amd_iommu.c 105.8 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56

57 58
#define AMD_IOMMU_MAPPING_ERROR	0

59 60
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

61
#define LOOP_TIMEOUT	100000
62

63 64 65 66 67
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

68 69 70 71 72 73
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

74 75 76 77 78 79
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
80
 * 512GB Pages are not supported due to a hardware bug
81
 */
J
Joerg Roedel 已提交
82
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
83

84 85
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

86 87 88 89
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

90 91
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
92
LIST_HEAD(acpihid_map);
93

94 95 96 97
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
98
const struct iommu_ops amd_iommu_ops;
99

100
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
101
int amd_iommu_max_glx_val = -1;
102

103
static const struct dma_map_ops amd_iommu_dma_ops;
104

105 106 107
/*
 * general struct to manage commands send to an IOMMU
 */
108
struct iommu_cmd {
109 110 111
	u32 data[4];
};

112 113
struct kmem_cache *amd_iommu_irq_cache;

114
static void update_domain(struct protection_domain *domain);
115
static int protection_domain_init(struct protection_domain *domain);
116
static void detach_device(struct device *dev);
117

118 119 120 121 122
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
123
	u64 counter; /* Flush counter when this entry was added to the queue */
124 125 126 127 128
};

struct flush_queue {
	struct flush_queue_entry *entries;
	unsigned head, tail;
129
	spinlock_t lock;
130 131
};

132 133 134 135 136 137 138
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

139 140
	/* IOVA RB-Tree */
	struct iova_domain iovad;
141 142

	struct flush_queue __percpu *flush_queue;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	/*
	 * We need two counter here to be race-free wrt. IOTLB flushing and
	 * adding entries to the flush queue.
	 *
	 * The flush_start_cnt is incremented _before_ the IOTLB flush starts.
	 * New entries added to the flush ring-buffer get their 'counter' value
	 * from here. This way we can make sure that entries added to the queue
	 * (or other per-cpu queues of the same domain) while the TLB is about
	 * to be flushed are not considered to be flushed already.
	 */
	atomic64_t flush_start_cnt;

	/*
	 * The flush_finish_cnt is incremented when an IOTLB flush is complete.
	 * This value is always smaller than flush_start_cnt. The queue_add
	 * function frees all IOVAs that have a counter value smaller than
	 * flush_finish_cnt. This makes sure that we only free IOVAs that are
	 * flushed out of the IOTLB of the domain.
	 */
	atomic64_t flush_finish_cnt;
164 165 166 167 168 169 170

	/*
	 * Timer to make sure we don't keep IOVAs around unflushed
	 * for too long
	 */
	struct timer_list flush_timer;
	atomic_t flush_timer_on;
171 172
};

173 174 175
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

176 177 178 179 180 181
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

182 183
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
184
{
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
200 201
}

202
static inline u16 get_pci_device_id(struct device *dev)
203 204 205 206 207 208
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

236 237 238 239 240
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

241 242 243 244 245 246
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

247
static struct iommu_dev_data *alloc_dev_data(u16 devid)
248 249 250 251 252 253 254 255
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

256
	dev_data->devid = devid;
257 258 259 260 261

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

262 263
	ratelimit_default_init(&dev_data->rs);

264 265 266
	return dev_data;
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

286 287 288 289 290 291 292 293 294 295 296
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

297
	/* The callers make sure that get_device_id() does not fail here */
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
339
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
340 341 342 343 344 345 346 347
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

348 349 350
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
351
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
352 353 354

	dev_data = search_dev_data(devid);

355
	if (dev_data == NULL) {
356 357
		dev_data = alloc_dev_data(devid);

358 359 360 361
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

362 363 364
	return dev_data;
}

365
struct iommu_dev_data *get_dev_data(struct device *dev)
366 367 368
{
	return dev->archdata.iommu;
}
369
EXPORT_SYMBOL(get_dev_data);
370

371 372 373 374
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
375
{
376
	struct acpihid_map_entry *p, *entry = NULL;
377
	int devid;
378 379 380 381 382 383 384 385 386 387 388 389

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
390 391
	else
		iommu_group_ref_get(entry->group);
392 393

	return entry->group;
394 395
}

396 397 398 399
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
400 401
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
402 403 404 405 406 407 408 409 410 411 412 413
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

414 415 416 417 418 419 420 421 422
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

423 424 425 426 427 428
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
429
	int devid;
430 431 432 433 434

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
435
	if (devid < 0)
436
		return false;
437 438 439 440 441 442 443 444 445 446 447

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

448
static void init_iommu_group(struct device *dev)
449 450 451
{
	struct iommu_group *group;

452
	group = iommu_group_get_for_dev(dev);
453 454 455 456
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
457 458 459 460 461
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
462
	struct amd_iommu *iommu;
463
	int devid;
464 465 466 467

	if (dev->archdata.iommu)
		return 0;

468
	devid = get_device_id(dev);
469
	if (devid < 0)
470 471
		return devid;

472 473
	iommu = amd_iommu_rlookup_table[devid];

474
	dev_data = find_dev_data(devid);
475 476 477
	if (!dev_data)
		return -ENOMEM;

478 479
	dev_data->alias = get_alias(dev);

480
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
481 482
		struct amd_iommu *iommu;

483
		iommu = amd_iommu_rlookup_table[dev_data->devid];
484 485 486
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

487 488
	dev->archdata.iommu = dev_data;

489
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
490

491 492 493
	return 0;
}

494 495
static void iommu_ignore_device(struct device *dev)
{
496 497
	u16 alias;
	int devid;
498 499

	devid = get_device_id(dev);
500
	if (devid < 0)
501 502
		return;

503
	alias = get_alias(dev);
504 505 506 507 508 509 510 511

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

512 513
static void iommu_uninit_device(struct device *dev)
{
514
	struct iommu_dev_data *dev_data;
515 516
	struct amd_iommu *iommu;
	int devid;
517

518
	devid = get_device_id(dev);
519
	if (devid < 0)
520
		return;
521

522 523
	iommu = amd_iommu_rlookup_table[devid];

524
	dev_data = search_dev_data(devid);
525 526 527
	if (!dev_data)
		return;

528 529 530
	if (dev_data->domain)
		detach_device(dev);

531
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
532

533 534
	iommu_group_remove_device(dev);

535
	/* Remove dma-ops */
536
	dev->dma_ops = NULL;
537

538
	/*
539 540
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
541
	 */
542
}
J
Joerg Roedel 已提交
543

