amd_iommu.c 102.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
	struct dma_ops_domain *dma_dom;
};

struct flush_queue {
	spinlock_t lock;
	unsigned next;
	struct flush_queue_entry *entries;
};

106
static DEFINE_PER_CPU(struct flush_queue, flush_queue);
107

108 109 110
static atomic_t queue_timer_on;
static struct timer_list queue_timer;

111 112 113 114
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
115
const struct iommu_ops amd_iommu_ops;
116

117
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
118
int amd_iommu_max_glx_val = -1;
119

120
static const struct dma_map_ops amd_iommu_dma_ops;
121

122 123 124 125 126 127 128 129
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
130
	u16 alias;			  /* Alias Device ID */
131
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
132
	bool passthrough;		  /* Device is identity mapped */
133 134 135 136 137 138 139
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
140
	bool use_vapic;			  /* Enable device to use vapic mode */
141 142

	struct ratelimit_state rs;	  /* Ratelimit IOPF messages */
143 144
};

145 146 147
/*
 * general struct to manage commands send to an IOMMU
 */
148
struct iommu_cmd {
149 150 151
	u32 data[4];
};

152 153
struct kmem_cache *amd_iommu_irq_cache;

154
static void update_domain(struct protection_domain *domain);
155
static int protection_domain_init(struct protection_domain *domain);
156
static void detach_device(struct device *dev);
157

158 159 160 161 162 163 164
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

165 166
	/* IOVA RB-Tree */
	struct iova_domain iovad;
167 168
};

169 170 171
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

172 173 174 175 176 177
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

178 179
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
180
{
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
196 197
}

198
static inline u16 get_pci_device_id(struct device *dev)
199 200 201 202 203 204
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

232 233 234 235 236
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

237 238 239 240 241 242
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

243
static struct iommu_dev_data *alloc_dev_data(u16 devid)
244 245 246 247 248 249 250 251
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

252
	dev_data->devid = devid;
253 254 255 256 257

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

258 259
	ratelimit_default_init(&dev_data->rs);

260 261 262
	return dev_data;
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

282 283 284 285 286 287 288 289 290 291 292
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

293
	/* The callers make sure that get_device_id() does not fail here */
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
335
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
336 337 338 339 340 341 342 343
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

344 345 346 347 348 349 350 351 352 353 354 355
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

356 357 358 359 360
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

361 362 363 364
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
365
{
366
	struct acpihid_map_entry *p, *entry = NULL;
367
	int devid;
368 369 370 371 372 373 374 375 376 377 378 379

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
380 381
	else
		iommu_group_ref_get(entry->group);
382 383

	return entry->group;
384 385
}

386 387 388 389
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
390 391
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
392 393 394 395 396 397 398 399 400 401 402 403
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

404 405 406 407 408 409 410 411 412
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

413 414 415 416 417 418
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
419
	int devid;
420 421 422 423 424

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
425
	if (devid < 0)
426
		return false;
427 428 429 430 431 432 433 434 435 436 437

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

438
static void init_iommu_group(struct device *dev)
439 440 441
{
	struct iommu_group *group;

442
	group = iommu_group_get_for_dev(dev);
443 444 445 446
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
447 448 449 450 451
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
452
	struct amd_iommu *iommu;
453
	int devid;
454 455 456 457

	if (dev->archdata.iommu)
		return 0;

458
	devid = get_device_id(dev);
459
	if (devid < 0)
460 461
		return devid;

462 463
	iommu = amd_iommu_rlookup_table[devid];

464
	dev_data = find_dev_data(devid);
465 466 467
	if (!dev_data)
		return -ENOMEM;

468 469
	dev_data->alias = get_alias(dev);

470
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
471 472
		struct amd_iommu *iommu;

473
		iommu = amd_iommu_rlookup_table[dev_data->devid];
474 475 476
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

477 478
	dev->archdata.iommu = dev_data;

479
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
480

481 482 483
	return 0;
}

484 485
static void iommu_ignore_device(struct device *dev)
{
486 487
	u16 alias;
	int devid;
488 489

	devid = get_device_id(dev);
490
	if (devid < 0)
491 492
		return;

493
	alias = get_alias(dev);
494 495 496 497 498 499 500 501

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

502 503
static void iommu_uninit_device(struct device *dev)
{
504
	struct iommu_dev_data *dev_data;
505 506
	struct amd_iommu *iommu;
	int devid;
507

508
	devid = get_device_id(dev);
509
	if (devid < 0)
510
		return;
511

512 513
	iommu = amd_iommu_rlookup_table[devid];

514
	dev_data = search_dev_data(devid);
515 516 517
	if (!dev_data)
		return;

518 519 520
	if (dev_data->domain)
		detach_device(dev);

521
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
522

523 524
	iommu_group_remove_device(dev);

525
	/* Remove dma-ops */
526
	dev->dma_ops = NULL;
527

528
	/*
529 530
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
531
	 */
532
}
J
Joerg Roedel 已提交
533

534 535 536 537 538 539
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

540 541 542 543
static void dump_dte_entry(u16 devid)
{
	int i;

544 545
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
546 547 548
			amd_iommu_dev_table[devid].data[i]);
}

549 550 551 552 553 554 555 556 557
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

	pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

581
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
582
{
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
604

605 606 607 608 609 610
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
611 612 613 614 615

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
616
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
617
		       address, flags);
618
		dump_dte_entry(devid);
619 620 621 622
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
623
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
624 625 626 627 628
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
629
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
630 631 632 633
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
634
		dump_command(address);
635 636 637 638 639 640 641 642
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
643
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
644 645 646 647 648
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
649
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
650 651 652 653 654
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
655 656

	memset(__evt, 0, 4 * sizeof(u32));
657 658 659 660 661 662 663 664 665 666
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
667
		iommu_print_event(iommu, iommu->evt_buf + head);
668
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
669 670 671 672 673
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

