amd_iommu.c 102.9 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
	struct dma_ops_domain *dma_dom;
};

struct flush_queue {
	spinlock_t lock;
	unsigned next;
	struct flush_queue_entry *entries;
};

106
static DEFINE_PER_CPU(struct flush_queue, flush_queue);
107

108 109 110
static atomic_t queue_timer_on;
static struct timer_list queue_timer;

111 112 113 114
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
115
const struct iommu_ops amd_iommu_ops;
116

117
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
118
int amd_iommu_max_glx_val = -1;
119

120
static const struct dma_map_ops amd_iommu_dma_ops;
121

122 123 124 125 126 127 128 129
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
130
	u16 alias;			  /* Alias Device ID */
131
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
132
	bool passthrough;		  /* Device is identity mapped */
133 134 135 136 137 138 139
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
140
	bool use_vapic;			  /* Enable device to use vapic mode */
141 142

	struct ratelimit_state rs;	  /* Ratelimit IOPF messages */
143 144
};

145 146 147
/*
 * general struct to manage commands send to an IOMMU
 */
148
struct iommu_cmd {
149 150 151
	u32 data[4];
};

152 153
struct kmem_cache *amd_iommu_irq_cache;

154
static void update_domain(struct protection_domain *domain);
155
static int protection_domain_init(struct protection_domain *domain);
156
static void detach_device(struct device *dev);
157

158 159 160 161 162 163 164
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

165 166
	/* IOVA RB-Tree */
	struct iova_domain iovad;
167 168
};

169 170 171
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

172 173 174 175 176 177
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

178 179
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
180
{
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
196 197
}

198
static inline u16 get_pci_device_id(struct device *dev)
199 200 201 202 203 204
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

232 233 234 235 236
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

237 238 239 240 241 242
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

243
static struct iommu_dev_data *alloc_dev_data(u16 devid)
244 245 246 247 248 249 250 251
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

252
	dev_data->devid = devid;
253 254 255 256 257

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

258 259
	ratelimit_default_init(&dev_data->rs);

260 261 262
	return dev_data;
}

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

282 283 284 285 286 287 288 289 290 291 292
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

293
	/* The callers make sure that get_device_id() does not fail here */
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
335
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
336 337 338 339 340 341 342 343
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

344 345 346 347 348 349 350 351 352 353 354 355
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

356 357 358 359 360
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

361 362 363 364
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
365
{
366
	struct acpihid_map_entry *p, *entry = NULL;
367
	int devid;
368 369 370 371 372 373 374 375 376 377 378 379

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
380 381
	else
		iommu_group_ref_get(entry->group);
382 383

	return entry->group;
384 385
}

386 387 388 389
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
390 391
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
392 393 394 395 396 397 398 399 400 401 402 403
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

404 405 406 407 408 409 410 411 412
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

413 414 415 416 417 418
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
419
	int devid;
420 421 422 423 424

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
425
	if (devid < 0)
426
		return false;
427 428 429 430 431 432 433 434 435 436 437

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

438
static void init_iommu_group(struct device *dev)
439 440 441
{
	struct iommu_group *group;

442
	group = iommu_group_get_for_dev(dev);
443 444 445 446
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
447 448 449 450 451
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
452
	struct amd_iommu *iommu;
453
	int devid;
454 455 456 457

	if (dev->archdata.iommu)
		return 0;

458
	devid = get_device_id(dev);
459
	if (devid < 0)
460 461
		return devid;

462 463
	iommu = amd_iommu_rlookup_table[devid];

464
	dev_data = find_dev_data(devid);
465 466 467
	if (!dev_data)
		return -ENOMEM;

468 469
	dev_data->alias = get_alias(dev);

470
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
471 472
		struct amd_iommu *iommu;

473
		iommu = amd_iommu_rlookup_table[dev_data->devid];
474 475 476
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

477 478
	dev->archdata.iommu = dev_data;

479
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
480

481 482 483
	return 0;
}

484 485
static void iommu_ignore_device(struct device *dev)
{
486 487
	u16 alias;
	int devid;
488 489

	devid = get_device_id(dev);
490
	if (devid < 0)
491 492
		return;

493
	alias = get_alias(dev);
494 495 496 497 498 499 500 501

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

502 503
static void iommu_uninit_device(struct device *dev)
{
504
	struct iommu_dev_data *dev_data;
505 506
	struct amd_iommu *iommu;
	int devid;
507

508
	devid = get_device_id(dev);
509
	if (devid < 0)
510
		return;
511

512 513
	iommu = amd_iommu_rlookup_table[devid];

514
	dev_data = search_dev_data(devid);
515 516 517
	if (!dev_data)
		return;

518 519 520
	if (dev_data->domain)
		detach_device(dev);

521
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
522

523 524
	iommu_group_remove_device(dev);

525
	/* Remove dma-ops */
526
	dev->dma_ops = NULL;
527

528
	/*
529 530
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
531
	 */
532
}
J
Joerg Roedel 已提交
533

534 535 536 537 538 539
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

540 541 542 543
static void dump_dte_entry(u16 devid)
{
	int i;

544 545
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
546 547 548
			amd_iommu_dev_table[devid].data[i]);
}

549 550 551 552 553 554 555 556 557
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

	pdev = pci_get_bus_and_slot(PCI_BUS_NUM(devid), devid & 0xff);
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

581
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
582
{
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
604

605 606 607 608 609 610
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
		printk(KERN_ERR "AMD-Vi: Event logged [");
	}
611 612 613 614 615

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
616
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
617
		       address, flags);
618
		dump_dte_entry(devid);
619 620 621 622
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
623
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
624 625 626 627 628
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
629
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
630 631 632 633
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
634
		dump_command(address);
635 636 637 638 639 640 641 642
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
643
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
644 645 646 647 648
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
649
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
650 651 652 653 654
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
655 656

	memset(__evt, 0, 4 * sizeof(u32));
657 658 659 660 661 662 663 664 665 666
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
667
		iommu_print_event(iommu, iommu->evt_buf + head);
668
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
669 670 671 672 673
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

