amd_iommu.c 78.2 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34
#include <asm/msidef.h>
35
#include <asm/proto.h>
36
#include <asm/iommu.h>
37
#include <asm/gart.h>
38
#include <asm/dma.h>
39 40 41

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
42 43 44

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

45
#define LOOP_TIMEOUT	100000
46

47 48
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

49 50 51 52
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

53 54 55 56
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

57 58 59 60 61 62
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

63 64
static struct iommu_ops amd_iommu_ops;

65
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
66
int amd_iommu_max_glx_val = -1;
67

68 69 70
/*
 * general struct to manage commands send to an IOMMU
 */
71
struct iommu_cmd {
72 73 74
	u32 data[4];
};

75
static void update_domain(struct protection_domain *domain);
76
static int __init alloc_passthrough_domain(void);
77

78 79 80 81 82 83
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

84
static struct iommu_dev_data *alloc_dev_data(u16 devid)
85 86 87 88 89 90 91 92
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

93
	dev_data->devid = devid;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

145 146 147 148 149 150 151
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

152 153 154 155 156
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
		PCI_PRI_CAP,
		PCI_PASID_CAP,
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

203 204 205 206 207 208 209 210 211 212 213 214
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
215
	if (dev->bus != &pci_bus_type)
216 217 218 219 220 221 222 223 224 225 226 227 228 229
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

230 231
static int iommu_init_device(struct device *dev)
{
232
	struct pci_dev *pdev = to_pci_dev(dev);
233
	struct iommu_dev_data *dev_data;
234
	u16 alias;
235 236 237 238

	if (dev->archdata.iommu)
		return 0;

239
	dev_data = find_dev_data(get_device_id(dev));
240 241 242
	if (!dev_data)
		return -ENOMEM;

243
	alias = amd_iommu_alias_table[dev_data->devid];
244
	if (alias != dev_data->devid) {
245
		struct iommu_dev_data *alias_data;
246

247 248 249 250
		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
251 252 253
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
254
		dev_data->alias_data = alias_data;
255
	}
256

257 258 259 260 261 262 263
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

264 265 266 267 268
	dev->archdata.iommu = dev_data;

	return 0;
}

269 270 271 272 273 274 275 276 277 278 279 280 281 282
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

283 284
static void iommu_uninit_device(struct device *dev)
{
285 286 287 288 289
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
290
}
J
Joerg Roedel 已提交
291 292 293

void __init amd_iommu_uninit_devices(void)
{
294
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
295 296 297 298 299 300 301 302 303
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
304 305 306 307

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
321 322 323
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
324 325 326 327 328 329 330 331 332 333 334
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
335 336 337 338 339 340
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

341
DECLARE_STATS_COUNTER(compl_wait);
342
DECLARE_STATS_COUNTER(cnt_map_single);
343
DECLARE_STATS_COUNTER(cnt_unmap_single);
344
DECLARE_STATS_COUNTER(cnt_map_sg);
345
DECLARE_STATS_COUNTER(cnt_unmap_sg);
346
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
347
DECLARE_STATS_COUNTER(cnt_free_coherent);
348
DECLARE_STATS_COUNTER(cross_page);
349
DECLARE_STATS_COUNTER(domain_flush_single);
350
DECLARE_STATS_COUNTER(domain_flush_all);
351
DECLARE_STATS_COUNTER(alloced_io_mem);
352
DECLARE_STATS_COUNTER(total_map_requests);
353

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
374 375

	amd_iommu_stats_add(&compl_wait);
376
	amd_iommu_stats_add(&cnt_map_single);
377
	amd_iommu_stats_add(&cnt_unmap_single);
378
	amd_iommu_stats_add(&cnt_map_sg);
379
	amd_iommu_stats_add(&cnt_unmap_sg);
380
	amd_iommu_stats_add(&cnt_alloc_coherent);
381
	amd_iommu_stats_add(&cnt_free_coherent);
382
	amd_iommu_stats_add(&cross_page);
383
	amd_iommu_stats_add(&domain_flush_single);
384
	amd_iommu_stats_add(&domain_flush_all);
385
	amd_iommu_stats_add(&alloced_io_mem);
386
	amd_iommu_stats_add(&total_map_requests);
387 388 389 390
}

#endif

391 392 393 394 395 396
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

397 398 399 400
static void dump_dte_entry(u16 devid)
{
	int i;

401 402
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
403 404 405
			amd_iommu_dev_table[devid].data[i]);
}

406 407 408 409 410 411 412 413 414
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

415
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
416 417 418 419 420 421 422 423
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

424
	printk(KERN_ERR "AMD-Vi: Event logged [");
425 426 427 428 429 430 431

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
432
		dump_dte_entry(devid);
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
454
		dump_command(address);
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
488
		iommu_print_event(iommu, iommu->evt_buf + head);
489 490 491 492 493 494 495 496
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u32 head)
{
	struct amd_iommu_fault fault;
	volatile u64 *raw;
	int i;

	raw = (u64 *)(iommu->ppr_log + head);

