1304
{
1305
	u64 __pte, *pte;
1306
	int i, count;
1307

1308 1309 1310
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1311
	if (!(prot & IOMMU_PROT_MASK))
1312 1313
		return -EINVAL;

1314 1315
	count = PAGE_SIZE_PTE_COUNT(page_size);
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1316

1317 1318 1319
	if (!pte)
		return -ENOMEM;

1320 1321 1322
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1323

1324
	if (count > 1) {
1325 1326 1327 1328
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1329 1330 1331 1332 1333 1334

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1335 1336
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1337

1338 1339
	update_domain(dom);

1340 1341 1342
	return 0;
}

1343 1344 1345
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1346
{
1347 1348
	unsigned long long unmapped;
	unsigned long unmap_size;
1349 1350 1351 1352 1353
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1354

1355 1356
	while (unmapped < page_size) {

1357 1358 1359 1360 1361 1362
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1363 1364 1365 1366 1367 1368 1369 1370
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1371
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1372

1373
	return unmapped;
1374 1375
}

1376 1377 1378 1379 1380 1381 1382 1383 1384
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1385

1386
/*
1387
 * The address allocator core functions.
1388 1389 1390
 *
 * called with domain->lock held
 */
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1412 1413 1414 1415 1416
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1417
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1418 1419 1420
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1421
	struct amd_iommu *iommu;
1422
	unsigned long i, old_size, pte_pgsize;
1423

1424 1425 1426 1427
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

1441 1442
	spin_lock_init(&dma_dom->aperture[index]->bitmap_lock);

1443 1444 1445 1446 1447 1448
	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1449
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1460
	old_size                = dma_dom->aperture_size;
1461 1462
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1475
	/* Initialize the exclusion range if necessary */
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
1497
	     i += pte_pgsize) {
1498
		u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1499 1500 1501
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1502 1503
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
					  pte_pgsize >> 12);
1504 1505
	}

1506 1507
	update_domain(&dma_dom->domain);

1508 1509 1510
	return 0;

out_free:
1511 1512
	update_domain(&dma_dom->domain);

1513 1514 1515 1516 1517 1518 1519 1520
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1521 1522
static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
					 struct aperture_range *range,
1523 1524 1525 1526 1527 1528 1529
					 unsigned long pages,
					 unsigned long dma_mask,
					 unsigned long boundary_size,
					 unsigned long align_mask)
{
	unsigned long offset, limit, flags;
	dma_addr_t address;
1530
	bool flush = false;
1531 1532 1533 1534 1535 1536

	offset = range->offset >> PAGE_SHIFT;
	limit  = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					dma_mask >> PAGE_SHIFT);

	spin_lock_irqsave(&range->bitmap_lock, flags);
1537 1538
	address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
				   pages, offset, boundary_size, align_mask);
1539
	if (address == -1) {
1540 1541 1542 1543
		/* Nothing found, retry one time */
		address = iommu_area_alloc(range->bitmap, limit,
					   0, pages, offset, boundary_size,
					   align_mask);
1544 1545
		flush = true;
	}
1546 1547 1548 1549

	if (address != -1)
		range->next_bit = address + pages;

1550 1551
	spin_unlock_irqrestore(&range->bitmap_lock, flags);

1552 1553 1554 1555 1556
	if (flush) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}

1557 1558 1559
	return address;
}

1560 1561 1562 1563
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
1564
					u64 dma_mask)
1565
{
1566
	unsigned long next_bit, boundary_size, mask;
1567
	unsigned long address = -1;
1568 1569
	int start = dom->next_index;
	int i;
1570

1571 1572 1573 1574
	mask = dma_get_seg_boundary(dev);

	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);
1575

1576 1577
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		struct aperture_range *range;
1578

1579 1580 1581 1582
		range = dom->aperture[(start + i) % APERTURE_MAX_RANGES];

		if (!range || range->offset >= dma_mask)
			continue;
1583

1584
		next_bit  = range->next_bit;
1585

1586
		address = dma_ops_aperture_alloc(dom, range, pages,
1587 1588
						 dma_mask, boundary_size,
						 align_mask);
1589
		if (address != -1) {
1590
			address = range->offset + (address << PAGE_SHIFT);
1591
			dom->next_index = i;
1592 1593 1594
			break;
		}