674
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
719

720 721 722
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
723

724 725 726 727 728 729 730
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
731 732
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
733 734 735 736 737 738

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
739 740 741 742
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

803
irqreturn_t amd_iommu_int_thread(int irq, void *data)
804
{
805 806
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
807

808 809 810
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
811
			iommu->mmio_base + MMIO_STATUS_OFFSET);
812

813 814 815 816
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
817

818 819 820 821
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
822

823 824 825 826 827 828 829
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
845
	return IRQ_HANDLED;
846 847
}

848 849 850 851 852
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

853 854 855 856 857 858
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
879 880 881
{
	u8 *target;

882
	target = iommu->cmd_buf + tail;
883
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
884 885 886 887 888

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
889
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
890
}
891

892
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
893
{
894 895
	WARN_ON(address & 0x7ULL);

896
	memset(cmd, 0, sizeof(*cmd));
897 898 899
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
900 901 902
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

903 904 905 906 907 908 909
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

910 911 912 913
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
914
	bool s;
915 916

	pages = iommu_num_pages(address, size, PAGE_SIZE);
917
	s     = false;
918 919 920 921 922 923 924

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
925
		s = true;
926 927 928 929 930 931 932 933 934 935 936
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
937
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
938 939 940
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

941 942 943 944
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
945
	bool s;
946 947

	pages = iommu_num_pages(address, size, PAGE_SIZE);
948
	s     = false;
949 950 951 952 953 954 955

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
956
		s = true;
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

972 973 974 975 976 977 978
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

979
	cmd->data[0]  = pasid;
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
998
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
999 1000
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
1001
	cmd->data[1] |= (pasid & 0xff) << 16;
1002 1003 1004 1005 1006 1007 1008 1009
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

1010 1011 1012 1013 1014 1015 1016
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
1017
		cmd->data[1]  = pasid;
1018 1019 1020 1021 1022 1023 1024 1025
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

1026 1027 1028 1029
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
1030 1031
}

1032 1033 1034 1035 1036 1037 1038
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1039 1040
/*
 * Writes the command to the IOMMUs command buffer and informs the
1041
 * hardware about the new command.
1042
 */
1043 1044 1045
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1046
{
1047
	u32 left, tail, head, next_tail;
1048

1049
again:
1050

1051 1052
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1053 1054
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
1055

1056
	if (left <= 0x20) {
1057 1058
		struct iommu_cmd sync_cmd;
		int ret;
1059

1060
		iommu->cmd_sem = 0;
1061

1062 1063
		build_completion_wait(&sync_cmd, (u64)&iommu->cmd_sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1064

1065
		if ((ret = wait_on_sem(&iommu->cmd_sem)) != 0)
1066 1067 1068
			return ret;

		goto again;
1069 1070
	}

1071 1072 1073
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1074
	iommu->need_sync = sync;
1075

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&iommu->lock, flags);
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1088
	spin_unlock_irqrestore(&iommu->lock, flags);
1089

1090
	return ret;
1091 1092
}

1093 1094 1095 1096 1097
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1098 1099 1100 1101
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1102
static int iommu_completion_wait(struct amd_iommu *iommu)
1103 1104
{
	struct iommu_cmd cmd;
1105
	unsigned long flags;
1106
	int ret;
1107

1108
	if (!iommu->need_sync)
1109
		return 0;
1110

1111

1112 1113 1114 1115 1116 1117 1118
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

	spin_lock_irqsave(&iommu->lock, flags);

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1119
	if (ret)
1120 1121 1122 1123 1124 1125
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
	spin_unlock_irqrestore(&iommu->lock, flags);
1126

1127
	return ret;
1128 1129
}

1130
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1131
{
1132
	struct iommu_cmd cmd;
1133

1134
	build_inv_dte(&cmd, devid);
1135

1136 1137
	return iommu_queue_command(iommu, &cmd);
}
1138

1139 1140 1141
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1142

1143 1144
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1145

1146 1147
	iommu_completion_wait(iommu);
}
1148

1149 1150 1151 1152 1153 1154 1155
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1156

1157 1158 1159 1160 1161 1162
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1163

1164
	iommu_completion_wait(iommu);
1165 1166
}

1167
static void iommu_flush_all(struct amd_iommu *iommu)
1168
{
1169
	struct iommu_cmd cmd;
1170

1171
	build_inv_all(&cmd);
1172

1173 1174 1175 1176
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1196 1197
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1198 1199 1200 1201
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1202
		iommu_flush_irt_all(iommu);
1203
		iommu_flush_tlb_all(iommu);
1204 1205 1206
	}
}

1207
/*
1208
 * Command send function for flushing on-device TLB
1209
 */
1210 1211
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1212 1213
{
	struct amd_iommu *iommu;
1214
	struct iommu_cmd cmd;
1215
	int qdep;
1216

1217 1218
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1219

1220
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1221 1222

	return iommu_queue_command(iommu, &cmd);
1223 1224
}

1225 1226 1227
/*
 * Command send function for invalidating a device table entry
 */
1228
static int device_flush_dte(struct iommu_dev_data *dev_data)
1229
{
1230
	struct amd_iommu *iommu;
1231
	u16 alias;
1232
	int ret;
1233

1234
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1235
	alias = dev_data->alias;
1236

1237
	ret = iommu_flush_dte(iommu, dev_data->devid);
1238 1239
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1240 1241 1242
	if (ret)
		return ret;

1243
	if (dev_data->ats.enabled)
1244
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1245 1246

	return ret;
1247 1248
}

1249 1250 1251 1252 1253
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1254 1255
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1256
{
1257
	struct iommu_dev_data *dev_data;
1258 1259
	struct iommu_cmd cmd;
	int ret = 0, i;
1260

1261
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1262

1263
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1264 1265 1266 1267 1268 1269 1270
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1271
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1272 1273
	}

1274 1275
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1276
		if (!dev_data->ats.enabled)
1277 1278
			continue;