	/*
	 * Hardware bug: Interrupt may arrive before the entry is written to
	 * memory. If this happens we need to wait for the entry to arrive.
	 */
	for (i = 0; i < LOOP_TIMEOUT; ++i) {
		if (PPR_REQ_TYPE(raw[0]) != 0)
			break;
		udelay(1);
	}

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	/*
	 * To detect the hardware bug we need to clear the entry
	 * to back to zero.
	 */
	raw[0] = raw[1] = 0;

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	unsigned long flags;
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, head);

		/* Update and refresh ring-buffer state*/
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}

	/* enable ppr interrupts again */
	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

565
irqreturn_t amd_iommu_int_thread(int irq, void *data)
566
{
567 568
	struct amd_iommu *iommu;

569
	for_each_iommu(iommu) {
570
		iommu_poll_events(iommu);
571 572
		iommu_poll_ppr_log(iommu);
	}
573 574

	return IRQ_HANDLED;
575 576
}

577 578 579 580 581
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

582 583 584 585 586 587
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
608 609 610
{
	u8 *target;

611
	target = iommu->cmd_buf + tail;
612 613 614 615 616 617
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
618
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
619
}
620

621
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
622
{
623 624
	WARN_ON(address & 0x7ULL);

625
	memset(cmd, 0, sizeof(*cmd));
626 627 628
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
629 630 631
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

632 633 634 635 636 637 638
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = pasid & PASID_MASK;
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
	cmd->data[0] |= (pasid & 0xff) << 16;
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
		cmd->data[1]  = pasid & PASID_MASK;
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

755 756 757 758
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
759 760
}

761 762
/*
 * Writes the command to the IOMMUs command buffer and informs the
763
 * hardware about the new command.
764
 */
765 766 767
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
768
{
769
	u32 left, tail, head, next_tail;
770 771
	unsigned long flags;

772
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
773 774

again:
775 776
	spin_lock_irqsave(&iommu->lock, flags);

777 778 779 780
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
781

782 783 784 785
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
786

787 788
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
789

790 791 792 793 794 795
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
796 797
	}

798 799 800
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
801
	iommu->need_sync = sync;
802

803
	spin_unlock_irqrestore(&iommu->lock, flags);
804

805
	return 0;
806 807
}

808 809 810 811 812
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

813 814 815 816
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
817
static int iommu_completion_wait(struct amd_iommu *iommu)
818 819
{
	struct iommu_cmd cmd;
820
	volatile u64 sem = 0;
821
	int ret;
822

823
	if (!iommu->need_sync)
824
		return 0;
825

826
	build_completion_wait(&cmd, (u64)&sem);
827

828
	ret = iommu_queue_command_sync(iommu, &cmd, false);
829
	if (ret)
830
		return ret;
831

832
	return wait_on_sem(&sem);
833 834
}

835
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
836
{
837
	struct iommu_cmd cmd;
838

839
	build_inv_dte(&cmd, devid);
840

841 842
	return iommu_queue_command(iommu, &cmd);
}
843

844 845 846
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
847

848 849
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
850

851 852
	iommu_completion_wait(iommu);
}
853

854 855 856 857 858 859 860
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
861

862 863 864 865 866 867
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
868

869
	iommu_completion_wait(iommu);
870 871
}

872
static void iommu_flush_all(struct amd_iommu *iommu)
873
{
874
	struct iommu_cmd cmd;
875

876
	build_inv_all(&cmd);
877

878 879 880 881
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

882 883
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
884 885 886 887 888
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
889 890 891
	}
}

892
/*
893
 * Command send function for flushing on-device TLB
894
 */
895 896
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
897 898
{
	struct amd_iommu *iommu;
899
	struct iommu_cmd cmd;
900
	int qdep;
901

902 903
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
904

905
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
906 907

	return iommu_queue_command(iommu, &cmd);
908 909
}

910 911 912
/*
 * Command send function for invalidating a device table entry
 */
913
static int device_flush_dte(struct iommu_dev_data *dev_data)
914
{
915
	struct amd_iommu *iommu;
916
	int ret;
917

918
	iommu = amd_iommu_rlookup_table[dev_data->devid];
919

920
	ret = iommu_flush_dte(iommu, dev_data->devid);
921 922 923
	if (ret)
		return ret;

924
	if (dev_data->ats.enabled)
925
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
926 927

	return ret;
928 929
}

930 931 932 933 934
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
935 936
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
937
{
938
	struct iommu_dev_data *dev_data;
939 940
	struct iommu_cmd cmd;
	int ret = 0, i;
941

942
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
943

944 945 946 947 948 949 950 951
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
952
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
953 954
	}

955 956
	list_for_each_entry(dev_data, &domain->dev_list, list) {

957
		if (!dev_data->ats.enabled)
958 959
			continue;

960
		ret |= device_flush_iotlb(dev_data, address, size);
961 962
	}

963
	WARN_ON(ret);
964 965
}

966 967
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
968
{
969
	__domain_flush_pages(domain, address, size, 0);
970
}
971