1595
		if (next_bit > range->next_bit)
1596
			dom->need_flush = true;
1597 1598 1599 1600 1601
	}

	return address;
}

1602 1603
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1604
					     unsigned int pages,
1605 1606
					     unsigned long align_mask,
					     u64 dma_mask)
1607 1608 1609
{
	unsigned long address;

1610
#ifdef CONFIG_IOMMU_STRESS
1611
	dom->next_index = 0;
1612 1613
	dom->need_flush = true;
#endif
1614

1615
	address = dma_ops_area_alloc(dev, dom, pages, align_mask, dma_mask);
1616

1617
	if (unlikely(address == -1))
1618
		address = DMA_ERROR_CODE;
1619 1620 1621 1622 1623 1624

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1625 1626 1627 1628 1629
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1630 1631 1632 1633
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1634 1635
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1636
	unsigned long flags;
1637

1638 1639
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1640 1641 1642 1643
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1644

1645 1646 1647 1648
	if (address + pages > range->next_bit) {
		domain_flush_tlb(&dom->domain);
		domain_flush_complete(&dom->domain);
	}
1649 1650

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1651

1652
	spin_lock_irqsave(&range->bitmap_lock, flags);
A
Akinobu Mita 已提交
1653
	bitmap_clear(range->bitmap, address, pages);
1654
	spin_unlock_irqrestore(&range->bitmap_lock, flags);
1655

1656 1657
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1730
		/* PTE present? */				\
1731 1732 1733
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1734 1735 1736 1737 1738
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1751
static void free_pagetable(struct protection_domain *domain)
1752
{
1753
	unsigned long root = (unsigned long)domain->pt_root;
1754

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1778 1779 1780
	}
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1811 1812
static void free_gcr3_table(struct protection_domain *domain)
{
1813 1814 1815 1816
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1817 1818
	else
		BUG_ON(domain->glx != 0);
1819

1820 1821 1822
	free_page((unsigned long)domain->gcr3_tbl);
}

1823 1824 1825 1826
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1827 1828
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1829 1830
	int i;

1831 1832 1833
	if (!dom)
		return;

1834 1835
	del_domain_from_list(&dom->domain);

1836
	free_pagetable(&dom->domain);
1837

1838 1839 1840 1841 1842 1843
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1844 1845 1846 1847

	kfree(dom);
}

1848 1849
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1850
 * It also initializes the page table and the address allocator data
1851 1852
 * structures required for the dma_ops interface
 */
1853
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1854 1855 1856 1857 1858 1859 1860
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1861
	if (protection_domain_init(&dma_dom->domain))
1862
		goto free_dma_dom;
1863

1864
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1865
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1866
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1867 1868 1869 1870
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1871 1872
	dma_dom->need_flush = false;

1873 1874
	add_domain_to_list(&dma_dom->domain);

1875
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1876 1877
		goto free_dma_dom;

1878
	/*
1879 1880
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1881
	 */
1882
	dma_dom->aperture[0]->bitmap[0] = 1;
1883
	dma_dom->next_index = 0;
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1894 1895 1896 1897 1898 1899 1900 1901 1902
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1903
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1904
{
1905
	u64 pte_root = 0;
1906
	u64 flags = 0;
1907

1908 1909 1910
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1911 1912 1913
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1914

1915 1916
	flags = amd_iommu_dev_table[devid].data[1];

1917 1918 1919
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1946 1947 1948 1949 1950
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1951 1952 1953 1954 1955
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1956 1957
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1958 1959

	amd_iommu_apply_erratum_63(devid);
1960 1961
}

1962 1963
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1964 1965
{
	struct amd_iommu *iommu;
1966
	u16 alias;
1967
	bool ats;
1968

1969
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1970
	alias = amd_iommu_alias_table[dev_data->devid];
1971
	ats   = dev_data->ats.enabled;
1972 1973 1974 1975 1976 1977 1978 1979 1980

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1981 1982 1983 1984 1985
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
		set_dte_entry(dev_data->devid, domain, ats);

1986
	device_flush_dte(dev_data);
1987 1988
}

1989
static void do_detach(struct iommu_dev_data *dev_data)
1990 1991
{
	struct amd_iommu *iommu;
1992
	u16 alias;
1993