544 545 546 547 548 549
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

550 551 552 553
static void dump_dte_entry(u16 devid)
{
	int i;

554 555
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
556 557 558
			amd_iommu_dev_table[devid].data[i]);
}

559 560 561 562 563 564 565 566 567
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

	pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

591
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
592
{
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
614

615 616 617 618 619 620
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
621 622 623 624 625

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
626
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
627
		       address, flags);
628
		dump_dte_entry(devid);
629 630 631 632
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
633
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
634 635 636 637 638
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
639
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
640 641 642 643
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
644
		dump_command(address);
645 646 647 648 649 650 651 652
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
653
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
654 655 656 657 658
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
659
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
660 661 662 663 664
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
665 666

	memset(__evt, 0, 4 * sizeof(u32));
667 668 669 670 671 672 673 674 675 676
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
677
		iommu_print_event(iommu, iommu->evt_buf + head);
678
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
679 680 681 682 683
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

684
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
729

730 731 732
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
733

734 735 736 737 738 739 740
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
741 742
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
743 744 745 746 747 748

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
749 750 751 752
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

813
irqreturn_t amd_iommu_int_thread(int irq, void *data)
814
{
815 816
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
817

818 819 820
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
821
			iommu->mmio_base + MMIO_STATUS_OFFSET);
822

823 824 825 826
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
827

828 829 830 831
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
832

833 834 835 836 837 838 839
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
855
	return IRQ_HANDLED;
856 857
}

858 859 860 861 862
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

863 864 865 866 867 868
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
887
			       struct iommu_cmd *cmd)
888 889 890
{
	u8 *target;

891 892 893 894
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
895 896 897 898 899

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
900
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
901
}
902

903
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
904
{
905 906
	WARN_ON(address & 0x7ULL);

907
	memset(cmd, 0, sizeof(*cmd));
908 909 910
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
911 912 913
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

914 915 916 917 918 919 920
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

921 922 923 924
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
925
	bool s;
926 927

	pages = iommu_num_pages(address, size, PAGE_SIZE);
928
	s     = false;
929 930 931 932 933 934 935

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
936
		s = true;
937 938 939 940 941 942 943 944 945 946 947
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
948
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
949 950 951
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

952 953 954 955
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
956
	bool s;
957 958

	pages = iommu_num_pages(address, size, PAGE_SIZE);
959
	s     = false;
960 961 962 963 964 965 966

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
967
		s = true;
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

983 984 985 986 987 988 989
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

990
	cmd->data[0]  = pasid;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
1009
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1010 1011
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
1012
	cmd->data[1] |= (pasid & 0xff) << 16;
1013 1014 1015 1016 1017 1018 1019 1020
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

1021 1022 1023 1024 1025 1026 1027
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1028
		cmd->data[1]  = pasid;
1029 1030 1031 1032 1033 1034 1035 1036
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1037 1038 1039 1040
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1041 1042
}

1043 1044 1045 1046 1047 1048 1049
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1050 1051
/*
 * Writes the command to the IOMMUs command buffer and informs the
1052
 * hardware about the new command.
1053
 */
1054 1055 1056
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1057
{
1058
	unsigned int count = 0;
1059
	u32 left, next_tail;
1060

1061
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1062
again:
1063
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1064

1065
	if (left <= 0x20) {
1066 1067 1068 1069 1070 1071
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1072

1073 1074
			udelay(1);
		}
1075

1076 1077 1078
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1079 1080

		goto again;
1081 1082
	}

1083
	copy_cmd_to_buffer(iommu, cmd);
1084

1085
	/* Do we need to make sure all commands are processed? */
1086
	iommu->need_sync = sync;
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1100
	spin_unlock_irqrestore(&iommu->lock, flags);
1101

1102
	return ret;
1103 1104
}

1105 1106 1107 1108 1109
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1110 1111 1112 1113
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1114
static int iommu_completion_wait(struct amd_iommu *iommu)
1115 1116
{
	struct iommu_cmd cmd;
1117
	unsigned long flags;
1118
	int ret;
1119

1120
	if (!iommu->need_sync)
1121
		return 0;
1122

1123

1124 1125 1126 1127 1128 1129 1130
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1131
	if (ret)
1132 1133 1134 1135 1136 1137
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1138

1139
	return ret;
1140 1141
}

1142
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1143
{
1144
	struct iommu_cmd cmd;
1145

1146
	build_inv_dte(&cmd, devid);
1147

1148 1149
	return iommu_queue_command(iommu, &cmd);
}
1150

1151 1152 1153
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1154

1155 1156
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1157

1158 1159
	iommu_completion_wait(iommu);
}
1160

1161 1162 1163 1164 1165 1166 1167
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1168

1169 1170 1171 1172 1173 1174
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1175

1176
	iommu_completion_wait(iommu);
1177 1178
}

1179
static void iommu_flush_all(struct amd_iommu *iommu)
1180
{
1181
	struct iommu_cmd cmd;
1182

1183
	build_inv_all(&cmd);
1184

1185 1186 1187 1188
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1208 1209
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1210 1211 1212 1213
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1214
		iommu_flush_irt_all(iommu);
1215
		iommu_flush_tlb_all(iommu);
1216 1217 1218
	}
}

1219
/*
1220
 * Command send function for flushing on-device TLB
1221
 */
1222 1223
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1224 1225
{
	struct amd_iommu *iommu;
1226
	struct iommu_cmd cmd;
1227
	int qdep;
1228

1229 1230
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1231

1232
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1233 1234

	return iommu_queue_command(iommu, &cmd);
1235 1236
}

1237 1238 1239
/*
 * Command send function for invalidating a device table entry
 */
1240
static int device_flush_dte(struct iommu_dev_data *dev_data)
1241
{
1242
	struct amd_iommu *iommu;
1243
	u16 alias;
1244
	int ret;
1245

1246
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1247
	alias = dev_data->alias;
1248

1249
	ret = iommu_flush_dte(iommu, dev_data->devid);
1250 1251
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1252 1253 1254
	if (ret)
		return ret;

1255
	if (dev_data->ats.enabled)
1256
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1257 1258

	return ret;
1259 1260
}

1261 1262 1263 1264 1265
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1266 1267
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1268
{
1269
	struct iommu_dev_data *dev_data;
1270 1271
	struct iommu_cmd cmd;
	int ret = 0, i;
1272

1273
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1274

1275
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1276 1277 1278 1279 1280 1281 1282
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1283
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1284 1285
	}

1286 1287
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1288
		if (!dev_data->ats.enabled)
1289 1290
			continue;

