amd_iommu.c 102.6 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56

57 58
#define AMD_IOMMU_MAPPING_ERROR	0

59 60
#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

61
#define LOOP_TIMEOUT	100000
62

63 64 65 66
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)

67 68 69 70 71 72
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

73 74 75 76 77 78
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
79
 * 512GB Pages are not supported due to a hardware bug
80
 */
J
Joerg Roedel 已提交
81
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
82

83 84
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

85
/* List of all available dev_data structures */
86
static LLIST_HEAD(dev_data_list);
87

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
96
const struct iommu_ops amd_iommu_ops;
97

98
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
99
int amd_iommu_max_glx_val = -1;
100

101
static const struct dma_map_ops amd_iommu_dma_ops;
102

103 104 105
/*
 * general struct to manage commands send to an IOMMU
 */
106
struct iommu_cmd {
107 108 109
	u32 data[4];
};

110 111
struct kmem_cache *amd_iommu_irq_cache;

112
static void update_domain(struct protection_domain *domain);
113
static int protection_domain_init(struct protection_domain *domain);
114
static void detach_device(struct device *dev);
115
static void iova_domain_flush_tlb(struct iova_domain *iovad);
116

117 118 119 120 121 122 123
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

124 125
	/* IOVA RB-Tree */
	struct iova_domain iovad;
126 127
};

128 129 130
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

131 132 133 134 135 136
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

137 138
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
139
{
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
155 156
}

157
static inline u16 get_pci_device_id(struct device *dev)
158 159 160 161 162 163
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

191 192 193 194 195
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

196 197 198 199 200 201
static struct dma_ops_domain* to_dma_ops_domain(struct protection_domain *domain)
{
	BUG_ON(domain->flags != PD_DMA_OPS_MASK);
	return container_of(domain, struct dma_ops_domain, domain);
}

202
static struct iommu_dev_data *alloc_dev_data(u16 devid)
203 204 205 206 207 208 209
{
	struct iommu_dev_data *dev_data;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

210
	dev_data->devid = devid;
211 212
	ratelimit_default_init(&dev_data->rs);

213
	llist_add(&dev_data->dev_data_list, &dev_data_list);
214 215 216
	return dev_data;
}

217 218 219
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
220 221 222 223
	struct llist_node *node;

	if (llist_empty(&dev_data_list))
		return NULL;
224

225 226
	node = dev_data_list.first;
	llist_for_each_entry(dev_data, node, dev_data_list) {
227
		if (dev_data->devid == devid)
228
			return dev_data;
229 230
	}

231
	return NULL;
232 233
}

234 235 236 237 238 239 240 241 242 243 244
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

245
	/* The callers make sure that get_device_id() does not fail here */
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
287
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
288 289 290 291 292 293 294 295
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

296 297 298
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
299
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
300 301 302

	dev_data = search_dev_data(devid);

303
	if (dev_data == NULL) {
304
		dev_data = alloc_dev_data(devid);
305 306
		if (!dev_data)
			return NULL;
307

308 309 310 311
		if (translation_pre_enabled(iommu))
			dev_data->defer_attach = true;
	}

312 313 314
	return dev_data;
}

315
struct iommu_dev_data *get_dev_data(struct device *dev)
316 317 318
{
	return dev->archdata.iommu;
}
319
EXPORT_SYMBOL(get_dev_data);
320

321 322 323 324
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
325
{
326
	struct acpihid_map_entry *p, *entry = NULL;
327
	int devid;
328 329 330 331 332 333 334 335 336 337 338 339

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);
R
Robin Murphy 已提交
340 341
	else
		iommu_group_ref_get(entry->group);
342 343

	return entry->group;
344 345
}

346 347 348 349
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
350 351
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
352 353 354 355 356 357 358 359 360 361 362 363
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

364 365 366 367 368 369 370 371 372
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

373 374 375 376 377 378
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
379
	int devid;
380 381 382 383 384

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
385
	if (devid < 0)
386
		return false;
387 388 389 390 391 392 393 394 395 396 397

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

398
static void init_iommu_group(struct device *dev)
399 400 401
{
	struct iommu_group *group;

402
	group = iommu_group_get_for_dev(dev);
403 404 405 406
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
407 408 409 410 411
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
412
	struct amd_iommu *iommu;
413
	int devid;
414 415 416 417

	if (dev->archdata.iommu)
		return 0;

418
	devid = get_device_id(dev);
419
	if (devid < 0)
420 421
		return devid;

422 423
	iommu = amd_iommu_rlookup_table[devid];

424
	dev_data = find_dev_data(devid);
425 426 427
	if (!dev_data)
		return -ENOMEM;

428 429
	dev_data->alias = get_alias(dev);

430
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
431 432
		struct amd_iommu *iommu;

433
		iommu = amd_iommu_rlookup_table[dev_data->devid];
434 435 436
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

437 438
	dev->archdata.iommu = dev_data;

439
	iommu_device_link(&iommu->iommu, dev);
A
Alex Williamson 已提交
440

441 442 443
	return 0;
}

444 445
static void iommu_ignore_device(struct device *dev)
{
446 447
	u16 alias;
	int devid;
448 449

	devid = get_device_id(dev);
450
	if (devid < 0)
451 452
		return;

453
	alias = get_alias(dev);
454 455 456 457 458 459 460 461

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

462 463
static void iommu_uninit_device(struct device *dev)
{
464
	struct iommu_dev_data *dev_data;
465 466
	struct amd_iommu *iommu;
	int devid;
467

468
	devid = get_device_id(dev);
469
	if (devid < 0)
470
		return;
471

472 473
	iommu = amd_iommu_rlookup_table[devid];

474
	dev_data = search_dev_data(devid);
475 476 477
	if (!dev_data)
		return;

478 479 480
	if (dev_data->domain)
		detach_device(dev);

481
	iommu_device_unlink(&iommu->iommu, dev);
A
Alex Williamson 已提交
482

483 484
	iommu_group_remove_device(dev);

485
	/* Remove dma-ops */
486
	dev->dma_ops = NULL;
487

488
	/*
489 490
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
491
	 */
492
}
J
Joerg Roedel 已提交
493

494 495 496 497 498 499
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

500 501 502 503
static void dump_dte_entry(u16 devid)
{
	int i;

504 505
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
506 507 508
			amd_iommu_dev_table[devid].data[i]);
}

509 510
static void dump_command(unsigned long phys_addr)
{
511
	struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
512 513 514 515 516 517
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

518 519 520 521 522 523
static void amd_iommu_report_page_fault(u16 devid, u16 domain_id,
					u64 address, int flags)
{
	struct iommu_dev_data *dev_data = NULL;
	struct pci_dev *pdev;

524 525
	pdev = pci_get_domain_bus_and_slot(0, PCI_BUS_NUM(devid),
					   devid & 0xff);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	if (pdev)
		dev_data = get_dev_data(&pdev->dev);

	if (dev_data && __ratelimit(&dev_data->rs)) {
		dev_err(&pdev->dev, "AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			domain_id, address, flags);
	} else if (printk_ratelimit()) {
		pr_err("AMD-Vi: Event logged [IO_PAGE_FAULT device=%02x:%02x.%x domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domain_id, address, flags);
	}

	if (pdev)
		pci_dev_put(pdev);
}

542
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
543
{
544
	struct device *dev = iommu->iommu.dev;
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
566

567 568 569 570
	if (type == EVENT_TYPE_IO_FAULT) {
		amd_iommu_report_page_fault(devid, domid, address, flags);
		return;
	} else {
571
		dev_err(dev, "AMD-Vi: Event logged [");
572
	}
573 574 575

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
576 577 578 579
		dev_err(dev, "ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
580
		dump_dte_entry(devid);
581 582
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
583 584 585 586
		dev_err(dev, "DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
587 588
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
589 590 591 592
		dev_err(dev, "PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
			"domain=0x%04x address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			domid, address, flags);
593 594
		break;
	case EVENT_TYPE_ILL_CMD:
595
		dev_err(dev, "ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
596
		dump_command(address);
597 598
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
599 600
		dev_err(dev, "COMMAND_HARDWARE_ERROR address=0x%016llx "
			"flags=0x%04x]\n", address, flags);
601 602
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
603 604 605 606
		dev_err(dev, "IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
			"address=0x%016llx]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address);
607 608
		break;
	case EVENT_TYPE_INV_DEV_REQ:
609 610 611 612
		dev_err(dev, "INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
			"address=0x%016llx flags=0x%04x]\n",
			PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
			address, flags);
613 614
		break;
	default:
615 616 617
		dev_err(dev, KERN_ERR "UNKNOWN event[0]=0x%08x event[1]=0x%08x "
			"event[2]=0x%08x event[3]=0x%08x\n",
			event[0], event[1], event[2], event[3]);
618
	}
619 620

	memset(__evt, 0, 4 * sizeof(u32));
621 622 623 624 625 626 627 628 629 630
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
631
		iommu_print_event(iommu, iommu->evt_buf + head);
632
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
633 634 635 636 637
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

