amd_iommu.c 74.6 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34
#include <asm/msidef.h>
35
#include <asm/proto.h>
36
#include <asm/iommu.h>
37
#include <asm/gart.h>
38
#include <asm/dma.h>
39 40 41

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
42 43 44

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

45
#define LOOP_TIMEOUT	100000
46

47 48
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

49 50 51 52
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

53 54 55 56
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

57 58 59 60 61 62
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

63 64
static struct iommu_ops amd_iommu_ops;

65
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
66
int amd_iommu_max_glx_val = -1;
67

68 69 70
/*
 * general struct to manage commands send to an IOMMU
 */
71
struct iommu_cmd {
72 73 74
	u32 data[4];
};

75
static void update_domain(struct protection_domain *domain);
76
static int __init alloc_passthrough_domain(void);
77

78 79 80 81 82 83
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

84
static struct iommu_dev_data *alloc_dev_data(u16 devid)
85 86 87 88 89 90 91 92
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

93
	dev_data->devid = devid;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

145 146 147 148 149 150 151
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

152 153 154 155 156
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
		PCI_PRI_CAP,
		PCI_PASID_CAP,
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

203 204 205 206 207 208 209 210 211 212 213 214
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
215
	if (dev->bus != &pci_bus_type)
216 217 218 219 220 221 222 223 224 225 226 227 228 229
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

230 231
static int iommu_init_device(struct device *dev)
{
232
	struct pci_dev *pdev = to_pci_dev(dev);
233
	struct iommu_dev_data *dev_data;
234
	u16 alias;
235 236 237 238

	if (dev->archdata.iommu)
		return 0;

239
	dev_data = find_dev_data(get_device_id(dev));
240 241 242
	if (!dev_data)
		return -ENOMEM;

243
	alias = amd_iommu_alias_table[dev_data->devid];
244
	if (alias != dev_data->devid) {
245
		struct iommu_dev_data *alias_data;
246

247 248 249 250
		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
251 252 253
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
254
		dev_data->alias_data = alias_data;
255
	}
256

257 258 259 260 261 262 263
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

264 265 266 267 268
	dev->archdata.iommu = dev_data;

	return 0;
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

283 284
static void iommu_uninit_device(struct device *dev)
{
285 286 287 288 289
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
290
}
J
Joerg Roedel 已提交
291 292 293

void __init amd_iommu_uninit_devices(void)
{
294
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
295 296 297 298 299 300 301 302 303
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
304 305 306 307

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
321 322 323
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
324 325 326 327 328 329 330 331 332 333 334
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
335 336 337 338 339 340
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

341
DECLARE_STATS_COUNTER(compl_wait);
342
DECLARE_STATS_COUNTER(cnt_map_single);
343
DECLARE_STATS_COUNTER(cnt_unmap_single);
344
DECLARE_STATS_COUNTER(cnt_map_sg);
345
DECLARE_STATS_COUNTER(cnt_unmap_sg);
346
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
347
DECLARE_STATS_COUNTER(cnt_free_coherent);
348
DECLARE_STATS_COUNTER(cross_page);
349
DECLARE_STATS_COUNTER(domain_flush_single);
350
DECLARE_STATS_COUNTER(domain_flush_all);
351
DECLARE_STATS_COUNTER(alloced_io_mem);
352
DECLARE_STATS_COUNTER(total_map_requests);
353

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
374 375

	amd_iommu_stats_add(&compl_wait);
376
	amd_iommu_stats_add(&cnt_map_single);
377
	amd_iommu_stats_add(&cnt_unmap_single);
378
	amd_iommu_stats_add(&cnt_map_sg);
379
	amd_iommu_stats_add(&cnt_unmap_sg);
380
	amd_iommu_stats_add(&cnt_alloc_coherent);
381
	amd_iommu_stats_add(&cnt_free_coherent);
382
	amd_iommu_stats_add(&cross_page);
383
	amd_iommu_stats_add(&domain_flush_single);
384
	amd_iommu_stats_add(&domain_flush_all);
385
	amd_iommu_stats_add(&alloced_io_mem);
386
	amd_iommu_stats_add(&total_map_requests);
387 388 389 390
}

#endif

391 392 393 394 395 396
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

397 398 399 400
static void dump_dte_entry(u16 devid)
{
	int i;

401 402
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
403 404 405
			amd_iommu_dev_table[devid].data[i]);
}

406 407 408 409 410 411 412 413 414
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

415
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
416 417 418 419 420 421 422 423
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

424
	printk(KERN_ERR "AMD-Vi: Event logged [");
425 426 427 428 429 430 431

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
432
		dump_dte_entry(devid);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
454
		dump_command(address);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
488
		iommu_print_event(iommu, iommu->evt_buf + head);
489 490 491 492 493 494 495 496
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u32 head)
{
	struct amd_iommu_fault fault;
	volatile u64 *raw;
	int i;

	raw = (u64 *)(iommu->ppr_log + head);