1994 1995 1996 1997 1998 1999 2000 2001 2002
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2003
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2004
	alias = amd_iommu_alias_table[dev_data->devid];
2005 2006

	/* decrease reference counters */
2007 2008 2009 2010 2011 2012
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2013
	clear_dte_entry(dev_data->devid);
2014 2015
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2016

2017
	/* Flush the DTE entry */
2018
	device_flush_dte(dev_data);
2019 2020 2021 2022 2023 2024
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2025
static int __attach_device(struct iommu_dev_data *dev_data,
2026
			   struct protection_domain *domain)
2027
{
2028
	int ret;
2029

2030 2031 2032 2033 2034 2035
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2036 2037 2038
	/* lock domain */
	spin_lock(&domain->lock);

2039
	ret = -EBUSY;
2040
	if (dev_data->domain != NULL)
2041
		goto out_unlock;
2042

2043
	/* Attach alias group root */
2044
	do_attach(dev_data, domain);
2045

2046 2047 2048 2049
	ret = 0;

out_unlock:

2050 2051
	/* ready */
	spin_unlock(&domain->lock);
2052

2053
	return ret;
2054
}
2055

2056 2057 2058 2059 2060 2061 2062 2063

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2064 2065 2066 2067 2068 2069
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2070
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2071 2072 2073
	if (!pos)
		return -EINVAL;

2074 2075 2076
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2077 2078 2079 2080

	return 0;
}

2081 2082
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2083 2084 2085 2086 2087 2088 2089 2090
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2102 2103
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2104 2105 2106
	if (ret)
		goto out_err;

2107 2108 2109 2110 2111 2112
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2126
/* FIXME: Move this to PCI code */
2127
#define PCI_PRI_TLP_OFF		(1 << 15)
2128

J
Joerg Roedel 已提交
2129
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2130
{
2131
	u16 status;
2132 2133
	int pos;

2134
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2135 2136 2137
	if (!pos)
		return false;

2138
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2139

2140
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2141 2142
}

2143
/*
F
Frank Arnold 已提交
2144
 * If a device is not yet associated with a domain, this function
2145 2146
 * assigns it visible for the hardware
 */
2147 2148
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2149
{
2150
	struct pci_dev *pdev = to_pci_dev(dev);
2151
	struct iommu_dev_data *dev_data;
2152
	unsigned long flags;
2153
	int ret;
2154

2155 2156
	dev_data = get_dev_data(dev);

2157
	if (domain->flags & PD_IOMMUV2_MASK) {
2158
		if (!dev_data->passthrough)
2159 2160
			return -EINVAL;

2161 2162 2163
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2164

2165 2166 2167 2168
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2169 2170
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2171 2172 2173
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2174

2175
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2176
	ret = __attach_device(dev_data, domain);
2177 2178
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2179 2180 2181 2182 2183
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2184
	domain_flush_tlb_pde(domain);
2185 2186

	return ret;
2187 2188
}

2189 2190 2191
/*
 * Removes a device from a protection domain (unlocked)
 */
2192
static void __detach_device(struct iommu_dev_data *dev_data)
2193
{
2194
	struct protection_domain *domain;
2195

2196 2197 2198 2199 2200
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2201

2202 2203
	if (WARN_ON(!dev_data->domain))
		return;
2204

2205
	domain = dev_data->domain;
2206

2207
	spin_lock(&domain->lock);
2208

2209
	do_detach(dev_data);
2210

2211
	spin_unlock(&domain->lock);
2212 2213 2214 2215 2216
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2217
static void detach_device(struct device *dev)
2218
{
2219
	struct protection_domain *domain;
2220
	struct iommu_dev_data *dev_data;
2221 2222
	unsigned long flags;

2223
	dev_data = get_dev_data(dev);
2224
	domain   = dev_data->domain;
2225

2226 2227
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2228
	__detach_device(dev_data);
2229
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2230

2231
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2232 2233
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2234
		pci_disable_ats(to_pci_dev(dev));
2235 2236

	dev_data->ats.enabled = false;
2237
}
2238

2239
static int amd_iommu_add_device(struct device *dev)
2240
{
2241
	struct iommu_dev_data *dev_data;
2242
	struct iommu_domain *domain;
2243
	struct amd_iommu *iommu;
2244
	u16 devid;
2245
	int ret;
2246