1291
		ret |= device_flush_iotlb(dev_data, address, size);
1292 1293
	}

1294
	WARN_ON(ret);
1295 1296
}

1297 1298
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1299
{
1300
	__domain_flush_pages(domain, address, size, 0);
1301
}
1302

1303
/* Flush the whole IO/TLB for a given protection domain */
1304
static void domain_flush_tlb(struct protection_domain *domain)
1305
{
1306
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1307 1308
}

1309
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1310
static void domain_flush_tlb_pde(struct protection_domain *domain)
1311
{
1312
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1313 1314
}

1315
static void domain_flush_complete(struct protection_domain *domain)
1316
{
1317
	int i;
1318

1319
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1320
		if (domain && !domain->dev_iommu[i])
1321
			continue;
1322

1323 1324 1325 1326 1327
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1328
	}
1329 1330
}

1331

1332
/*
1333
 * This function flushes the DTEs for all devices in domain
1334
 */
1335
static void domain_flush_devices(struct protection_domain *domain)
1336
{
1337
	struct iommu_dev_data *dev_data;
1338

1339
	list_for_each_entry(dev_data, &domain->dev_list, list)
1340
		device_flush_dte(dev_data);
1341 1342
}

1343 1344 1345 1346 1347 1348 1349
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1379
		      unsigned long page_size,
1380 1381 1382
		      u64 **pte_page,
		      gfp_t gfp)
{
1383
	int level, end_lvl;
1384
	u64 *pte, *page;
1385 1386

	BUG_ON(!is_power_of_2(page_size));
1387 1388 1389 1390

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1391 1392 1393 1394
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1395 1396

	while (level > end_lvl) {
1397 1398 1399 1400 1401
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1402 1403 1404
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1405 1406 1407

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1408 1409
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1410 1411 1412
				free_page((unsigned long)page);
				continue;
			}
1413 1414
		}

1415 1416 1417 1418
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1436 1437 1438
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1439 1440 1441 1442
{
	int level;
	u64 *pte;

1443 1444 1445
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1446 1447 1448
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1449

1450 1451 1452
	while (level > 0) {

		/* Not Present */
1453 1454 1455
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1456
		/* Large PTE */
1457 1458 1459
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1460 1461 1462 1463 1464

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1465 1466
		level -= 1;

1467
		/* Walk to the next level */
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1483 1484 1485 1486 1487
	}

	return pte;
}

1488 1489 1490 1491 1492 1493 1494
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1495 1496 1497
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1498
			  unsigned long page_size,
1499
			  int prot,
1500
			  gfp_t gfp)
1501
{
1502
	u64 __pte, *pte;
1503
	int i, count;
1504

1505 1506 1507
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1508
	if (!(prot & IOMMU_PROT_MASK))
1509 1510
		return -EINVAL;

1511
	count = PAGE_SIZE_PTE_COUNT(page_size);
1512
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1513

1514 1515 1516
	if (!pte)
		return -ENOMEM;

1517 1518 1519
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1520

1521
	if (count > 1) {
1522
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
1523
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1524
	} else
1525
		__pte = phys_addr | IOMMU_PTE_PR | IOMMU_PTE_FC;
1526 1527 1528 1529 1530 1531

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1532 1533
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1534

1535 1536
	update_domain(dom);

1537 1538 1539
	return 0;
}

1540 1541 1542
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1543
{
1544 1545
	unsigned long long unmapped;
	unsigned long unmap_size;
1546 1547 1548 1549 1550
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1551

1552 1553
	while (unmapped < page_size) {

1554 1555 1556 1557 1558 1559
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1560 1561 1562 1563 1564 1565 1566 1567
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1568
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1569

1570
	return unmapped;
1571 1572
}

1573 1574 1575
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1576
 * interface functions.
1577 1578
 *
 ****************************************************************************/
1579

1580

1581 1582 1583
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1584
{
1585
	unsigned long pfn = 0;
1586

1587
	pages = __roundup_pow_of_two(pages);
1588

1589 1590 1591
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1592

1593 1594
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1595

1596
	return (pfn << PAGE_SHIFT);
1597 1598
}

1599 1600 1601
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1602
{
1603 1604
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1605

1606
	free_iova_fast(&dma_dom->iovad, address, pages);
1607 1608
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1681
		/* PTE present? */				\
1682 1683 1684
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1685 1686 1687 1688 1689
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1702
static void free_pagetable(struct protection_domain *domain)
1703
{
1704
	unsigned long root = (unsigned long)domain->pt_root;
1705

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1729 1730 1731
	}
}

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1762 1763
static void free_gcr3_table(struct protection_domain *domain)
{
1764 1765 1766 1767
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1768 1769
	else
		BUG_ON(domain->glx != 0);
1770

1771 1772 1773
	free_page((unsigned long)domain->gcr3_tbl);
}

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
static void dma_ops_domain_free_flush_queue(struct dma_ops_domain *dom)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		kfree(queue->entries);
	}

	free_percpu(dom->flush_queue);

	dom->flush_queue = NULL;
}

static int dma_ops_domain_alloc_flush_queue(struct dma_ops_domain *dom)
{
	int cpu;

1794 1795 1796
	atomic64_set(&dom->flush_start_cnt,  0);
	atomic64_set(&dom->flush_finish_cnt, 0);

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
	dom->flush_queue = alloc_percpu(struct flush_queue);
	if (!dom->flush_queue)
		return -ENOMEM;

	/* First make sure everything is cleared */
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		queue->head    = 0;
		queue->tail    = 0;
		queue->entries = NULL;
	}

	/* Now start doing the allocation */
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		queue->entries = kzalloc(FLUSH_QUEUE_SIZE * sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries) {
			dma_ops_domain_free_flush_queue(dom);
			return -ENOMEM;
		}
1822 1823

		spin_lock_init(&queue->lock);
1824 1825 1826 1827 1828
	}

	return 0;
}

1829 1830 1831 1832 1833 1834 1835 1836
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	atomic64_inc(&dom->flush_start_cnt);
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
	atomic64_inc(&dom->flush_finish_cnt);
}

1837 1838
static inline bool queue_ring_full(struct flush_queue *queue)
{
1839 1840
	assert_spin_locked(&queue->lock);

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	return (((queue->tail + 1) % FLUSH_QUEUE_SIZE) == queue->head);
}

#define queue_ring_for_each(i, q) \
	for (i = (q)->head; i != (q)->tail; i = (i + 1) % FLUSH_QUEUE_SIZE)

static inline unsigned queue_ring_add(struct flush_queue *queue)
{
	unsigned idx = queue->tail;