	/*
	 * Hardware bug: Interrupt may arrive before the entry is written to
	 * memory. If this happens we need to wait for the entry to arrive.
	 */
	for (i = 0; i < LOOP_TIMEOUT; ++i) {
		if (PPR_REQ_TYPE(raw[0]) != 0)
			break;
		udelay(1);
	}

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	/*
	 * To detect the hardware bug we need to clear the entry
	 * to back to zero.
	 */
	raw[0] = raw[1] = 0;

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	unsigned long flags;
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, head);

		/* Update and refresh ring-buffer state*/
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}

	/* enable ppr interrupts again */
	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

565
irqreturn_t amd_iommu_int_thread(int irq, void *data)
566
{
567 568
	struct amd_iommu *iommu;

569
	for_each_iommu(iommu) {
570
		iommu_poll_events(iommu);
571 572
		iommu_poll_ppr_log(iommu);
	}
573 574

	return IRQ_HANDLED;
575 576
}

577 578 579 580 581
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

582 583 584 585 586 587
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
608 609 610
{
	u8 *target;

611
	target = iommu->cmd_buf + tail;
612 613 614 615 616 617
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
618
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
619
}
620

621
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
622
{
623 624
	WARN_ON(address & 0x7ULL);

625
	memset(cmd, 0, sizeof(*cmd));
626 627 628
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
629 630 631
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

632 633 634 635 636 637 638
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = pasid & PASID_MASK;
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
	cmd->data[0] |= (pasid & 0xff) << 16;
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

739 740 741 742
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
743 744
}

745 746
/*
 * Writes the command to the IOMMUs command buffer and informs the
747
 * hardware about the new command.
748
 */
749 750 751
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
752
{
753
	u32 left, tail, head, next_tail;
754 755
	unsigned long flags;

756
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
757 758

again:
759 760
	spin_lock_irqsave(&iommu->lock, flags);

761 762 763 764
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
765

766 767 768 769
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
770

771 772
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
773

774 775 776 777 778 779
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
780 781
	}

782 783 784
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
785
	iommu->need_sync = sync;
786

787
	spin_unlock_irqrestore(&iommu->lock, flags);
788

789
	return 0;
790 791
}

792 793 794 795 796
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

797 798 799 800
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
801
static int iommu_completion_wait(struct amd_iommu *iommu)
802 803
{
	struct iommu_cmd cmd;
804
	volatile u64 sem = 0;
805
	int ret;
806

807
	if (!iommu->need_sync)
808
		return 0;
809

810
	build_completion_wait(&cmd, (u64)&sem);
811

812
	ret = iommu_queue_command_sync(iommu, &cmd, false);
813
	if (ret)
814
		return ret;
815

816
	return wait_on_sem(&sem);
817 818
}

819
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
820
{
821
	struct iommu_cmd cmd;
822

823
	build_inv_dte(&cmd, devid);
824

825 826
	return iommu_queue_command(iommu, &cmd);
}
827

828 829 830
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
831

832 833
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
834

835 836
	iommu_completion_wait(iommu);
}
837

838 839 840 841 842 843 844
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
845

846 847 848 849 850 851
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
852

853
	iommu_completion_wait(iommu);
854 855
}

856
static void iommu_flush_all(struct amd_iommu *iommu)
857
{
858
	struct iommu_cmd cmd;
859

860
	build_inv_all(&cmd);
861

862 863 864 865
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

866 867
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
868 869 870 871 872
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
873 874 875
	}
}

876
/*
877
 * Command send function for flushing on-device TLB
878
 */
879 880
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
881 882
{
	struct amd_iommu *iommu;
883
	struct iommu_cmd cmd;
884
	int qdep;
885

886 887
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
888

889
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
890 891

	return iommu_queue_command(iommu, &cmd);
892 893
}

894 895 896
/*
 * Command send function for invalidating a device table entry
 */
897
static int device_flush_dte(struct iommu_dev_data *dev_data)
898
{
899
	struct amd_iommu *iommu;
900
	int ret;
901

902
	iommu = amd_iommu_rlookup_table[dev_data->devid];
903

904
	ret = iommu_flush_dte(iommu, dev_data->devid);
905 906 907
	if (ret)
		return ret;

908
	if (dev_data->ats.enabled)
909
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
910 911

	return ret;
912 913
}

914 915 916 917 918
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
919 920
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
921
{
922
	struct iommu_dev_data *dev_data;
923 924
	struct iommu_cmd cmd;
	int ret = 0, i;
925

926
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
927

928 929 930 931 932 933 934 935
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
936
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
937 938
	}

939 940
	list_for_each_entry(dev_data, &domain->dev_list, list) {

941
		if (!dev_data->ats.enabled)
942 943
			continue;

944
		ret |= device_flush_iotlb(dev_data, address, size);
945 946
	}

947
	WARN_ON(ret);
948 949
}

950 951
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
952
{
953
	__domain_flush_pages(domain, address, size, 0);
954
}
955