2247
	if (!check_device(dev) || get_dev_data(dev))
2248
		return 0;
2249

2250 2251
	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];
2252

2253
	ret = iommu_init_device(dev);
2254 2255 2256 2257
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2258

2259
		iommu_ignore_device(dev);
2260
		dev->archdata.dma_ops = &nommu_dma_ops;
2261 2262 2263
		goto out;
	}
	init_iommu_group(dev);
2264

2265
	dev_data = get_dev_data(dev);
2266

2267
	BUG_ON(!dev_data);
2268

2269
	if (iommu_pass_through || dev_data->iommu_v2)
2270
		iommu_request_dm_for_dev(dev);
2271

2272 2273
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2274
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2275
		dev_data->passthrough = true;
2276
	else
2277
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2278

2279
out:
2280 2281 2282 2283 2284
	iommu_completion_wait(iommu);

	return 0;
}

2285
static void amd_iommu_remove_device(struct device *dev)
2286
{
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	struct amd_iommu *iommu;
	u16 devid;

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2298 2299
}

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2313
static struct protection_domain *get_domain(struct device *dev)
2314
{
2315
	struct protection_domain *domain;
2316
	struct iommu_domain *io_domain;
2317

2318
	if (!check_device(dev))
2319
		return ERR_PTR(-EINVAL);
2320

2321
	io_domain = iommu_get_domain_for_dev(dev);
2322 2323
	if (!io_domain)
		return NULL;
2324

2325 2326
	domain = to_pdomain(io_domain);
	if (!dma_ops_domain(domain))
2327
		return ERR_PTR(-EBUSY);
2328

2329
	return domain;
2330 2331
}

2332 2333
static void update_device_table(struct protection_domain *domain)
{
2334
	struct iommu_dev_data *dev_data;
2335

2336 2337
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2338 2339 2340 2341 2342 2343 2344 2345
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2346 2347 2348

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2349 2350 2351 2352

	domain->updated = false;
}

2353 2354 2355 2356 2357 2358
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2359
	struct aperture_range *aperture;
2360 2361
	u64 *pte, *pte_page;

2362 2363 2364 2365 2366
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2367
	if (!pte) {
2368
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2369
				GFP_ATOMIC);
2370 2371
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2372
		pte += PM_LEVEL_INDEX(0, address);
2373

2374
	update_domain(&dom->domain);
2375 2376 2377 2378

	return pte;
}

2379 2380 2381 2382
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2383
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2394
	pte  = dma_ops_get_pte(dom, address);
2395
	if (!pte)
2396
		return DMA_ERROR_CODE;
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

2407
	WARN_ON_ONCE(*pte);
2408 2409 2410 2411 2412 2413

	*pte = __pte;

	return (dma_addr_t)address;
}

2414 2415 2416
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2417
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2418 2419
				 unsigned long address)
{
2420
	struct aperture_range *aperture;
2421 2422 2423 2424 2425
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2426 2427 2428 2429 2430 2431 2432
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2433

2434
	pte += PM_LEVEL_INDEX(0, address);
2435

2436
	WARN_ON_ONCE(!*pte);
2437 2438 2439 2440

	*pte = 0ULL;
}

2441 2442
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2443 2444
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2445 2446
 * Must be called with the domain lock held.
 */
2447 2448 2449 2450
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2451
			       int dir,
2452 2453
			       bool align,
			       u64 dma_mask)
2454 2455
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2456
	dma_addr_t address, start, ret;
2457
	unsigned int pages;
2458
	unsigned long align_mask = 0;
2459 2460
	int i;

2461
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2462 2463
	paddr &= PAGE_MASK;

2464 2465
	INC_STATS_COUNTER(total_map_requests);

2466 2467 2468
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2469 2470 2471
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2472
retry:
2473 2474
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2475
	if (unlikely(address == DMA_ERROR_CODE)) {
2476 2477 2478
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
			goto out;

2479
		/*
2480
		 * setting next_index here will let the address
2481 2482 2483
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
2484
		dma_dom->next_index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
2485 2486