638
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
683

684 685 686
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
687

688 689 690 691 692 693 694
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
695 696
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
697 698 699 700 701 702

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
703 704 705 706
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
#ifdef CONFIG_IRQ_REMAP
static int (*iommu_ga_log_notifier)(u32);

int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
{
	iommu_ga_log_notifier = notifier;

	return 0;
}
EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);

static void iommu_poll_ga_log(struct amd_iommu *iommu)
{
	u32 head, tail, cnt = 0;

	if (iommu->ga_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);

	while (head != tail) {
		volatile u64 *raw;
		u64 log_entry;

		raw = (u64 *)(iommu->ga_log + head);
		cnt++;

		/* Avoid memcpy function-call overhead */
		log_entry = *raw;

		/* Update head pointer of hardware ring-buffer */
		head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);

		/* Handle GA entry */
		switch (GA_REQ_TYPE(log_entry)) {
		case GA_GUEST_NR:
			if (!iommu_ga_log_notifier)
				break;

			pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
				 __func__, GA_DEVID(log_entry),
				 GA_TAG(log_entry));

			if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
				pr_err("AMD-Vi: GA log notifier failed.\n");
			break;
		default:
			break;
		}
	}
}
#endif /* CONFIG_IRQ_REMAP */

#define AMD_IOMMU_INT_MASK	\
	(MMIO_STATUS_EVT_INT_MASK | \
	 MMIO_STATUS_PPR_INT_MASK | \
	 MMIO_STATUS_GALOG_INT_MASK)

767
irqreturn_t amd_iommu_int_thread(int irq, void *data)
768
{
769 770
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
771

772 773 774
	while (status & AMD_IOMMU_INT_MASK) {
		/* Enable EVT and PPR and GA interrupts again */
		writel(AMD_IOMMU_INT_MASK,
775
			iommu->mmio_base + MMIO_STATUS_OFFSET);
776

777 778 779 780
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
781

782 783 784 785
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
786

787 788 789 790 791 792 793
#ifdef CONFIG_IRQ_REMAP
		if (status & MMIO_STATUS_GALOG_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
			iommu_poll_ga_log(iommu);
		}
#endif

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
809
	return IRQ_HANDLED;
810 811
}

812 813 814 815 816
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

817 818 819 820 821 822
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
841
			       struct iommu_cmd *cmd)
842 843 844
{
	u8 *target;

845 846 847 848
	target = iommu->cmd_buf + iommu->cmd_buf_tail;

	iommu->cmd_buf_tail += sizeof(*cmd);
	iommu->cmd_buf_tail %= CMD_BUFFER_SIZE;
849 850 851 852 853

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
854
	writel(iommu->cmd_buf_tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
855
}
856

857
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
858
{
859 860
	u64 paddr = iommu_virt_to_phys((void *)address);

861 862
	WARN_ON(address & 0x7ULL);

863
	memset(cmd, 0, sizeof(*cmd));
864 865
	cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(paddr);
866
	cmd->data[2] = 1;
867 868 869
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

870 871 872 873 874 875 876
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

877 878 879 880
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
881
	bool s;
882 883

	pages = iommu_num_pages(address, size, PAGE_SIZE);
884
	s     = false;
885 886 887 888 889 890 891

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
892
		s = true;
893 894 895 896 897 898 899 900 901 902 903
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
904
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
905 906 907
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

908 909 910 911
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
912
	bool s;
913 914

	pages = iommu_num_pages(address, size, PAGE_SIZE);
915
	s     = false;
916 917 918 919 920 921 922

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
923
		s = true;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

939 940 941 942 943 944 945
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

946
	cmd->data[0]  = pasid;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
965
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
966 967
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
968
	cmd->data[1] |= (pasid & 0xff) << 16;
969 970 971 972 973 974 975 976
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

977 978 979 980 981 982 983
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
984
		cmd->data[1]  = pasid;
985 986 987 988 989 990 991 992
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

993 994 995 996
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
997 998
}

999 1000 1001 1002 1003 1004 1005
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

1006 1007
/*
 * Writes the command to the IOMMUs command buffer and informs the
1008
 * hardware about the new command.
1009
 */
1010 1011 1012
static int __iommu_queue_command_sync(struct amd_iommu *iommu,
				      struct iommu_cmd *cmd,
				      bool sync)
1013
{
1014
	unsigned int count = 0;
1015
	u32 left, next_tail;
1016

1017
	next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1018
again:
1019
	left      = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1020

1021
	if (left <= 0x20) {
1022 1023 1024 1025 1026 1027
		/* Skip udelay() the first time around */
		if (count++) {
			if (count == LOOP_TIMEOUT) {
				pr_err("AMD-Vi: Command buffer timeout\n");
				return -EIO;
			}
1028

1029 1030
			udelay(1);
		}
1031

1032 1033 1034
		/* Update head and recheck remaining space */
		iommu->cmd_buf_head = readl(iommu->mmio_base +
					    MMIO_CMD_HEAD_OFFSET);
1035 1036

		goto again;
1037 1038
	}

1039
	copy_cmd_to_buffer(iommu, cmd);
1040

1041
	/* Do we need to make sure all commands are processed? */
1042
	iommu->need_sync = sync;
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	return 0;
}

static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
{
	unsigned long flags;
	int ret;

1054
	raw_spin_lock_irqsave(&iommu->lock, flags);
1055
	ret = __iommu_queue_command_sync(iommu, cmd, sync);
1056
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1057

1058
	return ret;
1059 1060
}

1061 1062 1063 1064 1065
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1066 1067 1068 1069
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1070
static int iommu_completion_wait(struct amd_iommu *iommu)
1071 1072
{
	struct iommu_cmd cmd;
1073
	unsigned long flags;
1074
	int ret;
1075

1076
	if (!iommu->need_sync)
1077
		return 0;
1078

1079

1080 1081
	build_completion_wait(&cmd, (u64)&iommu->cmd_sem);

1082
	raw_spin_lock_irqsave(&iommu->lock, flags);
1083 1084 1085 1086

	iommu->cmd_sem = 0;

	ret = __iommu_queue_command_sync(iommu, &cmd, false);
1087
	if (ret)
1088 1089 1090 1091 1092
		goto out_unlock;

	ret = wait_on_sem(&iommu->cmd_sem);

out_unlock:
1093
	raw_spin_unlock_irqrestore(&iommu->lock, flags);
1094

1095
	return ret;
1096 1097
}

1098
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1099
{
1100
	struct iommu_cmd cmd;
1101

1102
	build_inv_dte(&cmd, devid);
1103

1104 1105
	return iommu_queue_command(iommu, &cmd);
}
1106

1107
static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1108 1109
{
	u32 devid;
1110

1111 1112
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1113

1114 1115
	iommu_completion_wait(iommu);
}
1116

1117 1118 1119 1120
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
1121
static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1122 1123
{
	u32 dom_id;
1124

1125 1126 1127 1128 1129 1130
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1131

1132
	iommu_completion_wait(iommu);
1133 1134
}

1135
static void amd_iommu_flush_all(struct amd_iommu *iommu)
1136
{
1137
	struct iommu_cmd cmd;
1138

1139
	build_inv_all(&cmd);
1140

1141 1142 1143 1144
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1145 1146 1147 1148 1149 1150 1151 1152 1153
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

1154
static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1155 1156 1157 1158 1159 1160 1161 1162 1163
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1164 1165
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1166
	if (iommu_feature(iommu, FEATURE_IA)) {
1167
		amd_iommu_flush_all(iommu);
1168
	} else {
1169 1170 1171
		amd_iommu_flush_dte_all(iommu);
		amd_iommu_flush_irt_all(iommu);
		amd_iommu_flush_tlb_all(iommu);
1172 1173 1174
	}
}

1175
/*
1176
 * Command send function for flushing on-device TLB
1177
 */
1178 1179
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1180 1181
{
	struct amd_iommu *iommu;
1182
	struct iommu_cmd cmd;
1183
	int qdep;
1184

1185 1186
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1187

1188
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1189 1190

	return iommu_queue_command(iommu, &cmd);
1191 1192
}

1193 1194 1195
/*
 * Command send function for invalidating a device table entry
 */
1196
static int device_flush_dte(struct iommu_dev_data *dev_data)
1197
{
1198
	struct amd_iommu *iommu;
1199
	u16 alias;
1200
	int ret;
1201

1202
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1203
	alias = dev_data->alias;
1204

1205
	ret = iommu_flush_dte(iommu, dev_data->devid);
1206 1207
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1208 1209 1210
	if (ret)
		return ret;

1211
	if (dev_data->ats.enabled)
1212
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1213 1214

	return ret;
1215 1216
}

1217 1218 1219 1220 1221
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1222 1223
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1224
{
1225
	struct iommu_dev_data *dev_data;
1226 1227
	struct iommu_cmd cmd;
	int ret = 0, i;
1228