972
/* Flush the whole IO/TLB for a given protection domain */
973
static void domain_flush_tlb(struct protection_domain *domain)
974
{
975
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
976 977
}

978
/* Flush the whole IO/TLB for a given protection domain - including PDE */
979
static void domain_flush_tlb_pde(struct protection_domain *domain)
980
{
981
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
982 983
}

984
static void domain_flush_complete(struct protection_domain *domain)
985
{
986
	int i;
987

988 989 990
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
991

992 993 994 995 996
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
997
	}
998 999
}

1000

1001
/*
1002
 * This function flushes the DTEs for all devices in domain
1003
 */
1004
static void domain_flush_devices(struct protection_domain *domain)
1005
{
1006
	struct iommu_dev_data *dev_data;
1007

1008
	list_for_each_entry(dev_data, &domain->dev_list, list)
1009
		device_flush_dte(dev_data);
1010 1011
}

1012 1013 1014 1015 1016 1017 1018
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1048
		      unsigned long page_size,
1049 1050 1051
		      u64 **pte_page,
		      gfp_t gfp)
{
1052
	int level, end_lvl;
1053
	u64 *pte, *page;
1054 1055

	BUG_ON(!is_power_of_2(page_size));
1056 1057 1058 1059

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1060 1061 1062 1063
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1064 1065 1066 1067 1068 1069 1070 1071 1072

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1073 1074 1075 1076
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1094
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1095 1096 1097 1098
{
	int level;
	u64 *pte;

1099 1100 1101 1102 1103
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1104

1105 1106 1107
	while (level > 0) {

		/* Not Present */
1108 1109 1110
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1130 1131
		level -= 1;

1132
		/* Walk to the next level */
1133 1134 1135 1136 1137 1138 1139
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1140 1141 1142 1143 1144 1145 1146
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1147 1148 1149
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1150
			  int prot,
1151
			  unsigned long page_size)
1152
{
1153
	u64 __pte, *pte;
1154
	int i, count;
1155

1156
	if (!(prot & IOMMU_PROT_MASK))
1157 1158
		return -EINVAL;

1159 1160 1161 1162 1163 1164 1165 1166
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1167

1168 1169 1170 1171 1172
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1173 1174 1175 1176 1177 1178

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1179 1180
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1181

1182 1183
	update_domain(dom);

1184 1185 1186
	return 0;
}

1187 1188 1189
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1190
{
1191 1192 1193 1194 1195 1196
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1227

1228
	return unmapped;
1229 1230
}

1231 1232 1233 1234
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1249 1250 1251 1252
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1253 1254 1255 1256 1257 1258 1259 1260
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1261
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1262
				     PAGE_SIZE);
1263 1264 1265 1266 1267 1268 1269
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1270
			__set_bit(addr >> PAGE_SHIFT,
1271
				  dma_dom->aperture[0]->bitmap);
1272 1273 1274 1275 1276
	}

	return 0;
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1299 1300 1301
/*
 * Inits the unity mappings required for a specific device
 */
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1319 1320 1321 1322 1323 1324 1325 1326 1327
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1328

1329
/*
1330
 * The address allocator core functions.
1331 1332 1333
 *
 * called with domain->lock held
 */
1334

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1355 1356 1357 1358 1359
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1360
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1361 1362 1363
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1364
	struct amd_iommu *iommu;
1365
	unsigned long i, old_size;
1366

1367 1368 1369 1370
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1390
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1401
	old_size                = dma_dom->aperture_size;
1402 1403
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1416
	/* Initialize the exclusion range if necessary */
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1439
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1440 1441 1442
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1443
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1444 1445
	}

1446 1447
	update_domain(&dma_dom->domain);

1448 1449 1450
	return 0;

out_free:
1451 1452
	update_domain(&dma_dom->domain);

1453 1454 1455 1456 1457 1458 1459 1460
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1461 1462 1463 1464 1465 1466 1467
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1468
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1469 1470 1471 1472 1473 1474
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1475 1476
	next_bit >>= PAGE_SHIFT;

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1495
			dom->next_address = address + (pages << PAGE_SHIFT);
1496 1497 1498 1499 1500 1501 1502 1503 1504
			break;
		}

		next_bit = 0;
	}

	return address;
}

1505 1506
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1507
					     unsigned int pages,
1508 1509
					     unsigned long align_mask,
					     u64 dma_mask)
1510 1511 1512
{
	unsigned long address;

1513 1514 1515 1516
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1517

1518
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1519
				     dma_mask, dom->next_address);
1520

1521
	if (address == -1) {
1522
		dom->next_address = 0;
1523 1524
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1525 1526
		dom->need_flush = true;
	}
1527

1528
	if (unlikely(address == -1))
1529
		address = DMA_ERROR_CODE;
1530 1531 1532 1533 1534 1535

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1536 1537 1538 1539 1540
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1541 1542 1543 1544
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1545 1546
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1547

1548 1549
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1550 1551 1552 1553
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1554