		/*
2487
		 * aperture was successfully enlarged by 128 MB, try
2488 2489 2490 2491
		 * allocation again
		 */
		goto retry;
	}
2492 2493 2494

	start = address;
	for (i = 0; i < pages; ++i) {
2495
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2496
		if (ret == DMA_ERROR_CODE)
2497 2498
			goto out_unmap;

2499 2500 2501 2502 2503
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2504 2505
	ADD_STATS_COUNTER(alloced_io_mem, size);

2506
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2507
		domain_flush_tlb(&dma_dom->domain);
2508
		dma_dom->need_flush = false;
2509
	} else if (unlikely(amd_iommu_np_cache))
2510
		domain_flush_pages(&dma_dom->domain, address, size);
2511

2512 2513
out:
	return address;
2514 2515 2516 2517 2518

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2519
		dma_ops_domain_unmap(dma_dom, start);
2520 2521
	}

2522 2523
	domain_flush_pages(&dma_dom->domain, address, size);

2524 2525
	dma_ops_free_addresses(dma_dom, address, pages);

2526
	return DMA_ERROR_CODE;
2527 2528
}

2529 2530 2531 2532
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2533
static void __unmap_single(struct dma_ops_domain *dma_dom,
2534 2535 2536 2537
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2538
	dma_addr_t flush_addr;
2539 2540 2541
	dma_addr_t i, start;
	unsigned int pages;

2542
	if ((dma_addr == DMA_ERROR_CODE) ||
2543
	    (dma_addr + size > dma_dom->aperture_size))
2544 2545
		return;

2546
	flush_addr = dma_addr;
2547
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2548 2549 2550 2551
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2552
		dma_ops_domain_unmap(dma_dom, start);
2553 2554 2555
		start += PAGE_SIZE;
	}

2556
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2557
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2558 2559
		dma_dom->need_flush = false;
	}
2560 2561 2562 2563

	SUB_STATS_COUNTER(alloced_io_mem, size);

	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2564 2565
}

2566 2567 2568
/*
 * The exported map_single function for dma_ops.
 */
2569 2570 2571 2572
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2573 2574 2575 2576
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2577
	u64 dma_mask;
2578
	phys_addr_t paddr = page_to_phys(page) + offset;
2579

2580 2581
	INC_STATS_COUNTER(cnt_map_single);

2582 2583
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2584
		return (dma_addr_t)paddr;
2585 2586
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2587

2588 2589
	dma_mask = *dev->dma_mask;

2590
	spin_lock_irqsave(&domain->lock, flags);
2591

2592
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2593
			    dma_mask);
2594
	if (addr == DMA_ERROR_CODE)
2595 2596
		goto out;

2597
	domain_flush_complete(domain);
2598 2599 2600 2601 2602 2603 2604

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2605 2606 2607
/*
 * The exported unmap_single function for dma_ops.
 */
2608 2609
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2610 2611 2612 2613
{
	unsigned long flags;
	struct protection_domain *domain;

2614 2615
	INC_STATS_COUNTER(cnt_unmap_single);

2616 2617
	domain = get_domain(dev);
	if (IS_ERR(domain))
2618 2619
		return;

2620 2621
	spin_lock_irqsave(&domain->lock, flags);

2622
	__unmap_single(domain->priv, dma_addr, size, dir);
2623

2624
	domain_flush_complete(domain);
2625 2626 2627 2628

	spin_unlock_irqrestore(&domain->lock, flags);
}

2629 2630 2631 2632
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2633
static int map_sg(struct device *dev, struct scatterlist *sglist,
2634 2635
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2636 2637 2638 2639 2640 2641 2642
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2643
	u64 dma_mask;
2644

2645 2646
	INC_STATS_COUNTER(cnt_map_sg);

2647
	domain = get_domain(dev);
2648
	if (IS_ERR(domain))
2649
		return 0;
2650

2651
	dma_mask = *dev->dma_mask;
2652 2653 2654 2655 2656 2657

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2658
		s->dma_address = __map_single(dev, domain->priv,
2659 2660
					      paddr, s->length, dir, false,
					      dma_mask);
2661 2662 2663 2664 2665 2666 2667 2668

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2669
	domain_flush_complete(domain);
2670 2671 2672 2673 2674 2675 2676 2677

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2678
			__unmap_single(domain->priv, s->dma_address,
2679 2680 2681 2682 2683 2684 2685 2686 2687
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2688 2689 2690 2691
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2692
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2693 2694
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2695 2696 2697 2698 2699 2700
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2701 2702
	INC_STATS_COUNTER(cnt_unmap_sg);