1851
	assert_spin_locked(&queue->lock);
1852 1853 1854 1855 1856
	queue->tail = (idx + 1) % FLUSH_QUEUE_SIZE;

	return idx;
}

1857 1858 1859 1860 1861 1862
static inline void queue_ring_remove_head(struct flush_queue *queue)
{
	assert_spin_locked(&queue->lock);
	queue->head = (queue->head + 1) % FLUSH_QUEUE_SIZE;
}

1863 1864
static void queue_ring_free_flushed(struct dma_ops_domain *dom,
				    struct flush_queue *queue)
1865
{
1866
	u64 counter = atomic64_read(&dom->flush_finish_cnt);
1867 1868
	int idx;

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
	queue_ring_for_each(idx, queue) {
		/*
		 * This assumes that counter values in the ring-buffer are
		 * monotonously rising.
		 */
		if (queue->entries[idx].counter >= counter)
			break;

		free_iova_fast(&dom->iovad,
			       queue->entries[idx].iova_pfn,
			       queue->entries[idx].pages);

		queue_ring_remove_head(queue);
	}
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
}

static void queue_add(struct dma_ops_domain *dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(dom->flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

1898 1899 1900 1901 1902 1903
	/*
	 * First remove the enries from the ring-buffer that are already
	 * flushed to make the below queue_ring_full() check less likely
	 */
	queue_ring_free_flushed(dom, queue);

1904 1905 1906 1907 1908
	/*
	 * When ring-queue is full, flush the entries from the IOTLB so
	 * that we can free all entries with queue_ring_free_flushed()
	 * below.
	 */
1909
	if (queue_ring_full(queue)) {
1910
		dma_ops_domain_flush_tlb(dom);
1911 1912
		queue_ring_free_flushed(dom, queue);
	}
1913 1914 1915 1916 1917

	idx = queue_ring_add(queue);

	queue->entries[idx].iova_pfn = address;
	queue->entries[idx].pages    = pages;
1918
	queue->entries[idx].counter  = atomic64_read(&dom->flush_start_cnt);
1919

1920
	spin_unlock_irqrestore(&queue->lock, flags);
1921 1922 1923 1924

	if (atomic_cmpxchg(&dom->flush_timer_on, 0, 1) == 0)
		mod_timer(&dom->flush_timer, jiffies + msecs_to_jiffies(10));

1925 1926 1927
	put_cpu_ptr(dom->flush_queue);
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
static void queue_flush_timeout(unsigned long data)
{
	struct dma_ops_domain *dom = (struct dma_ops_domain *)data;
	int cpu;

	atomic_set(&dom->flush_timer_on, 0);

	dma_ops_domain_flush_tlb(dom);

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(dom->flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		queue_ring_free_flushed(dom, queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

1948 1949 1950 1951
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1952 1953 1954 1955 1956
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1957 1958
	del_domain_from_list(&dom->domain);

1959 1960 1961
	if (timer_pending(&dom->flush_timer))
		del_timer(&dom->flush_timer);

1962 1963
	dma_ops_domain_free_flush_queue(dom);

1964
	put_iova_domain(&dom->iovad);
1965

1966
	free_pagetable(&dom->domain);
1967

1968 1969 1970
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1971 1972 1973
	kfree(dom);
}

1974 1975
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1976
 * It also initializes the page table and the address allocator data
1977 1978
 * structures required for the dma_ops interface
 */
1979
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1980 1981 1982 1983 1984 1985 1986
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1987
	if (protection_domain_init(&dma_dom->domain))
1988
		goto free_dma_dom;
1989

1990
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1991
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1992
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1993 1994 1995
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1996 1997 1998
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1999 2000 2001
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

2002 2003 2004
	if (dma_ops_domain_alloc_flush_queue(dma_dom))
		goto free_dma_dom;

2005 2006 2007 2008 2009
	setup_timer(&dma_dom->flush_timer, queue_flush_timeout,
		    (unsigned long)dma_dom);

	atomic_set(&dma_dom->flush_timer_on, 0);

2010 2011
	add_domain_to_list(&dma_dom->domain);

2012 2013 2014 2015 2016 2017 2018 2019
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2020 2021 2022 2023 2024 2025 2026 2027 2028
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2029
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2030
{
2031
	u64 pte_root = 0;
2032
	u64 flags = 0;
2033

2034 2035 2036
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2037 2038
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
2039
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
2040

2041 2042
	flags = amd_iommu_dev_table[devid].data[1];

2043 2044 2045
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2072
	flags &= ~DEV_DOMID_MASK;
2073 2074 2075 2076
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2077 2078 2079 2080 2081
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
2082
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
2083
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2084 2085

	amd_iommu_apply_erratum_63(devid);
2086 2087
}

2088 2089
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2090 2091
{
	struct amd_iommu *iommu;
2092
	u16 alias;
2093
	bool ats;
2094

2095
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2096
	alias = dev_data->alias;
2097
	ats   = dev_data->ats.enabled;
2098 2099 2100 2101 2102 2103 2104 2105 2106

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

2107 2108 2109
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
2110
		set_dte_entry(alias, domain, ats);
2111

2112
	device_flush_dte(dev_data);
2113 2114
}

2115
static void do_detach(struct iommu_dev_data *dev_data)
2116 2117
{
	struct amd_iommu *iommu;
2118
	u16 alias;
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

2129
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2130
	alias = dev_data->alias;
2131 2132

	/* decrease reference counters */
2133 2134 2135 2136 2137 2138
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2139
	clear_dte_entry(dev_data->devid);
2140 2141
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
2142

2143
	/* Flush the DTE entry */
2144
	device_flush_dte(dev_data);
2145 2146 2147 2148 2149 2150
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2151
static int __attach_device(struct iommu_dev_data *dev_data,
2152
			   struct protection_domain *domain)
2153
{
2154
	int ret;
2155

2156 2157 2158 2159 2160 2161
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

2162 2163 2164
	/* lock domain */
	spin_lock(&domain->lock);

2165
	ret = -EBUSY;
2166
	if (dev_data->domain != NULL)
2167
		goto out_unlock;
2168

2169
	/* Attach alias group root */
2170
	do_attach(dev_data, domain);
2171

2172 2173 2174 2175
	ret = 0;

out_unlock:

2176 2177
	/* ready */
	spin_unlock(&domain->lock);
2178

2179
	return ret;
2180
}
2181

2182 2183 2184 2185 2186 2187 2188 2189

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2190 2191 2192 2193 2194 2195
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2196
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2197 2198 2199
	if (!pos)
		return -EINVAL;