674
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
719

720 721 722
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
723

724 725 726 727 728 729 730
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
731 732
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
733 734 735 736 737 738

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
739 740 741 742
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

803
irqreturn_t amd_iommu_int_thread(int irq, void *data)
804
{
805 806
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
807

808 809 810
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
811
			iommu->mmio_base + MMIO_STATUS_OFFSET);
812

813 814 815 816
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
817

818 819 820 821
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
822

823 824 825 826 827 828 829
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
845
	return IRQ_HANDLED;
846 847
}

848 849 850 851 852
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

853 854 855 856 857 858
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
877
			       struct iommu_cmd *cmd)
878 879 880
{
	u8 *target;

881 882 883 884
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
885 886 887 888 889

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
890
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
891
}
892

893
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
894
{
895 896
	WARN_ON(address & 0x7ULL);

897
	memset(cmd, 0, sizeof(*cmd));
898 899 900
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
901 902 903
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

904 905 906 907 908 909 910
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

911 912 913 914
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
915
	bool s;
916 917

	pages = iommu_num_pages(address, size, PAGE_SIZE);
918
	s     = false;
919 920 921 922 923 924 925

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
926
		s = true;
927 928 929 930 931 932 933 934 935 936 937
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
938
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
939 940 941
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

942 943 944 945
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
946
	bool s;
947 948

	pages = iommu_num_pages(address, size, PAGE_SIZE);
949
	s     = false;
950 951 952 953 954 955 956

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
957
		s = true;
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

973 974 975 976 977 978 979
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

980
	cmd->data[0]  = pasid;
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
999
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1000 1001
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
1002
	cmd->data[1] |= (pasid & 0xff) << 16;
1003 1004 1005 1006 1007 1008 1009 1010
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

1011 1012 1013 1014 1015 1016 1017
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1018
		cmd->data[1]  = pasid;
1019 1020 1021 1022 1023 1024 1025 1026
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1027 1028 1029 1030
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1031 1032
}

1033 1034 1035 1036 1037 1038 1039
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1040 1041
/*
 * Writes the command to the IOMMUs command buffer and informs the
1042
 * hardware about the new command.
1043
 */
1044 1045 1046
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1047
{
1048
	unsigned int count = 0;
1049
	u32 left, next_tail;
1050

1051
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1052
again:
1053
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1054

1055
	if (left <= 0x20) {
1056 1057 1058 1059 1060 1061
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1062

1063 1064
			udelay(1);
		}
1065

1066 1067 1068
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1069 1070

		goto again;
1071 1072
	}

1073
	copy_cmd_to_buffer(iommu, cmd);
1074

1075
	/* Do we need to make sure all commands are processed? */
1076
	iommu->need_sync = sync;
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1090
	spin_unlock_irqrestore(&iommu->lock, flags);
1091

1092
	return ret;
1093 1094
}

1095 1096 1097 1098 1099
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1100 1101 1102 1103
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1104
static int iommu_completion_wait(struct amd_iommu *iommu)
1105 1106
{
	struct iommu_cmd cmd;
1107
	unsigned long flags;
1108
	int ret;
1109

1110
	if (!iommu->need_sync)
1111
		return 0;
1112

1113

1114 1115 1116 1117 1118 1119 1120
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1121
	if (ret)
1122 1123 1124 1125 1126 1127
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1128

1129
	return ret;
1130 1131
}

1132
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1133
{
1134
	struct iommu_cmd cmd;
1135

1136
	build_inv_dte(&cmd, devid);
1137

1138 1139
	return iommu_queue_command(iommu, &cmd);
}
1140

1141 1142 1143
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1144

1145 1146
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1147

1148 1149
	iommu_completion_wait(iommu);
}
1150

1151 1152 1153 1154 1155 1156 1157
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1158

1159 1160 1161 1162 1163 1164
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1165

1166
	iommu_completion_wait(iommu);
1167 1168
}

1169
static void iommu_flush_all(struct amd_iommu *iommu)
1170
{
1171
	struct iommu_cmd cmd;
1172

1173
	build_inv_all(&cmd);
1174

1175 1176 1177 1178
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1198 1199
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1200 1201 1202 1203
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1204
		iommu_flush_irt_all(iommu);
1205
		iommu_flush_tlb_all(iommu);
1206 1207 1208
	}
}

1209
/*
1210
 * Command send function for flushing on-device TLB
1211
 */
1212 1213
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1214 1215
{
	struct amd_iommu *iommu;
1216
	struct iommu_cmd cmd;
1217
	int qdep;
1218

1219 1220
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1221

1222
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1223 1224

	return iommu_queue_command(iommu, &cmd);
1225 1226
}

1227 1228 1229
/*
 * Command send function for invalidating a device table entry
 */
1230
static int device_flush_dte(struct iommu_dev_data *dev_data)
1231
{
1232
	struct amd_iommu *iommu;
1233
	u16 alias;
1234
	int ret;
1235

1236
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1237
	alias = dev_data->alias;
1238

1239
	ret = iommu_flush_dte(iommu, dev_data->devid);
1240 1241
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1242 1243 1244
	if (ret)
		return ret;

1245
	if (dev_data->ats.enabled)
1246
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1247 1248

	return ret;
1249 1250
}

1251 1252 1253 1254 1255
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1256 1257
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1258
{
1259
	struct iommu_dev_data *dev_data;
1260 1261
	struct iommu_cmd cmd;
	int ret = 0, i;
1262

1263
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1264

1265
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1266 1267 1268 1269 1270 1271 1272
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1273
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1274 1275
	}

1276 1277
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1278
		if (!dev_data->ats.enabled)
1279 1280
			continue;

1281
		ret |= device_flush_iotlb(dev_data, address, size);
1282 1283
	}

1284
	WARN_ON(ret);
1285 1286
}

1287 1288
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1289
{
1290
	__domain_flush_pages(domain, address, size, 0);
1291
}
1292