956
/* Flush the whole IO/TLB for a given protection domain */
957
static void domain_flush_tlb(struct protection_domain *domain)
958
{
959
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
960 961
}

962
/* Flush the whole IO/TLB for a given protection domain - including PDE */
963
static void domain_flush_tlb_pde(struct protection_domain *domain)
964
{
965
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
966 967
}

968
static void domain_flush_complete(struct protection_domain *domain)
969
{
970
	int i;
971

972 973 974
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
975

976 977 978 979 980
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
981
	}
982 983
}

984

985
/*
986
 * This function flushes the DTEs for all devices in domain
987
 */
988
static void domain_flush_devices(struct protection_domain *domain)
989
{
990
	struct iommu_dev_data *dev_data;
991

992
	list_for_each_entry(dev_data, &domain->dev_list, list)
993
		device_flush_dte(dev_data);
994 995
}

996 997 998 999 1000 1001 1002
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1032
		      unsigned long page_size,
1033 1034 1035
		      u64 **pte_page,
		      gfp_t gfp)
{
1036
	int level, end_lvl;
1037
	u64 *pte, *page;
1038 1039

	BUG_ON(!is_power_of_2(page_size));
1040 1041 1042 1043

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1044 1045 1046 1047
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1048 1049 1050 1051 1052 1053 1054 1055 1056

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1057 1058 1059 1060
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1078
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1079 1080 1081 1082
{
	int level;
	u64 *pte;

1083 1084 1085 1086 1087
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1088

1089 1090 1091
	while (level > 0) {

		/* Not Present */
1092 1093 1094
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1114 1115
		level -= 1;

1116
		/* Walk to the next level */
1117 1118 1119 1120 1121 1122 1123
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1124 1125 1126 1127 1128 1129 1130
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1131 1132 1133
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1134
			  int prot,
1135
			  unsigned long page_size)
1136
{
1137
	u64 __pte, *pte;
1138
	int i, count;
1139

1140
	if (!(prot & IOMMU_PROT_MASK))
1141 1142
		return -EINVAL;

1143 1144 1145 1146 1147 1148 1149 1150
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1151

1152 1153 1154 1155 1156
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1157 1158 1159 1160 1161 1162

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1163 1164
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1165

1166 1167
	update_domain(dom);

1168 1169 1170
	return 0;
}

1171 1172 1173
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1174
{
1175 1176 1177 1178 1179 1180
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1211

1212
	return unmapped;
1213 1214
}

1215 1216 1217 1218
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1233 1234 1235 1236
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1237 1238 1239 1240 1241 1242 1243 1244
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1245
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1246
				     PAGE_SIZE);
1247 1248 1249 1250 1251 1252 1253
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1254
			__set_bit(addr >> PAGE_SHIFT,
1255
				  dma_dom->aperture[0]->bitmap);
1256 1257 1258 1259 1260
	}

	return 0;
}

1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1283 1284 1285
/*
 * Inits the unity mappings required for a specific device
 */
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1303 1304 1305 1306 1307 1308 1309 1310 1311
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1312

1313
/*
1314
 * The address allocator core functions.
1315 1316 1317
 *
 * called with domain->lock held
 */
1318

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1339 1340 1341 1342 1343
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1344
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1345 1346 1347
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1348
	struct amd_iommu *iommu;
1349
	unsigned long i, old_size;
1350

1351 1352 1353 1354
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1374
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1385
	old_size                = dma_dom->aperture_size;
1386 1387
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1400
	/* Initialize the exclusion range if necessary */
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1423
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1424 1425 1426
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1427
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1428 1429
	}

1430 1431
	update_domain(&dma_dom->domain);

1432 1433 1434
	return 0;

out_free:
1435 1436
	update_domain(&dma_dom->domain);

1437 1438 1439 1440 1441 1442 1443 1444
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1445 1446 1447 1448 1449 1450 1451
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1452
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1453 1454 1455 1456 1457 1458
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1459 1460
	next_bit >>= PAGE_SHIFT;

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1479
			dom->next_address = address + (pages << PAGE_SHIFT);
1480 1481 1482 1483 1484 1485 1486 1487 1488
			break;
		}

		next_bit = 0;
	}

	return address;
}

1489 1490
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1491
					     unsigned int pages,
1492 1493
					     unsigned long align_mask,
					     u64 dma_mask)
1494 1495 1496
{
	unsigned long address;

1497 1498 1499 1500
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1501

1502
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1503
				     dma_mask, dom->next_address);
1504

1505
	if (address == -1) {
1506
		dom->next_address = 0;
1507 1508
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1509 1510
		dom->need_flush = true;
	}
1511

1512
	if (unlikely(address == -1))
1513
		address = DMA_ERROR_CODE;
1514 1515 1516 1517 1518 1519