2703 2704
	domain = get_domain(dev);
	if (IS_ERR(domain))
2705 2706
		return;

2707 2708 2709
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2710
		__unmap_single(domain->priv, s->dma_address,
2711 2712 2713 2714
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2715
	domain_flush_complete(domain);
2716 2717 2718 2719

	spin_unlock_irqrestore(&domain->lock, flags);
}

2720 2721 2722
/*
 * The exported alloc_coherent function for dma_ops.
 */
2723
static void *alloc_coherent(struct device *dev, size_t size,
2724 2725
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2726
{
2727
	u64 dma_mask = dev->coherent_dma_mask;
2728 2729 2730
	struct protection_domain *domain;
	unsigned long flags;
	struct page *page;
2731

2732 2733
	INC_STATS_COUNTER(cnt_alloc_coherent);

2734 2735
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2736 2737 2738
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2739 2740
	} else if (IS_ERR(domain))
		return NULL;
2741

2742
	size	  = PAGE_ALIGN(size);
2743 2744
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2745
	flag     |= __GFP_ZERO;
2746

2747 2748
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2749
		if (!gfpflags_allow_blocking(flag))
2750
			return NULL;
2751

2752 2753 2754 2755 2756
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2757

2758 2759 2760
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2761 2762
	spin_lock_irqsave(&domain->lock, flags);

2763
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2764
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2765

2766
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2767
		spin_unlock_irqrestore(&domain->lock, flags);
2768
		goto out_free;
J
Jiri Slaby 已提交
2769
	}
2770

2771
	domain_flush_complete(domain);
2772 2773 2774

	spin_unlock_irqrestore(&domain->lock, flags);

2775
	return page_address(page);
2776 2777 2778

out_free:

2779 2780
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2781 2782

	return NULL;
2783 2784
}

2785 2786 2787
/*
 * The exported free_coherent function for dma_ops.
 */
2788
static void free_coherent(struct device *dev, size_t size,
2789 2790
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2791 2792
{
	struct protection_domain *domain;
2793 2794
	unsigned long flags;
	struct page *page;
2795

2796 2797
	INC_STATS_COUNTER(cnt_free_coherent);

2798 2799 2800
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2801 2802
	domain = get_domain(dev);
	if (IS_ERR(domain))
2803 2804
		goto free_mem;

2805 2806
	spin_lock_irqsave(&domain->lock, flags);

2807
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2808

2809
	domain_flush_complete(domain);
2810 2811 2812 2813

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
2814 2815
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2816 2817
}

2818 2819 2820 2821 2822 2823
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2824
	return check_device(dev);
2825 2826
}

2827
static struct dma_map_ops amd_iommu_dma_ops = {
2828 2829
	.alloc = alloc_coherent,
	.free = free_coherent,
2830 2831
	.map_page = map_page,
	.unmap_page = unmap_page,
2832 2833
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2834
	.dma_supported = amd_iommu_dma_supported,
2835 2836
};

2837
int __init amd_iommu_init_api(void)
2838
{
2839
	return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2840 2841
}

2842 2843
int __init amd_iommu_init_dma_ops(void)
{
2844
	swiotlb        = iommu_pass_through ? 1 : 0;
2845 2846
	iommu_detected = 1;

2847 2848 2849 2850 2851 2852 2853 2854 2855
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2856 2857
	amd_iommu_stats_init();

2858 2859 2860 2861 2862
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2863 2864
	return 0;
}
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2878
	struct iommu_dev_data *entry;
2879 2880 2881 2882
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2883 2884 2885 2886
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2887
	}
2888 2889 2890 2891

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2892 2893 2894 2895 2896
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2897 2898
	del_domain_from_list(domain);

2899 2900 2901 2902 2903 2904
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2917
static struct protection_domain *protection_domain_alloc(void)
2918 2919 2920 2921 2922
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2923
		return NULL;
2924

2925
	if (protection_domain_init(domain))
2926 2927
		goto out_err;

2928 2929
	add_domain_to_list(domain);

2930 2931 2932 2933 2934 2935 2936 2937
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2938
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2939
{
2940
	struct protection_domain *pdomain;
2941
	struct dma_ops_domain *dma_domain;
2942