1279
		ret |= device_flush_iotlb(dev_data, address, size);
1280 1281
	}

1282
	WARN_ON(ret);
1283 1284
}

1285 1286
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1287
{
1288
	__domain_flush_pages(domain, address, size, 0);
1289
}
1290

1291
/* Flush the whole IO/TLB for a given protection domain */
1292
static void domain_flush_tlb(struct protection_domain *domain)
1293
{
1294
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1295 1296
}

1297
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1298
static void domain_flush_tlb_pde(struct protection_domain *domain)
1299
{
1300
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1301 1302
}

1303
static void domain_flush_complete(struct protection_domain *domain)
1304
{
1305
	int i;
1306

1307
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1308
		if (domain && !domain->dev_iommu[i])
1309
			continue;
1310

1311 1312 1313 1314 1315
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1316
	}
1317 1318
}

1319

1320
/*
1321
 * This function flushes the DTEs for all devices in domain
1322
 */
1323
static void domain_flush_devices(struct protection_domain *domain)
1324
{
1325
	struct iommu_dev_data *dev_data;
1326

1327
	list_for_each_entry(dev_data, &domain->dev_list, list)
1328
		device_flush_dte(dev_data);
1329 1330
}

1331 1332 1333 1334 1335 1336 1337
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1367
		      unsigned long page_size,
1368 1369 1370
		      u64 **pte_page,
		      gfp_t gfp)
{
1371
	int level, end_lvl;
1372
	u64 *pte, *page;
1373 1374

	BUG_ON(!is_power_of_2(page_size));
1375 1376 1377 1378

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1379 1380 1381 1382
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1383 1384

	while (level > end_lvl) {
1385 1386 1387 1388 1389
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1390 1391 1392
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1393 1394 1395

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

1396 1397
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1398 1399 1400
				free_page((unsigned long)page);
				continue;
			}
1401 1402
		}

1403 1404 1405 1406
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1424 1425 1426
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1427 1428 1429 1430
{
	int level;
	u64 *pte;

1431 1432 1433
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1434 1435 1436
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1437

1438 1439 1440
	while (level > 0) {

		/* Not Present */
1441 1442 1443
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1444
		/* Large PTE */
1445 1446 1447
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1448 1449 1450 1451 1452

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1453 1454
		level -= 1;

1455
		/* Walk to the next level */
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1471 1472 1473 1474 1475
	}

	return pte;
}

1476 1477 1478 1479 1480 1481 1482
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1483 1484 1485
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1486
			  unsigned long page_size,
1487
			  int prot,
1488
			  gfp_t gfp)
1489
{
1490
	u64 __pte, *pte;
1491
	int i, count;
1492

1493 1494 1495
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1496
	if (!(prot & IOMMU_PROT_MASK))
1497 1498
		return -EINVAL;

1499
	count = PAGE_SIZE_PTE_COUNT(page_size);
1500
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1501

1502 1503 1504
	if (!pte)
		return -ENOMEM;

1505 1506 1507
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1508

1509
	if (count > 1) {
1510 1511 1512 1513
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1514 1515 1516 1517 1518 1519

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1520 1521
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1522

1523 1524
	update_domain(dom);

1525 1526 1527
	return 0;
}

1528 1529 1530
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1531
{
1532 1533
	unsigned long long unmapped;
	unsigned long unmap_size;
1534 1535 1536 1537 1538
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1539

1540 1541
	while (unmapped < page_size) {

1542 1543 1544 1545 1546 1547
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1548 1549 1550 1551 1552 1553 1554 1555
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1556
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1557

1558
	return unmapped;
1559 1560
}

1561 1562 1563
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1564
 * interface functions.
1565 1566
 *
 ****************************************************************************/
1567

1568

1569 1570 1571
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1572
{
1573
	unsigned long pfn = 0;
1574

1575
	pages = __roundup_pow_of_two(pages);
1576

1577 1578 1579
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1580

1581 1582
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1583

1584
	return (pfn << PAGE_SHIFT);
1585 1586
}

1587 1588 1589
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1590
{
1591 1592
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1593

1594
	free_iova_fast(&dma_dom->iovad, address, pages);
1595 1596
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1669
		/* PTE present? */				\
1670 1671 1672
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1673 1674 1675 1676 1677
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1690
static void free_pagetable(struct protection_domain *domain)
1691
{
1692
	unsigned long root = (unsigned long)domain->pt_root;
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1717 1718 1719
	}
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1750 1751
static void free_gcr3_table(struct protection_domain *domain)
{
1752 1753 1754 1755
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1756 1757
	else
		BUG_ON(domain->glx != 0);
1758

1759 1760 1761
	free_page((unsigned long)domain->gcr3_tbl);
}

1762 1763 1764 1765
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1766 1767 1768 1769 1770
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1771 1772
	del_domain_from_list(&dom->domain);

1773
	put_iova_domain(&dom->iovad);
1774

1775
	free_pagetable(&dom->domain);
1776

1777 1778 1779
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1780 1781 1782
	kfree(dom);
}

1783 1784
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1785
 * It also initializes the page table and the address allocator data
1786 1787
 * structures required for the dma_ops interface
 */
1788
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1789 1790 1791 1792 1793 1794 1795
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1796
	if (protection_domain_init(&dma_dom->domain))
1797
		goto free_dma_dom;
1798

1799
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1800
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1801
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1802 1803 1804
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1805 1806 1807
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1808 1809 1810
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1811 1812
	add_domain_to_list(&dma_dom->domain);

1813 1814 1815 1816 1817 1818 1819 1820
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1821 1822 1823 1824 1825 1826 1827 1828 1829
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1830
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1831
{
1832
	u64 pte_root = 0;
1833
	u64 flags = 0;
1834

1835 1836 1837
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1838 1839 1840
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1841

1842 1843
	flags = amd_iommu_dev_table[devid].data[1];

1844 1845 1846
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1873 1874 1875 1876 1877
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1878 1879 1880 1881 1882
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1883 1884
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1885 1886

	amd_iommu_apply_erratum_63(devid);
1887 1888
}

1889 1890
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1891 1892
{
	struct amd_iommu *iommu;
1893
	u16 alias;
1894
	bool ats;
1895