1555
	if (address >= dom->next_address)
1556
		dom->need_flush = true;
1557 1558

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1559

A
Akinobu Mita 已提交
1560
	bitmap_clear(range->bitmap, address, pages);
1561

1562 1563
}

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1626
static void free_pagetable(struct protection_domain *domain)
1627 1628 1629 1630
{
	int i, j;
	u64 *p1, *p2, *p3;

1631
	p1 = domain->pt_root;
1632 1633 1634 1635 1636 1637 1638 1639 1640

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1641
		for (j = 0; j < 512; ++j) {
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1652 1653

	domain->pt_root = NULL;
1654 1655
}

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1686 1687
static void free_gcr3_table(struct protection_domain *domain)
{
1688 1689 1690 1691 1692 1693 1694
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1695 1696 1697
	free_page((unsigned long)domain->gcr3_tbl);
}

1698 1699 1700 1701
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1702 1703
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1704 1705
	int i;

1706 1707 1708
	if (!dom)
		return;

1709 1710
	del_domain_from_list(&dom->domain);

1711
	free_pagetable(&dom->domain);
1712

1713 1714 1715 1716 1717 1718
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1719 1720 1721 1722

	kfree(dom);
}

1723 1724
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1725
 * It also initializes the page table and the address allocator data
1726 1727
 * structures required for the dma_ops interface
 */
1728
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1741
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1742
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1743
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1744
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1745 1746 1747 1748
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1749
	dma_dom->need_flush = false;
1750
	dma_dom->target_dev = 0xffff;
1751

1752 1753
	add_domain_to_list(&dma_dom->domain);

1754
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1755 1756
		goto free_dma_dom;

1757
	/*
1758 1759
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1760
	 */
1761
	dma_dom->aperture[0]->bitmap[0] = 1;
1762
	dma_dom->next_address = 0;
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1773 1774 1775 1776 1777 1778 1779 1780 1781
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1782
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1783
{
1784
	u64 pte_root = 0;
1785
	u64 flags = 0;
1786

1787 1788 1789
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1790 1791 1792
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1793

1794 1795
	flags = amd_iommu_dev_table[devid].data[1];

1796 1797 1798
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1825 1826 1827 1828 1829
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1830 1831 1832 1833 1834 1835 1836 1837 1838
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1839 1840
}

1841 1842
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1843 1844
{
	struct amd_iommu *iommu;
1845
	bool ats;
1846

1847 1848
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1849 1850 1851 1852

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1853
	set_dte_entry(dev_data->devid, domain, ats);
1854 1855 1856 1857 1858 1859

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1860
	device_flush_dte(dev_data);
1861 1862
}

1863
static void do_detach(struct iommu_dev_data *dev_data)
1864 1865 1866
{
	struct amd_iommu *iommu;

1867
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1868 1869

	/* decrease reference counters */
1870 1871 1872 1873 1874 1875
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1876
	clear_dte_entry(dev_data->devid);
1877

1878
	/* Flush the DTE entry */
1879
	device_flush_dte(dev_data);
1880 1881 1882 1883 1884 1885
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1886
static int __attach_device(struct iommu_dev_data *dev_data,
1887
			   struct protection_domain *domain)
1888
{
1889
	int ret;
1890

1891 1892 1893
	/* lock domain */
	spin_lock(&domain->lock);

1894 1895
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
1896

1897 1898 1899 1900 1901
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
1902

1903 1904 1905
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
1906

1907
		/* Do real assignment */
1908
		if (alias_data->domain == NULL)
1909
			do_attach(alias_data, domain);
1910 1911

		atomic_inc(&alias_data->bind);
1912
	}
1913

1914
	if (dev_data->domain == NULL)
1915
		do_attach(dev_data, domain);
1916

1917 1918
	atomic_inc(&dev_data->bind);

1919 1920 1921 1922
	ret = 0;

out_unlock:

1923 1924
	/* ready */
	spin_unlock(&domain->lock);
1925

1926
	return ret;
1927
}
1928

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
	int ret;

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

	/* FIXME: Hardcode number of outstanding requests for now */
	ret = pci_enable_pri(pdev, 32);
	if (ret)
		goto out_err;

	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
/* FIXME: Move this to PCI code */
#define PCI_PRI_TLP_OFF		(1 << 2)

bool pci_pri_tlp_required(struct pci_dev *pdev)
{
	u16 control;
	int pos;

	pos = pci_find_ext_capability(pdev, PCI_PRI_CAP);
	if (!pos)
		return false;

	pci_read_config_word(pdev, pos + PCI_PRI_CONTROL_OFF, &control);

	return (control & PCI_PRI_TLP_OFF) ? true : false;
}

1986 1987 1988 1989
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1990 1991
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1992
{
1993
	struct pci_dev *pdev = to_pci_dev(dev);
1994
	struct iommu_dev_data *dev_data;
1995
	unsigned long flags;
1996
	int ret;
1997

1998 1999
	dev_data = get_dev_data(dev);

2000 2001 2002 2003 2004 2005 2006 2007 2008
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2009
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2010 2011
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2012 2013 2014
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2015

