amd_iommu.c 104.7 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/dma-direct.h>
32
#include <linux/iommu-helper.h>
33
#include <linux/iommu.h>
34
#include <linux/delay.h>
35
#include <linux/amd-iommu.h>
36 37
#include <linux/notifier.h>
#include <linux/export.h>
38 39
#include <linux/irq.h>
#include <linux/msi.h>
40
#include <linux/dma-contiguous.h>
41
#include <linux/irqdomain.h>
42
#include <linux/percpu.h>
43
#include <linux/iova.h>
44 45 46 47
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
48
#include <asm/msidef.h>
49
#include <asm/proto.h>
50
#include <asm/iommu.h>
51
#include <asm/gart.h>
52
#include <asm/dma.h>
53 54 55

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
56
#include "irq_remapping.h"
57

58 59
#define AMD_IOMMU_MAPPING_ERROR	0

60 61
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

62
#define LOOP_TIMEOUT	100000
63

64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84
static DEFINE_SPINLOCK(amd_iommu_devtable_lock);
85
static DEFINE_SPINLOCK(pd_bitmap_lock);
86

87
/* List of all available dev_data structures */
88
static LLIST_HEAD(dev_data_list);
89

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116
static void detach_device(struct device *dev);
117
static void iova_domain_flush_tlb(struct iova_domain *iovad);
118

119 120 121 122 123 124 125
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

126 127
	/* IOVA RB-Tree */
	struct iova_domain iovad;
128 129
};

130 131 132
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

133 134 135 136 137 138
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

139 140
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
141
{
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
157 158
}

159
static inline u16 get_pci_device_id(struct device *dev)
160 161 162 163 164 165
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

193 194 195 196 197
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

198 199 200 201 202 203
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

204
static struct iommu_dev_data *alloc_dev_data(u16 devid)
205 206 207 208 209 210 211
{
	struct iommu_dev_data *dev_data;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

212
	dev_data->devid = devid;
213 214
	ratelimit_default_init(&dev_data->rs);

215
	llist_add(&dev_data->dev_data_list, &dev_data_list);
216 217 218
	return dev_data;
}

219 220 221
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
222
	struct llist_node *node;
223

224 225
	if (llist_empty(&dev_data_list))
		return NULL;
226

227 228
	node = dev_data_list.first;
	llist_for_each_entry(dev_data, node, dev_data_list) {
229
		if (dev_data->devid == devid)
230
			return dev_data;
231 232
	}

233
	return NULL;
234 235
}

236 237 238 239 240 241 242 243 244 245 246
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

247
	/* The callers make sure that get_device_id() does not fail here */
248
	devid = get_device_id(dev);
249 250 251 252 253

	/* For ACPI HID devices, we simply return the devid as such */
	if (!dev_is_pci(dev))
		return devid;

254
	ivrs_alias = amd_iommu_alias_table[devid];
255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
295
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
296 297 298 299 300 301 302 303
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

304 305 306
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
307
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
308 309 310

	dev_data = search_dev_data(devid);

311
	if (dev_data == NULL) {
312
		dev_data = alloc_dev_data(devid);
313 314
		if (!dev_data)
			return NULL;
315

316 317 318 319
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

320 321 322
	return dev_data;
}

323
struct iommu_dev_data *get_dev_data(struct device *dev)
324 325 326
{
	return dev->archdata.iommu;
}
327
EXPORT_SYMBOL(get_dev_data);
328

329 330 331 332
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
333
{
334
	struct acpihid_map_entry *p, *entry = NULL;
335
	int devid;
336 337 338 339 340 341 342 343 344 345 346 347

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
348 349
	else
		iommu_group_ref_get(entry->group);
350 351

	return entry->group;
352 353
}

354 355 356 357
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
358 359
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
360 361 362
	};
	int i, pos;

G
Gil Kupfer 已提交
363 364 365
	if (pci_ats_disabled())
		return false;

366 367 368 369 370 371 372 373 374
	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

375 376 377 378 379 380 381 382 383
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

384 385 386 387 388 389
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
390
	int devid;
391 392 393 394 395

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
396
	if (devid < 0)
397
		return false;
398 399 400 401 402 403 404 405 406 407 408

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

409
static void init_iommu_group(struct device *dev)
410 411 412
{
	struct iommu_group *group;

413
	group = iommu_group_get_for_dev(dev);
414 415 416 417
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
418 419 420 421 422
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
423
	struct amd_iommu *iommu;
424
	int devid;
425 426 427 428

	if (dev->archdata.iommu)
		return 0;

429
	devid = get_device_id(dev);
430
	if (devid < 0)
431 432
		return devid;

433 434
	iommu = amd_iommu_rlookup_table[devid];

435
	dev_data = find_dev_data(devid);
436 437 438
	if (!dev_data)
		return -ENOMEM;

439 440
	dev_data->alias = get_alias(dev);

441 442 443 444 445 446 447 448
	/*
	 * By default we use passthrough mode for IOMMUv2 capable device.
	 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
	 * invalid address), we ignore the capability for the device so
	 * it'll be forced to go into translation mode.
	 */
	if ((iommu_pass_through || !amd_iommu_force_isolation) &&
	    dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
449 450
		struct amd_iommu *iommu;

451
		iommu = amd_iommu_rlookup_table[dev_data->devid];
452 453 454
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

455 456
	dev->archdata.iommu = dev_data;

457
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
458

459 460 461
	return 0;
}

462 463
static void iommu_ignore_device(struct device *dev)
{
464 465
	u16 alias;
	int devid;
466 467

	devid = get_device_id(dev);
468
	if (devid < 0)
469 470
		return;

471
	alias = get_alias(dev);
472 473 474 475 476 477 478 479

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

480 481
static void iommu_uninit_device(struct device *dev)
{
482
	struct iommu_dev_data *dev_data;
483 484
	struct amd_iommu *iommu;
	int devid;
485

486
	devid = get_device_id(dev);
487
	if (devid < 0)
488
		return;
489

490 491
	iommu = amd_iommu_rlookup_table[devid];

492
	dev_data = search_dev_data(devid);
493 494 495
	if (!dev_data)
		return;

496 497 498
	if (dev_data->domain)
		detach_device(dev);

499
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
500

501 502
	iommu_group_remove_device(dev);

503
	/* Remove dma-ops */
504
	dev->dma_ops = NULL;
505

506
	/*
507 508
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
509
	 */
510
}
J
Joerg Roedel 已提交
511

512 513 514 515 516 517
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

518 519 520 521
static void dump_dte_entry(u16 devid)
{
	int i;

522 523
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
524 525 526
			amd_iommu_dev_table[devid].data[i]);
}

527 528
static void dump_command(unsigned long phys_addr)
{
529
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
530 531 532 533 534 535
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

536 537 538 539 540 541
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

542 543
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

560
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
561
{
562
	struct device *dev = iommu->iommu.dev;
563
	int type, devid, pasid, flags, tag;
564 565 566 567 568 569 570
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
571
	pasid   = PPR_PASID(*(u64 *)&event[0]);
572 573 574 575 576 577 578 579 580 581 582 583
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
584