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1520 1521 1522 1523 1524
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1525 1526 1527 1528
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1529 1530
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1531

1532 1533
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1534 1535 1536 1537
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1538

1539
	if (address >= dom->next_address)
1540
		dom->need_flush = true;
1541 1542

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1543

A
Akinobu Mita 已提交
1544
	bitmap_clear(range->bitmap, address, pages);
1545

1546 1547
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1610
static void free_pagetable(struct protection_domain *domain)
1611 1612 1613 1614
{
	int i, j;
	u64 *p1, *p2, *p3;

1615
	p1 = domain->pt_root;
1616 1617 1618 1619 1620 1621 1622 1623 1624

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1625
		for (j = 0; j < 512; ++j) {
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1636 1637

	domain->pt_root = NULL;
1638 1639
}

1640 1641 1642 1643 1644
static void free_gcr3_table(struct protection_domain *domain)
{
	free_page((unsigned long)domain->gcr3_tbl);
}

1645 1646 1647 1648
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1649 1650
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1651 1652
	int i;

1653 1654 1655
	if (!dom)
		return;

1656 1657
	del_domain_from_list(&dom->domain);

1658
	free_pagetable(&dom->domain);
1659

1660 1661 1662 1663 1664 1665
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1666 1667 1668 1669

	kfree(dom);
}

1670 1671
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1672
 * It also initializes the page table and the address allocator data
1673 1674
 * structures required for the dma_ops interface
 */
1675
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1688
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1689
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1690
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1691
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1692 1693 1694 1695
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1696
	dma_dom->need_flush = false;
1697
	dma_dom->target_dev = 0xffff;
1698

1699 1700
	add_domain_to_list(&dma_dom->domain);

1701
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1702 1703
		goto free_dma_dom;

1704
	/*
1705 1706
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1707
	 */
1708
	dma_dom->aperture[0]->bitmap[0] = 1;
1709
	dma_dom->next_address = 0;
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1720 1721 1722 1723 1724 1725 1726 1727 1728
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1729
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1730
{
1731
	u64 pte_root = 0;
1732
	u64 flags = 0;
1733

1734 1735 1736
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1737 1738 1739
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1740

1741 1742
	flags = amd_iommu_dev_table[devid].data[1];

1743 1744 1745
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1772 1773 1774 1775 1776
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1777 1778 1779 1780 1781 1782 1783 1784 1785
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1786 1787
}

1788 1789
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1790 1791
{
	struct amd_iommu *iommu;
1792
	bool ats;
1793

1794 1795
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1796 1797 1798 1799

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1800
	set_dte_entry(dev_data->devid, domain, ats);
1801 1802 1803 1804 1805 1806

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1807
	device_flush_dte(dev_data);
1808 1809
}

1810
static void do_detach(struct iommu_dev_data *dev_data)
1811 1812 1813
{
	struct amd_iommu *iommu;

1814
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1815 1816

	/* decrease reference counters */
1817 1818 1819 1820 1821 1822
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1823
	clear_dte_entry(dev_data->devid);
1824

1825
	/* Flush the DTE entry */
1826
	device_flush_dte(dev_data);
1827 1828 1829 1830 1831 1832
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1833
static int __attach_device(struct iommu_dev_data *dev_data,
1834
			   struct protection_domain *domain)
1835
{
1836
	int ret;
1837

1838 1839 1840
	/* lock domain */
	spin_lock(&domain->lock);

1841 1842
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
1843

1844 1845 1846 1847 1848
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
1849

1850 1851 1852
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
1853

1854
		/* Do real assignment */
1855
		if (alias_data->domain == NULL)
1856
			do_attach(alias_data, domain);
1857 1858

		atomic_inc(&alias_data->bind);
1859
	}
1860

1861
	if (dev_data->domain == NULL)
1862
		do_attach(dev_data, domain);
1863

1864 1865
	atomic_inc(&dev_data->bind);

1866 1867 1868 1869
	ret = 0;

out_unlock:

1870 1871
	/* ready */
	spin_unlock(&domain->lock);
1872

1873
	return ret;
1874
}
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
	int ret;

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

	/* FIXME: Hardcode number of outstanding requests for now */
	ret = pci_enable_pri(pdev, 32);
	if (ret)
		goto out_err;

	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

1916 1917 1918 1919
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1920 1921
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1922
{
1923
	struct pci_dev *pdev = to_pci_dev(dev);
1924
	struct iommu_dev_data *dev_data;
1925
	unsigned long flags;
1926
	int ret;
1927

1928 1929
	dev_data = get_dev_data(dev);

1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1941 1942 1943
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
1944

1945
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1946
	ret = __attach_device(dev_data, domain);
1947 1948
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1949 1950 1951 1952 1953
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1954
	domain_flush_tlb_pde(domain);
1955 1956

	return ret;
1957 1958
}

1959 1960 1961
/*
 * Removes a device from a protection domain (unlocked)
 */
1962
static void __detach_device(struct iommu_dev_data *dev_data)
1963
{
1964
	struct protection_domain *domain;
1965
	unsigned long flags;
1966