1293
/* Flush the whole IO/TLB for a given protection domain */
1294
static void domain_flush_tlb(struct protection_domain *domain)
1295
{
1296
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1297 1298
}

1299
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1300
static void domain_flush_tlb_pde(struct protection_domain *domain)
1301
{
1302
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1303 1304
}

1305
static void domain_flush_complete(struct protection_domain *domain)
1306
{
1307
	int i;
1308

1309
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1310
		if (domain && !domain->dev_iommu[i])
1311
			continue;
1312

1313 1314 1315 1316 1317
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1318
	}
1319 1320
}

1321

1322
/*
1323
 * This function flushes the DTEs for all devices in domain
1324
 */
1325
static void domain_flush_devices(struct protection_domain *domain)
1326
{
1327
	struct iommu_dev_data *dev_data;
1328

1329
	list_for_each_entry(dev_data, &domain->dev_list, list)
1330
		device_flush_dte(dev_data);
1331 1332
}

1333 1334 1335 1336 1337 1338 1339
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1369
		      unsigned long page_size,
1370 1371 1372
		      u64 **pte_page,
		      gfp_t gfp)
{
1373
	int level, end_lvl;
1374
	u64 *pte, *page;
1375 1376

	BUG_ON(!is_power_of_2(page_size));
1377 1378 1379 1380

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1381 1382 1383 1384
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1385 1386

	while (level > end_lvl) {
1387 1388 1389 1390 1391
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1392 1393 1394
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1395 1396 1397

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1398 1399
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1400 1401 1402
				free_page((unsigned long)page);
				continue;
			}
1403 1404
		}

1405 1406 1407 1408
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1426 1427 1428
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1429 1430 1431 1432
{
	int level;
	u64 *pte;

1433 1434 1435
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1436 1437 1438
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1439

1440 1441 1442
	while (level > 0) {

		/* Not Present */
1443 1444 1445
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1446
		/* Large PTE */
1447 1448 1449
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1450 1451 1452 1453 1454

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1455 1456
		level -= 1;

1457
		/* Walk to the next level */
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1473 1474 1475 1476 1477
	}

	return pte;
}

1478 1479 1480 1481 1482 1483 1484
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1485 1486 1487
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1488
			  unsigned long page_size,
1489
			  int prot,
1490
			  gfp_t gfp)
1491
{
1492
	u64 __pte, *pte;
1493
	int i, count;
1494

1495 1496 1497
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1498
	if (!(prot & IOMMU_PROT_MASK))
1499 1500
		return -EINVAL;

1501
	count = PAGE_SIZE_PTE_COUNT(page_size);
1502
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1503

1504 1505 1506
	if (!pte)
		return -ENOMEM;

1507 1508 1509
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1510

1511
	if (count > 1) {
1512 1513 1514 1515
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1516 1517 1518 1519 1520 1521

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1522 1523
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1524

1525 1526
	update_domain(dom);

1527 1528 1529
	return 0;
}

1530 1531 1532
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1533
{
1534 1535
	unsigned long long unmapped;
	unsigned long unmap_size;
1536 1537 1538 1539 1540
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1541

1542 1543
	while (unmapped < page_size) {

1544 1545 1546 1547 1548 1549
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1550 1551 1552 1553 1554 1555 1556 1557
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1558
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1559

1560
	return unmapped;
1561 1562
}

1563 1564 1565
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1566
 * interface functions.
1567 1568
 *
 ****************************************************************************/
1569

1570

1571 1572 1573
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1574
{
1575
	unsigned long pfn = 0;
1576

1577
	pages = __roundup_pow_of_two(pages);
1578

1579 1580 1581
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1582

1583 1584
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1585

1586
	return (pfn << PAGE_SHIFT);
1587 1588
}

1589 1590 1591
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1592
{
1593 1594
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1595

1596
	free_iova_fast(&dma_dom->iovad, address, pages);
1597 1598
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1671
		/* PTE present? */				\
1672 1673 1674
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1675 1676 1677 1678 1679
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1692
static void free_pagetable(struct protection_domain *domain)
1693
{
1694
	unsigned long root = (unsigned long)domain->pt_root;
1695

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1719 1720 1721
	}
}

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1752 1753
static void free_gcr3_table(struct protection_domain *domain)
{
1754 1755 1756 1757
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1758 1759
	else
		BUG_ON(domain->glx != 0);
1760

1761 1762 1763
	free_page((unsigned long)domain->gcr3_tbl);
}

1764 1765 1766 1767
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1768 1769 1770 1771 1772
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1773 1774
	del_domain_from_list(&dom->domain);

1775
	put_iova_domain(&dom->iovad);
1776

1777
	free_pagetable(&dom->domain);
1778

1779 1780 1781
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1782 1783 1784
	kfree(dom);
}

1785 1786
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1787
 * It also initializes the page table and the address allocator data
1788 1789
 * structures required for the dma_ops interface
 */
1790
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1791 1792 1793 1794 1795 1796 1797
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1798
	if (protection_domain_init(&dma_dom->domain))
1799
		goto free_dma_dom;
1800

1801
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1802
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1803
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1804 1805 1806
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1807 1808 1809
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1810 1811 1812
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1813 1814
	add_domain_to_list(&dma_dom->domain);

1815 1816 1817 1818 1819 1820 1821 1822
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1823 1824 1825 1826 1827 1828 1829 1830 1831
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1832
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1833
{
1834
	u64 pte_root = 0;
1835
	u64 flags = 0;
1836

1837 1838 1839
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1840 1841 1842
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1843

1844 1845
	flags = amd_iommu_dev_table[devid].data[1];

1846 1847 1848
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1875 1876 1877 1878 1879
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1880 1881 1882 1883 1884
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1885 1886
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1887 1888

	amd_iommu_apply_erratum_63(devid);
1889 1890
}

1891 1892
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1893 1894
{
	struct amd_iommu *iommu;
1895
	u16 alias;
1896
	bool ats;
1897