585
	if (type == EVENT_TYPE_IO_FAULT) {
586
		amd_iommu_report_page_fault(devid, pasid, address, flags);
587 588
		return;
	} else {
589
		dev_err(dev, "AMD-Vi: Event logged [");
590
	}
591 592 593

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
594
		dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
595
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
596
			pasid, address, flags);
597
		dump_dte_entry(devid);
598 599
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
600 601 602 603
		dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
604 605
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
606
		dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
607
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
608
			pasid, address, flags);
609 610
		break;
	case EVENT_TYPE_ILL_CMD:
611
		dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
612
		dump_command(address);
613 614
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
615 616
		dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx flags=0x%04x]\n",
			address, flags);
617 618
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
619
		dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x address=0x%016llx]\n",
620 621
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address);
622 623
		break;
	case EVENT_TYPE_INV_DEV_REQ:
624
		dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
625
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
626
			pasid, address, flags);
627
		break;
628 629 630 631 632 633 634
	case EVENT_TYPE_INV_PPR_REQ:
		pasid = ((event[0] >> 16) & 0xFFFF)
			| ((event[1] << 6) & 0xF0000);
		tag = event[1] & 0x03FF;
		dev_err(dev, "INVALID_PPR_REQUEST device=%02x:%02x.%x pasid=0x%05x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			pasid, address, flags);
635 636
		break;
	default:
637
		dev_err(dev, "UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
638
			event[0], event[1], event[2], event[3]);
639
	}
640 641

	memset(__evt, 0, 4 * sizeof(u32));
642 643 644 645 646 647 648 649 650 651
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
652
		iommu_print_event(iommu, iommu->evt_buf + head);
653
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
654 655 656 657 658
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

659
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
704

705 706 707
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
708

709 710 711 712 713 714 715
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
716 717
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
718 719 720 721 722 723

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
724 725 726 727
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

788
irqreturn_t amd_iommu_int_thread(int irq, void *data)
789
{
790 791
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
792

793 794 795
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
796
			iommu->mmio_base + MMIO_STATUS_OFFSET);
797

798 799 800 801
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
802

803 804 805 806
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
807

808 809 810 811 812 813 814
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
830
	return IRQ_HANDLED;
831 832
}

833 834 835 836 837
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

838 839 840 841 842 843
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
862
			       struct iommu_cmd *cmd)
863 864 865
{
	u8 *target;

866 867 868 869
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
870 871 872 873 874

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
875
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
876
}
877

878
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
879
{
880 881
	u64 paddr = iommu_virt_to_phys((void *)address);

882 883
	WARN_ON(address & 0x7ULL);

884
	memset(cmd, 0, sizeof(*cmd));
885 886
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
887
	cmd->data[2] = 1;
888 889 890
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

891 892 893 894 895 896 897
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

898 899 900 901
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
902
	bool s;
903 904

	pages = iommu_num_pages(address, size, PAGE_SIZE);
905
	s     = false;
906 907 908 909 910 911 912

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
913
		s = true;
914 915 916 917 918 919 920 921 922 923 924
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
925
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
926 927 928
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

929 930 931 932
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
933
	bool s;
934 935

	pages = iommu_num_pages(address, size, PAGE_SIZE);
936
	s     = false;
937 938 939 940 941 942 943

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
944
		s = true;
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

960 961 962 963 964 965 966
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

967
	cmd->data[0]  = pasid;
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
986
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
987 988
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
989
	cmd->data[1] |= (pasid & 0xff) << 16;
990 991 992 993 994 995 996 997
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

998 999 1000 1001 1002 1003 1004
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1005
		cmd->data[1]  = pasid;
1006 1007 1008 1009 1010 1011 1012 1013
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1014 1015 1016 1017
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1018 1019
}

1020 1021 1022 1023 1024 1025 1026
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1027 1028
/*
 * Writes the command to the IOMMUs command buffer and informs the
1029
 * hardware about the new command.
1030
 */
1031 1032 1033
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1034
{
1035
	unsigned int count = 0;
1036
	u32 left, next_tail;
1037

1038
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1039
again:
1040
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1041

1042
	if (left <= 0x20) {
1043 1044 1045 1046 1047 1048
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1049

1050 1051
			udelay(1);
		}
1052

1053 1054 1055
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1056 1057

		goto again;
1058 1059
	}

1060
	copy_cmd_to_buffer(iommu, cmd);
1061

1062
	/* Do we need to make sure all commands are processed? */
1063
	iommu->need_sync = sync;
1064

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1075
	raw_spin_lock_irqsave(&iommu->lock, flags);
1076
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1077
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1078

1079
	return ret;
1080 1081
}

1082 1083 1084 1085 1086
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1087 1088 1089 1090
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1091
static int iommu_completion_wait(struct amd_iommu *iommu)
1092 1093
{
	struct iommu_cmd cmd;
1094
	unsigned long flags;
1095
	int ret;
1096

1097
	if (!iommu->need_sync)
1098
		return 0;
1099

1100

1101 1102
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1103
	raw_spin_lock_irqsave(&iommu->lock, flags);
1104 1105 1106 1107

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1108
	if (ret)
1109 1110 1111 1112 1113
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1114
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1115

1116
	return ret;
1117 1118
}

1119
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1120
{
1121
	struct iommu_cmd cmd;
1122

1123
	build_inv_dte(&cmd, devid);
1124

1125 1126
	return iommu_queue_command(iommu, &cmd);
}
1127

1128
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1129 1130
{
	u32 devid;
1131

1132 1133
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1134

1135 1136
	iommu_completion_wait(iommu);
}
1137

1138 1139 1140 1141
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1142
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1143 1144
{
	u32 dom_id;
1145

1146 1147 1148 1149 1150 1151
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1152

1153
	iommu_completion_wait(iommu);
1154 1155
}

1156
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1157
{
1158
	struct iommu_cmd cmd;
1159

1160
	build_inv_all(&cmd);
1161

1162 1163 1164 1165
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1166 1167 1168 1169 1170 1171 1172 1173 1174
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1175
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1176 1177 1178 1179 1180 1181 1182 1183 1184
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1185 1186
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1187
	if (iommu_feature(iommu, FEATURE_IA)) {
1188
		amd_iommu_flush_all(iommu);
1189
	} else {
1190 1191 1192
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1193 1194 1195
	}
}

1196
/*
1197
 * Command send function for flushing on-device TLB
1198
 */
1199 1200
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1201 1202
{
	struct amd_iommu *iommu;
1203
	struct iommu_cmd cmd;
1204
	int qdep;
1205

1206 1207
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1208

1209
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1210 1211

	return iommu_queue_command(iommu, &cmd);
1212 1213
}

1214 1215 1216
/*
 * Command send function for invalidating a device table entry
 */
1217
static int device_flush_dte(struct iommu_dev_data *dev_data)
1218
{
1219
	struct amd_iommu *iommu;
1220
	u16 alias;
1221
	int ret;
1222

1223
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1224
	alias = dev_data->alias;
1225

1226
	ret = iommu_flush_dte(iommu, dev_data->devid);
1227 1228
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1229 1230 1231
	if (ret)
		return ret;

1232
	if (dev_data->ats.enabled)
1233
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1234 1235

	return ret;
1236 1237
}

1238 1239 1240 1241 1242
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1243 1244
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1245
{
1246
	struct iommu_dev_data *dev_data;
1247 1248
	struct iommu_cmd cmd;
	int ret = 0, i;
1249