1229
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1230

1231
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1232 1233 1234 1235 1236 1237 1238
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1239
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1240 1241
	}

1242 1243
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1244
		if (!dev_data->ats.enabled)
1245 1246
			continue;

1247
		ret |= device_flush_iotlb(dev_data, address, size);
1248 1249
	}

1250
	WARN_ON(ret);
1251 1252
}

1253 1254
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1255
{
1256
	__domain_flush_pages(domain, address, size, 0);
1257
}
1258

1259
/* Flush the whole IO/TLB for a given protection domain */
1260
static void domain_flush_tlb(struct protection_domain *domain)
1261
{
1262
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1263 1264
}

1265
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1266
static void domain_flush_tlb_pde(struct protection_domain *domain)
1267
{
1268
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1269 1270
}

1271
static void domain_flush_complete(struct protection_domain *domain)
1272
{
1273
	int i;
1274

1275
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
1276
		if (domain && !domain->dev_iommu[i])
1277
			continue;
1278

1279 1280 1281 1282 1283
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1284
	}
1285 1286
}

1287

1288
/*
1289
 * This function flushes the DTEs for all devices in domain
1290
 */
1291
static void domain_flush_devices(struct protection_domain *domain)
1292
{
1293
	struct iommu_dev_data *dev_data;
1294

1295
	list_for_each_entry(dev_data, &domain->dev_list, list)
1296
		device_flush_dte(dev_data);
1297 1298
}

1299 1300 1301 1302 1303 1304 1305
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
1325
					iommu_virt_to_phys(domain->pt_root));
1326 1327 1328 1329 1330 1331 1332 1333 1334
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1335
		      unsigned long page_size,
1336 1337 1338
		      u64 **pte_page,
		      gfp_t gfp)
{
1339
	int level, end_lvl;
1340
	u64 *pte, *page;
1341 1342

	BUG_ON(!is_power_of_2(page_size));
1343 1344 1345 1346

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1347 1348 1349 1350
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1351 1352

	while (level > end_lvl) {
1353 1354 1355 1356 1357
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1358 1359 1360
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1361

1362
			__npte = PM_LEVEL_PDE(level, iommu_virt_to_phys(page));
1363

1364 1365
			/* pte could have been changed somewhere. */
			if (cmpxchg64(pte, __pte, __npte) != __pte) {
1366 1367 1368
				free_page((unsigned long)page);
				continue;
			}
1369 1370
		}

1371 1372 1373 1374
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1392 1393 1394
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1395 1396 1397 1398
{
	int level;
	u64 *pte;

1399 1400 1401
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1402 1403 1404
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1405

1406 1407 1408
	while (level > 0) {

		/* Not Present */
1409 1410 1411
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1412
		/* Large PTE */
1413 1414 1415
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1416 1417 1418 1419 1420

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1421 1422
		level -= 1;

1423
		/* Walk to the next level */
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1439 1440 1441 1442 1443
	}

	return pte;
}

1444 1445 1446 1447 1448 1449 1450
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1451 1452 1453
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1454
			  unsigned long page_size,
1455
			  int prot,
1456
			  gfp_t gfp)
1457
{
1458
	u64 __pte, *pte;
1459
	int i, count;
1460

1461 1462 1463
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1464
	if (!(prot & IOMMU_PROT_MASK))
1465 1466
		return -EINVAL;

1467
	count = PAGE_SIZE_PTE_COUNT(page_size);
1468
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1469

1470 1471 1472
	if (!pte)
		return -ENOMEM;

1473 1474 1475
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1476

1477
	if (count > 1) {
1478
		__pte = PAGE_SIZE_PTE(__sme_set(phys_addr), page_size);
1479
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1480
	} else
1481
		__pte = __sme_set(phys_addr) | IOMMU_PTE_PR | IOMMU_PTE_FC;
1482 1483 1484 1485 1486 1487

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1488 1489
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1490

1491 1492
	update_domain(dom);

1493 1494 1495
	return 0;
}

1496 1497 1498
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1499
{
1500 1501
	unsigned long long unmapped;
	unsigned long unmap_size;
1502 1503 1504 1505 1506
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1507

1508 1509
	while (unmapped < page_size) {

1510 1511 1512 1513 1514 1515
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1516 1517 1518 1519 1520 1521 1522 1523
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1524
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1525

1526
	return unmapped;
1527 1528
}

1529 1530 1531
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1532
 * interface functions.
1533 1534
 *
 ****************************************************************************/
1535

1536

1537 1538 1539
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1540
{
1541
	unsigned long pfn = 0;
1542

1543
	pages = __roundup_pow_of_two(pages);
1544

1545 1546
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
1547
				      IOVA_PFN(DMA_BIT_MASK(32)), false);
1548

1549
	if (!pfn)
1550 1551
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(dma_mask), true);
1552

1553
	return (pfn << PAGE_SHIFT);
1554 1555
}

1556 1557 1558
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1559
{
1560 1561
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1562

1563
	free_iova_fast(&dma_dom->iovad, address, pages);
1564 1565
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1638
		/* PTE present? */				\
1639 1640 1641
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1642 1643 1644 1645 1646
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1659
static void free_pagetable(struct protection_domain *domain)
1660
{
1661
	unsigned long root = (unsigned long)domain->pt_root;
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1686 1687 1688
	}
}

1689 1690 1691 1692 1693 1694 1695 1696 1697
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1698
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

1713
		ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1714 1715 1716 1717 1718

		free_gcr3_tbl_level1(ptr);
	}
}

1719 1720
static void free_gcr3_table(struct protection_domain *domain)
{
1721 1722 1723 1724
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1725 1726
	else
		BUG_ON(domain->glx != 0);
1727

1728 1729 1730
	free_page((unsigned long)domain->gcr3_tbl);
}

1731 1732 1733 1734
static void dma_ops_domain_flush_tlb(struct dma_ops_domain *dom)
{
	domain_flush_tlb(&dom->domain);
	domain_flush_complete(&dom->domain);
1735 1736
}

1737
static void iova_domain_flush_tlb(struct iova_domain *iovad)
1738
{
1739
	struct dma_ops_domain *dom;
1740

1741
	dom = container_of(iovad, struct dma_ops_domain, iovad);
1742 1743 1744 1745

	dma_ops_domain_flush_tlb(dom);
}

1746 1747 1748 1749
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1750 1751 1752 1753 1754
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1755 1756
	del_domain_from_list(&dom->domain);

1757
	put_iova_domain(&dom->iovad);
1758

1759
	free_pagetable(&dom->domain);
1760

1761 1762 1763
	if (dom->domain.id)
		domain_id_free(dom->domain.id);

1764 1765 1766
	kfree(dom);
}

1767 1768
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1769
 * It also initializes the page table and the address allocator data
1770 1771
 * structures required for the dma_ops interface
 */
1772
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1773 1774 1775 1776 1777 1778 1779
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1780
	if (protection_domain_init(&dma_dom->domain))
1781
		goto free_dma_dom;
1782

1783
	dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1784
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1785
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1786 1787 1788
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1789
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE, IOVA_START_PFN);
1790

1791
	if (init_iova_flush_queue(&dma_dom->iovad, iova_domain_flush_tlb, NULL))
1792 1793
		goto free_dma_dom;

1794 1795
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);
1796

1797 1798
	add_domain_to_list(&dma_dom->domain);

1799 1800 1801 1802 1803 1804 1805 1806
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1807 1808 1809 1810 1811 1812 1813 1814 1815
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1816 1817
static void set_dte_entry(u16 devid, struct protection_domain *domain,
			  bool ats, bool ppr)
1818
{
1819
	u64 pte_root = 0;
1820
	u64 flags = 0;
1821

1822
	if (domain->mode != PAGE_MODE_NONE)
1823
		pte_root = iommu_virt_to_phys(domain->pt_root);
1824

1825 1826
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
1827
	pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V | DTE_FLAG_TV;
1828

1829 1830
	flags = amd_iommu_dev_table[devid].data[1];

1831 1832 1833
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1834 1835 1836 1837 1838 1839 1840
	if (ppr) {
		struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

		if (iommu_feature(iommu, FEATURE_EPHSUP))
			pte_root |= 1ULL << DEV_ENTRY_PPR;
	}

1841
	if (domain->flags & PD_IOMMUV2_MASK) {
1842
		u64 gcr3 = iommu_virt_to_phys(domain->gcr3_tbl);
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1867
	flags &= ~DEV_DOMID_MASK;
1868 1869 1870 1871
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1872 1873 1874 1875 1876
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1877
	amd_iommu_dev_table[devid].data[0]  = DTE_FLAG_V | DTE_FLAG_TV;
1878
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1879 1880

	amd_iommu_apply_erratum_63(devid);
1881 1882
}

1883 1884
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1885 1886
{
	struct amd_iommu *iommu;
1887
	u16 alias;
1888
	bool ats;
1889