2016
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2017
	ret = __attach_device(dev_data, domain);
2018 2019
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2020 2021 2022 2023 2024
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2025
	domain_flush_tlb_pde(domain);
2026 2027

	return ret;
2028 2029
}

2030 2031 2032
/*
 * Removes a device from a protection domain (unlocked)
 */
2033
static void __detach_device(struct iommu_dev_data *dev_data)
2034
{
2035
	struct protection_domain *domain;
2036
	unsigned long flags;
2037

2038
	BUG_ON(!dev_data->domain);
2039

2040 2041 2042
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2043

2044 2045 2046
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2047
		if (atomic_dec_and_test(&alias_data->bind))
2048
			do_detach(alias_data);
2049 2050
	}

2051
	if (atomic_dec_and_test(&dev_data->bind))
2052
		do_detach(dev_data);
2053

2054
	spin_unlock_irqrestore(&domain->lock, flags);
2055 2056 2057

	/*
	 * If we run in passthrough mode the device must be assigned to the
2058 2059
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2060
	 */
2061
	if (dev_data->passthrough &&
2062
	    (dev_data->domain == NULL && domain != pt_domain))
2063
		__attach_device(dev_data, pt_domain);
2064 2065 2066 2067 2068
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2069
static void detach_device(struct device *dev)
2070
{
2071
	struct protection_domain *domain;
2072
	struct iommu_dev_data *dev_data;
2073 2074
	unsigned long flags;

2075
	dev_data = get_dev_data(dev);
2076
	domain   = dev_data->domain;
2077

2078 2079
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2080
	__detach_device(dev_data);
2081
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2082

2083 2084 2085
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2086
		pci_disable_ats(to_pci_dev(dev));
2087 2088

	dev_data->ats.enabled = false;
2089
}
2090

2091 2092 2093 2094 2095 2096
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2097
	struct iommu_dev_data *dev_data;
2098
	struct protection_domain *dom = NULL;
2099 2100
	unsigned long flags;

2101
	dev_data   = get_dev_data(dev);
2102

2103 2104
	if (dev_data->domain)
		return dev_data->domain;
2105

2106 2107
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2108 2109 2110 2111 2112 2113 2114 2115

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2116 2117 2118 2119

	return dom;
}

2120 2121 2122 2123
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2124 2125 2126
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2127
	struct amd_iommu *iommu;
2128
	unsigned long flags;
2129
	u16 devid;
2130

2131 2132
	if (!check_device(dev))
		return 0;
2133

2134 2135 2136
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2137 2138

	switch (action) {
2139
	case BUS_NOTIFY_UNBOUND_DRIVER:
2140 2141 2142

		domain = domain_for_device(dev);

2143 2144
		if (!domain)
			goto out;
2145
		if (dev_data->passthrough)
2146
			break;
2147
		detach_device(dev);
2148 2149
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2150 2151 2152 2153 2154

		iommu_init_device(dev);

		domain = domain_for_device(dev);

2155 2156 2157 2158
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
2159
		dma_domain = dma_ops_domain_alloc();
2160 2161 2162 2163 2164 2165 2166 2167
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

2168
		break;
2169 2170 2171 2172
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2183
static struct notifier_block device_nb = {
2184 2185
	.notifier_call = device_change_notifier,
};
2186

2187 2188 2189 2190 2191
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2205
static struct protection_domain *get_domain(struct device *dev)
2206
{
2207
	struct protection_domain *domain;
2208
	struct dma_ops_domain *dma_dom;
2209
	u16 devid = get_device_id(dev);
2210

2211
	if (!check_device(dev))
2212
		return ERR_PTR(-EINVAL);
2213

2214 2215 2216
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2217

2218 2219
	if (domain != NULL)
		return domain;
2220

2221
	/* Device not bount yet - bind it */
2222
	dma_dom = find_protection_domain(devid);
2223
	if (!dma_dom)
2224 2225
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2226
	DUMP_printk("Using protection domain %d for device %s\n",
2227
		    dma_dom->domain.id, dev_name(dev));
2228

2229
	return &dma_dom->domain;
2230 2231
}

2232 2233
static void update_device_table(struct protection_domain *domain)
{
2234
	struct iommu_dev_data *dev_data;
2235

2236 2237
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2238 2239 2240 2241 2242 2243 2244 2245
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2246 2247 2248

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2249 2250 2251 2252

	domain->updated = false;
}

2253 2254 2255 2256 2257 2258
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2259
	struct aperture_range *aperture;
2260 2261
	u64 *pte, *pte_page;

2262 2263 2264 2265 2266
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2267
	if (!pte) {
2268
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2269
				GFP_ATOMIC);
2270 2271
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2272
		pte += PM_LEVEL_INDEX(0, address);
2273