1250
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1251

1252
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1253 1254 1255 1256 1257 1258 1259
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1260
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1261 1262
	}

1263 1264
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1265
		if (!dev_data->ats.enabled)
1266 1267
			continue;

1268
		ret |= device_flush_iotlb(dev_data, address, size);
1269 1270
	}

1271
	WARN_ON(ret);
1272 1273
}

1274 1275
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1276
{
1277
	__domain_flush_pages(domain, address, size, 0);
1278
}
1279

1280
/* Flush the whole IO/TLB for a given protection domain */
1281
static void domain_flush_tlb(struct protection_domain *domain)
1282
{
1283
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1284 1285
}

1286
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1287
static void domain_flush_tlb_pde(struct protection_domain *domain)
1288
{
1289
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1290 1291
}

1292
static void domain_flush_complete(struct protection_domain *domain)
1293
{
1294
	int i;
1295

1296
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1297
		if (domain && !domain->dev_iommu[i])
1298
			continue;
1299

1300 1301 1302 1303 1304
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1305
	}
1306 1307
}

1308

1309
/*
1310
 * This function flushes the DTEs for all devices in domain
1311
 */
1312
static void domain_flush_devices(struct protection_domain *domain)
1313
{
1314
	struct iommu_dev_data *dev_data;
1315

1316
	list_for_each_entry(dev_data, &domain->dev_list, list)
1317
		device_flush_dte(dev_data);
1318 1319
}

1320 1321 1322 1323 1324 1325 1326
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1346
					iommu_virt_to_phys(domain->pt_root));
1347 1348 1349 1350 1351 1352 1353 1354 1355
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1356
		      unsigned long page_size,
1357 1358 1359
		      u64 **pte_page,
		      gfp_t gfp)
{
1360
	int level, end_lvl;
1361
	u64 *pte, *page;
1362 1363

	BUG_ON(!is_power_of_2(page_size));
1364 1365 1366 1367

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1368 1369 1370 1371
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1372 1373

	while (level > end_lvl) {
1374 1375 1376 1377 1378
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1379 1380 1381
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1382

1383
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1384

1385 1386
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1387 1388 1389
				free_page((unsigned long)page);
				continue;
			}
1390 1391
		}

1392 1393 1394 1395
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1413 1414 1415
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1416 1417 1418 1419
{
	int level;
	u64 *pte;

1420 1421
	*page_size = 0;

1422 1423 1424
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1425 1426 1427
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1428

1429 1430 1431
	while (level > 0) {

		/* Not Present */
1432 1433 1434
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1435
		/* Large PTE */
1436 1437 1438
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1439 1440 1441 1442 1443

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1444 1445
		level -= 1;

1446
		/* Walk to the next level */
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1462 1463 1464 1465 1466
	}

	return pte;
}

1467 1468 1469 1470 1471 1472 1473
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1474 1475 1476
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1477
			  unsigned long page_size,
1478
			  int prot,
1479
			  gfp_t gfp)
1480
{
1481
	u64 __pte, *pte;
1482
	int i, count;
1483

1484 1485 1486
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1487
	if (!(prot & IOMMU_PROT_MASK))
1488 1489
		return -EINVAL;

1490
	count = PAGE_SIZE_PTE_COUNT(page_size);
1491
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1492

1493 1494 1495
	if (!pte)
		return -ENOMEM;

1496 1497 1498
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1499

1500
	if (count > 1) {
1501
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1502
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1503
	} else
1504
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1505 1506 1507 1508 1509 1510

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1511 1512
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1513

1514 1515
	update_domain(dom);

1516 1517 1518
	return 0;
}

1519 1520 1521
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1522
{
1523 1524
	unsigned long long unmapped;
	unsigned long unmap_size;
1525 1526 1527 1528 1529
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1530

1531 1532
	while (unmapped < page_size) {

1533 1534 1535 1536 1537 1538
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1539 1540 1541 1542 1543 1544 1545 1546
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1547
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1548

1549
	return unmapped;
1550 1551
}

1552 1553 1554
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1555
 * interface functions.
1556 1557
 *
 ****************************************************************************/
1558

1559

1560 1561 1562
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1563
{
1564
	unsigned long pfn = 0;
1565

1566
	pages = __roundup_pow_of_two(pages);
1567

1568 1569
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1570
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1571

1572
	if (!pfn)
1573 1574
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1575

1576
	return (pfn << PAGE_SHIFT);
1577 1578
}

1579 1580 1581
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1582
{
1583 1584
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1585

1586
	free_iova_fast(&dma_dom->iovad, address, pages);
1587 1588
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1624 1625 1626 1627
static u16 domain_id_alloc(void)
{
	int id;

1628
	spin_lock(&pd_bitmap_lock);
1629 1630 1631 1632 1633 1634
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
1635
	spin_unlock(&pd_bitmap_lock);
1636 1637 1638 1639

	return id;
}

1640 1641
static void domain_id_free(int id)
{
1642
	spin_lock(&pd_bitmap_lock);
1643 1644
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
1645
	spin_unlock(&pd_bitmap_lock);
1646 1647
}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1658
		/* PTE present? */				\
1659 1660 1661
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1662 1663 1664 1665 1666
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1679
static void free_pagetable(struct protection_domain *domain)
1680
{
1681
	unsigned long root = (unsigned long)domain->pt_root;
1682

1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1706 1707 1708
	}
}

1709 1710 1711 1712 1713 1714 1715 1716 1717
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1718
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1733
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1734 1735 1736 1737 1738

		free_gcr3_tbl_level1(ptr);
	}
}

1739 1740
static void free_gcr3_table(struct protection_domain *domain)
{
1741 1742 1743 1744
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1745 1746
	else
		BUG_ON(domain->glx != 0);
1747

1748 1749 1750
	free_page((unsigned long)domain->gcr3_tbl);
}

1751 1752 1753 1754
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1755 1756
}

1757
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1758
{
1759
	struct dma_ops_domain *dom;
1760

1761
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1762 1763 1764 1765

	dma_ops_domain_flush_tlb(dom);
}

1766 1767 1768 1769
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1770 1771 1772 1773 1774
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1775 1776
	del_domain_from_list(&dom->domain);

1777
	put_iova_domain(&dom->iovad);
1778

1779
	free_pagetable(&dom->domain);
1780

1781 1782 1783
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1784 1785 1786
	kfree(dom);
}

1787 1788
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1789
 * It also initializes the page table and the address allocator data
1790 1791
 * structures required for the dma_ops interface
 */
1792
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1793 1794 1795 1796 1797 1798 1799
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1800
	if (protection_domain_init(&dma_dom->domain))
1801
		goto free_dma_dom;
1802

1803
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1804
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1805
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1806 1807 1808
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1809
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1810

1811
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1812 1813
		goto free_dma_dom;

1814 1815
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1816

1817 1818
	add_domain_to_list(&dma_dom->domain);

1819 1820 1821 1822 1823 1824 1825 1826
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1827 1828 1829 1830 1831 1832 1833 1834 1835
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1836 1837
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1838
{
1839
	u64 pte_root = 0;
1840
	u64 flags = 0;
1841