1896
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1897
	alias = dev_data->alias;
1898
	ats   = dev_data->ats.enabled;
1899 1900 1901 1902 1903 1904 1905 1906 1907

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1908 1909 1910
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1911
		set_dte_entry(alias, domain, ats);
1912

1913
	device_flush_dte(dev_data);
1914 1915
}

1916
static void do_detach(struct iommu_dev_data *dev_data)
1917 1918
{
	struct amd_iommu *iommu;
1919
	u16 alias;
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1930
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1931
	alias = dev_data->alias;
1932 1933

	/* decrease reference counters */
1934 1935 1936 1937 1938 1939
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1940
	clear_dte_entry(dev_data->devid);
1941 1942
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1943

1944
	/* Flush the DTE entry */
1945
	device_flush_dte(dev_data);
1946 1947 1948 1949 1950 1951
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1952
static int __attach_device(struct iommu_dev_data *dev_data,
1953
			   struct protection_domain *domain)
1954
{
1955
	int ret;
1956

1957 1958 1959 1960 1961 1962
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1963 1964 1965
	/* lock domain */
	spin_lock(&domain->lock);

1966
	ret = -EBUSY;
1967
	if (dev_data->domain != NULL)
1968
		goto out_unlock;
1969

1970
	/* Attach alias group root */
1971
	do_attach(dev_data, domain);
1972

1973 1974 1975 1976
	ret = 0;

out_unlock:

1977 1978
	/* ready */
	spin_unlock(&domain->lock);
1979

1980
	return ret;
1981
}
1982

1983 1984 1985 1986 1987 1988 1989 1990

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1991 1992 1993 1994 1995 1996
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1997
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1998 1999 2000
	if (!pos)
		return -EINVAL;

2001 2002 2003
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2004 2005 2006 2007

	return 0;
}

2008 2009
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2010 2011 2012 2013 2014 2015 2016 2017
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2029 2030
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2031 2032 2033
	if (ret)
		goto out_err;

2034 2035 2036 2037 2038 2039
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2053
/* FIXME: Move this to PCI code */
2054
#define PCI_PRI_TLP_OFF		(1 << 15)
2055

J
Joerg Roedel 已提交
2056
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2057
{
2058
	u16 status;
2059 2060
	int pos;

2061
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2062 2063 2064
	if (!pos)
		return false;

2065
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2066

2067
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2068 2069
}

2070
/*
F
Frank Arnold 已提交
2071
 * If a device is not yet associated with a domain, this function
2072 2073
 * assigns it visible for the hardware
 */
2074 2075
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2076
{
2077
	struct pci_dev *pdev;
2078
	struct iommu_dev_data *dev_data;
2079
	unsigned long flags;
2080
	int ret;
2081

2082 2083
	dev_data = get_dev_data(dev);

2084 2085 2086 2087
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2088
	if (domain->flags & PD_IOMMUV2_MASK) {
2089
		if (!dev_data->passthrough)
2090 2091
			return -EINVAL;

2092 2093 2094
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2095

2096 2097 2098 2099
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2100 2101
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2102 2103 2104
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2105

2106
skip_ats_check:
2107
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2108
	ret = __attach_device(dev_data, domain);
2109 2110
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2111 2112 2113 2114 2115
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2116
	domain_flush_tlb_pde(domain);
2117 2118

	return ret;
2119 2120
}

2121 2122 2123
/*
 * Removes a device from a protection domain (unlocked)
 */
2124
static void __detach_device(struct iommu_dev_data *dev_data)
2125
{
2126
	struct protection_domain *domain;
2127

2128 2129 2130 2131 2132
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2133

2134 2135
	if (WARN_ON(!dev_data->domain))
		return;
2136

2137
	domain = dev_data->domain;
2138

2139
	spin_lock(&domain->lock);
2140

2141
	do_detach(dev_data);
2142

2143
	spin_unlock(&domain->lock);
2144 2145 2146 2147 2148
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2149
static void detach_device(struct device *dev)
2150
{
2151
	struct protection_domain *domain;
2152
	struct iommu_dev_data *dev_data;
2153 2154
	unsigned long flags;

2155
	dev_data = get_dev_data(dev);
2156
	domain   = dev_data->domain;
2157

2158 2159
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2160
	__detach_device(dev_data);
2161
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2162

2163 2164 2165
	if (!dev_is_pci(dev))
		return;

2166
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2167 2168
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2169
		pci_disable_ats(to_pci_dev(dev));
2170 2171

	dev_data->ats.enabled = false;
2172
}
2173

2174
static int amd_iommu_add_device(struct device *dev)
2175
{
2176
	struct iommu_dev_data *dev_data;
2177
	struct iommu_domain *domain;
2178
	struct amd_iommu *iommu;
2179
	int ret, devid;
2180

2181
	if (!check_device(dev) || get_dev_data(dev))
2182
		return 0;
2183

2184
	devid = get_device_id(dev);
2185
	if (devid < 0)
2186 2187
		return devid;

2188
	iommu = amd_iommu_rlookup_table[devid];
2189

2190
	ret = iommu_init_device(dev);
2191 2192 2193 2194
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2195

2196
		iommu_ignore_device(dev);
2197
		dev->dma_ops = &nommu_dma_ops;
2198 2199 2200
		goto out;
	}
	init_iommu_group(dev);
2201

2202
	dev_data = get_dev_data(dev);
2203

2204
	BUG_ON(!dev_data);
2205

2206
	if (iommu_pass_through || dev_data->iommu_v2)
2207
		iommu_request_dm_for_dev(dev);
2208

2209 2210
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2211
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2212
		dev_data->passthrough = true;
2213
	else
2214
		dev->dma_ops = &amd_iommu_dma_ops;
2215

2216
out:
2217 2218 2219 2220 2221
	iommu_completion_wait(iommu);

	return 0;
}

2222
static void amd_iommu_remove_device(struct device *dev)
2223
{
2224
	struct amd_iommu *iommu;
2225
	int devid;
2226 2227 2228 2229 2230