1890
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1891
	alias = dev_data->alias;
1892
	ats   = dev_data->ats.enabled;
1893 1894 1895 1896 1897 1898 1899 1900 1901

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1902
	/* Update device table */
1903
	set_dte_entry(dev_data->devid, domain, ats, dev_data->iommu_v2);
1904
	if (alias != dev_data->devid)
1905
		set_dte_entry(alias, domain, ats, dev_data->iommu_v2);
1906

1907
	device_flush_dte(dev_data);
1908 1909
}

1910
static void do_detach(struct iommu_dev_data *dev_data)
1911 1912
{
	struct amd_iommu *iommu;
1913
	u16 alias;
1914

1915 1916 1917 1918 1919 1920 1921 1922 1923
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1924
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1925
	alias = dev_data->alias;
1926 1927

	/* decrease reference counters */
1928 1929 1930 1931 1932 1933
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1934
	clear_dte_entry(dev_data->devid);
1935 1936
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1937

1938
	/* Flush the DTE entry */
1939
	device_flush_dte(dev_data);
1940 1941 1942 1943 1944 1945
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1946
static int __attach_device(struct iommu_dev_data *dev_data,
1947
			   struct protection_domain *domain)
1948
{
1949
	int ret;
1950

1951 1952 1953 1954 1955 1956
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1957 1958 1959
	/* lock domain */
	spin_lock(&domain->lock);

1960
	ret = -EBUSY;
1961
	if (dev_data->domain != NULL)
1962
		goto out_unlock;
1963

1964
	/* Attach alias group root */
1965
	do_attach(dev_data, domain);
1966

1967 1968 1969 1970
	ret = 0;

out_unlock:

1971 1972
	/* ready */
	spin_unlock(&domain->lock);
1973

1974
	return ret;
1975
}
1976

1977 1978 1979 1980 1981 1982 1983 1984

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1985 1986 1987 1988 1989 1990
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1991
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1992 1993 1994
	if (!pos)
		return -EINVAL;

1995 1996 1997
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1998 1999 2000 2001

	return 0;
}

2002 2003
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2004 2005 2006 2007 2008 2009 2010 2011
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2023 2024
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2025 2026 2027
	if (ret)
		goto out_err;

2028 2029 2030 2031 2032 2033
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2047
/* FIXME: Move this to PCI code */
2048
#define PCI_PRI_TLP_OFF		(1 << 15)
2049

J
Joerg Roedel 已提交
2050
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2051
{
2052
	u16 status;
2053 2054
	int pos;

2055
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2056 2057 2058
	if (!pos)
		return false;

2059
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2060

2061
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2062 2063
}

2064
/*
F
Frank Arnold 已提交
2065
 * If a device is not yet associated with a domain, this function
2066 2067
 * assigns it visible for the hardware
 */
2068 2069
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2070
{
2071
	struct pci_dev *pdev;
2072
	struct iommu_dev_data *dev_data;
2073
	unsigned long flags;
2074
	int ret;
2075

2076 2077
	dev_data = get_dev_data(dev);

2078 2079 2080 2081
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
2082
	if (domain->flags & PD_IOMMUV2_MASK) {
2083
		if (!dev_data->passthrough)
2084 2085
			return -EINVAL;

2086 2087 2088
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
2089

2090 2091 2092 2093
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
2094 2095
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2096 2097 2098
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2099

2100
skip_ats_check:
2101
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2102
	ret = __attach_device(dev_data, domain);
2103 2104
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2105 2106 2107 2108 2109
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2110
	domain_flush_tlb_pde(domain);
2111 2112

	return ret;
2113 2114
}

2115 2116 2117
/*
 * Removes a device from a protection domain (unlocked)
 */
2118
static void __detach_device(struct iommu_dev_data *dev_data)
2119
{
2120
	struct protection_domain *domain;
2121

2122 2123 2124 2125 2126
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2127

2128 2129
	if (WARN_ON(!dev_data->domain))
		return;
2130

2131
	domain = dev_data->domain;
2132

2133
	spin_lock(&domain->lock);
2134

2135
	do_detach(dev_data);
2136

2137
	spin_unlock(&domain->lock);
2138 2139 2140 2141 2142
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2143
static void detach_device(struct device *dev)
2144
{
2145
	struct protection_domain *domain;
2146
	struct iommu_dev_data *dev_data;
2147 2148
	unsigned long flags;

2149
	dev_data = get_dev_data(dev);
2150
	domain   = dev_data->domain;
2151

2152 2153
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2154
	__detach_device(dev_data);
2155
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2156

2157 2158 2159
	if (!dev_is_pci(dev))
		return;

2160
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2161 2162
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2163
		pci_disable_ats(to_pci_dev(dev));
2164 2165

	dev_data->ats.enabled = false;
2166
}
2167

2168
static int amd_iommu_add_device(struct device *dev)
2169
{
2170
	struct iommu_dev_data *dev_data;
2171
	struct iommu_domain *domain;
2172
	struct amd_iommu *iommu;
2173
	int ret, devid;
2174

2175
	if (!check_device(dev) || get_dev_data(dev))
2176
		return 0;
2177

2178
	devid = get_device_id(dev);
2179
	if (devid < 0)
2180 2181
		return devid;

2182
	iommu = amd_iommu_rlookup_table[devid];
2183

2184
	ret = iommu_init_device(dev);
2185 2186 2187 2188
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2189

2190
		iommu_ignore_device(dev);
2191
		dev->dma_ops = &nommu_dma_ops;
2192 2193 2194
		goto out;
	}
	init_iommu_group(dev);
2195

2196
	dev_data = get_dev_data(dev);
2197

2198
	BUG_ON(!dev_data);
2199

2200
	if (iommu_pass_through || dev_data->iommu_v2)
2201
		iommu_request_dm_for_dev(dev);
2202

2203 2204
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2205
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2206
		dev_data->passthrough = true;
2207
	else
2208
		dev->dma_ops = &amd_iommu_dma_ops;
2209

2210
out:
2211 2212 2213 2214 2215
	iommu_completion_wait(iommu);

	return 0;
}

2216
static void amd_iommu_remove_device(struct device *dev)
2217
{
2218
	struct amd_iommu *iommu;
2219
	int devid;
2220 2221 2222 2223 2224

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2225
	if (devid < 0)
2226 2227
		return;

2228 2229 2230 2231
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2232 2233
}

2234 2235 2236 2237 2238 2239 2240 2241
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2255
static struct protection_domain *get_domain(struct device *dev)
2256
{
2257
	struct protection_domain *domain;
2258
	struct iommu_domain *io_domain;
2259

2260
	if (!check_device(dev))
2261
		return ERR_PTR(-EINVAL);
2262

2263
	domain = get_dev_data(dev)->domain;
2264 2265 2266 2267 2268 2269
	if (domain == NULL && get_dev_data(dev)->defer_attach) {
		get_dev_data(dev)->defer_attach = false;
		io_domain = iommu_get_domain_for_dev(dev);
		domain = to_pdomain(io_domain);
		attach_device(dev, domain);
	}
2270 2271 2272
	if (domain == NULL)
		return ERR_PTR(-EBUSY);

2273
	if (!dma_ops_domain(domain))
2274
		return ERR_PTR(-EBUSY);
2275

2276
	return domain;
2277 2278
}

2279 2280
static void update_device_table(struct protection_domain *domain)
{
2281
	struct iommu_dev_data *dev_data;
2282

2283
	list_for_each_entry(dev_data, &domain->dev_list, list) {
2284 2285
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2286 2287 2288 2289 2290

		if (dev_data->devid == dev_data->alias)
			continue;

		/* There is an alias, update device table entry for it */
2291 2292
		set_dte_entry(dev_data->alias, domain, dev_data->ats.enabled,
			      dev_data->iommu_v2);
2293
	}
2294 2295 2296 2297 2298 2299 2300 2301
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2302 2303 2304

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2305 2306 2307 2308

	domain->updated = false;
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2320

2321 2322
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2323 2324
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2325 2326
 * Must be called with the domain lock held.
 */
2327 2328 2329 2330
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2331
			       enum dma_data_direction direction,
2332
			       u64 dma_mask)
2333 2334
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2335
	dma_addr_t address, start, ret;
2336
	unsigned int pages;
2337
	int prot = 0;
2338 2339
	int i;

2340
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2341 2342
	paddr &= PAGE_MASK;

2343
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2344
	if (address == AMD_IOMMU_MAPPING_ERROR)
2345
		goto out;
2346

2347
	prot = dir2prot(direction);
2348

2349 2350
	start = address;
	for (i = 0; i < pages; ++i) {
2351 2352 2353
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2354 2355
			goto out_unmap;

2356 2357 2358 2359 2360
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2361
	if (unlikely(amd_iommu_np_cache)) {
2362
		domain_flush_pages(&dma_dom->domain, address, size);
2363 2364
		domain_flush_complete(&dma_dom->domain);
	}
2365