1842
	if (domain->mode != PAGE_MODE_NONE)
1843
		pte_root = iommu_virt_to_phys(domain->pt_root);
1844

1845 1846
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1847
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1848

1849 1850
	flags = amd_iommu_dev_table[devid].data[1];

1851 1852 1853
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1854 1855 1856 1857 1858 1859 1860
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1861
	if (domain->flags & PD_IOMMUV2_MASK) {
1862
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1887
	flags &= ~DEV_DOMID_MASK;
1888 1889 1890 1891
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1892 1893 1894 1895 1896
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1897
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1898
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1899 1900

	amd_iommu_apply_erratum_63(devid);
1901 1902
}

1903 1904
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1905 1906
{
	struct amd_iommu *iommu;
1907
	u16 alias;
1908
	bool ats;
1909

1910
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1911
	alias = dev_data->alias;
1912
	ats   = dev_data->ats.enabled;
1913 1914 1915 1916 1917 1918 1919 1920 1921

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1922
	/* Update device table */
1923
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1924
	if (alias != dev_data->devid)
1925
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1926

1927
	device_flush_dte(dev_data);
1928 1929
}

1930
static void do_detach(struct iommu_dev_data *dev_data)
1931
{
1932
	struct protection_domain *domain = dev_data->domain;
1933
	struct amd_iommu *iommu;
1934
	u16 alias;
1935

1936
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1937
	alias = dev_data->alias;
1938

1939 1940 1941
	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1942
	clear_dte_entry(dev_data->devid);
1943 1944
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1945

1946
	/* Flush the DTE entry */
1947
	device_flush_dte(dev_data);
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957

	/* Flush IOTLB */
	domain_flush_tlb_pde(domain);

	/* Wait for the flushes to finish */
	domain_flush_complete(domain);

	/* decrease reference counters - needs to happen after the flushes */
	domain->dev_iommu[iommu->index] -= 1;
	domain->dev_cnt                 -= 1;
1958 1959 1960
}

/*
1961 1962
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
1963
 */
1964
static int __attach_device(struct iommu_dev_data *dev_data,
1965
			   struct protection_domain *domain)
1966
{
1967
	int ret;
1968

1969 1970 1971
	/* lock domain */
	spin_lock(&domain->lock);

1972
	ret = -EBUSY;
1973
	if (dev_data->domain != NULL)
1974
		goto out_unlock;
1975

1976
	/* Attach alias group root */
1977
	do_attach(dev_data, domain);
1978

1979 1980 1981 1982
	ret = 0;

out_unlock:

1983 1984
	/* ready */
	spin_unlock(&domain->lock);
1985

1986
	return ret;
1987
}
1988

1989 1990 1991 1992 1993 1994 1995 1996

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1997 1998 1999 2000 2001 2002
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2003
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2004 2005 2006
	if (!pos)
		return -EINVAL;

2007 2008 2009
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2010 2011 2012 2013

	return 0;
}

2014 2015
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2016 2017 2018 2019 2020 2021 2022 2023
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2035 2036
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2037 2038 2039
	if (ret)
		goto out_err;

2040 2041 2042 2043 2044 2045
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2059
/* FIXME: Move this to PCI code */
2060
#define PCI_PRI_TLP_OFF		(1 << 15)
2061

J
Joerg Roedel 已提交
2062
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2063
{
2064
	u16 status;
2065 2066
	int pos;

2067
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2068 2069 2070
	if (!pos)
		return false;

2071
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2072

2073
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2074 2075
}

2076
/*
2077 2078
 * If a device is not yet associated with a domain, this function makes the
 * device visible in the domain
2079
 */
2080 2081
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2082
{
2083
	struct pci_dev *pdev;
2084
	struct iommu_dev_data *dev_data;
2085
	unsigned long flags;
2086
	int ret;
2087

2088 2089
	dev_data = get_dev_data(dev);

2090 2091 2092 2093
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2094
	if (domain->flags & PD_IOMMUV2_MASK) {
2095
		if (!dev_data->passthrough)
2096 2097
			return -EINVAL;

2098 2099 2100
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2101

2102 2103 2104 2105
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2106 2107
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2108 2109 2110
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2111

2112
skip_ats_check:
2113
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2114
	ret = __attach_device(dev_data, domain);
2115
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2116

2117 2118 2119 2120 2121
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2122
	domain_flush_tlb_pde(domain);
2123 2124

	return ret;
2125 2126
}

2127 2128 2129
/*
 * Removes a device from a protection domain (unlocked)
 */
2130
static void __detach_device(struct iommu_dev_data *dev_data)
2131
{
2132
	struct protection_domain *domain;
2133

2134
	domain = dev_data->domain;
2135

2136
	spin_lock(&domain->lock);
2137

2138
	do_detach(dev_data);
2139

2140
	spin_unlock(&domain->lock);
2141 2142 2143 2144 2145
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2146
static void detach_device(struct device *dev)
2147
{
2148
	struct protection_domain *domain;
2149
	struct iommu_dev_data *dev_data;
2150 2151
	unsigned long flags;

2152
	dev_data = get_dev_data(dev);
2153
	domain   = dev_data->domain;
2154

2155 2156 2157 2158 2159 2160 2161 2162 2163
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (WARN_ON(!dev_data->domain))
		return;

2164
	/* lock device table */
2165
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2166
	__detach_device(dev_data);
2167
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2168

2169 2170 2171
	if (!dev_is_pci(dev))
		return;

2172
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2173 2174
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2175
		pci_disable_ats(to_pci_dev(dev));
2176 2177

	dev_data->ats.enabled = false;
2178
}
2179

2180
static int amd_iommu_add_device(struct device *dev)
2181
{
2182
	struct iommu_dev_data *dev_data;
2183
	struct iommu_domain *domain;
2184
	struct amd_iommu *iommu;
2185
	int ret, devid;
2186

2187
	if (!check_device(dev) || get_dev_data(dev))
2188
		return 0;
2189

2190
	devid = get_device_id(dev);
2191
	if (devid < 0)
2192 2193
		return devid;

2194
	iommu = amd_iommu_rlookup_table[devid];
2195

2196
	ret = iommu_init_device(dev);
2197 2198 2199 2200
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2201

2202
		iommu_ignore_device(dev);
2203
		dev->dma_ops = &dma_direct_ops;
2204 2205 2206
		goto out;
	}
	init_iommu_group(dev);
2207

2208
	dev_data = get_dev_data(dev);
2209

2210
	BUG_ON(!dev_data);
2211

2212
	if (iommu_pass_through || dev_data->iommu_v2)
2213
		iommu_request_dm_for_dev(dev);
2214

2215 2216
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2217
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2218
		dev_data->passthrough = true;
2219
	else
2220
		dev->dma_ops = &amd_iommu_dma_ops;
2221

2222
out:
2223 2224 2225 2226 2227
	iommu_completion_wait(iommu);

	return 0;
}

2228
static void amd_iommu_remove_device(struct device *dev)
2229
{
2230
	struct amd_iommu *iommu;
2231
	int devid;
2232 2233 2234 2235 2236

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2237
	if (devid < 0)
2238 2239
		return;

2240 2241 2242 2243
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2244 2245
}