1898
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1899
	alias = dev_data->alias;
1900
	ats   = dev_data->ats.enabled;
1901 1902 1903 1904 1905 1906 1907 1908 1909

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1910 1911 1912
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1913
		set_dte_entry(alias, domain, ats);
1914

1915
	device_flush_dte(dev_data);
1916 1917
}

1918
static void do_detach(struct iommu_dev_data *dev_data)
1919 1920
{
	struct amd_iommu *iommu;
1921
	u16 alias;
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1932
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1933
	alias = dev_data->alias;
1934 1935

	/* decrease reference counters */
1936 1937 1938 1939 1940 1941
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1942
	clear_dte_entry(dev_data->devid);
1943 1944
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1945

1946
	/* Flush the DTE entry */
1947
	device_flush_dte(dev_data);
1948 1949 1950 1951 1952 1953
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1954
static int __attach_device(struct iommu_dev_data *dev_data,
1955
			   struct protection_domain *domain)
1956
{
1957
	int ret;
1958

1959 1960 1961 1962 1963 1964
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1965 1966 1967
	/* lock domain */
	spin_lock(&domain->lock);

1968
	ret = -EBUSY;
1969
	if (dev_data->domain != NULL)
1970
		goto out_unlock;
1971

1972
	/* Attach alias group root */
1973
	do_attach(dev_data, domain);
1974

1975 1976 1977 1978
	ret = 0;

out_unlock:

1979 1980
	/* ready */
	spin_unlock(&domain->lock);
1981

1982
	return ret;
1983
}
1984

1985 1986 1987 1988 1989 1990 1991 1992

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1993 1994 1995 1996 1997 1998
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1999
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2000 2001 2002
	if (!pos)
		return -EINVAL;

2003 2004 2005
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2006 2007 2008 2009

	return 0;
}

2010 2011
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2012 2013 2014 2015 2016 2017 2018 2019
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2031 2032
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2033 2034 2035
	if (ret)
		goto out_err;

2036 2037 2038 2039 2040 2041
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2055
/* FIXME: Move this to PCI code */
2056
#define PCI_PRI_TLP_OFF		(1 << 15)
2057

J
Joerg Roedel 已提交
2058
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2059
{
2060
	u16 status;
2061 2062
	int pos;

2063
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2064 2065 2066
	if (!pos)
		return false;

2067
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2068

2069
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2070 2071
}

2072
/*
F
Frank Arnold 已提交
2073
 * If a device is not yet associated with a domain, this function
2074 2075
 * assigns it visible for the hardware
 */
2076 2077
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2078
{
2079
	struct pci_dev *pdev;
2080
	struct iommu_dev_data *dev_data;
2081
	unsigned long flags;
2082
	int ret;
2083

2084 2085
	dev_data = get_dev_data(dev);

2086 2087 2088 2089
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2090
	if (domain->flags & PD_IOMMUV2_MASK) {
2091
		if (!dev_data->passthrough)
2092 2093
			return -EINVAL;

2094 2095 2096
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2097

2098 2099 2100 2101
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2102 2103
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2104 2105 2106
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2107

2108
skip_ats_check:
2109
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2110
	ret = __attach_device(dev_data, domain);
2111 2112
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2113 2114 2115 2116 2117
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2118
	domain_flush_tlb_pde(domain);
2119 2120

	return ret;
2121 2122
}

2123 2124 2125
/*
 * Removes a device from a protection domain (unlocked)
 */
2126
static void __detach_device(struct iommu_dev_data *dev_data)
2127
{
2128
	struct protection_domain *domain;
2129

2130 2131 2132 2133 2134
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2135

2136 2137
	if (WARN_ON(!dev_data->domain))
		return;
2138

2139
	domain = dev_data->domain;
2140

2141
	spin_lock(&domain->lock);
2142

2143
	do_detach(dev_data);
2144

2145
	spin_unlock(&domain->lock);
2146 2147 2148 2149 2150
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2151
static void detach_device(struct device *dev)
2152
{
2153
	struct protection_domain *domain;
2154
	struct iommu_dev_data *dev_data;
2155 2156
	unsigned long flags;

2157
	dev_data = get_dev_data(dev);
2158
	domain   = dev_data->domain;
2159

2160 2161
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2162
	__detach_device(dev_data);
2163
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2164

2165 2166 2167
	if (!dev_is_pci(dev))
		return;

2168
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2169 2170
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2171
		pci_disable_ats(to_pci_dev(dev));
2172 2173

	dev_data->ats.enabled = false;
2174
}
2175

2176
static int amd_iommu_add_device(struct device *dev)
2177
{
2178
	struct iommu_dev_data *dev_data;
2179
	struct iommu_domain *domain;
2180
	struct amd_iommu *iommu;
2181
	int ret, devid;
2182

2183
	if (!check_device(dev) || get_dev_data(dev))
2184
		return 0;
2185

2186
	devid = get_device_id(dev);
2187
	if (devid < 0)
2188 2189
		return devid;

2190
	iommu = amd_iommu_rlookup_table[devid];
2191

2192
	ret = iommu_init_device(dev);
2193 2194 2195 2196
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2197

2198
		iommu_ignore_device(dev);
2199
		dev->dma_ops = &nommu_dma_ops;
2200 2201 2202
		goto out;
	}
	init_iommu_group(dev);
2203

2204
	dev_data = get_dev_data(dev);
2205

2206
	BUG_ON(!dev_data);
2207

2208
	if (iommu_pass_through || dev_data->iommu_v2)
2209
		iommu_request_dm_for_dev(dev);
2210

2211 2212
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2213
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2214
		dev_data->passthrough = true;
2215
	else
2216
		dev->dma_ops = &amd_iommu_dma_ops;
2217