2366 2367
out:
	return address;
2368 2369 2370 2371 2372

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2373
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2374 2375
	}

2376 2377 2378 2379
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2380

2381
	return AMD_IOMMU_MAPPING_ERROR;
2382 2383
}

2384 2385 2386 2387
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2388
static void __unmap_single(struct dma_ops_domain *dma_dom,
2389 2390 2391 2392 2393 2394 2395
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
	dma_addr_t i, start;
	unsigned int pages;

2396
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2397 2398 2399 2400
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2401
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2402 2403 2404
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2405 2406 2407 2408 2409
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
2410 2411
		pages = __roundup_pow_of_two(pages);
		queue_iova(&dma_dom->iovad, dma_addr >> PAGE_SHIFT, pages, 0);
J
Joerg Roedel 已提交
2412
	}
2413 2414
}

2415 2416 2417
/*
 * The exported map_single function for dma_ops.
 */
2418 2419 2420
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
2421
			   unsigned long attrs)
2422
{
2423
	phys_addr_t paddr = page_to_phys(page) + offset;
2424
	struct protection_domain *domain;
2425
	struct dma_ops_domain *dma_dom;
2426
	u64 dma_mask;
2427

2428 2429
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2430
		return (dma_addr_t)paddr;
2431
	else if (IS_ERR(domain))
2432
		return AMD_IOMMU_MAPPING_ERROR;
2433

2434
	dma_mask = *dev->dma_mask;
2435
	dma_dom = to_dma_ops_domain(domain);
2436

2437
	return __map_single(dev, dma_dom, paddr, size, dir, dma_mask);
2438 2439
}

2440 2441 2442
/*
 * The exported unmap_single function for dma_ops.
 */
2443
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2444
		       enum dma_data_direction dir, unsigned long attrs)
2445 2446
{
	struct protection_domain *domain;
2447
	struct dma_ops_domain *dma_dom;
2448

2449 2450
	domain = get_domain(dev);
	if (IS_ERR(domain))
2451 2452
		return;

2453 2454 2455
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, dir);
2456 2457
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2484 2485 2486 2487
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2488
static int map_sg(struct device *dev, struct scatterlist *sglist,
2489
		  int nelems, enum dma_data_direction direction,
2490
		  unsigned long attrs)
2491
{
2492
	int mapped_pages = 0, npages = 0, prot = 0, i;
2493
	struct protection_domain *domain;
2494
	struct dma_ops_domain *dma_dom;
2495
	struct scatterlist *s;
2496
	unsigned long address;
2497
	u64 dma_mask;
2498

2499
	domain = get_domain(dev);
2500
	if (IS_ERR(domain))
2501
		return 0;
2502

2503
	dma_dom  = to_dma_ops_domain(domain);
2504
	dma_mask = *dev->dma_mask;
2505

2506 2507 2508
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
2509
	if (address == AMD_IOMMU_MAPPING_ERROR)
2510 2511 2512 2513 2514
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2515
	for_each_sg(sglist, s, nelems, i) {
2516 2517 2518 2519 2520
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2521

2522 2523 2524 2525 2526
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2527

2528 2529
			mapped_pages += 1;
		}
2530 2531
	}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2549

2550 2551 2552 2553 2554 2555
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2556 2557
	}

2558 2559 2560 2561
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2562
	return 0;
2563 2564
}

2565 2566 2567 2568
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2569
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2570
		     int nelems, enum dma_data_direction dir,
2571
		     unsigned long attrs)
2572 2573
{
	struct protection_domain *domain;
2574
	struct dma_ops_domain *dma_dom;
2575 2576
	unsigned long startaddr;
	int npages = 2;
2577

2578 2579
	domain = get_domain(dev);
	if (IS_ERR(domain))
2580 2581
		return;

2582
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
2583
	dma_dom   = to_dma_ops_domain(domain);
2584 2585
	npages    = sg_num_pages(dev, sglist, nelems);

2586
	__unmap_single(dma_dom, startaddr, npages << PAGE_SHIFT, dir);
2587 2588
}

2589 2590 2591
/*
 * The exported alloc_coherent function for dma_ops.
 */
2592
static void *alloc_coherent(struct device *dev, size_t size,
2593
			    dma_addr_t *dma_addr, gfp_t flag,
2594
			    unsigned long attrs)
2595
{
2596
	u64 dma_mask = dev->coherent_dma_mask;
2597
	struct protection_domain *domain;
2598
	struct dma_ops_domain *dma_dom;
2599
	struct page *page;
2600

2601 2602
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2603 2604 2605
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2606 2607
	} else if (IS_ERR(domain))
		return NULL;
2608

2609
	dma_dom   = to_dma_ops_domain(domain);
2610
	size	  = PAGE_ALIGN(size);
2611 2612
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2613
	flag     |= __GFP_ZERO;
2614

2615 2616
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2617
		if (!gfpflags_allow_blocking(flag))
2618
			return NULL;
2619

2620
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2621
						 get_order(size), flag);
2622 2623 2624
		if (!page)
			return NULL;
	}
2625

2626 2627 2628
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2629
	*dma_addr = __map_single(dev, dma_dom, page_to_phys(page),
2630
				 size, DMA_BIDIRECTIONAL, dma_mask);
2631

2632
	if (*dma_addr == AMD_IOMMU_MAPPING_ERROR)
2633
		goto out_free;
2634

2635
	return page_address(page);
2636 2637 2638

out_free:

2639 2640
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2641 2642

	return NULL;
2643 2644
}

2645 2646 2647
/*
 * The exported free_coherent function for dma_ops.
 */
2648
static void free_coherent(struct device *dev, size_t size,
2649
			  void *virt_addr, dma_addr_t dma_addr,
2650
			  unsigned long attrs)
2651 2652
{
	struct protection_domain *domain;
2653
	struct dma_ops_domain *dma_dom;
2654
	struct page *page;
2655

2656 2657 2658
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2659 2660
	domain = get_domain(dev);
	if (IS_ERR(domain))
2661 2662
		goto free_mem;

2663 2664 2665
	dma_dom = to_dma_ops_domain(domain);

	__unmap_single(dma_dom, dma_addr, size, DMA_BIDIRECTIONAL);
2666 2667

free_mem:
2668 2669
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2670 2671
}

2672 2673 2674 2675 2676 2677
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2678 2679
	if (!x86_dma_supported(dev, mask))
		return 0;
2680
	return check_device(dev);
2681 2682
}

2683 2684 2685 2686 2687
static int amd_iommu_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
	return dma_addr == AMD_IOMMU_MAPPING_ERROR;
}

2688
static const struct dma_map_ops amd_iommu_dma_ops = {
2689 2690 2691 2692 2693 2694 2695
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2696
	.mapping_error	= amd_iommu_mapping_error,
2697 2698
};

2699 2700 2701 2702 2703
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

2704
	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE, IOVA_START_PFN);
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2751
int __init amd_iommu_init_api(void)
2752
{
2753
	int ret, err = 0;
2754 2755 2756 2757

	ret = iova_cache_get();
	if (ret)
		return ret;
2758

2759 2760 2761 2762
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2763 2764 2765 2766 2767 2768 2769 2770
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2771 2772 2773
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2774

2775
	return 0;
2776 2777
}

2778 2779
int __init amd_iommu_init_dma_ops(void)
{
2780
	swiotlb        = (iommu_pass_through || sme_me_mask) ? 1 : 0;
2781 2782
	iommu_detected = 1;

2783 2784
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
2785 2786 2787 2788 2789
	 * when AMD IOMMU is enabled and SME is not active), make sure there
	 * are global dma_ops set as a fall-back for devices not handled by
	 * this driver (for example non-PCI devices). When SME is active,
	 * make sure that swiotlb variable remains set so the global dma_ops
	 * continue to be SWIOTLB.
2790 2791 2792 2793
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2794 2795 2796 2797 2798
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2799
	return 0;
2800

2801
}
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2815
	struct iommu_dev_data *entry;
2816 2817 2818 2819
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2820 2821 2822 2823
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2824
	}
2825 2826 2827 2828

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2829 2830 2831 2832 2833
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2834 2835
	del_domain_from_list(domain);

2836 2837 2838 2839 2840 2841
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2854
static struct protection_domain *protection_domain_alloc(void)
2855 2856 2857 2858 2859
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2860
		return NULL;
2861

2862
	if (protection_domain_init(domain))
2863 2864
		goto out_err;

2865 2866
	add_domain_to_list(domain);

2867 2868 2869 2870 2871 2872 2873 2874
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2875
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2876
{
2877
	struct protection_domain *pdomain;
2878
	struct dma_ops_domain *dma_domain;
2879

2880 2881 2882 2883 2884
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2885

2886 2887 2888 2889 2890 2891
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2892