2246 2247 2248 2249 2250 2251 2252 2253
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2267
static struct protection_domain *get_domain(struct device *dev)
2268
{
2269
	struct protection_domain *domain;
2270
	struct iommu_domain *io_domain;
2271

2272
	if (!check_device(dev))
2273
		return ERR_PTR(-EINVAL);
2274

2275
	domain = get_dev_data(dev)->domain;
2276 2277 2278 2279 2280 2281
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2282 2283 2284
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2285
	if (!dma_ops_domain(domain))
2286
		return ERR_PTR(-EBUSY);
2287

2288
	return domain;
2289 2290
}

2291 2292
static void update_device_table(struct protection_domain *domain)
{
2293
	struct iommu_dev_data *dev_data;
2294

2295
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2296 2297
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2298 2299 2300 2301 2302

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2303 2304
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2305
	}
2306 2307 2308 2309 2310 2311 2312 2313
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2314 2315 2316

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2317 2318 2319 2320

	domain->updated = false;
}

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2332

2333 2334
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2335 2336
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2337 2338
 * Must be called with the domain lock held.
 */
2339 2340 2341 2342
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2343
			       enum dma_data_direction direction,
2344
			       u64 dma_mask)
2345 2346
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2347
	dma_addr_t address, start, ret;
2348
	unsigned int pages;
2349
	int prot = 0;
2350 2351
	int i;

2352
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2353 2354
	paddr &= PAGE_MASK;

2355
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2356
	if (address == AMD_IOMMU_MAPPING_ERROR)
2357
		goto out;
2358

2359
	prot = dir2prot(direction);
2360

2361 2362
	start = address;
	for (i = 0; i < pages; ++i) {
2363 2364 2365
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2366 2367
			goto out_unmap;

2368 2369 2370 2371 2372
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2373
	if (unlikely(amd_iommu_np_cache)) {
2374
		domain_flush_pages(&dma_dom->domain, address, size);
2375 2376
		domain_flush_complete(&dma_dom->domain);
	}
2377

2378 2379
out:
	return address;
2380 2381 2382 2383 2384

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2385
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2386 2387
	}

2388 2389 2390 2391
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2392

2393
	return AMD_IOMMU_MAPPING_ERROR;
2394 2395
}

2396 2397 2398 2399
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2400
static void __unmap_single(struct dma_ops_domain *dma_dom,
2401 2402 2403 2404 2405 2406 2407
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2408
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2409 2410 2411 2412
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2413
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2414 2415 2416
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2417 2418 2419
	if (amd_iommu_unmap_flush) {
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
2420
		dma_ops_free_iova(dma_dom, dma_addr, pages);
J
Joerg Roedel 已提交
2421
	} else {
2422 2423
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2424
	}
2425 2426
}

2427 2428 2429
/*
 * The exported map_single function for dma_ops.
 */
2430 2431 2432
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2433
			   unsigned long attrs)
2434
{
2435
	phys_addr_t paddr = page_to_phys(page) + offset;
2436
	struct protection_domain *domain;
2437
	struct dma_ops_domain *dma_dom;
2438
	u64 dma_mask;
2439

2440 2441
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2442
		return (dma_addr_t)paddr;
2443
	else if (IS_ERR(domain))
2444
		return AMD_IOMMU_MAPPING_ERROR;
2445

2446
	dma_mask = *dev->dma_mask;
2447
	dma_dom = to_dma_ops_domain(domain);
2448

2449
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2450 2451
}

2452 2453 2454
/*
 * The exported unmap_single function for dma_ops.
 */
2455
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2456
		       enum dma_data_direction dir, unsigned long attrs)
2457 2458
{
	struct protection_domain *domain;
2459
	struct dma_ops_domain *dma_dom;
2460

2461 2462
	domain = get_domain(dev);
	if (IS_ERR(domain))
2463 2464
		return;

2465 2466 2467
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2468 2469
}

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2496 2497 2498 2499
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2500
static int map_sg(struct device *dev, struct scatterlist *sglist,
2501
		  int nelems, enum dma_data_direction direction,
2502
		  unsigned long attrs)
2503
{
2504
	int mapped_pages = 0, npages = 0, prot = 0, i;
2505
	struct protection_domain *domain;
2506
	struct dma_ops_domain *dma_dom;
2507
	struct scatterlist *s;
2508
	unsigned long address;
2509
	u64 dma_mask;
2510

2511
	domain = get_domain(dev);
2512
	if (IS_ERR(domain))
2513
		return 0;
2514

2515
	dma_dom  = to_dma_ops_domain(domain);
2516
	dma_mask = *dev->dma_mask;
2517

2518 2519 2520
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2521
	if (address == AMD_IOMMU_MAPPING_ERROR)
2522 2523 2524 2525 2526
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2527
	for_each_sg(sglist, s, nelems, i) {
2528 2529 2530 2531 2532
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2533

2534 2535 2536 2537 2538
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2539

2540 2541
			mapped_pages += 1;
		}
2542 2543
	}

2544 2545
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
2546 2547 2548 2549 2550 2551
		/*
		 * Add in the remaining piece of the scatter-gather offset that
		 * was masked out when we were determining the physical address
		 * via (sg_phys(s) & PAGE_MASK) earlier.
		 */
		s->dma_address += address + (s->offset & ~PAGE_MASK);
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2566

2567 2568 2569
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

2570
			if (--mapped_pages == 0)
2571 2572
				goto out_free_iova;
		}
2573 2574
	}

2575
out_free_iova:
2576
	free_iova_fast(&dma_dom->iovad, address >> PAGE_SHIFT, npages);
2577 2578

out_err:
2579
	return 0;
2580 2581
}

2582 2583 2584 2585
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2586
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2587
		     int nelems, enum dma_data_direction dir,
2588
		     unsigned long attrs)
2589 2590
{
	struct protection_domain *domain;
2591
	struct dma_ops_domain *dma_dom;
2592 2593
	unsigned long startaddr;
	int npages = 2;
2594

2595 2596
	domain = get_domain(dev);
	if (IS_ERR(domain))
2597 2598
		return;

2599
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2600
	dma_dom   = to_dma_ops_domain(domain);
2601 2602
	npages    = sg_num_pages(dev, sglist, nelems);

2603
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2604 2605
}

2606 2607 2608
/*
 * The exported alloc_coherent function for dma_ops.
 */
2609
static void *alloc_coherent(struct device *dev, size_t size,
2610
			    dma_addr_t *dma_addr, gfp_t flag,
2611
			    unsigned long attrs)
2612
{
2613
	u64 dma_mask = dev->coherent_dma_mask;
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;

	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
	} else if (IS_ERR(domain))
		return NULL;
2625

2626 2627 2628 2629 2630 2631 2632 2633 2634
	dma_dom   = to_dma_ops_domain(domain);
	size	  = PAGE_ALIGN(size);
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;

	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
		if (!gfpflags_allow_blocking(flag))
2635
			return NULL;
2636

2637
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2638
					get_order(size), flag & __GFP_NOWARN);
2639 2640 2641
		if (!page)
			return NULL;
	}
2642

2643 2644 2645
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2646 2647 2648
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
				 size, DMA_BIDIRECTIONAL, dma_mask);