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2231
	if (devid < 0)
2232 2233
		return;

2234 2235 2236 2237
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2238 2239
}

2240 2241 2242 2243 2244 2245 2246 2247
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2248 2249 2250 2251 2252 2253
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

J
Joerg Roedel 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
static void __queue_flush(struct flush_queue *queue)
{
	struct protection_domain *domain;
	unsigned long flags;
	int idx;

	/* First flush TLB of all known domains */
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_for_each_entry(domain, &amd_iommu_pd_list, list)
		domain_flush_tlb(domain);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);

	/* Wait until flushes have completed */
	domain_flush_complete(NULL);

	for (idx = 0; idx < queue->next; ++idx) {
		struct flush_queue_entry *entry;

		entry = queue->entries + idx;

		free_iova_fast(&entry->dma_dom->iovad,
				entry->iova_pfn,
				entry->pages);

		/* Not really necessary, just to make sure we catch any bugs */
		entry->dma_dom = NULL;
	}

	queue->next = 0;
}

2285
static void queue_flush_all(void)
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(&flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		if (queue->next > 0)
			__queue_flush(queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

2301 2302 2303 2304 2305 2306
static void queue_flush_timeout(unsigned long unsused)
{
	atomic_set(&queue_timer_on, 0);
	queue_flush_all();
}

J
Joerg Roedel 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
static void queue_add(struct dma_ops_domain *dma_dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue_entry *entry;
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(&flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

	if (queue->next == FLUSH_QUEUE_SIZE)
		__queue_flush(queue);

	idx   = queue->next++;
	entry = queue->entries + idx;

	entry->iova_pfn = address;
	entry->pages    = pages;
	entry->dma_dom  = dma_dom;

	spin_unlock_irqrestore(&queue->lock, flags);
2332 2333 2334 2335

	if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0)
		mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10));

J
Joerg Roedel 已提交
2336 2337 2338 2339
	put_cpu_ptr(&flush_queue);
}


2340 2341 2342 2343 2344 2345 2346
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2347
static struct protection_domain *get_domain(struct device *dev)
2348
{
2349
	struct protection_domain *domain;
2350

2351
	if (!check_device(dev))
2352
		return ERR_PTR(-EINVAL);
2353

2354
	domain = get_dev_data(dev)->domain;
2355
	if (!dma_ops_domain(domain))
2356
		return ERR_PTR(-EBUSY);
2357

2358
	return domain;
2359 2360
}

2361 2362
static void update_device_table(struct protection_domain *domain)
{
2363
	struct iommu_dev_data *dev_data;
2364

2365
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2366
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2367 2368 2369 2370 2371 2372 2373

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled);
	}
2374 2375 2376 2377 2378 2379 2380 2381
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2382 2383 2384

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2385 2386 2387 2388

	domain->updated = false;
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2400 2401
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2402 2403
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2404 2405
 * Must be called with the domain lock held.
 */
2406 2407 2408 2409
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2410
			       enum dma_data_direction direction,
2411
			       u64 dma_mask)
2412 2413
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2414
	dma_addr_t address, start, ret;
2415
	unsigned int pages;
2416
	int prot = 0;
2417 2418
	int i;

2419
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2420 2421
	paddr &= PAGE_MASK;

2422
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2423 2424
	if (address == DMA_ERROR_CODE)
		goto out;
2425

2426
	prot = dir2prot(direction);
2427

2428 2429
	start = address;
	for (i = 0; i < pages; ++i) {
2430 2431 2432
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2433 2434
			goto out_unmap;

2435 2436 2437 2438 2439
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2440
	if (unlikely(amd_iommu_np_cache)) {
2441
		domain_flush_pages(&dma_dom->domain, address, size);
2442 2443
		domain_flush_complete(&dma_dom->domain);
	}
2444

2445 2446
out:
	return address;
2447 2448 2449 2450 2451

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2452
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2453 2454
	}

2455 2456 2457 2458
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2459

2460
	return DMA_ERROR_CODE;
2461 2462
}

2463 2464 2465 2466
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2467
static void __unmap_single(struct dma_ops_domain *dma_dom,
2468 2469 2470 2471
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2472
	dma_addr_t flush_addr;
2473 2474 2475
	dma_addr_t i, start;
	unsigned int pages;

2476
	flush_addr = dma_addr;
2477
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2478 2479 2480 2481
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2482
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2483 2484 2485
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2486 2487 2488 2489 2490 2491 2492
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2493 2494
}

2495 2496 2497
/*
 * The exported map_single function for dma_ops.
 */
2498 2499 2500
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2501
			   unsigned long attrs)
2502
{
2503
	phys_addr_t paddr = page_to_phys(page) + offset;
2504
	struct protection_domain *domain;
2505
	struct dma_ops_domain *dma_dom;
2506
	u64 dma_mask;
2507

2508 2509
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2510
		return (dma_addr_t)paddr;
2511 2512
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2513

2514
	dma_mask = *dev->dma_mask;
2515
	dma_dom = to_dma_ops_domain(domain);
2516

2517
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2518 2519
}

2520 2521 2522
/*
 * The exported unmap_single function for dma_ops.
 */
2523
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2524
		       enum dma_data_direction dir, unsigned long attrs)
2525 2526
{
	struct protection_domain *domain;
2527
	struct dma_ops_domain *dma_dom;
2528

2529 2530
	domain = get_domain(dev);
	if (IS_ERR(domain))
2531 2532
		return;

2533 2534 2535
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2536 2537
}

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2564 2565 2566 2567
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2568
static int map_sg(struct device *dev, struct scatterlist *sglist,
2569
		  int nelems, enum dma_data_direction direction,
2570
		  unsigned long attrs)
2571
{
2572
	int mapped_pages = 0, npages = 0, prot = 0, i;
2573
	struct protection_domain *domain;
2574
	struct dma_ops_domain *dma_dom;
2575
	struct scatterlist *s;
2576
	unsigned long address;
2577
	u64 dma_mask;
2578