2893 2894 2895
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2896

2897 2898 2899 2900 2901 2902 2903 2904 2905
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2906 2907 2908 2909
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2910

2911 2912
		pdomain->mode = PAGE_MODE_NONE;
		break;
2913 2914 2915
	default:
		return NULL;
	}
2916

2917
	return &pdomain->domain;
2918 2919
}

2920
static void amd_iommu_domain_free(struct iommu_domain *dom)
2921
{
2922
	struct protection_domain *domain;
2923
	struct dma_ops_domain *dma_dom;
2924

2925 2926
	domain = to_pdomain(dom);

2927 2928 2929 2930 2931
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2932 2933
	if (!dom)
		return;
2934

2935 2936
	switch (dom->type) {
	case IOMMU_DOMAIN_DMA:
2937
		/* Now release the domain */
2938
		dma_dom = to_dma_ops_domain(domain);
2939 2940 2941 2942 2943
		dma_ops_domain_free(dma_dom);
		break;
	default:
		if (domain->mode != PAGE_MODE_NONE)
			free_pagetable(domain);
2944

2945 2946 2947 2948 2949 2950
		if (domain->flags & PD_IOMMUV2_MASK)
			free_gcr3_table(domain);

		protection_domain_free(domain);
		break;
	}
2951 2952
}

2953 2954 2955
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2956
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2957
	struct amd_iommu *iommu;
2958
	int devid;
2959

2960
	if (!check_device(dev))
2961 2962
		return;

2963
	devid = get_device_id(dev);
2964
	if (devid < 0)
2965
		return;
2966

2967
	if (dev_data->domain != NULL)
2968
		detach_device(dev);
2969 2970 2971 2972 2973

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

2974 2975 2976 2977 2978 2979
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) &&
	    (dom->type == IOMMU_DOMAIN_UNMANAGED))
		dev_data->use_vapic = 0;
#endif

2980 2981 2982
	iommu_completion_wait(iommu);
}

2983 2984 2985
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2986
	struct protection_domain *domain = to_pdomain(dom);
2987
	struct iommu_dev_data *dev_data;
2988
	struct amd_iommu *iommu;
2989
	int ret;
2990

2991
	if (!check_device(dev))
2992 2993
		return -EINVAL;

2994 2995
	dev_data = dev->archdata.iommu;

2996
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2997 2998 2999
	if (!iommu)
		return -EINVAL;

3000
	if (dev_data->domain)
3001
		detach_device(dev);
3002

3003
	ret = attach_device(dev, domain);
3004

3005 3006 3007 3008 3009 3010 3011 3012 3013
#ifdef CONFIG_IRQ_REMAP
	if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		if (dom->type == IOMMU_DOMAIN_UNMANAGED)
			dev_data->use_vapic = 1;
		else
			dev_data->use_vapic = 0;
	}
#endif

3014 3015
	iommu_completion_wait(iommu);

3016
	return ret;
3017 3018
}

3019
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3020
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3021
{
3022
	struct protection_domain *domain = to_pdomain(dom);
3023 3024 3025
	int prot = 0;
	int ret;

3026 3027 3028
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3029 3030 3031 3032 3033
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3034
	mutex_lock(&domain->api_lock);
3035
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
3036 3037
	mutex_unlock(&domain->api_lock);

3038
	return ret;
3039 3040
}

3041 3042
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3043
{
3044
	struct protection_domain *domain = to_pdomain(dom);
3045
	size_t unmap_size;
3046

3047 3048 3049
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3050
	mutex_lock(&domain->api_lock);
3051
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3052
	mutex_unlock(&domain->api_lock);
3053

3054
	return unmap_size;
3055 3056
}

3057
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3058
					  dma_addr_t iova)
3059
{
3060
	struct protection_domain *domain = to_pdomain(dom);
3061
	unsigned long offset_mask, pte_pgsize;
3062
	u64 *pte, __pte;
3063

3064 3065 3066
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3067
	pte = fetch_pte(domain, iova, &pte_pgsize);
3068

3069
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3070 3071
		return 0;

3072 3073
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
3074

3075
	return (__pte & ~offset_mask) | (iova & offset_mask);
3076 3077
}

3078
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3079
{
3080 3081
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3082
		return true;
3083
	case IOMMU_CAP_INTR_REMAP:
3084
		return (irq_remapping_enabled == 1);
3085 3086
	case IOMMU_CAP_NOEXEC:
		return false;
3087 3088
	}

3089
	return false;
S
Sheng Yang 已提交
3090 3091
}

3092 3093
static void amd_iommu_get_resv_regions(struct device *dev,
				       struct list_head *head)
3094
{
3095
	struct iommu_resv_region *region;
3096
	struct unity_map_entry *entry;
3097
	int devid;
3098 3099

	devid = get_device_id(dev);
3100
	if (devid < 0)
3101
		return;
3102 3103

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3104 3105
		size_t length;
		int prot = 0;
3106 3107 3108 3109

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

3110 3111 3112 3113 3114 3115 3116 3117 3118
		length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			prot |= IOMMU_WRITE;

		region = iommu_alloc_resv_region(entry->address_start,
						 length, prot,
						 IOMMU_RESV_DIRECT);
3119 3120 3121 3122 3123 3124 3125
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}
		list_add_tail(&region->list, head);
	}
3126 3127 3128

	region = iommu_alloc_resv_region(MSI_RANGE_START,
					 MSI_RANGE_END - MSI_RANGE_START + 1,
3129
					 0, IOMMU_RESV_MSI);
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
	if (!region)
		return;
	list_add_tail(&region->list, head);

	region = iommu_alloc_resv_region(HT_RANGE_START,
					 HT_RANGE_END - HT_RANGE_START + 1,
					 0, IOMMU_RESV_RESERVED);
	if (!region)
		return;
	list_add_tail(&region->list, head);
3140 3141
}

3142
static void amd_iommu_put_resv_regions(struct device *dev,
3143 3144
				     struct list_head *head)
{
3145
	struct iommu_resv_region *entry, *next;
3146 3147 3148 3149 3150

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3151
static void amd_iommu_apply_resv_region(struct device *dev,
3152
				      struct iommu_domain *domain,
3153
				      struct iommu_resv_region *region)
3154
{
3155
	struct dma_ops_domain *dma_dom = to_dma_ops_domain(to_pdomain(domain));
3156 3157 3158
	unsigned long start, end;

	start = IOVA_PFN(region->start);
3159
	end   = IOVA_PFN(region->start + region->length - 1);
3160 3161 3162 3163

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3164 3165 3166 3167 3168 3169 3170
static bool amd_iommu_is_attach_deferred(struct iommu_domain *domain,
					 struct device *dev)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
	return dev_data->defer_attach;
}

3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct protection_domain *dom = to_pdomain(domain);

	domain_flush_tlb_pde(dom);
	domain_flush_complete(dom);
}

static void amd_iommu_iotlb_range_add(struct iommu_domain *domain,
				      unsigned long iova, size_t size)
{
}

3184
const struct iommu_ops amd_iommu_ops = {
3185
	.capable = amd_iommu_capable,
3186 3187
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3188 3189
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3190 3191
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3192
	.map_sg = default_iommu_map_sg,
3193
	.iova_to_phys = amd_iommu_iova_to_phys,
3194 3195
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3196
	.device_group = amd_iommu_device_group,
3197 3198 3199
	.get_resv_regions = amd_iommu_get_resv_regions,
	.put_resv_regions = amd_iommu_put_resv_regions,
	.apply_resv_region = amd_iommu_apply_resv_region,
3200
	.is_attach_deferred = amd_iommu_is_attach_deferred,
3201
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3202 3203 3204
	.flush_iotlb_all = amd_iommu_flush_iotlb_all,
	.iotlb_range_add = amd_iommu_iotlb_range_add,
	.iotlb_sync = amd_iommu_flush_iotlb_all,
3205 3206
};

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3229 3230 3231

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3232
	struct protection_domain *domain = to_pdomain(dom);
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3250 3251 3252

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3253
	struct protection_domain *domain = to_pdomain(dom);
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
3314
	for (i = 0; i < amd_iommu_get_num_iommus(); ++i) {
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3331 3332 3333 3334 3335 3336
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3368
	struct protection_domain *domain = to_pdomain(dom);
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3388
	struct protection_domain *domain = to_pdomain(dom);
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

3421
			*pte = iommu_virt_to_phys(root) | GCR3_VALID;
3422 3423
		}

3424
		root = iommu_phys_to_virt(*pte & PAGE_MASK);
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3468
	struct protection_domain *domain = to_pdomain(dom);
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3482
	struct protection_domain *domain = to_pdomain(dom);
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3510 3511 3512

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3513
	struct protection_domain *pdomain;
3514

3515 3516
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3517 3518 3519
		return NULL;

	/* Only return IOMMUv2 domains */
3520
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3521 3522
		return NULL;