2649
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2650
		goto out_free;
2651 2652

	return page_address(page);
2653 2654

out_free:
2655 2656 2657 2658

	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));

2659
	return NULL;
2660 2661
}

2662 2663 2664
/*
 * The exported free_coherent function for dma_ops.
 */
2665
static void free_coherent(struct device *dev, size_t size,
2666
			  void *virt_addr, dma_addr_t dma_addr,
2667
			  unsigned long attrs)
2668
{
2669 2670 2671
	struct protection_domain *domain;
	struct dma_ops_domain *dma_dom;
	struct page *page;
2672

2673
	page = virt_to_page(virt_addr);
2674 2675
	size = PAGE_ALIGN(size);

2676 2677 2678
	domain = get_domain(dev);
	if (IS_ERR(domain))
		goto free_mem;
2679

2680 2681 2682
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2683

2684 2685 2686
free_mem:
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2687 2688
}

2689 2690 2691 2692 2693 2694
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2695
	if (!dma_direct_supported(dev, mask))
2696
		return 0;
2697
	return check_device(dev);
2698 2699
}

2700 2701 2702 2703 2704
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2705
static const struct dma_map_ops amd_iommu_dma_ops = {
2706 2707 2708 2709 2710 2711 2712
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2713
	.mapping_error	= amd_iommu_mapping_error,
2714 2715
};

2716 2717 2718 2719 2720
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2721
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2768
int __init amd_iommu_init_api(void)
2769
{
2770
	int ret, err = 0;
2771 2772 2773 2774

	ret = iova_cache_get();
	if (ret)
		return ret;
2775

2776 2777 2778 2779
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2780 2781 2782 2783 2784 2785 2786 2787
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2788 2789 2790
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2791

2792
	return 0;
2793 2794
}

2795 2796
int __init amd_iommu_init_dma_ops(void)
{
2797
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2798 2799
	iommu_detected = 1;

2800 2801
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2802 2803 2804 2805 2806
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2807 2808
	 */
	if (!swiotlb)
2809
		dma_ops = &dma_direct_ops;
2810

2811 2812 2813 2814 2815
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2816
	return 0;
2817

2818
}
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2832
	struct iommu_dev_data *entry;
2833 2834
	unsigned long flags;

2835
	spin_lock_irqsave(&amd_iommu_devtable_lock, flags);
2836

2837 2838 2839
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
2840
		BUG_ON(!entry->domain);
2841
		__detach_device(entry);
2842
	}
2843

2844
	spin_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2845 2846
}

2847 2848 2849 2850 2851
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2852 2853
	del_domain_from_list(domain);

2854 2855 2856 2857 2858 2859
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2872
static struct protection_domain *protection_domain_alloc(void)
2873 2874 2875 2876 2877
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2878
		return NULL;
2879

2880
	if (protection_domain_init(domain))
2881 2882
		goto out_err;

2883 2884
	add_domain_to_list(domain);

2885 2886 2887 2888 2889 2890 2891 2892
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2893
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2894
{
2895
	struct protection_domain *pdomain;
2896
	struct dma_ops_domain *dma_domain;
2897

2898 2899 2900 2901 2902
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2903

2904 2905 2906 2907 2908 2909
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2910

2911 2912 2913
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2914

2915 2916 2917 2918 2919 2920 2921 2922 2923
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2924 2925 2926 2927
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2928

2929 2930
		pdomain->mode = PAGE_MODE_NONE;
		break;
2931 2932 2933
	default:
		return NULL;
	}
2934

2935
	return &pdomain->domain;
2936 2937
}

2938
static void amd_iommu_domain_free(struct iommu_domain *dom)
2939
{
2940
	struct protection_domain *domain;
2941
	struct dma_ops_domain *dma_dom;
2942

2943 2944
	domain = to_pdomain(dom);

2945 2946 2947 2948 2949
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2950 2951
	if (!dom)
		return;
2952

2953 2954
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2955
		/* Now release the domain */
2956
		dma_dom = to_dma_ops_domain(domain);
2957 2958 2959 2960 2961
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2962

2963 2964 2965 2966 2967 2968
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2969 2970
}

2971 2972 2973
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2974
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2975
	struct amd_iommu *iommu;
2976
	int devid;
2977

2978
	if (!check_device(dev))
2979 2980
		return;

2981
	devid = get_device_id(dev);
2982
	if (devid < 0)
2983
		return;
2984

2985
	if (dev_data->domain != NULL)
2986
		detach_device(dev);
2987 2988 2989 2990 2991

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2992 2993 2994 2995 2996 2997
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2998 2999 3000
	iommu_completion_wait(iommu);
}

3001 3002 3003
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3004
	struct protection_domain *domain = to_pdomain(dom);
3005
	struct iommu_dev_data *dev_data;
3006
	struct amd_iommu *iommu;
3007
	int ret;
3008

3009
	if (!check_device(dev))
3010 3011
		return -EINVAL;

3012 3013
	dev_data = dev->archdata.iommu;

3014
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3015 3016 3017
	if (!iommu)
		return -EINVAL;

3018
	if (dev_data->domain)
3019
		detach_device(dev);
3020

3021
	ret = attach_device(dev, domain);
3022

3023 3024 3025 3026 3027 3028 3029 3030 3031
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3032 3033
	iommu_completion_wait(iommu);

3034
	return ret;
3035 3036
}

3037
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3038
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3039
{
3040
	struct protection_domain *domain = to_pdomain(dom);
3041 3042 3043
	int prot = 0;
	int ret;

3044 3045 3046
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3047 3048 3049 3050 3051
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3052
	mutex_lock(&domain->api_lock);
3053
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3054 3055
	mutex_unlock(&domain->api_lock);

3056
	return ret;
3057 3058
}

3059 3060
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3061
{
3062
	struct protection_domain *domain = to_pdomain(dom);
3063
	size_t unmap_size;
3064

3065
	if (domain->mode == PAGE_MODE_NONE)
3066
		return 0;
3067

3068
	mutex_lock(&domain->api_lock);
3069
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3070
	mutex_unlock(&domain->api_lock);
3071

3072
	return unmap_size;
3073 3074
}

3075
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3076
					  dma_addr_t iova)
3077
{
3078
	struct protection_domain *domain = to_pdomain(dom);
3079
	unsigned long offset_mask, pte_pgsize;
3080
	u64 *pte, __pte;
3081

3082 3083 3084
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3085
	pte = fetch_pte(domain, iova, &pte_pgsize);
3086

3087
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3088 3089
		return 0;

3090
	offset_mask = pte_pgsize - 1;
3091
	__pte	    = __sme_clr(*pte & PM_ADDR_MASK);
3092

3093
	return (__pte & ~offset_mask) | (iova & offset_mask);
3094 3095
}

3096
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3097
{
3098 3099
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3100
		return true;
3101
	case IOMMU_CAP_INTR_REMAP:
3102
		return (irq_remapping_enabled == 1);
3103 3104
	case IOMMU_CAP_NOEXEC:
		return false;
3105 3106
	}