2274
	update_domain(&dom->domain);
2275 2276 2277 2278

	return pte;
}

2279 2280 2281 2282
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2283
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2294
	pte  = dma_ops_get_pte(dom, address);
2295
	if (!pte)
2296
		return DMA_ERROR_CODE;
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2314 2315 2316
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2317
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2318 2319
				 unsigned long address)
{
2320
	struct aperture_range *aperture;
2321 2322 2323 2324 2325
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2326 2327 2328 2329 2330 2331 2332
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2333

2334
	pte += PM_LEVEL_INDEX(0, address);
2335 2336 2337 2338 2339 2340

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2341 2342
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2343 2344
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2345 2346
 * Must be called with the domain lock held.
 */
2347 2348 2349 2350
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2351
			       int dir,
2352 2353
			       bool align,
			       u64 dma_mask)
2354 2355
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2356
	dma_addr_t address, start, ret;
2357
	unsigned int pages;
2358
	unsigned long align_mask = 0;
2359 2360
	int i;

2361
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2362 2363
	paddr &= PAGE_MASK;

2364 2365
	INC_STATS_COUNTER(total_map_requests);

2366 2367 2368
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2369 2370 2371
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2372
retry:
2373 2374
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2375
	if (unlikely(address == DMA_ERROR_CODE)) {
2376 2377 2378 2379 2380 2381 2382
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2383
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2384 2385 2386
			goto out;

		/*
2387
		 * aperture was successfully enlarged by 128 MB, try
2388 2389 2390 2391
		 * allocation again
		 */
		goto retry;
	}
2392 2393 2394

	start = address;
	for (i = 0; i < pages; ++i) {
2395
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2396
		if (ret == DMA_ERROR_CODE)
2397 2398
			goto out_unmap;

2399 2400 2401 2402 2403
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2404 2405
	ADD_STATS_COUNTER(alloced_io_mem, size);

2406
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2407
		domain_flush_tlb(&dma_dom->domain);
2408
		dma_dom->need_flush = false;
2409
	} else if (unlikely(amd_iommu_np_cache))
2410
		domain_flush_pages(&dma_dom->domain, address, size);
2411

2412 2413
out:
	return address;
2414 2415 2416 2417 2418

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2419
		dma_ops_domain_unmap(dma_dom, start);
2420 2421 2422 2423
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2424
	return DMA_ERROR_CODE;
2425 2426
}

2427 2428 2429 2430
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2431
static void __unmap_single(struct dma_ops_domain *dma_dom,
2432 2433 2434 2435
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2436
	dma_addr_t flush_addr;
2437 2438 2439
	dma_addr_t i, start;
	unsigned int pages;

2440
	if ((dma_addr == DMA_ERROR_CODE) ||
2441
	    (dma_addr + size > dma_dom->aperture_size))
2442 2443
		return;

2444
	flush_addr = dma_addr;
2445
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2446 2447 2448 2449
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2450
		dma_ops_domain_unmap(dma_dom, start);
2451 2452 2453
		start += PAGE_SIZE;
	}

2454 2455
	SUB_STATS_COUNTER(alloced_io_mem, size);

2456
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2457

2458
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2459
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2460 2461
		dma_dom->need_flush = false;
	}
2462 2463
}

2464 2465 2466
/*
 * The exported map_single function for dma_ops.
 */
2467 2468 2469 2470
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2471 2472 2473 2474
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2475
	u64 dma_mask;
2476
	phys_addr_t paddr = page_to_phys(page) + offset;
2477

2478 2479
	INC_STATS_COUNTER(cnt_map_single);

2480 2481
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2482
		return (dma_addr_t)paddr;
2483 2484
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2485

2486 2487
	dma_mask = *dev->dma_mask;

2488
	spin_lock_irqsave(&domain->lock, flags);
2489

2490
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2491
			    dma_mask);
2492
	if (addr == DMA_ERROR_CODE)
2493 2494
		goto out;

2495
	domain_flush_complete(domain);
2496 2497 2498 2499 2500 2501 2502

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2503 2504 2505
/*
 * The exported unmap_single function for dma_ops.
 */
2506 2507
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2508 2509 2510 2511
{
	unsigned long flags;
	struct protection_domain *domain;

2512 2513
	INC_STATS_COUNTER(cnt_unmap_single);

2514 2515
	domain = get_domain(dev);
	if (IS_ERR(domain))
2516 2517
		return;

2518 2519
	spin_lock_irqsave(&domain->lock, flags);

2520
	__unmap_single(domain->priv, dma_addr, size, dir);
2521

2522
	domain_flush_complete(domain);
2523 2524 2525 2526

	spin_unlock_irqrestore(&domain->lock, flags);
}

2527 2528 2529 2530
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2545 2546 2547 2548
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2549
static int map_sg(struct device *dev, struct scatterlist *sglist,
2550 2551
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2552 2553 2554 2555 2556 2557 2558
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2559
	u64 dma_mask;
2560

2561 2562
	INC_STATS_COUNTER(cnt_map_sg);

2563 2564
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2565
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2566 2567
	else if (IS_ERR(domain))
		return 0;
2568