3523
	return &pdomain->domain;
3524 3525
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3581 3582 3583 3584 3585 3586 3587 3588 3589

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

3590 3591
static struct irq_chip amd_ir_chip;

3592 3593 3594 3595 3596 3597
static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
3598
	dte	|= iommu_virt_to_phys(table->table);
3599 3600 3601 3602 3603 3604 3605
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
static struct irq_remap_table *get_irq_table(u16 devid)
{
	struct irq_remap_table *table;

	if (WARN_ONCE(!amd_iommu_rlookup_table[devid],
		      "%s: no iommu for devid %x\n", __func__, devid))
		return NULL;

	table = irq_lookup_table[devid];
	if (WARN_ONCE(!table, "%s: no table for devid %x\n", __func__, devid))
		return NULL;

	return table;
}

static struct irq_remap_table *alloc_irq_table(u16 devid, bool ioapic)
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
3636
		goto out_unlock;
3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
3650
		goto out_unlock;
3651

3652
	/* Initialize table spin-lock */
3653
	raw_spin_lock_init(&table->lock);
3654

3655 3656 3657 3658 3659 3660 3661
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3662
		table = NULL;
3663
		goto out_unlock;
3664 3665
	}

3666 3667 3668 3669 3670 3671
	if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
		memset(table->table, 0,
		       MAX_IRQS_PER_TABLE * sizeof(u32));
	else
		memset(table->table, 0,
		       (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
3672 3673 3674 3675 3676

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
3677
			iommu->irte_ops->set_allocated(table, i);
3678 3679 3680 3681 3682 3683 3684
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3685
		set_dte_irq_entry(alias, table);
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3698
static int alloc_irq_index(u16 devid, int count, bool align)
3699 3700
{
	struct irq_remap_table *table;
3701
	int index, c, alignment = 1;
3702
	unsigned long flags;
3703 3704 3705 3706
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return -ENODEV;
3707

3708
	table = alloc_irq_table(devid, false);
3709 3710 3711
	if (!table)
		return -ENODEV;

3712 3713 3714
	if (align)
		alignment = roundup_pow_of_two(count);

3715
	raw_spin_lock_irqsave(&table->lock, flags);
3716 3717

	/* Scan table for free entries */
3718
	for (index = ALIGN(table->min_index, alignment), c = 0;
3719
	     index < MAX_IRQS_PER_TABLE;) {
3720
		if (!iommu->irte_ops->is_allocated(table, index)) {
3721
			c += 1;
3722 3723
		} else {
			c     = 0;
3724
			index = ALIGN(index + 1, alignment);
3725 3726
			continue;
		}
3727 3728 3729

		if (c == count)	{
			for (; c != 0; --c)
3730
				iommu->irte_ops->set_allocated(table, index - c + 1);
3731 3732 3733 3734

			index -= count - 1;
			goto out;
		}
3735 3736

		index++;
3737 3738 3739 3740 3741
	}

	index = -ENOSPC;

out:
3742
	raw_spin_unlock_irqrestore(&table->lock, flags);
3743 3744 3745 3746

	return index;
}

3747 3748
static int modify_irte_ga(u16 devid, int index, struct irte_ga *irte,
			  struct amd_ir_data *data)
3749 3750 3751 3752
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;
3753
	struct irte_ga *entry;
3754 3755 3756 3757 3758

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3759
	table = get_irq_table(devid);
3760 3761 3762
	if (!table)
		return -ENOMEM;

3763
	raw_spin_lock_irqsave(&table->lock, flags);
3764 3765 3766 3767 3768 3769 3770

	entry = (struct irte_ga *)table->table;
	entry = &entry[index];
	entry->lo.fields_remap.valid = 0;
	entry->hi.val = irte->hi.val;
	entry->lo.val = irte->lo.val;
	entry->lo.fields_remap.valid = 1;
3771 3772
	if (data)
		data->ref = entry;
3773

3774
	raw_spin_unlock_irqrestore(&table->lock, flags);
3775 3776 3777 3778 3779 3780 3781 3782

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte *irte)
3783 3784 3785 3786 3787 3788 3789 3790 3791
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

3792
	table = get_irq_table(devid);
3793 3794 3795
	if (!table)
		return -ENOMEM;

3796
	raw_spin_lock_irqsave(&table->lock, flags);
3797
	table->table[index] = irte->val;
3798
	raw_spin_unlock_irqrestore(&table->lock, flags);
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

3816
	table = get_irq_table(devid);
3817 3818 3819
	if (!table)
		return;

3820
	raw_spin_lock_irqsave(&table->lock, flags);
3821
	iommu->irte_ops->clear_allocated(table, index);
3822
	raw_spin_unlock_irqrestore(&table->lock, flags);
3823 3824 3825 3826 3827

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3828 3829
static void irte_prepare(void *entry,
			 u32 delivery_mode, u32 dest_mode,
3830
			 u8 vector, u32 dest_apicid, int devid)
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843
{
	union irte *irte = (union irte *) entry;

	irte->val                = 0;
	irte->fields.vector      = vector;
	irte->fields.int_type    = delivery_mode;
	irte->fields.destination = dest_apicid;
	irte->fields.dm          = dest_mode;
	irte->fields.valid       = 1;
}

static void irte_ga_prepare(void *entry,
			    u32 delivery_mode, u32 dest_mode,
3844
			    u8 vector, u32 dest_apicid, int devid)
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.val                      = 0;
	irte->hi.val                      = 0;
	irte->lo.fields_remap.int_type    = delivery_mode;
	irte->lo.fields_remap.dm          = dest_mode;
	irte->hi.fields.vector            = vector;
	irte->lo.fields_remap.destination = dest_apicid;
	irte->lo.fields_remap.valid       = 1;
}

static void irte_activate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 1;
	modify_irte(devid, index, irte);
}

static void irte_ga_activate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 1;
3870
	modify_irte_ga(devid, index, irte, NULL);
3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
}

static void irte_deactivate(void *entry, u16 devid, u16 index)
{
	union irte *irte = (union irte *) entry;

	irte->fields.valid = 0;
	modify_irte(devid, index, irte);
}

static void irte_ga_deactivate(void *entry, u16 devid, u16 index)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

	irte->lo.fields_remap.valid = 0;
3886
	modify_irte_ga(devid, index, irte, NULL);
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
}

static void irte_set_affinity(void *entry, u16 devid, u16 index,
			      u8 vector, u32 dest_apicid)
{
	union irte *irte = (union irte *) entry;

	irte->fields.vector = vector;
	irte->fields.destination = dest_apicid;
	modify_irte(devid, index, irte);
}

static void irte_ga_set_affinity(void *entry, u16 devid, u16 index,
				 u8 vector, u32 dest_apicid)
{
	struct irte_ga *irte = (struct irte_ga *) entry;

3904
	if (!irte->lo.fields_remap.guest_mode) {
3905 3906 3907 3908
		irte->hi.fields.vector = vector;
		irte->lo.fields_remap.destination = dest_apicid;
		modify_irte_ga(devid, index, irte, NULL);
	}
3909 3910
}

3911
#define IRTE_ALLOCATED (~1U)
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
static void irte_set_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = IRTE_ALLOCATED;
}

static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
	irte->hi.fields.vector = 0xff;
}

static bool irte_is_allocated(struct irq_remap_table *table, int index)
{
	union irte *ptr = (union irte *)table->table;
	union irte *irte = &ptr[index];

	return irte->val != 0;
}

static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	return irte->hi.fields.vector != 0;
}

static void irte_clear_allocated(struct irq_remap_table *table, int index)
{
	table->table[index] = 0;
}

static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
{
	struct irte_ga *ptr = (struct irte_ga *)table->table;
	struct irte_ga *irte = &ptr[index];

	memset(&irte->lo.val, 0, sizeof(u64));
	memset(&irte->hi.val, 0, sizeof(u64));
}

3957
static int get_devid(struct irq_alloc_info *info)
3958
{
3959
	int devid = -1;
3960

3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3976

3977 3978
	return devid;
}
3979

3980 3981 3982 3983
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3984

3985 3986
	if (!info)
		return NULL;
3987

3988 3989 3990 3991 3992 3993
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3994

3995
	return NULL;
3996 3997
}

3998
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3999
{
4000 4001
	struct amd_iommu *iommu;
	int devid;
4002

4003 4004
	if (!info)
		return NULL;
4005

4006 4007 4008 4009
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
4010
		if (devid < 0)
4011 4012
			return NULL;

4013 4014 4015
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
4016 4017 4018 4019
		break;
	default:
		break;
	}
4020

4021 4022
	return NULL;
}
4023

4024 4025 4026 4027 4028 4029
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
4030 4031 4032
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
4033

4034 4035 4036 4037 4038 4039 4040 4041
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	struct IO_APIC_route_entry *entry;
4042 4043 4044 4045
	struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];

	if (!iommu)
		return;
4046

4047 4048
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
4049 4050
	iommu->irte_ops->prepare(data->entry, apic->irq_delivery_mode,
				 apic->irq_dest_mode, irq_cfg->vector,
4051
				 irq_cfg->dest_apicid, devid);
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
4067