2200 2201 2202
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2203 2204 2205 2206

	return 0;
}

2207 2208
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2209 2210 2211 2212 2213 2214 2215 2216
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2228 2229
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2230 2231 2232
	if (ret)
		goto out_err;

2233 2234 2235 2236 2237 2238
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2252
/* FIXME: Move this to PCI code */
2253
#define PCI_PRI_TLP_OFF		(1 << 15)
2254

J
Joerg Roedel 已提交
2255
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2256
{
2257
	u16 status;
2258 2259
	int pos;

2260
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2261 2262 2263
	if (!pos)
		return false;

2264
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2265

2266
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2267 2268
}

2269
/*
F
Frank Arnold 已提交
2270
 * If a device is not yet associated with a domain, this function
2271 2272
 * assigns it visible for the hardware
 */
2273 2274
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2275
{
2276
	struct pci_dev *pdev;
2277
	struct iommu_dev_data *dev_data;
2278
	unsigned long flags;
2279
	int ret;
2280

2281 2282
	dev_data = get_dev_data(dev);

2283 2284 2285 2286
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2287
	if (domain->flags & PD_IOMMUV2_MASK) {
2288
		if (!dev_data->passthrough)
2289 2290
			return -EINVAL;

2291 2292 2293
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2294

2295 2296 2297 2298
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2299 2300
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2301 2302 2303
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2304

2305
skip_ats_check:
2306
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2307
	ret = __attach_device(dev_data, domain);
2308 2309
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2310 2311 2312 2313 2314
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2315
	domain_flush_tlb_pde(domain);
2316 2317

	return ret;
2318 2319
}

2320 2321 2322
/*
 * Removes a device from a protection domain (unlocked)
 */
2323
static void __detach_device(struct iommu_dev_data *dev_data)
2324
{
2325
	struct protection_domain *domain;
2326

2327 2328 2329 2330 2331
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2332

2333 2334
	if (WARN_ON(!dev_data->domain))
		return;
2335

2336
	domain = dev_data->domain;
2337

2338
	spin_lock(&domain->lock);
2339

2340
	do_detach(dev_data);
2341

2342
	spin_unlock(&domain->lock);
2343 2344 2345 2346 2347
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2348
static void detach_device(struct device *dev)
2349
{
2350
	struct protection_domain *domain;
2351
	struct iommu_dev_data *dev_data;
2352 2353
	unsigned long flags;

2354
	dev_data = get_dev_data(dev);
2355
	domain   = dev_data->domain;
2356

2357 2358
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2359
	__detach_device(dev_data);
2360
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2361

2362 2363 2364
	if (!dev_is_pci(dev))
		return;

2365
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2366 2367
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2368
		pci_disable_ats(to_pci_dev(dev));
2369 2370

	dev_data->ats.enabled = false;
2371
}
2372

2373
static int amd_iommu_add_device(struct device *dev)
2374
{
2375
	struct iommu_dev_data *dev_data;
2376
	struct iommu_domain *domain;
2377
	struct amd_iommu *iommu;
2378
	int ret, devid;
2379

2380
	if (!check_device(dev) || get_dev_data(dev))
2381
		return 0;
2382

2383
	devid = get_device_id(dev);
2384
	if (devid < 0)
2385 2386
		return devid;

2387
	iommu = amd_iommu_rlookup_table[devid];
2388

2389
	ret = iommu_init_device(dev);
2390 2391 2392 2393
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2394

2395
		iommu_ignore_device(dev);
2396
		dev->dma_ops = &nommu_dma_ops;
2397 2398 2399
		goto out;
	}
	init_iommu_group(dev);
2400

2401
	dev_data = get_dev_data(dev);
2402

2403
	BUG_ON(!dev_data);
2404

2405
	if (iommu_pass_through || dev_data->iommu_v2)
2406
		iommu_request_dm_for_dev(dev);
2407

2408 2409
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2410
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2411
		dev_data->passthrough = true;
2412
	else
2413
		dev->dma_ops = &amd_iommu_dma_ops;
2414

2415
out:
2416 2417 2418 2419 2420
	iommu_completion_wait(iommu);

	return 0;
}

2421
static void amd_iommu_remove_device(struct device *dev)
2422
{
2423
	struct amd_iommu *iommu;
2424
	int devid;
2425 2426 2427 2428 2429

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2430
	if (devid < 0)
2431 2432
		return;

2433 2434 2435 2436
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2437 2438
}

2439 2440 2441 2442 2443 2444 2445 2446
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2460
static struct protection_domain *get_domain(struct device *dev)
2461
{
2462
	struct protection_domain *domain;
2463
	struct iommu_domain *io_domain;
2464

2465
	if (!check_device(dev))
2466
		return ERR_PTR(-EINVAL);
2467

2468
	domain = get_dev_data(dev)->domain;
2469 2470 2471 2472 2473 2474
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2475
	if (!dma_ops_domain(domain))
2476
		return ERR_PTR(-EBUSY);
2477

2478
	return domain;
2479 2480
}

2481 2482
static void update_device_table(struct protection_domain *domain)
{
2483
	struct iommu_dev_data *dev_data;
2484

2485
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2486
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2487 2488 2489 2490 2491 2492 2493

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2494 2495 2496 2497 2498 2499 2500 2501
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2502 2503 2504

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2505 2506 2507 2508

	domain->updated = false;
}

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2520

2521 2522
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2523 2524
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2525 2526
 * Must be called with the domain lock held.
 */
2527 2528 2529 2530
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2531
			       enum dma_data_direction direction,
2532
			       u64 dma_mask)
2533 2534
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2535
	dma_addr_t address, start, ret;
2536
	unsigned int pages;
2537
	int prot = 0;
2538 2539
	int i;

2540
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2541 2542
	paddr &= PAGE_MASK;

2543
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2544
	if (address == AMD_IOMMU_MAPPING_ERROR)
2545
		goto out;
2546

2547
	prot = dir2prot(direction);
2548

2549 2550
	start = address;
	for (i = 0; i < pages; ++i) {
2551 2552 2553
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2554 2555
			goto out_unmap;

2556 2557 2558 2559 2560
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2561
	if (unlikely(amd_iommu_np_cache)) {
2562
		domain_flush_pages(&dma_dom->domain, address, size);
2563 2564
		domain_flush_complete(&dma_dom->domain);
	}
2565