2218
out:
2219 2220 2221 2222 2223
	iommu_completion_wait(iommu);

	return 0;
}

2224
static void amd_iommu_remove_device(struct device *dev)
2225
{
2226
	struct amd_iommu *iommu;
2227
	int devid;
2228 2229 2230 2231 2232

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2233
	if (devid < 0)
2234 2235
		return;

2236 2237 2238 2239
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2240 2241
}

2242 2243 2244 2245 2246 2247 2248 2249
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2250 2251 2252 2253 2254 2255
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

J
Joerg Roedel 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
static void __queue_flush(struct flush_queue *queue)
{
	struct protection_domain *domain;
	unsigned long flags;
	int idx;

	/* First flush TLB of all known domains */
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_for_each_entry(domain, &amd_iommu_pd_list, list)
		domain_flush_tlb(domain);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);

	/* Wait until flushes have completed */
	domain_flush_complete(NULL);

	for (idx = 0; idx < queue->next; ++idx) {
		struct flush_queue_entry *entry;

		entry = queue->entries + idx;

		free_iova_fast(&entry->dma_dom->iovad,
				entry->iova_pfn,
				entry->pages);

		/* Not really necessary, just to make sure we catch any bugs */
		entry->dma_dom = NULL;
	}

	queue->next = 0;
}

2287
static void queue_flush_all(void)
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(&flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		if (queue->next > 0)
			__queue_flush(queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

2303 2304 2305 2306 2307 2308
static void queue_flush_timeout(unsigned long unsused)
{
	atomic_set(&queue_timer_on, 0);
	queue_flush_all();
}

J
Joerg Roedel 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
static void queue_add(struct dma_ops_domain *dma_dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue_entry *entry;
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(&flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

	if (queue->next == FLUSH_QUEUE_SIZE)
		__queue_flush(queue);

	idx   = queue->next++;
	entry = queue->entries + idx;

	entry->iova_pfn = address;
	entry->pages    = pages;
	entry->dma_dom  = dma_dom;

	spin_unlock_irqrestore(&queue->lock, flags);
2334 2335 2336 2337

	if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0)
		mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10));

J
Joerg Roedel 已提交
2338 2339 2340 2341
	put_cpu_ptr(&flush_queue);
}


2342 2343 2344 2345 2346 2347 2348
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2349
static struct protection_domain *get_domain(struct device *dev)
2350
{
2351
	struct protection_domain *domain;
2352

2353
	if (!check_device(dev))
2354
		return ERR_PTR(-EINVAL);
2355

2356
	domain = get_dev_data(dev)->domain;
2357
	if (!dma_ops_domain(domain))
2358
		return ERR_PTR(-EBUSY);
2359

2360
	return domain;
2361 2362
}

2363 2364
static void update_device_table(struct protection_domain *domain)
{
2365
	struct iommu_dev_data *dev_data;
2366

2367
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2368
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2369 2370 2371 2372 2373 2374 2375

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2376 2377 2378 2379 2380 2381 2382 2383
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2384 2385 2386

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2387 2388 2389 2390

	domain->updated = false;
}

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2402 2403
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2404 2405
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2406 2407
 * Must be called with the domain lock held.
 */
2408 2409 2410 2411
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2412
			       enum dma_data_direction direction,
2413
			       u64 dma_mask)
2414 2415
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2416
	dma_addr_t address, start, ret;
2417
	unsigned int pages;
2418
	int prot = 0;
2419 2420
	int i;

2421
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2422 2423
	paddr &= PAGE_MASK;

2424
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2425 2426
	if (address == DMA_ERROR_CODE)
		goto out;
2427

2428
	prot = dir2prot(direction);
2429

2430 2431
	start = address;
	for (i = 0; i < pages; ++i) {
2432 2433 2434
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2435 2436
			goto out_unmap;

2437 2438 2439 2440 2441
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2442
	if (unlikely(amd_iommu_np_cache)) {
2443
		domain_flush_pages(&dma_dom->domain, address, size);
2444 2445
		domain_flush_complete(&dma_dom->domain);
	}
2446

2447 2448
out:
	return address;
2449 2450 2451 2452 2453

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2454
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2455 2456
	}

2457 2458 2459 2460
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2461

2462
	return DMA_ERROR_CODE;
2463 2464
}

2465 2466 2467 2468
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2469
static void __unmap_single(struct dma_ops_domain *dma_dom,
2470 2471 2472 2473
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2474
	dma_addr_t flush_addr;
2475 2476 2477
	dma_addr_t i, start;
	unsigned int pages;

2478
	flush_addr = dma_addr;
2479
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2480 2481 2482 2483
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2484
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2485 2486 2487
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2488 2489 2490 2491 2492 2493 2494
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2495 2496
}

2497 2498 2499
/*
 * The exported map_single function for dma_ops.
 */
2500 2501 2502
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2503
			   unsigned long attrs)
2504
{
2505
	phys_addr_t paddr = page_to_phys(page) + offset;
2506
	struct protection_domain *domain;
2507
	struct dma_ops_domain *dma_dom;
2508
	u64 dma_mask;
2509

2510 2511
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2512
		return (dma_addr_t)paddr;
2513 2514
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2515

2516
	dma_mask = *dev->dma_mask;
2517
	dma_dom = to_dma_ops_domain(domain);
2518

2519
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2520 2521
}

2522 2523 2524
/*
 * The exported unmap_single function for dma_ops.
 */
2525
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2526
		       enum dma_data_direction dir, unsigned long attrs)
2527 2528
{
	struct protection_domain *domain;
2529
	struct dma_ops_domain *dma_dom;
2530

2531 2532
	domain = get_domain(dev);
	if (IS_ERR(domain))
2533 2534
		return;

2535 2536 2537
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2538 2539
}

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2566 2567 2568 2569
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2570
static int map_sg(struct device *dev, struct scatterlist *sglist,
2571
		  int nelems, enum dma_data_direction direction,
2572
		  unsigned long attrs)
2573
{
2574
	int mapped_pages = 0, npages = 0, prot = 0, i;
2575
	struct protection_domain *domain;
2576
	struct dma_ops_domain *dma_dom;
2577
	struct scatterlist *s;
2578
	unsigned long address;
2579
	u64 dma_mask;
2580