1967
	BUG_ON(!dev_data->domain);
1968

1969 1970 1971
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
1972

1973 1974 1975
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

1976
		if (atomic_dec_and_test(&alias_data->bind))
1977
			do_detach(alias_data);
1978 1979
	}

1980
	if (atomic_dec_and_test(&dev_data->bind))
1981
		do_detach(dev_data);
1982

1983
	spin_unlock_irqrestore(&domain->lock, flags);
1984 1985 1986

	/*
	 * If we run in passthrough mode the device must be assigned to the
1987 1988
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
1989
	 */
1990
	if (dev_data->passthrough &&
1991
	    (dev_data->domain == NULL && domain != pt_domain))
1992
		__attach_device(dev_data, pt_domain);
1993 1994 1995 1996 1997
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
1998
static void detach_device(struct device *dev)
1999
{
2000
	struct protection_domain *domain;
2001
	struct iommu_dev_data *dev_data;
2002 2003
	unsigned long flags;

2004
	dev_data = get_dev_data(dev);
2005
	domain   = dev_data->domain;
2006

2007 2008
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2009
	__detach_device(dev_data);
2010
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2011

2012 2013 2014
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2015
		pci_disable_ats(to_pci_dev(dev));
2016 2017

	dev_data->ats.enabled = false;
2018
}
2019

2020 2021 2022 2023 2024 2025
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2026
	struct iommu_dev_data *dev_data;
2027
	struct protection_domain *dom = NULL;
2028 2029
	unsigned long flags;

2030
	dev_data   = get_dev_data(dev);
2031

2032 2033
	if (dev_data->domain)
		return dev_data->domain;
2034

2035 2036
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2037 2038 2039 2040 2041 2042 2043 2044

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2045 2046 2047 2048

	return dom;
}

2049 2050 2051 2052
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2053 2054 2055
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2056
	struct amd_iommu *iommu;
2057
	unsigned long flags;
2058
	u16 devid;
2059

2060 2061
	if (!check_device(dev))
		return 0;
2062

2063 2064 2065
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2066 2067

	switch (action) {
2068
	case BUS_NOTIFY_UNBOUND_DRIVER:
2069 2070 2071

		domain = domain_for_device(dev);

2072 2073
		if (!domain)
			goto out;
2074
		if (dev_data->passthrough)
2075
			break;
2076
		detach_device(dev);
2077 2078
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2079 2080 2081 2082 2083

		iommu_init_device(dev);

		domain = domain_for_device(dev);

2084 2085 2086 2087
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
2088
		dma_domain = dma_ops_domain_alloc();
2089 2090 2091 2092 2093 2094 2095 2096
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

2097
		break;
2098 2099 2100 2101
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2112
static struct notifier_block device_nb = {
2113 2114
	.notifier_call = device_change_notifier,
};
2115

2116 2117 2118 2119 2120
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2134
static struct protection_domain *get_domain(struct device *dev)
2135
{
2136
	struct protection_domain *domain;
2137
	struct dma_ops_domain *dma_dom;
2138
	u16 devid = get_device_id(dev);
2139

2140
	if (!check_device(dev))
2141
		return ERR_PTR(-EINVAL);
2142

2143 2144 2145
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2146

2147 2148
	if (domain != NULL)
		return domain;
2149

2150
	/* Device not bount yet - bind it */
2151
	dma_dom = find_protection_domain(devid);
2152
	if (!dma_dom)
2153 2154
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2155
	DUMP_printk("Using protection domain %d for device %s\n",
2156
		    dma_dom->domain.id, dev_name(dev));
2157

2158
	return &dma_dom->domain;
2159 2160
}

2161 2162
static void update_device_table(struct protection_domain *domain)
{
2163
	struct iommu_dev_data *dev_data;
2164

2165 2166
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2167 2168 2169 2170 2171 2172 2173 2174
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2175 2176 2177

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2178 2179 2180 2181

	domain->updated = false;
}

2182 2183 2184 2185 2186 2187
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2188
	struct aperture_range *aperture;
2189 2190
	u64 *pte, *pte_page;

2191 2192 2193 2194 2195
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2196
	if (!pte) {
2197
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2198
				GFP_ATOMIC);
2199 2200
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2201
		pte += PM_LEVEL_INDEX(0, address);
2202

2203
	update_domain(&dom->domain);
2204 2205 2206 2207

	return pte;
}

2208 2209 2210 2211
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2212
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2223
	pte  = dma_ops_get_pte(dom, address);
2224
	if (!pte)
2225
		return DMA_ERROR_CODE;
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2243 2244 2245
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2246
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2247 2248
				 unsigned long address)
{
2249
	struct aperture_range *aperture;
2250 2251 2252 2253 2254
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2255 2256 2257 2258 2259 2260 2261
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2262