2566 2567
out:
	return address;
2568 2569 2570 2571 2572

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2573
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2574 2575
	}

2576 2577 2578 2579
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2580

2581
	return AMD_IOMMU_MAPPING_ERROR;
2582 2583
}

2584 2585 2586 2587
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2588
static void __unmap_single(struct dma_ops_domain *dma_dom,
2589 2590 2591 2592
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2593
	dma_addr_t flush_addr;
2594 2595 2596
	dma_addr_t i, start;
	unsigned int pages;

2597
	flush_addr = dma_addr;
2598
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2599 2600 2601 2602
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2603
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2604 2605 2606
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2607 2608 2609 2610 2611 2612 2613
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2614 2615
}

2616 2617 2618
/*
 * The exported map_single function for dma_ops.
 */
2619 2620 2621
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2622
			   unsigned long attrs)
2623
{
2624
	phys_addr_t paddr = page_to_phys(page) + offset;
2625
	struct protection_domain *domain;
2626
	struct dma_ops_domain *dma_dom;
2627
	u64 dma_mask;
2628

2629 2630
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2631
		return (dma_addr_t)paddr;
2632
	else if (IS_ERR(domain))
2633
		return AMD_IOMMU_MAPPING_ERROR;
2634

2635
	dma_mask = *dev->dma_mask;
2636
	dma_dom = to_dma_ops_domain(domain);
2637

2638
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2639 2640
}

2641 2642 2643
/*
 * The exported unmap_single function for dma_ops.
 */
2644
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2645
		       enum dma_data_direction dir, unsigned long attrs)
2646 2647
{
	struct protection_domain *domain;
2648
	struct dma_ops_domain *dma_dom;
2649

2650 2651
	domain = get_domain(dev);
	if (IS_ERR(domain))
2652 2653
		return;

2654 2655 2656
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2657 2658
}

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2685 2686 2687 2688
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2689
static int map_sg(struct device *dev, struct scatterlist *sglist,
2690
		  int nelems, enum dma_data_direction direction,
2691
		  unsigned long attrs)
2692
{
2693
	int mapped_pages = 0, npages = 0, prot = 0, i;
2694
	struct protection_domain *domain;
2695
	struct dma_ops_domain *dma_dom;
2696
	struct scatterlist *s;
2697
	unsigned long address;
2698
	u64 dma_mask;
2699

2700
	domain = get_domain(dev);
2701
	if (IS_ERR(domain))
2702
		return 0;
2703

2704
	dma_dom  = to_dma_ops_domain(domain);
2705
	dma_mask = *dev->dma_mask;
2706

2707 2708 2709
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2710
	if (address == AMD_IOMMU_MAPPING_ERROR)
2711 2712 2713 2714 2715
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2716
	for_each_sg(sglist, s, nelems, i) {
2717 2718 2719 2720 2721
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2722

2723 2724 2725 2726 2727
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2728

2729 2730
			mapped_pages += 1;
		}
2731 2732
	}

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2750

2751 2752 2753 2754 2755 2756
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2757 2758
	}

2759 2760 2761 2762
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2763
	return 0;
2764 2765
}

2766 2767 2768 2769
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2770
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2771
		     int nelems, enum dma_data_direction dir,
2772
		     unsigned long attrs)
2773 2774
{
	struct protection_domain *domain;
2775
	struct dma_ops_domain *dma_dom;
2776 2777
	unsigned long startaddr;
	int npages = 2;
2778

2779 2780
	domain = get_domain(dev);
	if (IS_ERR(domain))
2781 2782
		return;

2783
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2784
	dma_dom   = to_dma_ops_domain(domain);
2785 2786
	npages    = sg_num_pages(dev, sglist, nelems);

2787
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2788 2789
}

2790 2791 2792
/*
 * The exported alloc_coherent function for dma_ops.
 */
2793
static void *alloc_coherent(struct device *dev, size_t size,
2794
			    dma_addr_t *dma_addr, gfp_t flag,
2795
			    unsigned long attrs)
2796
{
2797
	u64 dma_mask = dev->coherent_dma_mask;
2798
	struct protection_domain *domain;
2799
	struct dma_ops_domain *dma_dom;
2800
	struct page *page;
2801

2802 2803
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2804 2805 2806
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2807 2808
	} else if (IS_ERR(domain))
		return NULL;
2809

2810
	dma_dom   = to_dma_ops_domain(domain);
2811
	size	  = PAGE_ALIGN(size);
2812 2813
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2814
	flag     |= __GFP_ZERO;
2815

2816 2817
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2818
		if (!gfpflags_allow_blocking(flag))
2819
			return NULL;
2820

2821
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2822
						 get_order(size), flag);
2823 2824 2825
		if (!page)
			return NULL;
	}
2826

2827 2828 2829
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2830
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2831
				 size, DMA_BIDIRECTIONAL, dma_mask);
2832

2833
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2834
		goto out_free;
2835

2836
	return page_address(page);
2837 2838 2839

out_free:

2840 2841
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2842 2843

	return NULL;
2844 2845
}

2846 2847 2848
/*
 * The exported free_coherent function for dma_ops.
 */
2849
static void free_coherent(struct device *dev, size_t size,
2850
			  void *virt_addr, dma_addr_t dma_addr,
2851
			  unsigned long attrs)
2852 2853
{
	struct protection_domain *domain;
2854
	struct dma_ops_domain *dma_dom;
2855
	struct page *page;
2856

2857 2858 2859
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2860 2861
	domain = get_domain(dev);
	if (IS_ERR(domain))
2862 2863
		goto free_mem;

2864 2865 2866
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2867 2868

free_mem:
2869 2870
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2871 2872
}

2873 2874 2875 2876 2877 2878
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2879 2880
	if (!x86_dma_supported(dev, mask))
		return 0;
2881
	return check_device(dev);
2882 2883
}

2884 2885 2886 2887 2888
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2889
static const struct dma_map_ops amd_iommu_dma_ops = {
2890 2891 2892 2893 2894 2895 2896
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2897
	.mapping_error	= amd_iommu_mapping_error,
2898 2899
};

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2953
int __init amd_iommu_init_api(void)
2954
{
2955
	int ret, err = 0;
2956 2957 2958 2959

	ret = iova_cache_get();
	if (ret)
		return ret;
2960

2961 2962 2963 2964
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2965 2966 2967 2968 2969 2970 2971 2972
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2973 2974 2975
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2976

2977
	return 0;
2978 2979
}

2980 2981
int __init amd_iommu_init_dma_ops(void)
{
2982
	swiotlb        = iommu_pass_through ? 1 : 0;
2983 2984
	iommu_detected = 1;