2581
	domain = get_domain(dev);
2582
	if (IS_ERR(domain))
2583
		return 0;
2584

2585
	dma_dom  = to_dma_ops_domain(domain);
2586
	dma_mask = *dev->dma_mask;
2587

2588 2589 2590 2591 2592 2593 2594 2595 2596
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
	if (address == DMA_ERROR_CODE)
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2597
	for_each_sg(sglist, s, nelems, i) {
2598 2599 2600 2601 2602
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2603

2604 2605 2606 2607 2608
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2609

2610 2611
			mapped_pages += 1;
		}
2612 2613
	}

2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2631

2632 2633 2634 2635 2636 2637
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2638 2639
	}

2640 2641 2642 2643
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2644
	return 0;
2645 2646
}

2647 2648 2649 2650
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2651
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2652
		     int nelems, enum dma_data_direction dir,
2653
		     unsigned long attrs)
2654 2655
{
	struct protection_domain *domain;
2656
	struct dma_ops_domain *dma_dom;
2657 2658
	unsigned long startaddr;
	int npages = 2;
2659

2660 2661
	domain = get_domain(dev);
	if (IS_ERR(domain))
2662 2663
		return;

2664
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2665
	dma_dom   = to_dma_ops_domain(domain);
2666 2667
	npages    = sg_num_pages(dev, sglist, nelems);

2668
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2669 2670
}

2671 2672 2673
/*
 * The exported alloc_coherent function for dma_ops.
 */
2674
static void *alloc_coherent(struct device *dev, size_t size,
2675
			    dma_addr_t *dma_addr, gfp_t flag,
2676
			    unsigned long attrs)
2677
{
2678
	u64 dma_mask = dev->coherent_dma_mask;
2679
	struct protection_domain *domain;
2680
	struct dma_ops_domain *dma_dom;
2681
	struct page *page;
2682

2683 2684
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2685 2686 2687
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2688 2689
	} else if (IS_ERR(domain))
		return NULL;
2690

2691
	dma_dom   = to_dma_ops_domain(domain);
2692
	size	  = PAGE_ALIGN(size);
2693 2694
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2695
	flag     |= __GFP_ZERO;
2696

2697 2698
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2699
		if (!gfpflags_allow_blocking(flag))
2700
			return NULL;
2701

2702
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2703
						 get_order(size), flag);
2704 2705 2706
		if (!page)
			return NULL;
	}
2707

2708 2709 2710
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2711
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2712
				 size, DMA_BIDIRECTIONAL, dma_mask);
2713

2714
	if (*dma_addr == DMA_ERROR_CODE)
2715
		goto out_free;
2716

2717
	return page_address(page);
2718 2719 2720

out_free:

2721 2722
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2723 2724

	return NULL;
2725 2726
}

2727 2728 2729
/*
 * The exported free_coherent function for dma_ops.
 */
2730
static void free_coherent(struct device *dev, size_t size,
2731
			  void *virt_addr, dma_addr_t dma_addr,
2732
			  unsigned long attrs)
2733 2734
{
	struct protection_domain *domain;
2735
	struct dma_ops_domain *dma_dom;
2736
	struct page *page;
2737

2738 2739 2740
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2741 2742
	domain = get_domain(dev);
	if (IS_ERR(domain))
2743 2744
		goto free_mem;

2745 2746 2747
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2748 2749

free_mem:
2750 2751
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2752 2753
}

2754 2755 2756 2757 2758 2759
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2760
	return check_device(dev);
2761 2762
}

2763
static const struct dma_map_ops amd_iommu_dma_ops = {
2764 2765 2766 2767 2768 2769 2770
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2771 2772
};

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2826
int __init amd_iommu_init_api(void)
2827
{
2828
	int ret, cpu, err = 0;
2829 2830 2831 2832

	ret = iova_cache_get();
	if (ret)
		return ret;
2833

2834 2835 2836 2837
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
					 sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries)
			goto out_put_iova;

		spin_lock_init(&queue->lock);
	}

2850 2851 2852 2853 2854 2855 2856 2857
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2858 2859 2860
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2861
	return 0;
2862 2863 2864 2865 2866 2867 2868 2869 2870

out_put_iova:
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		kfree(queue->entries);
	}

	return -ENOMEM;
2871 2872
}

2873 2874
int __init amd_iommu_init_dma_ops(void)
{
2875 2876 2877
	setup_timer(&queue_timer, queue_flush_timeout, 0);
	atomic_set(&queue_timer_on, 0);

2878
	swiotlb        = iommu_pass_through ? 1 : 0;
2879 2880
	iommu_detected = 1;

2881 2882 2883 2884 2885 2886 2887 2888 2889
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2890 2891 2892 2893 2894
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2895
	return 0;
2896

2897
}
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2911
	struct iommu_dev_data *entry;
2912 2913 2914 2915
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2916 2917 2918 2919
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2920
	}
2921 2922 2923 2924

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2925 2926 2927 2928 2929
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2930 2931
	del_domain_from_list(domain);

2932 2933 2934 2935 2936 2937
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2950
static struct protection_domain *protection_domain_alloc(void)
2951 2952 2953 2954 2955
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2956
		return NULL;
2957

2958
	if (protection_domain_init(domain))
2959 2960
		goto out_err;

2961 2962
	add_domain_to_list(domain);

2963 2964 2965 2966 2967 2968 2969 2970
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2971
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2972
{
2973
	struct protection_domain *pdomain;
2974
	struct dma_ops_domain *dma_domain;
2975

2976 2977 2978 2979 2980
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2981

2982 2983 2984 2985 2986 2987
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2988