3107
	return false;
S
Sheng Yang 已提交
3108 3109
}

3110 3111
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3112
{
3113
	struct iommu_resv_region *region;
3114
	struct unity_map_entry *entry;
3115
	int devid;
3116 3117

	devid = get_device_id(dev);
3118
	if (devid < 0)
3119
		return;
3120 3121

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3122 3123
		size_t length;
		int prot = 0;
3124 3125 3126 3127

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3128 3129 3130 3131 3132 3133 3134 3135 3136
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3137 3138 3139 3140 3141 3142 3143
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3144 3145 3146

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3147
					 0, IOMMU_RESV_MSI);
3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3158 3159
}

3160
static void amd_iommu_put_resv_regions(struct device *dev,
3161 3162
				     struct list_head *head)
{
3163
	struct iommu_resv_region *entry, *next;
3164 3165 3166 3167 3168

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3169
static void amd_iommu_apply_resv_region(struct device *dev,
3170
				      struct iommu_domain *domain,
3171
				      struct iommu_resv_region *region)
3172
{
3173
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3174 3175 3176
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3177
	end   = IOVA_PFN(region->start + region->length - 1);
3178 3179 3180 3181

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3182 3183 3184 3185 3186 3187 3188
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct protection_domain *dom = to_pdomain(domain);

	domain_flush_tlb_pde(dom);
	domain_flush_complete(dom);
}

static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
				      unsigned long iova, size_t size)
{
}

3202
const struct iommu_ops amd_iommu_ops = {
3203
	.capable = amd_iommu_capable,
3204 3205
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3206 3207
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3208 3209
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3210
	.iova_to_phys = amd_iommu_iova_to_phys,
3211 3212
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3213
	.device_group = amd_iommu_device_group,
3214 3215 3216
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3217
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3218
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3219 3220 3221
	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
	.iotlb_range_add = amd_iommu_iotlb_range_add,
	.iotlb_sync = amd_iommu_flush_iotlb_all,
3222 3223
};

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3246 3247 3248

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3249
	struct protection_domain *domain = to_pdomain(dom);
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3267 3268 3269

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3270
	struct protection_domain *domain = to_pdomain(dom);
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3331
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3348 3349 3350 3351 3352 3353
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3385
	struct protection_domain *domain = to_pdomain(dom);
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3405
	struct protection_domain *domain = to_pdomain(dom);
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3438
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3439 3440
		}

3441
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3485
	struct protection_domain *domain = to_pdomain(dom);
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3499
	struct protection_domain *domain = to_pdomain(dom);
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3527 3528 3529

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3530
	struct protection_domain *pdomain;
3531

3532 3533
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3534 3535 3536
		return NULL;

	/* Only return IOMMUv2 domains */
3537
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3538 3539
		return NULL;

3540
	return &pdomain->domain;
3541 3542
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

G
Gil Kupfer 已提交
3570 3571 3572 3573 3574
	if (!pci_ats_disabled()) {
		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
		if (pos)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
	}
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3600 3601 3602 3603 3604 3605 3606 3607 3608

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3609
static struct irq_chip amd_ir_chip;
3610
static DEFINE_SPINLOCK(iommu_table_lock);
3611

3612 3613 3614 3615 3616 3617
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3618
	dte	|= iommu_virt_to_phys(table->table);
3619 3620 3621 3622 3623 3624 3625
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
static struct irq_remap_table *__alloc_irq_table(void)
{
	struct irq_remap_table *table;

	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return NULL;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
	if (!table->table) {
		kfree(table);
		return NULL;
	}
	raw_spin_lock_init(&table->lock);

	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
	return table;
}

3665 3666 3667 3668 3669 3670 3671 3672
static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
				  struct irq_remap_table *table)
{
	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
}

3673
static struct irq_remap_table *alloc_irq_table(u16 devid)
3674 3675
{
	struct irq_remap_table *table = NULL;
3676
	struct irq_remap_table *new_table = NULL;
3677 3678 3679 3680
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

3681
	spin_lock_irqsave(&iommu_table_lock, flags);
3682 3683 3684 3685 3686 3687 3688

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3689
		goto out_unlock;
3690 3691 3692 3693

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
3694
		set_remap_table_entry(iommu, devid, table);
3695
		goto out_wait;
3696
	}
3697
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3698 3699

	/* Nothing there yet, allocate new irq remapping table */
3700 3701 3702
	new_table = __alloc_irq_table();
	if (!new_table)
		return NULL;
3703

3704
	spin_lock_irqsave(&iommu_table_lock, flags);
3705

3706 3707
	table = irq_lookup_table[devid];
	if (table)
3708
		goto out_unlock;
3709

3710 3711 3712 3713
	table = irq_lookup_table[alias];
	if (table) {
		set_remap_table_entry(iommu, devid, table);
		goto out_wait;
3714 3715
	}

3716 3717
	table = new_table;
	new_table = NULL;
3718

3719 3720 3721
	set_remap_table_entry(iommu, devid, table);
	if (devid != alias)
		set_remap_table_entry(iommu, alias, table);
3722

3723
out_wait:
3724 3725 3726
	iommu_completion_wait(iommu);

out_unlock:
3727
	spin_unlock_irqrestore(&iommu_table_lock, flags);
3728

3729 3730 3731 3732
	if (new_table) {
		kmem_cache_free(amd_iommu_irq_cache, new_table->table);
		kfree(new_table);
	}
3733 3734 3735
	return table;
}

3736
static int alloc_irq_index(u16 devid, int count, bool align)
3737 3738
{
	struct irq_remap_table *table;
3739
	int index, c, alignment = 1;
3740
	unsigned long flags;
3741 3742 3743 3744
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3745

3746
	table = alloc_irq_table(devid);
3747 3748 3749
	if (!table)
		return -ENODEV;

3750 3751 3752
	if (align)
		alignment = roundup_pow_of_two(count);

3753
	raw_spin_lock_irqsave(&table->lock, flags);
3754 3755

	/* Scan table for free entries */
3756
	for (index = ALIGN(table->min_index, alignment), c = 0;
3757
	     index < MAX_IRQS_PER_TABLE;) {
3758
		if (!iommu->irte_ops->is_allocated(table, index)) {
3759
			c += 1;
3760 3761
		} else {
			c     = 0;
3762
			index = ALIGN(index + 1, alignment);
3763 3764
			continue;
		}
3765 3766 3767

		if (c == count)	{
			for (; c != 0; --c)
3768
				iommu->irte_ops->set_allocated(table, index - c + 1);
3769 3770 3771 3772

			index -= count - 1;
			goto out;
		}
3773 3774

		index++;
3775 3776 3777 3778 3779
	}

	index = -ENOSPC;

out:
3780
	raw_spin_unlock_irqrestore(&table->lock, flags);
3781 3782 3783 3784

	return index;
}

3785 3786
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3787 3788 3789 3790
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3791
	struct irte_ga *entry;
3792 3793 3794 3795 3796

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3797
	table = get_irq_table(devid);
3798 3799 3800
	if (!table)
		return -ENOMEM;

3801
	raw_spin_lock_irqsave(&table->lock, flags);
3802 3803 3804 3805 3806 3807 3808

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3809 3810
	if (data)
		data->ref = entry;
3811

3812
	raw_spin_unlock_irqrestore(&table->lock, flags);
3813 3814 3815 3816 3817 3818 3819 3820