2985 2986 2987 2988 2989 2990 2991 2992 2993
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2994 2995 2996 2997 2998
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2999
	return 0;
3000

3001
}
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3015
	struct iommu_dev_data *entry;
3016 3017 3018 3019
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3020 3021 3022 3023
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3024
	}
3025 3026 3027 3028

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3029 3030 3031 3032 3033
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3034 3035
	del_domain_from_list(domain);

3036 3037 3038 3039 3040 3041
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

3054
static struct protection_domain *protection_domain_alloc(void)
3055 3056 3057 3058 3059
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3060
		return NULL;
3061

3062
	if (protection_domain_init(domain))
3063 3064
		goto out_err;

3065 3066
	add_domain_to_list(domain);

3067 3068 3069 3070 3071 3072 3073 3074
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3075
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3076
{
3077
	struct protection_domain *pdomain;
3078
	struct dma_ops_domain *dma_domain;
3079

3080 3081 3082 3083 3084
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3085

3086 3087 3088 3089 3090 3091
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
3092

3093 3094 3095
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
3096

3097 3098 3099 3100 3101 3102 3103 3104 3105
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
3106 3107 3108 3109
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3110

3111 3112
		pdomain->mode = PAGE_MODE_NONE;
		break;
3113 3114 3115
	default:
		return NULL;
	}
3116

3117
	return &pdomain->domain;
3118 3119
}

3120
static void amd_iommu_domain_free(struct iommu_domain *dom)
3121
{
3122
	struct protection_domain *domain;
3123
	struct dma_ops_domain *dma_dom;
3124

3125 3126
	domain = to_pdomain(dom);

3127 3128 3129 3130 3131
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3132 3133
	if (!dom)
		return;
3134

3135 3136
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
3137
		/* Now release the domain */
3138
		dma_dom = to_dma_ops_domain(domain);
3139 3140 3141 3142 3143
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
3144

3145 3146 3147 3148 3149 3150
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
3151 3152
}

3153 3154 3155
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3156
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3157
	struct amd_iommu *iommu;
3158
	int devid;
3159

3160
	if (!check_device(dev))
3161 3162
		return;

3163
	devid = get_device_id(dev);
3164
	if (devid < 0)
3165
		return;
3166

3167
	if (dev_data->domain != NULL)
3168
		detach_device(dev);
3169 3170 3171 3172 3173

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3174 3175 3176 3177 3178 3179
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3180 3181 3182
	iommu_completion_wait(iommu);
}

3183 3184 3185
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3186
	struct protection_domain *domain = to_pdomain(dom);
3187
	struct iommu_dev_data *dev_data;
3188
	struct amd_iommu *iommu;
3189
	int ret;
3190

3191
	if (!check_device(dev))
3192 3193
		return -EINVAL;

3194 3195
	dev_data = dev->archdata.iommu;

3196
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3197 3198 3199
	if (!iommu)
		return -EINVAL;

3200
	if (dev_data->domain)
3201
		detach_device(dev);
3202

3203
	ret = attach_device(dev, domain);
3204

3205 3206 3207 3208 3209 3210 3211 3212 3213
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3214 3215
	iommu_completion_wait(iommu);

3216
	return ret;
3217 3218
}

3219
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3220
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3221
{
3222
	struct protection_domain *domain = to_pdomain(dom);
3223 3224 3225
	int prot = 0;
	int ret;

3226 3227 3228
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3229 3230 3231 3232 3233
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3234
	mutex_lock(&domain->api_lock);
3235
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3236 3237
	mutex_unlock(&domain->api_lock);

3238
	return ret;
3239 3240
}

3241 3242
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3243
{
3244
	struct protection_domain *domain = to_pdomain(dom);
3245
	size_t unmap_size;
3246

3247 3248 3249
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3250
	mutex_lock(&domain->api_lock);
3251
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3252
	mutex_unlock(&domain->api_lock);
3253

3254
	domain_flush_tlb_pde(domain);
3255

3256
	return unmap_size;
3257 3258
}

3259
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3260
					  dma_addr_t iova)
3261
{
3262
	struct protection_domain *domain = to_pdomain(dom);
3263
	unsigned long offset_mask, pte_pgsize;
3264
	u64 *pte, __pte;
3265

3266 3267 3268
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3269
	pte = fetch_pte(domain, iova, &pte_pgsize);
3270

3271
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3272 3273
		return 0;

3274 3275
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3276

3277
	return (__pte & ~offset_mask) | (iova & offset_mask);
3278 3279
}

3280
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3281
{
3282 3283
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3284
		return true;
3285
	case IOMMU_CAP_INTR_REMAP:
3286
		return (irq_remapping_enabled == 1);
3287 3288
	case IOMMU_CAP_NOEXEC:
		return false;
3289 3290
	}

3291
	return false;
S
Sheng Yang 已提交
3292 3293
}

3294 3295
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3296
{
3297
	struct iommu_resv_region *region;
3298
	struct unity_map_entry *entry;
3299
	int devid;
3300 3301

	devid = get_device_id(dev);
3302
	if (devid < 0)
3303
		return;
3304 3305

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3306 3307
		size_t length;
		int prot = 0;
3308 3309 3310 3311

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3312 3313 3314 3315 3316 3317 3318 3319 3320
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3321 3322 3323 3324 3325 3326 3327
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3328 3329 3330

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3331
					 0, IOMMU_RESV_MSI);
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3342 3343
}

3344
static void amd_iommu_put_resv_regions(struct device *dev,
3345 3346
				     struct list_head *head)
{
3347
	struct iommu_resv_region *entry, *next;
3348 3349 3350 3351 3352

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3353
static void amd_iommu_apply_resv_region(struct device *dev,
3354
				      struct iommu_domain *domain,
3355
				      struct iommu_resv_region *region)
3356
{
3357
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3358 3359 3360 3361 3362 3363 3364 3365
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3366 3367 3368 3369 3370 3371 3372
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3373
const struct iommu_ops amd_iommu_ops = {
3374
	.capable = amd_iommu_capable,
3375 3376
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3377 3378
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3379 3380
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3381
	.map_sg = default_iommu_map_sg,
3382
	.iova_to_phys = amd_iommu_iova_to_phys,
3383 3384
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3385
	.device_group = amd_iommu_device_group,
3386 3387 3388
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3389
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3390
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3391 3392
};

3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3415 3416 3417

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3418
	struct protection_domain *domain = to_pdomain(dom);
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3436 3437 3438