2989 2990 2991
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2992

2993 2994 2995 2996 2997 2998 2999 3000 3001
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
3002 3003 3004 3005
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3006

3007 3008
		pdomain->mode = PAGE_MODE_NONE;
		break;
3009 3010 3011
	default:
		return NULL;
	}
3012

3013
	return &pdomain->domain;
3014 3015
}

3016
static void amd_iommu_domain_free(struct iommu_domain *dom)
3017
{
3018
	struct protection_domain *domain;
3019
	struct dma_ops_domain *dma_dom;
3020

3021 3022
	domain = to_pdomain(dom);

3023 3024 3025 3026 3027
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3028 3029
	if (!dom)
		return;
3030

3031 3032
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
3033 3034 3035 3036 3037 3038 3039
		/*
		 * First make sure the domain is no longer referenced from the
		 * flush queue
		 */
		queue_flush_all();

		/* Now release the domain */
3040
		dma_dom = to_dma_ops_domain(domain);
3041 3042 3043 3044 3045
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
3046

3047 3048 3049 3050 3051 3052
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
3053 3054
}

3055 3056 3057
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3058
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3059
	struct amd_iommu *iommu;
3060
	int devid;
3061

3062
	if (!check_device(dev))
3063 3064
		return;

3065
	devid = get_device_id(dev);
3066
	if (devid < 0)
3067
		return;
3068

3069
	if (dev_data->domain != NULL)
3070
		detach_device(dev);
3071 3072 3073 3074 3075

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3076 3077 3078 3079 3080 3081
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3082 3083 3084
	iommu_completion_wait(iommu);
}

3085 3086 3087
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3088
	struct protection_domain *domain = to_pdomain(dom);
3089
	struct iommu_dev_data *dev_data;
3090
	struct amd_iommu *iommu;
3091
	int ret;
3092

3093
	if (!check_device(dev))
3094 3095
		return -EINVAL;

3096 3097
	dev_data = dev->archdata.iommu;

3098
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3099 3100 3101
	if (!iommu)
		return -EINVAL;

3102
	if (dev_data->domain)
3103
		detach_device(dev);
3104

3105
	ret = attach_device(dev, domain);
3106

3107 3108 3109 3110 3111 3112 3113 3114 3115
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3116 3117
	iommu_completion_wait(iommu);

3118
	return ret;
3119 3120
}

3121
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3122
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3123
{
3124
	struct protection_domain *domain = to_pdomain(dom);
3125 3126 3127
	int prot = 0;
	int ret;

3128 3129 3130
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3131 3132 3133 3134 3135
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3136
	mutex_lock(&domain->api_lock);
3137
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3138 3139
	mutex_unlock(&domain->api_lock);

3140
	return ret;
3141 3142
}

3143 3144
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3145
{
3146
	struct protection_domain *domain = to_pdomain(dom);
3147
	size_t unmap_size;
3148

3149 3150 3151
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3152
	mutex_lock(&domain->api_lock);
3153
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3154
	mutex_unlock(&domain->api_lock);
3155

3156
	domain_flush_tlb_pde(domain);
3157

3158
	return unmap_size;
3159 3160
}

3161
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3162
					  dma_addr_t iova)
3163
{
3164
	struct protection_domain *domain = to_pdomain(dom);
3165
	unsigned long offset_mask, pte_pgsize;
3166
	u64 *pte, __pte;
3167

3168 3169 3170
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3171
	pte = fetch_pte(domain, iova, &pte_pgsize);
3172

3173
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3174 3175
		return 0;

3176 3177
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3178

3179
	return (__pte & ~offset_mask) | (iova & offset_mask);
3180 3181
}

3182
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3183
{
3184 3185
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3186
		return true;
3187
	case IOMMU_CAP_INTR_REMAP:
3188
		return (irq_remapping_enabled == 1);
3189 3190
	case IOMMU_CAP_NOEXEC:
		return false;
3191 3192
	}

3193
	return false;
S
Sheng Yang 已提交
3194 3195
}

3196 3197
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3198
{
3199
	struct iommu_resv_region *region;
3200
	struct unity_map_entry *entry;
3201
	int devid;
3202 3203

	devid = get_device_id(dev);
3204
	if (devid < 0)
3205
		return;
3206 3207

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3208 3209
		size_t length;
		int prot = 0;
3210 3211 3212 3213

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3214 3215 3216 3217 3218 3219 3220 3221 3222
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3223 3224 3225 3226 3227 3228 3229
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3230 3231 3232

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3233
					 0, IOMMU_RESV_MSI);
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3244 3245
}

3246
static void amd_iommu_put_resv_regions(struct device *dev,
3247 3248
				     struct list_head *head)
{
3249
	struct iommu_resv_region *entry, *next;
3250 3251 3252 3253 3254

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3255
static void amd_iommu_apply_resv_region(struct device *dev,
3256
				      struct iommu_domain *domain,
3257
				      struct iommu_resv_region *region)
3258
{
3259
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3260 3261 3262 3263 3264 3265 3266 3267
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3268
const struct iommu_ops amd_iommu_ops = {
3269
	.capable = amd_iommu_capable,
3270 3271
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3272 3273
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3274 3275
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3276
	.map_sg = default_iommu_map_sg,
3277
	.iova_to_phys = amd_iommu_iova_to_phys,
3278 3279
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3280
	.device_group = amd_iommu_device_group,
3281 3282 3283
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3284
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3285 3286
};

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3309 3310 3311

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3312
	struct protection_domain *domain = to_pdomain(dom);
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3330 3331 3332

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3333
	struct protection_domain *domain = to_pdomain(dom);
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3394
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3411 3412 3413 3414 3415 3416
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3448
	struct protection_domain *domain = to_pdomain(dom);
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3468
	struct protection_domain *domain = to_pdomain(dom);
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3548
	struct protection_domain *domain = to_pdomain(dom);
3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3562
	struct protection_domain *domain = to_pdomain(dom);
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3590 3591 3592