2263
	pte += PM_LEVEL_INDEX(0, address);
2264 2265 2266 2267 2268 2269

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2270 2271
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2272 2273
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2274 2275
 * Must be called with the domain lock held.
 */
2276 2277 2278 2279
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2280
			       int dir,
2281 2282
			       bool align,
			       u64 dma_mask)
2283 2284
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2285
	dma_addr_t address, start, ret;
2286
	unsigned int pages;
2287
	unsigned long align_mask = 0;
2288 2289
	int i;

2290
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2291 2292
	paddr &= PAGE_MASK;

2293 2294
	INC_STATS_COUNTER(total_map_requests);

2295 2296 2297
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2298 2299 2300
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2301
retry:
2302 2303
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2304
	if (unlikely(address == DMA_ERROR_CODE)) {
2305 2306 2307 2308 2309 2310 2311
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2312
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2313 2314 2315
			goto out;

		/*
2316
		 * aperture was successfully enlarged by 128 MB, try
2317 2318 2319 2320
		 * allocation again
		 */
		goto retry;
	}
2321 2322 2323

	start = address;
	for (i = 0; i < pages; ++i) {
2324
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2325
		if (ret == DMA_ERROR_CODE)
2326 2327
			goto out_unmap;

2328 2329 2330 2331 2332
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2333 2334
	ADD_STATS_COUNTER(alloced_io_mem, size);

2335
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2336
		domain_flush_tlb(&dma_dom->domain);
2337
		dma_dom->need_flush = false;
2338
	} else if (unlikely(amd_iommu_np_cache))
2339
		domain_flush_pages(&dma_dom->domain, address, size);
2340

2341 2342
out:
	return address;
2343 2344 2345 2346 2347

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2348
		dma_ops_domain_unmap(dma_dom, start);
2349 2350 2351 2352
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2353
	return DMA_ERROR_CODE;
2354 2355
}

2356 2357 2358 2359
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2360
static void __unmap_single(struct dma_ops_domain *dma_dom,
2361 2362 2363 2364
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2365
	dma_addr_t flush_addr;
2366 2367 2368
	dma_addr_t i, start;
	unsigned int pages;

2369
	if ((dma_addr == DMA_ERROR_CODE) ||
2370
	    (dma_addr + size > dma_dom->aperture_size))
2371 2372
		return;

2373
	flush_addr = dma_addr;
2374
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2375 2376 2377 2378
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2379
		dma_ops_domain_unmap(dma_dom, start);
2380 2381 2382
		start += PAGE_SIZE;
	}

2383 2384
	SUB_STATS_COUNTER(alloced_io_mem, size);

2385
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2386

2387
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2388
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2389 2390
		dma_dom->need_flush = false;
	}
2391 2392
}

2393 2394 2395
/*
 * The exported map_single function for dma_ops.
 */
2396 2397 2398 2399
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2400 2401 2402 2403
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2404
	u64 dma_mask;
2405
	phys_addr_t paddr = page_to_phys(page) + offset;
2406

2407 2408
	INC_STATS_COUNTER(cnt_map_single);

2409 2410
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2411
		return (dma_addr_t)paddr;
2412 2413
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2414

2415 2416
	dma_mask = *dev->dma_mask;

2417
	spin_lock_irqsave(&domain->lock, flags);
2418

2419
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2420
			    dma_mask);
2421
	if (addr == DMA_ERROR_CODE)
2422 2423
		goto out;

2424
	domain_flush_complete(domain);
2425 2426 2427 2428 2429 2430 2431

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2432 2433 2434
/*
 * The exported unmap_single function for dma_ops.
 */
2435 2436
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2437 2438 2439 2440
{
	unsigned long flags;
	struct protection_domain *domain;

2441 2442
	INC_STATS_COUNTER(cnt_unmap_single);

2443 2444
	domain = get_domain(dev);
	if (IS_ERR(domain))
2445 2446
		return;

2447 2448
	spin_lock_irqsave(&domain->lock, flags);

2449
	__unmap_single(domain->priv, dma_addr, size, dir);
2450

2451
	domain_flush_complete(domain);
2452 2453 2454 2455

	spin_unlock_irqrestore(&domain->lock, flags);
}

2456 2457 2458 2459
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2474 2475 2476 2477
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2478
static int map_sg(struct device *dev, struct scatterlist *sglist,
2479 2480
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2481 2482 2483 2484 2485 2486 2487
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2488
	u64 dma_mask;
2489

2490 2491
	INC_STATS_COUNTER(cnt_map_sg);

2492 2493
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2494
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2495 2496
	else if (IS_ERR(domain))
		return 0;
2497

2498
	dma_mask = *dev->dma_mask;
2499 2500 2501 2502 2503 2504

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2505
		s->dma_address = __map_single(dev, domain->priv,
2506 2507
					      paddr, s->length, dir, false,
					      dma_mask);
2508 2509 2510 2511 2512 2513 2514 2515