2579
	domain = get_domain(dev);
2580
	if (IS_ERR(domain))
2581
		return 0;
2582

2583
	dma_dom  = to_dma_ops_domain(domain);
2584
	dma_mask = *dev->dma_mask;
2585

2586 2587 2588 2589 2590 2591 2592 2593 2594
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
	if (address == DMA_ERROR_CODE)
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2595
	for_each_sg(sglist, s, nelems, i) {
2596 2597 2598 2599 2600
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2601

2602 2603 2604 2605 2606
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2607

2608 2609
			mapped_pages += 1;
		}
2610 2611
	}

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2629

2630 2631 2632 2633 2634 2635
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2636 2637
	}

2638 2639 2640 2641
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2642
	return 0;
2643 2644
}

2645 2646 2647 2648
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2649
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2650
		     int nelems, enum dma_data_direction dir,
2651
		     unsigned long attrs)
2652 2653
{
	struct protection_domain *domain;
2654
	struct dma_ops_domain *dma_dom;
2655 2656
	unsigned long startaddr;
	int npages = 2;
2657

2658 2659
	domain = get_domain(dev);
	if (IS_ERR(domain))
2660 2661
		return;

2662
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2663
	dma_dom   = to_dma_ops_domain(domain);
2664 2665
	npages    = sg_num_pages(dev, sglist, nelems);

2666
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2667 2668
}

2669 2670 2671
/*
 * The exported alloc_coherent function for dma_ops.
 */
2672
static void *alloc_coherent(struct device *dev, size_t size,
2673
			    dma_addr_t *dma_addr, gfp_t flag,
2674
			    unsigned long attrs)
2675
{
2676
	u64 dma_mask = dev->coherent_dma_mask;
2677
	struct protection_domain *domain;
2678
	struct dma_ops_domain *dma_dom;
2679
	struct page *page;
2680

2681 2682
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2683 2684 2685
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2686 2687
	} else if (IS_ERR(domain))
		return NULL;
2688

2689
	dma_dom   = to_dma_ops_domain(domain);
2690
	size	  = PAGE_ALIGN(size);
2691 2692
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2693
	flag     |= __GFP_ZERO;
2694

2695 2696
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2697
		if (!gfpflags_allow_blocking(flag))
2698
			return NULL;
2699

2700
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2701
						 get_order(size), flag);
2702 2703 2704
		if (!page)
			return NULL;
	}
2705

2706 2707 2708
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2709
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2710
				 size, DMA_BIDIRECTIONAL, dma_mask);
2711

2712
	if (*dma_addr == DMA_ERROR_CODE)
2713
		goto out_free;
2714

2715
	return page_address(page);
2716 2717 2718

out_free:

2719 2720
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2721 2722

	return NULL;
2723 2724
}

2725 2726 2727
/*
 * The exported free_coherent function for dma_ops.
 */
2728
static void free_coherent(struct device *dev, size_t size,
2729
			  void *virt_addr, dma_addr_t dma_addr,
2730
			  unsigned long attrs)
2731 2732
{
	struct protection_domain *domain;
2733
	struct dma_ops_domain *dma_dom;
2734
	struct page *page;
2735

2736 2737 2738
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2739 2740
	domain = get_domain(dev);
	if (IS_ERR(domain))
2741 2742
		goto free_mem;

2743 2744 2745
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2746 2747

free_mem:
2748 2749
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2750 2751
}

2752 2753 2754 2755 2756 2757
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2758
	return check_device(dev);
2759 2760
}

2761
static const struct dma_map_ops amd_iommu_dma_ops = {
2762 2763 2764 2765 2766 2767 2768
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2769 2770
};

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2824
int __init amd_iommu_init_api(void)
2825
{
2826
	int ret, cpu, err = 0;
2827 2828 2829 2830

	ret = iova_cache_get();
	if (ret)
		return ret;
2831

2832 2833 2834 2835
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
					 sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries)
			goto out_put_iova;

		spin_lock_init(&queue->lock);
	}

2848 2849 2850 2851 2852 2853 2854 2855
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2856 2857 2858
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2859
	return 0;
2860 2861 2862 2863 2864 2865 2866 2867 2868

out_put_iova:
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		kfree(queue->entries);
	}

	return -ENOMEM;
2869 2870
}

2871 2872
int __init amd_iommu_init_dma_ops(void)
{
2873 2874 2875
	setup_timer(&queue_timer, queue_flush_timeout, 0);
	atomic_set(&queue_timer_on, 0);

2876
	swiotlb        = iommu_pass_through ? 1 : 0;
2877 2878
	iommu_detected = 1;

2879 2880 2881 2882 2883 2884 2885 2886 2887
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2888 2889 2890 2891 2892
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2893
	return 0;
2894

2895
}
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2909
	struct iommu_dev_data *entry;
2910 2911 2912 2913
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2914 2915 2916 2917
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2918
	}
2919 2920 2921 2922

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2923 2924 2925 2926 2927
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2928 2929
	del_domain_from_list(domain);

2930 2931 2932 2933 2934 2935
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2948
static struct protection_domain *protection_domain_alloc(void)
2949 2950 2951 2952 2953
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2954
		return NULL;
2955

2956
	if (protection_domain_init(domain))
2957 2958
		goto out_err;

2959 2960
	add_domain_to_list(domain);

2961 2962 2963 2964 2965 2966 2967 2968
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2969
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2970
{
2971
	struct protection_domain *pdomain;
2972
	struct dma_ops_domain *dma_domain;
2973

2974 2975 2976 2977 2978
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2979

2980 2981 2982 2983 2984 2985
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2986

2987 2988 2989
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2990

2991 2992 2993 2994 2995 2996 2997 2998 2999
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
3000 3001 3002 3003
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
3004

3005 3006
		pdomain->mode = PAGE_MODE_NONE;
		break;
3007 3008 3009
	default:
		return NULL;
	}
3010