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3821 3822 3823 3824 3825 3826 3827 3828 3829
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3830
	table = get_irq_table(devid);
3831 3832 3833
	if (!table)
		return -ENOMEM;

3834
	raw_spin_lock_irqsave(&table->lock, flags);
3835
	table->table[index] = irte->val;
3836
	raw_spin_unlock_irqrestore(&table->lock, flags);
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3854
	table = get_irq_table(devid);
3855 3856 3857
	if (!table)
		return;

3858
	raw_spin_lock_irqsave(&table->lock, flags);
3859
	iommu->irte_ops->clear_allocated(table, index);
3860
	raw_spin_unlock_irqrestore(&table->lock, flags);
3861 3862 3863 3864 3865

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3866 3867
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3868
			 u8 vector, u32 dest_apicid, int devid)
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3882
			    u8 vector, u32 dest_apicid, int devid)
3883 3884 3885 3886 3887 3888 3889 3890
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
3891 3892
	irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
	irte->hi.fields.destination       = APICID_TO_IRTE_DEST_HI(dest_apicid);
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3909
	modify_irte_ga(devid, index, irte, NULL);
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3925
	modify_irte_ga(devid, index, irte, NULL);
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3943
	if (!irte->lo.fields_remap.guest_mode) {
3944
		irte->hi.fields.vector = vector;
3945 3946 3947 3948
		irte->lo.fields_remap.destination =
					APICID_TO_IRTE_DEST_LO(dest_apicid);
		irte->hi.fields.destination =
					APICID_TO_IRTE_DEST_HI(dest_apicid);
3949 3950
		modify_irte_ga(devid, index, irte, NULL);
	}
3951 3952
}

3953
#define IRTE_ALLOCATED (~1U)
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3999
static int get_devid(struct irq_alloc_info *info)
4000
{
4001
	int devid = -1;
4002

4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4018

4019 4020
	return devid;
}
4021

4022 4023 4024 4025
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4026

4027 4028
	if (!info)
		return NULL;
4029

4030 4031 4032 4033 4034 4035
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4036

4037
	return NULL;
4038 4039
}

4040
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4041
{
4042 4043
	struct amd_iommu *iommu;
	int devid;
4044

4045 4046
	if (!info)
		return NULL;
4047

4048 4049 4050 4051
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4052
		if (devid < 0)
4053 4054
			return NULL;

4055 4056 4057
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4058 4059 4060 4061
		break;
	default:
		break;
	}
4062

4063 4064
	return NULL;
}
4065

4066 4067 4068 4069 4070 4071
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4072 4073 4074
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4075

4076 4077 4078 4079 4080 4081 4082 4083
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4084 4085 4086 4087
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4088

4089 4090
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4091 4092
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4093
				 irq_cfg->dest_apicid, devid);
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4109

4110 4111 4112 4113 4114 4115 4116
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4117

4118 4119 4120 4121
	default:
		BUG_ON(1);
		break;
	}
4122 4123
}

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4144 4145
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4146
{
4147 4148
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4149
	struct amd_ir_data *data = NULL;
4150
	struct irq_cfg *cfg;
4151
	int i, ret, devid;
4152
	int index;
4153

4154 4155 4156 4157
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4158 4159
		return -EINVAL;

4160 4161 4162 4163 4164 4165
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4166

4167 4168 4169
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4170

4171 4172 4173
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4174

4175
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
		struct irq_remap_table *table;
		struct amd_iommu *iommu;

		table = alloc_irq_table(devid);
		if (table) {
			if (!table->min_index) {
				/*
				 * Keep the first 32 indexes free for IOAPIC
				 * interrupts.
				 */
				table->min_index = 32;
				iommu = amd_iommu_rlookup_table[devid];
				for (i = 0; i < 32; ++i)
					iommu->irte_ops->set_allocated(table, i);
			}
			WARN_ON(table->min_index != 32);
4192
			index = info->ioapic_pin;
4193
		} else {
4194
			index = -ENOMEM;
4195
		}
4196
	} else {
4197 4198 4199
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4200 4201 4202
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4203
		ret = index;
4204 4205
		goto out_free_parent;
	}
4206

4207 4208 4209 4210 4211 4212 4213
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4214

4215 4216 4217 4218 4219
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4220 4221 4222 4223 4224 4225 4226 4227 4228 4229
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4230 4231 4232 4233 4234 4235
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4236

4237
	return 0;
4238

4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4250 4251
}

4252 4253
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4254
{
4255 4256 4257 4258
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4259

4260 4261 4262 4263 4264 4265
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4266
			kfree(data->entry);
4267 4268 4269 4270 4271
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4272

4273 4274 4275 4276 4277
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4278
static int irq_remapping_activate(struct irq_domain *domain,
4279
				  struct irq_data *irq_data, bool reserve)
4280 4281 4282
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4283
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4284
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4285

4286 4287 4288 4289 4290 4291
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4292
	return 0;
4293 4294
}

4295 4296
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4297
{
4298 4299
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4300
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4301

4302 4303 4304
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4305
}
4306

4307
static const struct irq_domain_ops amd_ir_domain_ops = {
4308 4309 4310 4311
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4312
};
4313

4314 4315 4316 4317 4318 4319 4320 4321
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4322 4323 4324 4325 4326 4327 4328 4329
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4352
		irte->lo.fields_vapic.ga_log_intr = 1;
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
4365 4366 4367 4368
		irte->lo.fields_remap.destination =
				APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
		irte->hi.fields.destination =
				APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4398 4399 4400 4401 4402 4403 4404
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4405
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4406
	int ret;
4407

4408 4409 4410
	if (!iommu)
		return -ENODEV;

4411 4412 4413
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4414

4415
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4416 4417 4418 4419 4420
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4421
	send_cleanup_vector(cfg);
4422 4423

	return IRQ_SET_MASK_OK_DONE;
4424 4425
}

4426
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4427
{
4428
	struct amd_ir_data *ir_data = irq_data->chip_data;
4429

4430 4431
	*msg = ir_data->msi_entry;
}
4432

4433
static struct irq_chip amd_ir_chip = {
4434
	.name			= "AMD-IR",
4435
	.irq_ack		= apic_ack_irq,
4436 4437 4438
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4439
};
4440

4441 4442
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4443 4444 4445 4446 4447 4448 4449
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4450 4451
	if (!iommu->ir_domain)
		return -ENOMEM;
4452

4453
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4454 4455 4456
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4457 4458
	return 0;
}
4459 4460 4461 4462 4463

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
4464
	struct irq_remap_table *table;
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4478 4479
	table = get_irq_table(devid);
	if (!table)
4480 4481
		return -ENODEV;

4482
	raw_spin_lock_irqsave(&table->lock, flags);
4483 4484

	if (ref->lo.fields_vapic.guest_mode) {
4485 4486 4487 4488 4489 4490
		if (cpu >= 0) {
			ref->lo.fields_vapic.destination =
						APICID_TO_IRTE_DEST_LO(cpu);
			ref->hi.fields.destination =
						APICID_TO_IRTE_DEST_HI(cpu);
		}
4491 4492 4493 4494
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4495
	raw_spin_unlock_irqrestore(&table->lock, flags);
4496 4497 4498 4499 4500 4501

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4502
#endif