2943 2944 2945 2946 2947
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2948

2949 2950 2951 2952 2953 2954
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2955

2956 2957 2958
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2959

2960 2961 2962 2963 2964 2965 2966 2967 2968
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2969 2970 2971 2972
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2973

2974 2975
		pdomain->mode = PAGE_MODE_NONE;
		break;
2976 2977 2978
	default:
		return NULL;
	}
2979

2980
	return &pdomain->domain;
2981 2982
}

2983
static void amd_iommu_domain_free(struct iommu_domain *dom)
2984
{
2985
	struct protection_domain *domain;
2986

2987
	if (!dom)
2988 2989
		return;

2990 2991
	domain = to_pdomain(dom);

2992 2993 2994 2995 2996
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2997 2998
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
2999

3000 3001 3002
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3003
	protection_domain_free(domain);
3004 3005
}

3006 3007 3008
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3009
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3010 3011 3012
	struct amd_iommu *iommu;
	u16 devid;

3013
	if (!check_device(dev))
3014 3015
		return;

3016
	devid = get_device_id(dev);
3017

3018
	if (dev_data->domain != NULL)
3019
		detach_device(dev);
3020 3021 3022 3023 3024 3025 3026 3027

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3028 3029 3030
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3031
	struct protection_domain *domain = to_pdomain(dom);
3032
	struct iommu_dev_data *dev_data;
3033
	struct amd_iommu *iommu;
3034
	int ret;
3035

3036
	if (!check_device(dev))
3037 3038
		return -EINVAL;

3039 3040
	dev_data = dev->archdata.iommu;

3041
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3042 3043 3044
	if (!iommu)
		return -EINVAL;

3045
	if (dev_data->domain)
3046
		detach_device(dev);
3047

3048
	ret = attach_device(dev, domain);
3049 3050 3051

	iommu_completion_wait(iommu);

3052
	return ret;
3053 3054
}

3055
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3056
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3057
{
3058
	struct protection_domain *domain = to_pdomain(dom);
3059 3060 3061
	int prot = 0;
	int ret;

3062 3063 3064
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3065 3066 3067 3068 3069
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3070
	mutex_lock(&domain->api_lock);
3071
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3072 3073
	mutex_unlock(&domain->api_lock);

3074
	return ret;
3075 3076
}

3077 3078
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3079
{
3080
	struct protection_domain *domain = to_pdomain(dom);
3081
	size_t unmap_size;
3082

3083 3084 3085
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3086
	mutex_lock(&domain->api_lock);
3087
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3088
	mutex_unlock(&domain->api_lock);
3089

3090
	domain_flush_tlb_pde(domain);
3091

3092
	return unmap_size;
3093 3094
}

3095
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3096
					  dma_addr_t iova)
3097
{
3098
	struct protection_domain *domain = to_pdomain(dom);
3099
	unsigned long offset_mask, pte_pgsize;
3100
	u64 *pte, __pte;
3101

3102 3103 3104
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3105
	pte = fetch_pte(domain, iova, &pte_pgsize);
3106

3107
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3108 3109
		return 0;

3110 3111
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3112

3113
	return (__pte & ~offset_mask) | (iova & offset_mask);
3114 3115
}

3116
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3117
{
3118 3119
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3120
		return true;
3121
	case IOMMU_CAP_INTR_REMAP:
3122
		return (irq_remapping_enabled == 1);
3123 3124
	case IOMMU_CAP_NOEXEC:
		return false;
3125 3126
	}

3127
	return false;
S
Sheng Yang 已提交
3128 3129
}

3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
	u16 devid;

	devid = get_device_id(dev);

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3171
static const struct iommu_ops amd_iommu_ops = {
3172
	.capable = amd_iommu_capable,
3173 3174
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3175 3176
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3177 3178
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3179
	.map_sg = default_iommu_map_sg,
3180
	.iova_to_phys = amd_iommu_iova_to_phys,
3181 3182
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3183
	.device_group = pci_device_group,
3184 3185
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3186
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3187 3188
};

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3211 3212 3213

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3214
	struct protection_domain *domain = to_pdomain(dom);
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3232 3233 3234