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2516
	domain_flush_complete(domain);
2517 2518 2519 2520 2521 2522 2523 2524

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2525
			__unmap_single(domain->priv, s->dma_address,
2526 2527 2528 2529 2530 2531 2532 2533 2534
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2535 2536 2537 2538
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2539
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2540 2541
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2542 2543 2544 2545 2546 2547
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2548 2549
	INC_STATS_COUNTER(cnt_unmap_sg);

2550 2551
	domain = get_domain(dev);
	if (IS_ERR(domain))
2552 2553
		return;

2554 2555 2556
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2557
		__unmap_single(domain->priv, s->dma_address,
2558 2559 2560 2561
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2562
	domain_flush_complete(domain);
2563 2564 2565 2566

	spin_unlock_irqrestore(&domain->lock, flags);
}

2567 2568 2569
/*
 * The exported alloc_coherent function for dma_ops.
 */
2570 2571 2572 2573 2574 2575 2576
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2577
	u64 dma_mask = dev->coherent_dma_mask;
2578

2579 2580
	INC_STATS_COUNTER(cnt_alloc_coherent);

2581 2582
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2583 2584 2585
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2586 2587
	} else if (IS_ERR(domain))
		return NULL;
2588

2589 2590 2591
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2592 2593 2594

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2595
		return NULL;
2596 2597 2598

	paddr = virt_to_phys(virt_addr);

2599 2600 2601
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2602 2603
	spin_lock_irqsave(&domain->lock, flags);

2604
	*dma_addr = __map_single(dev, domain->priv, paddr,
2605
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2606

2607
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2608
		spin_unlock_irqrestore(&domain->lock, flags);
2609
		goto out_free;
J
Jiri Slaby 已提交
2610
	}
2611

2612
	domain_flush_complete(domain);
2613 2614 2615 2616

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2617 2618 2619 2620 2621 2622

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2623 2624
}

2625 2626 2627
/*
 * The exported free_coherent function for dma_ops.
 */
2628 2629 2630 2631 2632 2633
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2634 2635
	INC_STATS_COUNTER(cnt_free_coherent);

2636 2637
	domain = get_domain(dev);
	if (IS_ERR(domain))
2638 2639
		goto free_mem;

2640 2641
	spin_lock_irqsave(&domain->lock, flags);

2642
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2643

2644
	domain_flush_complete(domain);
2645 2646 2647 2648 2649 2650 2651

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2652 2653 2654 2655 2656 2657
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2658
	return check_device(dev);
2659 2660
}

2661
/*
2662 2663
 * The function for pre-allocating protection domains.
 *
2664 2665 2666 2667
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2668
static void prealloc_protection_domains(void)
2669
{
2670
	struct iommu_dev_data *dev_data;
2671
	struct dma_ops_domain *dma_dom;
2672
	struct pci_dev *dev = NULL;
2673
	u16 devid;
2674

2675
	for_each_pci_dev(dev) {
2676 2677 2678

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2679
			continue;
2680

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
			pr_info("AMD-Vi: Using passthough domain for device %s\n",
				dev_name(&dev->dev));
		}

2691
		/* Is there already any domain for it? */
2692
		if (domain_for_device(&dev->dev))
2693
			continue;
2694 2695 2696

		devid = get_device_id(&dev->dev);

2697
		dma_dom = dma_ops_domain_alloc();
2698 2699 2700
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2701 2702
		dma_dom->target_dev = devid;

2703
		attach_device(&dev->dev, &dma_dom->domain);
2704

2705
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2706 2707 2708
	}
}

2709
static struct dma_map_ops amd_iommu_dma_ops = {
2710 2711
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2712 2713
	.map_page = map_page,
	.unmap_page = unmap_page,
2714 2715
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2716
	.dma_supported = amd_iommu_dma_supported,
2717 2718
};

2719 2720
static unsigned device_dma_ops_init(void)
{
2721
	struct iommu_dev_data *dev_data;
2722 2723 2724 2725 2726 2727 2728 2729 2730
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
			unhandled += 1;
			continue;
		}

2731 2732 2733 2734 2735 2736
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2737 2738 2739 2740 2741
	}

	return unhandled;
}

2742 2743 2744
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2745 2746 2747

void __init amd_iommu_init_api(void)
{
2748
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2749 2750
}

2751 2752 2753
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
2754
	int ret, unhandled;
2755

2756 2757 2758 2759 2760
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2761
	for_each_iommu(iommu) {
2762
		iommu->default_dom = dma_ops_domain_alloc();
2763 2764
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2765
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2766 2767 2768 2769 2770
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2771
	/*
2772
	 * Pre-allocate the protection domains for each device.
2773
	 */
2774
	prealloc_protection_domains();
2775 2776

	iommu_detected = 1;
2777
	swiotlb = 0;
2778

2779
	/* Make the driver finally visible to the drivers */
2780 2781 2782 2783 2784
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
2785