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3593
	struct protection_domain *pdomain;
3594

3595 3596
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3597 3598 3599
		return NULL;

	/* Only return IOMMUv2 domains */
3600
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3601 3602
		return NULL;

3603
	return &pdomain->domain;
3604 3605
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3661 3662 3663 3664 3665 3666 3667 3668 3669

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3670 3671
static struct irq_chip amd_ir_chip;

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3706
		goto out_unlock;
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3720
		goto out_unlock;
3721

3722 3723 3724
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3725 3726 3727 3728 3729 3730 3731
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3732
		table = NULL;
3733
		goto out_unlock;
3734 3735
	}

3736 3737 3738 3739 3740 3741
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3742 3743 3744 3745 3746

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3747
			iommu->irte_ops->set_allocated(table, i);
3748 3749 3750 3751 3752 3753 3754
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3755
		set_dte_irq_entry(alias, table);
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3768
static int alloc_irq_index(u16 devid, int count)
3769 3770 3771 3772
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3773 3774 3775 3776
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3788
		if (!iommu->irte_ops->is_allocated(table, index))
3789 3790 3791 3792 3793 3794
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3795
				iommu->irte_ops->set_allocated(table, index - c + 1);
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3810 3811
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3812 3813 3814 3815
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3816
	struct irte_ga *entry;
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3827 3828 3829 3830 3831 3832 3833

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3834 3835
	if (data)
		data->ref = entry;
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3860
	table->table[index] = irte->val;
3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3884
	iommu->irte_ops->clear_allocated(table, index);
3885 3886 3887 3888 3889 3890
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3891 3892
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3893
			 u8 vector, u32 dest_apicid, int devid)
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3907
			    u8 vector, u32 dest_apicid, int devid)
3908 3909
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3910
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3911 3912 3913

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
3914
	irte->lo.fields_remap.guest_mode  = dev_data ? dev_data->use_vapic : 0;
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3935
	modify_irte_ga(devid, index, irte, NULL);
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3951
	modify_irte_ga(devid, index, irte, NULL);
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3968
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3969

3970 3971 3972 3973 3974 3975
	if (!dev_data || !dev_data->use_vapic) {
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		irte->lo.fields_remap.guest_mode = 0;
		modify_irte_ga(devid, index, irte, NULL);
	}
3976 3977
}

3978
#define IRTE_ALLOCATED (~1U)
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

4024
static int get_devid(struct irq_alloc_info *info)
4025
{
4026
	int devid = -1;
4027

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4043

4044 4045
	return devid;
}
4046

4047 4048 4049 4050
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4051

4052 4053
	if (!info)
		return NULL;
4054

4055 4056 4057 4058 4059 4060
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4061

4062
	return NULL;
4063 4064
}

4065
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4066
{
4067 4068
	struct amd_iommu *iommu;
	int devid;
4069

4070 4071
	if (!info)
		return NULL;
4072

4073 4074 4075 4076
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4077
		if (devid < 0)
4078 4079
			return NULL;

4080 4081 4082
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4083 4084 4085 4086
		break;
	default:
		break;
	}
4087

4088 4089
	return NULL;
}
4090

4091 4092 4093 4094 4095 4096
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4097 4098 4099
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4100

4101 4102 4103 4104 4105 4106 4107 4108
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4109 4110 4111 4112
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4113

4114 4115
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4116 4117
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4118
				 irq_cfg->dest_apicid, devid);
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4134

4135 4136 4137 4138 4139 4140 4141
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4142

4143 4144 4145 4146
	default:
		BUG_ON(1);
		break;
	}
4147 4148
}

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4169 4170
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4171
{
4172 4173
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4174
	struct amd_ir_data *data = NULL;
4175
	struct irq_cfg *cfg;
4176 4177
	int i, ret, devid;
	int index = -1;
4178

4179 4180 4181 4182
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4183 4184
		return -EINVAL;

4185 4186 4187 4188 4189 4190
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4191

4192 4193 4194
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4195

4196 4197 4198
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4199

4200 4201 4202 4203 4204 4205
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4206
		index = alloc_irq_index(devid, nr_irqs);
4207 4208 4209
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4210
		ret = index;
4211 4212
		goto out_free_parent;
	}
4213

4214 4215 4216 4217 4218 4219 4220
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4221

4222 4223 4224 4225 4226
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4237 4238 4239 4240 4241 4242
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4243

4244
	return 0;
4245

4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4257 4258
}

4259 4260
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4261
{
4262 4263 4264 4265
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4266

4267 4268 4269 4270 4271 4272
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4273
			kfree(data->entry);
4274 4275 4276 4277 4278
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4279

4280 4281 4282 4283 4284
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4285
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4286

4287 4288 4289
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4290 4291
}

4292 4293
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4294
{
4295 4296
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4297
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4298

4299 4300 4301
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4302
}
4303

4304
static const struct irq_domain_ops amd_ir_domain_ops = {
4305 4306 4307 4308
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4309
};
4310

4311 4312 4313 4314 4315 4316 4317 4318
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4319 4320 4321 4322 4323 4324 4325 4326
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4375 4376 4377 4378 4379 4380 4381
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4382
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4383
	int ret;
4384

4385 4386 4387
	if (!iommu)
		return -ENODEV;

4388 4389 4390
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4391

4392 4393 4394 4395
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4396 4397
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4398

4399 4400 4401 4402 4403
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4404
	send_cleanup_vector(cfg);
4405 4406

	return IRQ_SET_MASK_OK_DONE;
4407 4408
}

4409
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4410
{
4411
	struct amd_ir_data *ir_data = irq_data->chip_data;
4412

4413 4414
	*msg = ir_data->msi_entry;
}
4415

4416 4417 4418
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
4419
	.irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4420 4421
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4422

4423 4424 4425 4426 4427
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4428

4429 4430
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4431 4432 4433

	return 0;
}
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4473
#endif