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3439
	struct protection_domain *domain = to_pdomain(dom);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3500
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3517 3518 3519 3520 3521 3522
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3554
	struct protection_domain *domain = to_pdomain(dom);
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3574
	struct protection_domain *domain = to_pdomain(dom);
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3654
	struct protection_domain *domain = to_pdomain(dom);
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3668
	struct protection_domain *domain = to_pdomain(dom);
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3696 3697 3698

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3699
	struct protection_domain *pdomain;
3700

3701 3702
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3703 3704 3705
		return NULL;

	/* Only return IOMMUv2 domains */
3706
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3707 3708
		return NULL;

3709
	return &pdomain->domain;
3710 3711
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3767 3768 3769 3770 3771 3772 3773 3774 3775

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3776 3777
static struct irq_chip amd_ir_chip;

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3807
		goto out_unlock;
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3821
		goto out_unlock;
3822

3823 3824 3825
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3826 3827 3828 3829 3830 3831 3832
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3833
		table = NULL;
3834
		goto out_unlock;
3835 3836
	}

3837 3838 3839 3840 3841 3842
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3843 3844 3845 3846 3847

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3848
			iommu->irte_ops->set_allocated(table, i);
3849 3850 3851 3852 3853 3854 3855
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3856
		set_dte_irq_entry(alias, table);
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3869
static int alloc_irq_index(u16 devid, int count)
3870 3871 3872 3873
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3874 3875 3876 3877
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3889
		if (!iommu->irte_ops->is_allocated(table, index))
3890 3891 3892 3893 3894 3895
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3896
				iommu->irte_ops->set_allocated(table, index - c + 1);
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3911 3912
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3913 3914 3915 3916
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3917
	struct irte_ga *entry;
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3928 3929 3930 3931 3932 3933 3934

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3935 3936
	if (data)
		data->ref = entry;
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3961
	table->table[index] = irte->val;
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3985
	iommu->irte_ops->clear_allocated(table, index);
3986 3987 3988 3989 3990 3991
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3992 3993
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3994
			 u8 vector, u32 dest_apicid, int devid)
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
4008
			    u8 vector, u32 dest_apicid, int devid)
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
4034
	modify_irte_ga(devid, index, irte, NULL);
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
4050
	modify_irte_ga(devid, index, irte, NULL);
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
4067
	struct iommu_dev_data *dev_data = search_dev_data(devid);
4068

4069 4070
	if (!dev_data || !dev_data->use_vapic ||
	    !irte->lo.fields_remap.guest_mode) {
4071 4072 4073 4074
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
4075 4076
}

4077
#define IRTE_ALLOCATED (~1U)
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

4123
static int get_devid(struct irq_alloc_info *info)
4124
{
4125
	int devid = -1;
4126

4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4142

4143 4144
	return devid;
}
4145

4146 4147 4148 4149
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4150

4151 4152
	if (!info)
		return NULL;
4153

4154 4155 4156 4157 4158 4159
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4160

4161
	return NULL;
4162 4163
}

4164
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4165
{
4166 4167
	struct amd_iommu *iommu;
	int devid;
4168

4169 4170
	if (!info)
		return NULL;
4171

4172 4173 4174 4175
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4176
		if (devid < 0)
4177 4178
			return NULL;

4179 4180 4181
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4182 4183 4184 4185
		break;
	default:
		break;
	}
4186

4187 4188
	return NULL;
}
4189

4190 4191 4192 4193 4194 4195
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4196 4197 4198
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4199

4200 4201 4202 4203 4204 4205 4206 4207
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4208 4209 4210 4211
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4212

4213 4214
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4215 4216
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4217
				 irq_cfg->dest_apicid, devid);
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4233

4234 4235 4236 4237 4238 4239 4240
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4241

4242 4243 4244 4245
	default:
		BUG_ON(1);
		break;
	}
4246 4247
}

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4268 4269
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4270
{
4271 4272
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4273
	struct amd_ir_data *data = NULL;
4274
	struct irq_cfg *cfg;
4275 4276
	int i, ret, devid;
	int index = -1;
4277

4278 4279 4280 4281
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4282 4283
		return -EINVAL;

4284 4285 4286 4287 4288 4289
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4290

4291 4292 4293
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4294

4295 4296 4297
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4298

4299 4300 4301 4302 4303 4304
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4305
		index = alloc_irq_index(devid, nr_irqs);
4306 4307 4308
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4309
		ret = index;
4310 4311
		goto out_free_parent;
	}
4312

4313 4314 4315 4316 4317 4318 4319
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4320

4321 4322 4323 4324 4325
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4336 4337 4338 4339 4340 4341
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4342

4343
	return 0;
4344

4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4356 4357
}

4358 4359
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4360
{
4361 4362 4363 4364
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4365

4366 4367 4368 4369 4370 4371
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4372
			kfree(data->entry);
4373 4374 4375 4376 4377
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4378

4379 4380 4381 4382 4383
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4384
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4385

4386 4387 4388
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4389 4390
}

4391 4392
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4393
{
4394 4395
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4396
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4397

4398 4399 4400
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4401
}
4402

4403
static const struct irq_domain_ops amd_ir_domain_ops = {
4404 4405 4406 4407
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4408
};
4409

4410 4411 4412 4413 4414 4415 4416 4417
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4418 4419 4420 4421 4422 4423 4424 4425
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4448
		irte->lo.fields_vapic.ga_log_intr = 1;
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4475 4476 4477 4478 4479 4480 4481
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4482
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4483
	int ret;
4484

4485 4486 4487
	if (!iommu)
		return -ENODEV;

4488 4489 4490
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4491

4492 4493 4494 4495
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4496 4497
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4498

4499 4500 4501 4502 4503
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4504
	send_cleanup_vector(cfg);
4505 4506

	return IRQ_SET_MASK_OK_DONE;
4507 4508
}

4509
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4510
{
4511
	struct amd_ir_data *ir_data = irq_data->chip_data;
4512

4513 4514
	*msg = ir_data->msi_entry;
}
4515

4516
static struct irq_chip amd_ir_chip = {
4517 4518 4519 4520 4521
	.name			= "AMD-IR",
	.irq_ack		= ir_ack_apic_edge,
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4522
};
4523

4524 4525
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4526 4527 4528 4529 4530 4531 4532
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4533 4534
	if (!iommu->ir_domain)
		return -ENOMEM;
4535

4536
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4537 4538 4539
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4540 4541
	return 0;
}
4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4581
#endif