2569
	dma_mask = *dev->dma_mask;
2570 2571 2572 2573 2574 2575

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2576
		s->dma_address = __map_single(dev, domain->priv,
2577 2578
					      paddr, s->length, dir, false,
					      dma_mask);
2579 2580 2581 2582 2583 2584 2585 2586

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2587
	domain_flush_complete(domain);
2588 2589 2590 2591 2592 2593 2594 2595

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2596
			__unmap_single(domain->priv, s->dma_address,
2597 2598 2599 2600 2601 2602 2603 2604 2605
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2606 2607 2608 2609
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2610
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2611 2612
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2613 2614 2615 2616 2617 2618
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2619 2620
	INC_STATS_COUNTER(cnt_unmap_sg);

2621 2622
	domain = get_domain(dev);
	if (IS_ERR(domain))
2623 2624
		return;

2625 2626 2627
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2628
		__unmap_single(domain->priv, s->dma_address,
2629 2630 2631 2632
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2633
	domain_flush_complete(domain);
2634 2635 2636 2637

	spin_unlock_irqrestore(&domain->lock, flags);
}

2638 2639 2640
/*
 * The exported alloc_coherent function for dma_ops.
 */
2641 2642 2643 2644 2645 2646 2647
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2648
	u64 dma_mask = dev->coherent_dma_mask;
2649

2650 2651
	INC_STATS_COUNTER(cnt_alloc_coherent);

2652 2653
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2654 2655 2656
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2657 2658
	} else if (IS_ERR(domain))
		return NULL;
2659

2660 2661 2662
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2663 2664 2665

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2666
		return NULL;
2667 2668 2669

	paddr = virt_to_phys(virt_addr);

2670 2671 2672
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2673 2674
	spin_lock_irqsave(&domain->lock, flags);

2675
	*dma_addr = __map_single(dev, domain->priv, paddr,
2676
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2677

2678
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2679
		spin_unlock_irqrestore(&domain->lock, flags);
2680
		goto out_free;
J
Jiri Slaby 已提交
2681
	}
2682

2683
	domain_flush_complete(domain);
2684 2685 2686 2687

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2688 2689 2690 2691 2692 2693

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2694 2695
}

2696 2697 2698
/*
 * The exported free_coherent function for dma_ops.
 */
2699 2700 2701 2702 2703 2704
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2705 2706
	INC_STATS_COUNTER(cnt_free_coherent);

2707 2708
	domain = get_domain(dev);
	if (IS_ERR(domain))
2709 2710
		goto free_mem;

2711 2712
	spin_lock_irqsave(&domain->lock, flags);

2713
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2714

2715
	domain_flush_complete(domain);
2716 2717 2718 2719 2720 2721 2722

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2723 2724 2725 2726 2727 2728
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2729
	return check_device(dev);
2730 2731
}

2732
/*
2733 2734
 * The function for pre-allocating protection domains.
 *
2735 2736 2737 2738
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2739
static void prealloc_protection_domains(void)
2740
{
2741
	struct iommu_dev_data *dev_data;
2742
	struct dma_ops_domain *dma_dom;
2743
	struct pci_dev *dev = NULL;
2744
	u16 devid;
2745

2746
	for_each_pci_dev(dev) {
2747 2748 2749

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2750
			continue;
2751

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
			pr_info("AMD-Vi: Using passthough domain for device %s\n",
				dev_name(&dev->dev));
		}

2762
		/* Is there already any domain for it? */
2763
		if (domain_for_device(&dev->dev))
2764
			continue;
2765 2766 2767

		devid = get_device_id(&dev->dev);

2768
		dma_dom = dma_ops_domain_alloc();
2769 2770 2771
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2772 2773
		dma_dom->target_dev = devid;

2774
		attach_device(&dev->dev, &dma_dom->domain);
2775

2776
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2777 2778 2779
	}
}

2780
static struct dma_map_ops amd_iommu_dma_ops = {
2781 2782
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2783 2784
	.map_page = map_page,
	.unmap_page = unmap_page,
2785 2786
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2787
	.dma_supported = amd_iommu_dma_supported,
2788 2789
};

2790 2791
static unsigned device_dma_ops_init(void)
{
2792
	struct iommu_dev_data *dev_data;
2793 2794 2795 2796 2797 2798 2799 2800 2801
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
			unhandled += 1;
			continue;
		}

2802 2803 2804 2805 2806 2807
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2808 2809 2810 2811 2812
	}

	return unhandled;
}

2813 2814 2815
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2816 2817 2818

void __init amd_iommu_init_api(void)
{
2819
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2820 2821
}

2822 2823 2824
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
2825
	int ret, unhandled;
2826

2827 2828 2829 2830 2831
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2832
	for_each_iommu(iommu) {
2833
		iommu->default_dom = dma_ops_domain_alloc();
2834 2835
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2836
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2837 2838 2839 2840 2841
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2842
	/*
2843
	 * Pre-allocate the protection domains for each device.
2844
	 */
2845
	prealloc_protection_domains();
2846 2847

	iommu_detected = 1;
2848
	swiotlb = 0;
2849

2850
	/* Make the driver finally visible to the drivers */
2851 2852 2853 2854 2855
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
2856