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3235
	struct protection_domain *domain = to_pdomain(dom);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3313 3314 3315 3316 3317 3318
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3344 3345
	INC_STATS_COUNTER(invalidate_iotlb);

3346 3347 3348 3349 3350 3351
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3352
	struct protection_domain *domain = to_pdomain(dom);
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3366 3367
	INC_STATS_COUNTER(invalidate_iotlb_all);

3368 3369 3370 3371 3372 3373
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3374
	struct protection_domain *domain = to_pdomain(dom);
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3454
	struct protection_domain *domain = to_pdomain(dom);
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3468
	struct protection_domain *domain = to_pdomain(dom);
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3479 3480 3481 3482 3483 3484 3485 3486

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3487 3488
	INC_STATS_COUNTER(complete_ppr);

3489 3490 3491 3492 3493 3494 3495 3496 3497
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3498 3499 3500

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3501
	struct protection_domain *pdomain;
3502

3503 3504
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3505 3506 3507
		return NULL;

	/* Only return IOMMUv2 domains */
3508
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3509 3510
		return NULL;

3511
	return &pdomain->domain;
3512 3513
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3593 3594 3595 3596 3597
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3660 3661 3662
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3663 3664 3665 3666 3667 3668 3669
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3670
		table = NULL;
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3688
		set_dte_irq_entry(alias, table);
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3701
static int alloc_irq_index(u16 devid, int count)
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3785
static int get_devid(struct irq_alloc_info *info)
3786
{
3787
	int devid = -1;
3788

3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3804

3805 3806
	return devid;
}
3807

3808 3809 3810 3811
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3812

3813 3814
	if (!info)
		return NULL;
3815

3816 3817 3818 3819 3820 3821
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3822

3823
	return NULL;
3824 3825
}

3826
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3827
{
3828 3829
	struct amd_iommu *iommu;
	int devid;
3830

3831 3832
	if (!info)
		return NULL;
3833

3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		if (devid >= 0) {
			iommu = amd_iommu_rlookup_table[devid];
			if (iommu)
				return iommu->msi_domain;
		}
		break;
	default:
		break;
	}
3847

3848 3849
	return NULL;
}
3850

3851 3852 3853 3854 3855 3856
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3857 3858 3859
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3860

3861 3862 3863 3864 3865 3866 3867 3868 3869
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3870

3871 3872
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3873

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3896

3897 3898 3899 3900 3901 3902 3903
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3904

3905 3906 3907 3908
	default:
		BUG_ON(1);
		break;
	}
3909 3910
}

3911 3912
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3913
{
3914 3915 3916
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3917
	struct irq_cfg *cfg;
3918 3919
	int i, ret, devid;
	int index = -1;
3920

3921 3922 3923 3924
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3925 3926
		return -EINVAL;

3927 3928 3929 3930 3931 3932
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3933

3934 3935 3936
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3937

3938 3939 3940
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3941

3942 3943 3944 3945 3946 3947
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
3948
		index = alloc_irq_index(devid, nr_irqs);
3949 3950 3951 3952 3953
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
3954

3955 3956 3957 3958 3959 3960 3961
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
3962

3963 3964 3965 3966 3967
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

3968 3969 3970 3971 3972 3973
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
3974

3975
	return 0;
3976

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
3988 3989
}

3990 3991
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
3992
{
3993 3994 3995 3996
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
3997

3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4009

4010 4011 4012 4013 4014
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4015

4016
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4017 4018
}

4019 4020
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4021
{
4022 4023 4024
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
4025

4026 4027 4028
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
4029

4030 4031 4032 4033 4034
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4035
};
4036

4037 4038 4039 4040 4041 4042 4043 4044
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
4045

4046 4047 4048
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4049

4050 4051 4052 4053 4054 4055 4056
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4057

4058 4059 4060 4061 4062
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4063
	send_cleanup_vector(cfg);
4064 4065

	return IRQ_SET_MASK_OK_DONE;
4066 4067
}

4068
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4069
{
4070
	struct amd_ir_data *ir_data = irq_data->chip_data;
4071

4072 4073
	*msg = ir_data->msi_entry;
}
4074

4075 4076 4077 4078 4079
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4080

4081 4082 4083 4084 4085
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4086

4087 4088
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4089 4090 4091

	return 0;
}
4092
#endif