3011
	return &pdomain->domain;
3012 3013
}

3014
static void amd_iommu_domain_free(struct iommu_domain *dom)
3015
{
3016
	struct protection_domain *domain;
3017
	struct dma_ops_domain *dma_dom;
3018

3019 3020
	domain = to_pdomain(dom);

3021 3022 3023 3024 3025
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3026 3027
	if (!dom)
		return;
3028

3029 3030
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
3031 3032 3033 3034 3035 3036 3037
		/*
		 * First make sure the domain is no longer referenced from the
		 * flush queue
		 */
		queue_flush_all();

		/* Now release the domain */
3038
		dma_dom = to_dma_ops_domain(domain);
3039 3040 3041 3042 3043
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
3044

3045 3046 3047 3048 3049 3050
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
3051 3052
}

3053 3054 3055
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3056
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3057
	struct amd_iommu *iommu;
3058
	int devid;
3059

3060
	if (!check_device(dev))
3061 3062
		return;

3063
	devid = get_device_id(dev);
3064
	if (devid < 0)
3065
		return;
3066

3067
	if (dev_data->domain != NULL)
3068
		detach_device(dev);
3069 3070 3071 3072 3073

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

3074 3075 3076 3077 3078 3079
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

3080 3081 3082
	iommu_completion_wait(iommu);
}

3083 3084 3085
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
3086
	struct protection_domain *domain = to_pdomain(dom);
3087
	struct iommu_dev_data *dev_data;
3088
	struct amd_iommu *iommu;
3089
	int ret;
3090

3091
	if (!check_device(dev))
3092 3093
		return -EINVAL;

3094 3095
	dev_data = dev->archdata.iommu;

3096
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3097 3098 3099
	if (!iommu)
		return -EINVAL;

3100
	if (dev_data->domain)
3101
		detach_device(dev);
3102

3103
	ret = attach_device(dev, domain);
3104

3105 3106 3107 3108 3109 3110 3111 3112 3113
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3114 3115
	iommu_completion_wait(iommu);

3116
	return ret;
3117 3118
}

3119
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3120
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3121
{
3122
	struct protection_domain *domain = to_pdomain(dom);
3123 3124 3125
	int prot = 0;
	int ret;

3126 3127 3128
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3129 3130 3131 3132 3133
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3134
	mutex_lock(&domain->api_lock);
3135
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3136 3137
	mutex_unlock(&domain->api_lock);

3138
	return ret;
3139 3140
}

3141 3142
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3143
{
3144
	struct protection_domain *domain = to_pdomain(dom);
3145
	size_t unmap_size;
3146

3147 3148 3149
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3150
	mutex_lock(&domain->api_lock);
3151
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3152
	mutex_unlock(&domain->api_lock);
3153

3154
	domain_flush_tlb_pde(domain);
3155

3156
	return unmap_size;
3157 3158
}

3159
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3160
					  dma_addr_t iova)
3161
{
3162
	struct protection_domain *domain = to_pdomain(dom);
3163
	unsigned long offset_mask, pte_pgsize;
3164
	u64 *pte, __pte;
3165

3166 3167 3168
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3169
	pte = fetch_pte(domain, iova, &pte_pgsize);
3170

3171
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3172 3173
		return 0;

3174 3175
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3176

3177
	return (__pte & ~offset_mask) | (iova & offset_mask);
3178 3179
}

3180
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3181
{
3182 3183
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3184
		return true;
3185
	case IOMMU_CAP_INTR_REMAP:
3186
		return (irq_remapping_enabled == 1);
3187 3188
	case IOMMU_CAP_NOEXEC:
		return false;
3189 3190
	}

3191
	return false;
S
Sheng Yang 已提交
3192 3193
}

3194 3195
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3196
{
3197
	struct iommu_resv_region *region;
3198
	struct unity_map_entry *entry;
3199
	int devid;
3200 3201

	devid = get_device_id(dev);
3202
	if (devid < 0)
3203
		return;
3204 3205

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3206 3207
		size_t length;
		int prot = 0;
3208 3209 3210 3211

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3212 3213 3214 3215 3216 3217 3218 3219 3220
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3221 3222 3223 3224 3225 3226 3227
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3228 3229 3230

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3231
					 0, IOMMU_RESV_MSI);
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3242 3243
}

3244
static void amd_iommu_put_resv_regions(struct device *dev,
3245 3246
				     struct list_head *head)
{
3247
	struct iommu_resv_region *entry, *next;
3248 3249 3250 3251 3252

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3253
static void amd_iommu_apply_resv_region(struct device *dev,
3254
				      struct iommu_domain *domain,
3255
				      struct iommu_resv_region *region)
3256
{
3257
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3258 3259 3260 3261 3262 3263 3264 3265
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3266
const struct iommu_ops amd_iommu_ops = {
3267
	.capable = amd_iommu_capable,
3268 3269
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3270 3271
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3272 3273
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3274
	.map_sg = default_iommu_map_sg,
3275
	.iova_to_phys = amd_iommu_iova_to_phys,
3276 3277
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3278
	.device_group = amd_iommu_device_group,
3279 3280 3281
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3282
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3283 3284
};

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3307 3308 3309

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3310
	struct protection_domain *domain = to_pdomain(dom);
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3328 3329 3330

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3331
	struct protection_domain *domain = to_pdomain(dom);
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3392
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3409 3410 3411 3412 3413 3414
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3446
	struct protection_domain *domain = to_pdomain(dom);
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3466
	struct protection_domain *domain = to_pdomain(dom);
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3546
	struct protection_domain *domain = to_pdomain(dom);
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3560
	struct protection_domain *domain = to_pdomain(dom);
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3588 3589 3590

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3591
	struct protection_domain *pdomain;
3592

3593 3594
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3595 3596 3597
		return NULL;

	/* Only return IOMMUv2 domains */
3598
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3599 3600
		return NULL;

3601
	return &pdomain->domain;
3602 3603
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3659 3660 3661 3662 3663 3664 3665 3666 3667

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3668 3669
static struct irq_chip amd_ir_chip;

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3704
		goto out_unlock;
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3718
		goto out_unlock;
3719