4068 4069 4070 4071 4072 4073 4074
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
4075

4076 4077 4078 4079
	default:
		BUG_ON(1);
		break;
	}
4080 4081
}

4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
struct amd_irte_ops irte_32_ops = {
	.prepare = irte_prepare,
	.activate = irte_activate,
	.deactivate = irte_deactivate,
	.set_affinity = irte_set_affinity,
	.set_allocated = irte_set_allocated,
	.is_allocated = irte_is_allocated,
	.clear_allocated = irte_clear_allocated,
};

struct amd_irte_ops irte_128_ops = {
	.prepare = irte_ga_prepare,
	.activate = irte_ga_activate,
	.deactivate = irte_ga_deactivate,
	.set_affinity = irte_ga_set_affinity,
	.set_allocated = irte_ga_set_allocated,
	.is_allocated = irte_ga_is_allocated,
	.clear_allocated = irte_ga_clear_allocated,
};

4102 4103
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
4104
{
4105 4106
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
4107
	struct amd_ir_data *data = NULL;
4108
	struct irq_cfg *cfg;
4109 4110
	int i, ret, devid;
	int index = -1;
4111

4112 4113 4114 4115
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4116 4117
		return -EINVAL;

4118 4119 4120 4121 4122 4123
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4124

4125 4126 4127
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
4128

4129 4130 4131
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
4132

4133
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4134
		if (alloc_irq_table(devid, true))
4135 4136 4137 4138
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
4139 4140 4141
		bool align = (info->type == X86_IRQ_ALLOC_TYPE_MSI);

		index = alloc_irq_index(devid, nr_irqs, align);
4142 4143 4144
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
4145
		ret = index;
4146 4147
		goto out_free_parent;
	}
4148

4149 4150 4151 4152 4153 4154 4155
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
4156

4157 4158 4159 4160 4161
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
		if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
			data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
		else
			data->entry = kzalloc(sizeof(struct irte_ga),
						     GFP_KERNEL);
		if (!data->entry) {
			kfree(data);
			goto out_free_data;
		}

4172 4173 4174 4175 4176 4177
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
4178

4179
	return 0;
4180

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
4192 4193
}

4194 4195
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
4196
{
4197 4198 4199 4200
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
4201

4202 4203 4204 4205 4206 4207
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
4208
			kfree(data->entry);
4209 4210 4211 4212 4213
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
4214

4215 4216 4217 4218 4219
static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg);

4220
static int irq_remapping_activate(struct irq_domain *domain,
4221
				  struct irq_data *irq_data, bool reserve)
4222 4223 4224
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4225
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4226
	struct irq_cfg *cfg = irqd_cfg(irq_data);
4227

4228 4229 4230 4231 4232 4233
	if (!iommu)
		return 0;

	iommu->irte_ops->activate(data->entry, irte_info->devid,
				  irte_info->index);
	amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
4234
	return 0;
4235 4236
}

4237 4238
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
4239
{
4240 4241
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
4242
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4243

4244 4245 4246
	if (iommu)
		iommu->irte_ops->deactivate(data->entry, irte_info->devid,
					    irte_info->index);
4247
}
4248

4249
static const struct irq_domain_ops amd_ir_domain_ops = {
4250 4251 4252 4253
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
4254
};
4255

4256 4257 4258 4259 4260 4261 4262 4263
static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
{
	struct amd_iommu *iommu;
	struct amd_iommu_pi_data *pi_data = vcpu_info;
	struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
	struct amd_ir_data *ir_data = data->chip_data;
	struct irte_ga *irte = (struct irte_ga *) ir_data->entry;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4264 4265 4266 4267 4268 4269 4270 4271
	struct iommu_dev_data *dev_data = search_dev_data(irte_info->devid);

	/* Note:
	 * This device has never been set up for guest mode.
	 * we should not modify the IRTE
	 */
	if (!dev_data || !dev_data->use_vapic)
		return 0;
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293

	pi_data->ir_data = ir_data;

	/* Note:
	 * SVM tries to set up for VAPIC mode, but we are in
	 * legacy mode. So, we force legacy mode instead.
	 */
	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
		pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
			 __func__);
		pi_data->is_guest_mode = false;
	}

	iommu = amd_iommu_rlookup_table[irte_info->devid];
	if (iommu == NULL)
		return -EINVAL;

	pi_data->prev_ga_tag = ir_data->cached_ga_tag;
	if (pi_data->is_guest_mode) {
		/* Setting */
		irte->hi.fields.ga_root_ptr = (pi_data->base >> 12);
		irte->hi.fields.vector = vcpu_pi_info->vector;
4294
		irte->lo.fields_vapic.ga_log_intr = 1;
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
		irte->lo.fields_vapic.guest_mode = 1;
		irte->lo.fields_vapic.ga_tag = pi_data->ga_tag;

		ir_data->cached_ga_tag = pi_data->ga_tag;
	} else {
		/* Un-Setting */
		struct irq_cfg *cfg = irqd_cfg(data);

		irte->hi.val = 0;
		irte->lo.val = 0;
		irte->hi.fields.vector = cfg->vector;
		irte->lo.fields_remap.guest_mode = 0;
		irte->lo.fields_remap.destination = cfg->dest_apicid;
		irte->lo.fields_remap.int_type = apic->irq_delivery_mode;
		irte->lo.fields_remap.dm = apic->irq_dest_mode;

		/*
		 * This communicates the ga_tag back to the caller
		 * so that it can do all the necessary clean up.
		 */
		ir_data->cached_ga_tag = 0;
	}

	return modify_irte_ga(irte_info->devid, irte_info->index, irte, ir_data);
}

4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336

static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
			       struct amd_ir_data *ir_data,
			       struct irq_2_irte *irte_info,
			       struct irq_cfg *cfg)
{

	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	iommu->irte_ops->set_affinity(ir_data->entry, irte_info->devid,
				      irte_info->index, cfg->vector,
				      cfg->dest_apicid);
}

4337 4338 4339 4340 4341 4342 4343
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
4344
	struct amd_iommu *iommu = amd_iommu_rlookup_table[irte_info->devid];
4345
	int ret;
4346

4347 4348 4349
	if (!iommu)
		return -ENODEV;

4350 4351 4352
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
4353

4354
	amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
4355 4356 4357 4358 4359
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
4360
	send_cleanup_vector(cfg);
4361 4362

	return IRQ_SET_MASK_OK_DONE;
4363 4364
}

4365
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4366
{
4367
	struct amd_ir_data *ir_data = irq_data->chip_data;
4368

4369 4370
	*msg = ir_data->msi_entry;
}
4371

4372
static struct irq_chip amd_ir_chip = {
4373 4374 4375 4376 4377
	.name			= "AMD-IR",
	.irq_ack		= ir_ack_apic_edge,
	.irq_set_affinity	= amd_ir_set_affinity,
	.irq_set_vcpu_affinity	= amd_ir_set_vcpu_affinity,
	.irq_compose_msi_msg	= ir_compose_msi_msg,
4378
};
4379

4380 4381
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
4382 4383 4384 4385 4386 4387 4388
	struct fwnode_handle *fn;

	fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
	if (!fn)
		return -ENOMEM;
	iommu->ir_domain = irq_domain_create_tree(fn, &amd_ir_domain_ops, iommu);
	irq_domain_free_fwnode(fn);
4389 4390
	if (!iommu->ir_domain)
		return -ENOMEM;
4391

4392
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
4393 4394 4395
	iommu->msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain,
							     "AMD-IR-MSI",
							     iommu->index);
4396 4397
	return 0;
}
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416

int amd_iommu_update_ga(int cpu, bool is_run, void *data)
{
	unsigned long flags;
	struct amd_iommu *iommu;
	struct irq_remap_table *irt;
	struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
	int devid = ir_data->irq_2_irte.devid;
	struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
	struct irte_ga *ref = (struct irte_ga *) ir_data->ref;

	if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
	    !ref || !entry || !entry->lo.fields_vapic.guest_mode)
		return 0;

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return -ENODEV;

4417
	irt = get_irq_table(devid);
4418 4419 4420
	if (!irt)
		return -ENODEV;

4421
	raw_spin_lock_irqsave(&irt->lock, flags);
4422 4423 4424 4425 4426 4427 4428 4429

	if (ref->lo.fields_vapic.guest_mode) {
		if (cpu >= 0)
			ref->lo.fields_vapic.destination = cpu;
		ref->lo.fields_vapic.is_run = is_run;
		barrier();
	}

4430
	raw_spin_unlock_irqrestore(&irt->lock, flags);
4431 4432 4433 4434 4435 4436

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
	return 0;
}
EXPORT_SYMBOL(amd_iommu_update_ga);
4437
#endif