2857 2858
	amd_iommu_stats_init();

2859 2860 2861 2862
	return 0;

free_domains:

2863
	for_each_iommu(iommu) {
2864 2865 2866 2867 2868 2869
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2883
	struct iommu_dev_data *dev_data, *next;
2884 2885 2886 2887
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2888
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2889
		__detach_device(dev_data);
2890 2891
		atomic_set(&dev_data->bind, 0);
	}
2892 2893 2894 2895

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2896 2897 2898 2899 2900
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2901 2902
	del_domain_from_list(domain);

2903 2904 2905 2906 2907 2908 2909
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2910 2911 2912 2913 2914
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2915
		return NULL;
2916 2917

	spin_lock_init(&domain->lock);
2918
	mutex_init(&domain->api_lock);
2919 2920
	domain->id = domain_id_alloc();
	if (!domain->id)
2921
		goto out_err;
2922
	INIT_LIST_HEAD(&domain->dev_list);
2923

2924 2925
	add_domain_to_list(domain);

2926 2927 2928 2929 2930 2931 2932 2933
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
2948 2949 2950 2951 2952 2953
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
2954
		goto out_free;
2955 2956

	domain->mode    = PAGE_MODE_3_LEVEL;
2957 2958 2959 2960 2961 2962 2963 2964 2965
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

	dom->priv = domain;

	return 0;

out_free:
2966
	protection_domain_free(domain);
2967 2968 2969 2970

	return -ENOMEM;
}

2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2983 2984
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
2985

2986 2987 2988
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

2989
	protection_domain_free(domain);
2990 2991 2992 2993

	dom->priv = NULL;
}

2994 2995 2996
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2997
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2998 2999 3000
	struct amd_iommu *iommu;
	u16 devid;

3001
	if (!check_device(dev))
3002 3003
		return;

3004
	devid = get_device_id(dev);
3005

3006
	if (dev_data->domain != NULL)
3007
		detach_device(dev);
3008 3009 3010 3011 3012 3013 3014 3015

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3016 3017 3018 3019
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3020
	struct iommu_dev_data *dev_data;
3021
	struct amd_iommu *iommu;
3022
	int ret;
3023

3024
	if (!check_device(dev))
3025 3026
		return -EINVAL;

3027 3028
	dev_data = dev->archdata.iommu;

3029
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3030 3031 3032
	if (!iommu)
		return -EINVAL;

3033
	if (dev_data->domain)
3034
		detach_device(dev);
3035

3036
	ret = attach_device(dev, domain);
3037 3038 3039

	iommu_completion_wait(iommu);

3040
	return ret;
3041 3042
}

3043 3044
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
			 phys_addr_t paddr, int gfp_order, int iommu_prot)
3045
{
3046
	unsigned long page_size = 0x1000UL << gfp_order;
3047 3048 3049 3050
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3051 3052 3053
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3054 3055 3056 3057 3058
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3059
	mutex_lock(&domain->api_lock);
3060
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3061 3062
	mutex_unlock(&domain->api_lock);

3063
	return ret;
3064 3065
}

3066 3067
static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   int gfp_order)
3068 3069
{
	struct protection_domain *domain = dom->priv;
3070
	unsigned long page_size, unmap_size;
3071

3072 3073 3074
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3075
	page_size  = 0x1000UL << gfp_order;
3076

3077
	mutex_lock(&domain->api_lock);
3078
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3079
	mutex_unlock(&domain->api_lock);
3080

3081
	domain_flush_tlb_pde(domain);
3082

3083
	return get_order(unmap_size);
3084 3085
}

3086 3087 3088 3089
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
3090
	unsigned long offset_mask;
3091
	phys_addr_t paddr;
3092
	u64 *pte, __pte;
3093

3094 3095 3096
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3097
	pte = fetch_pte(domain, iova);
3098

3099
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3100 3101
		return 0;

3102 3103 3104 3105 3106 3107 3108
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3109 3110 3111 3112

	return paddr;
}

S
Sheng Yang 已提交
3113 3114 3115
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3116 3117 3118 3119 3120
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
3121 3122 3123
	return 0;
}

3124 3125 3126 3127 3128
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3129 3130
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3131
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3132
	.domain_has_cap = amd_iommu_domain_has_cap,
3133 3134
};

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3147
	struct iommu_dev_data *dev_data;
3148
	struct pci_dev *dev = NULL;
3149
	struct amd_iommu *iommu;
3150
	u16 devid;
3151
	int ret;
3152

3153 3154 3155
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3156

3157
	for_each_pci_dev(dev) {
3158
		if (!check_device(&dev->dev))
3159 3160
			continue;

3161 3162 3163
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3164 3165
		devid = get_device_id(&dev->dev);

3166
		iommu = amd_iommu_rlookup_table[devid];
3167 3168 3169
		if (!iommu)
			continue;

3170
		attach_device(&dev->dev, pt_domain);
3171 3172 3173 3174 3175 3176
	}

	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);