3720 3721 3722
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3723 3724 3725 3726 3727 3728 3729
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3730
		table = NULL;
3731
		goto out_unlock;
3732 3733
	}

3734 3735 3736 3737 3738 3739
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3740 3741 3742 3743 3744

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3745
			iommu->irte_ops->set_allocated(table, i);
3746 3747 3748 3749 3750 3751 3752
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3753
		set_dte_irq_entry(alias, table);
3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3766
static int alloc_irq_index(u16 devid, int count)
3767 3768 3769 3770
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;
3771 3772 3773 3774
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
3786
		if (!iommu->irte_ops->is_allocated(table, index))
3787 3788 3789 3790 3791 3792
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
3793
				iommu->irte_ops->set_allocated(table, index - c + 1);
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

3808 3809
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3810 3811 3812 3813
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3814
	struct irte_ga *entry;
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3825 3826 3827 3828 3829 3830 3831

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3832 3833
	if (data)
		data->ref = entry;
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843

	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
3858
	table->table[index] = irte->val;
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
3882
	iommu->irte_ops->clear_allocated(table, index);
3883 3884 3885 3886 3887 3888
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3889 3890
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3891
			 u8 vector, u32 dest_apicid, int devid)
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3905
			    u8 vector, u32 dest_apicid, int devid)
3906 3907
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3908
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3909 3910 3911

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
3912
	irte->lo.fields_remap.guest_mode  = dev_data ? dev_data->use_vapic : 0;
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3933
	modify_irte_ga(devid, index, irte, NULL);
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3949
	modify_irte_ga(devid, index, irte, NULL);
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;
3966
	struct iommu_dev_data *dev_data = search_dev_data(devid);
3967

3968 3969 3970 3971 3972 3973
	if (!dev_data || !dev_data->use_vapic) {
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		irte->lo.fields_remap.guest_mode = 0;
		modify_irte_ga(devid, index, irte, NULL);
	}
3974 3975
}

3976
#define IRTE_ALLOCATED (~1U)
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

4022
static int get_devid(struct irq_alloc_info *info)
4023
{
4024
	int devid = -1;
4025

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
4041

4042 4043
	return devid;
}
4044

4045 4046 4047 4048
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
4049

4050 4051
	if (!info)
		return NULL;
4052

4053 4054 4055 4056 4057 4058
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
4059

4060
	return NULL;
4061 4062
}

4063
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
4064
{
4065 4066
	struct amd_iommu *iommu;
	int devid;
4067

4068 4069
	if (!info)
		return NULL;
4070

4071 4072 4073 4074
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4075
		if (devid < 0)
4076 4077
			return NULL;

4078 4079 4080
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4081 4082 4083 4084
		break;
	default:
		break;
	}
4085

4086 4087
	return NULL;
}
4088

4089 4090 4091 4092 4093 4094
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4095 4096 4097
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4098

4099 4100 4101 4102 4103 4104 4105 4106
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4107 4108 4109 4110
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4111

4112 4113
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4114 4115
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4116
				 irq_cfg->dest_apicid, devid);
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4132

4133 4134 4135 4136 4137 4138 4139
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4140

4141 4142 4143 4144
	default:
		BUG_ON(1);
		break;
	}
4145 4146
}

4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4167 4168
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4169
{
4170 4171
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4172
	struct amd_ir_data *data = NULL;
4173
	struct irq_cfg *cfg;
4174 4175
	int i, ret, devid;
	int index = -1;
4176

4177 4178 4179 4180
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4181 4182
		return -EINVAL;

4183 4184 4185 4186 4187 4188
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4189

4190 4191 4192
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4193

4194 4195 4196
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4197

4198 4199 4200 4201 4202 4203
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4204
		index = alloc_irq_index(devid, nr_irqs);
4205 4206 4207
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4208
		ret = index;
4209 4210
		goto out_free_parent;
	}
4211

4212 4213 4214 4215 4216 4217 4218
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4219

4220 4221 4222 4223 4224
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4225 4226 4227 4228 4229 4230 4231 4232 4233 4234
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4235 4236 4237 4238 4239 4240
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4241

4242
	return 0;
4243

4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4255 4256
}

4257 4258
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4259
{
4260 4261 4262 4263
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4264

4265 4266 4267 4268 4269 4270
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4271
			kfree(data->entry);
4272 4273 4274 4275 4276
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4277

4278 4279 4280 4281 4282
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4283
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4284

4285 4286 4287
	if (iommu)
		iommu->irte_ops->activate(data->entry, irte_info->devid,
					  irte_info->index);
4288 4289
}

4290 4291
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4292
{
4293 4294
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4295
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4296

4297 4298 4299
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4300
}
4301

4302
static const struct irq_domain_ops amd_ir_domain_ops = {
4303 4304 4305 4306
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4307
};
4308

4309 4310 4311 4312 4313 4314 4315 4316
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4317 4318 4319 4320 4321 4322 4323 4324
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4373 4374 4375 4376 4377 4378 4379
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4380
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4381
	int ret;
4382

4383 4384 4385
	if (!iommu)
		return -ENODEV;

4386 4387 4388
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4389

4390 4391 4392 4393
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
4394 4395
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
			    irte_info->index, cfg->vector, cfg->dest_apicid);
4396

4397 4398 4399 4400 4401
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4402
	send_cleanup_vector(cfg);
4403 4404

	return IRQ_SET_MASK_OK_DONE;
4405 4406
}

4407
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4408
{
4409
	struct amd_ir_data *ir_data = irq_data->chip_data;
4410

4411 4412
	*msg = ir_data->msi_entry;
}
4413

4414 4415 4416
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
4417
	.irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
4418 4419
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
4420

4421 4422 4423 4424 4425
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
4426

4427 4428
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4429 4430 4431

	return 0;
}
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

	irt = get_irq_table(devid, false);
	if (!irt)
		return -ENODEV;

	spin_lock_irqsave(&irt->lock, flags);

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

	spin_unlock_irqrestore(&irt->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4471
#endif