2786 2787
	amd_iommu_stats_init();

2788 2789 2790 2791
	return 0;

free_domains:

2792
	for_each_iommu(iommu) {
2793 2794 2795 2796 2797 2798
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2812
	struct iommu_dev_data *dev_data, *next;
2813 2814 2815 2816
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2817
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2818
		__detach_device(dev_data);
2819 2820
		atomic_set(&dev_data->bind, 0);
	}
2821 2822 2823 2824

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2825 2826 2827 2828 2829
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2830 2831
	del_domain_from_list(domain);

2832 2833 2834 2835 2836 2837 2838
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2839 2840 2841 2842 2843
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2844
		return NULL;
2845 2846

	spin_lock_init(&domain->lock);
2847
	mutex_init(&domain->api_lock);
2848 2849
	domain->id = domain_id_alloc();
	if (!domain->id)
2850
		goto out_err;
2851
	INIT_LIST_HEAD(&domain->dev_list);
2852

2853 2854
	add_domain_to_list(domain);

2855 2856 2857 2858 2859 2860 2861 2862
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
2877 2878 2879 2880 2881 2882
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2883
		goto out_free;
2884 2885

	domain->mode    = PAGE_MODE_3_LEVEL;
2886 2887 2888 2889 2890 2891 2892 2893 2894
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2895
	protection_domain_free(domain);
2896 2897 2898 2899

	return -ENOMEM;
}

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2912 2913
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
2914

2915 2916 2917
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

2918
	protection_domain_free(domain);
2919 2920 2921 2922

	dom->priv = NULL;
}

2923 2924 2925
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2926
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2927 2928 2929
	struct amd_iommu *iommu;
	u16 devid;

2930
	if (!check_device(dev))
2931 2932
		return;

2933
	devid = get_device_id(dev);
2934

2935
	if (dev_data->domain != NULL)
2936
		detach_device(dev);
2937 2938 2939 2940 2941 2942 2943 2944

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

2945 2946 2947 2948
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
2949
	struct iommu_dev_data *dev_data;
2950
	struct amd_iommu *iommu;
2951
	int ret;
2952

2953
	if (!check_device(dev))
2954 2955
		return -EINVAL;

2956 2957
	dev_data = dev->archdata.iommu;

2958
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2959 2960 2961
	if (!iommu)
		return -EINVAL;

2962
	if (dev_data->domain)
2963
		detach_device(dev);
2964

2965
	ret = attach_device(dev, domain);
2966 2967 2968

	iommu_completion_wait(iommu);

2969
	return ret;
2970 2971
}

2972 2973
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
			 phys_addr_t paddr, int gfp_order, int iommu_prot)
2974
{
2975
	unsigned long page_size = 0x1000UL << gfp_order;
2976 2977 2978 2979
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

2980 2981 2982
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

2983 2984 2985 2986 2987
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2988
	mutex_lock(&domain->api_lock);
2989
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2990 2991
	mutex_unlock(&domain->api_lock);

2992
	return ret;
2993 2994
}

2995 2996
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   int gfp_order)
2997 2998
{
	struct protection_domain *domain = dom->priv;
2999
	unsigned long page_size, unmap_size;
3000

3001 3002 3003
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3004
	page_size  = 0x1000UL << gfp_order;
3005

3006
	mutex_lock(&domain->api_lock);
3007
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3008
	mutex_unlock(&domain->api_lock);
3009

3010
	domain_flush_tlb_pde(domain);
3011

3012
	return get_order(unmap_size);
3013 3014
}

3015 3016 3017 3018
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
3019
	unsigned long offset_mask;
3020
	phys_addr_t paddr;
3021
	u64 *pte, __pte;
3022

3023 3024 3025
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3026
	pte = fetch_pte(domain, iova);
3027

3028
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3029 3030
		return 0;

3031 3032 3033 3034 3035 3036 3037
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3038 3039 3040 3041

	return paddr;
}

S
Sheng Yang 已提交
3042 3043 3044
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3045 3046 3047 3048 3049
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
3050 3051 3052
	return 0;
}

3053 3054 3055 3056 3057
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3058 3059
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3060
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3061
	.domain_has_cap = amd_iommu_domain_has_cap,
3062 3063
};

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3076
	struct iommu_dev_data *dev_data;
3077
	struct pci_dev *dev = NULL;
3078
	struct amd_iommu *iommu;
3079
	u16 devid;
3080
	int ret;
3081

3082 3083 3084
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3085

3086
	for_each_pci_dev(dev) {
3087
		if (!check_device(&dev->dev))
3088 3089
			continue;

3090 3091 3092
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3093 3094
		devid = get_device_id(&dev->dev);

3095
		iommu = amd_iommu_rlookup_table[devid];
3096 3097 3098
		if (!iommu)
			continue;

3099
		attach_device(&dev->dev, pt_domain);
3100 3101 3102 3103 3104 3105
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);