amd_iommu.c 90.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/acpi.h>
23
#include <linux/amba/bus.h>
24
#include <linux/platform_device.h>
25
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
26
#include <linux/bitmap.h>
27
#include <linux/slab.h>
28
#include <linux/debugfs.h>
29
#include <linux/scatterlist.h>
30
#include <linux/dma-mapping.h>
31
#include <linux/iommu-helper.h>
32
#include <linux/iommu.h>
33
#include <linux/delay.h>
34
#include <linux/amd-iommu.h>
35 36
#include <linux/notifier.h>
#include <linux/export.h>
37 38
#include <linux/irq.h>
#include <linux/msi.h>
39
#include <linux/dma-contiguous.h>
40
#include <linux/irqdomain.h>
41
#include <linux/percpu.h>
42
#include <linux/iova.h>
43 44 45 46
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
47
#include <asm/msidef.h>
48
#include <asm/proto.h>
49
#include <asm/iommu.h>
50
#include <asm/gart.h>
51
#include <asm/dma.h>
52 53 54

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
55
#include "irq_remapping.h"
56 57 58

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

59
#define LOOP_TIMEOUT	100000
60

61 62 63 64 65
/* IO virtual address start page frame number */
#define IOVA_START_PFN		(1)
#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
#define DMA_32BIT_PFN		IOVA_PFN(DMA_BIT_MASK(32))

66 67 68 69 70 71
/* Reserved IOVA ranges */
#define MSI_RANGE_START		(0xfee00000)
#define MSI_RANGE_END		(0xfeefffff)
#define HT_RANGE_START		(0xfd00000000ULL)
#define HT_RANGE_END		(0xffffffffffULL)

72 73 74 75 76 77
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
78
 * 512GB Pages are not supported due to a hardware bug
79
 */
J
Joerg Roedel 已提交
80
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
81

82 83
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

84 85 86 87
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

88 89
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);
90
LIST_HEAD(acpihid_map);
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#define FLUSH_QUEUE_SIZE 256

struct flush_queue_entry {
	unsigned long iova_pfn;
	unsigned long pages;
	struct dma_ops_domain *dma_dom;
};

struct flush_queue {
	spinlock_t lock;
	unsigned next;
	struct flush_queue_entry *entries;
};

DEFINE_PER_CPU(struct flush_queue, flush_queue);

108 109 110
static atomic_t queue_timer_on;
static struct timer_list queue_timer;

111 112 113 114
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
115
static const struct iommu_ops amd_iommu_ops;
116

117
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
118
int amd_iommu_max_glx_val = -1;
119

120 121
static struct dma_map_ops amd_iommu_dma_ops;

122 123 124 125 126 127 128 129
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
130
	u16 alias;			  /* Alias Device ID */
131
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
132
	bool passthrough;		  /* Device is identity mapped */
133 134 135 136 137 138 139 140 141
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

142 143 144
/*
 * general struct to manage commands send to an IOMMU
 */
145
struct iommu_cmd {
146 147 148
	u32 data[4];
};

149 150
struct kmem_cache *amd_iommu_irq_cache;

151
static void update_domain(struct protection_domain *domain);
152
static int protection_domain_init(struct protection_domain *domain);
153
static void detach_device(struct device *dev);
154

155 156 157 158 159 160 161
/*
 * Data container for a dma_ops specific protection domain
 */
struct dma_ops_domain {
	/* generic protection domain information */
	struct protection_domain domain;

162 163
	/* IOVA RB-Tree */
	struct iova_domain iovad;
164 165
};

166 167 168
static struct iova_domain reserved_iova_ranges;
static struct lock_class_key reserved_rbtree_key;

169 170 171 172 173 174
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

175 176
static inline int match_hid_uid(struct device *dev,
				struct acpihid_map_entry *entry)
177
{
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
	const char *hid, *uid;

	hid = acpi_device_hid(ACPI_COMPANION(dev));
	uid = acpi_device_uid(ACPI_COMPANION(dev));

	if (!hid || !(*hid))
		return -ENODEV;

	if (!uid || !(*uid))
		return strcmp(hid, entry->hid);

	if (!(*entry->uid))
		return strcmp(hid, entry->hid);

	return (strcmp(hid, entry->hid) || strcmp(uid, entry->uid));
193 194
}

195
static inline u16 get_pci_device_id(struct device *dev)
196 197 198 199 200 201
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return PCI_DEVID(pdev->bus->number, pdev->devfn);
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
static inline int get_acpihid_device_id(struct device *dev,
					struct acpihid_map_entry **entry)
{
	struct acpihid_map_entry *p;

	list_for_each_entry(p, &acpihid_map, list) {
		if (!match_hid_uid(dev, p)) {
			if (entry)
				*entry = p;
			return p->devid;
		}
	}
	return -EINVAL;
}

static inline int get_device_id(struct device *dev)
{
	int devid;

	if (dev_is_pci(dev))
		devid = get_pci_device_id(dev);
	else
		devid = get_acpihid_device_id(dev, NULL);

	return devid;
}

229 230 231 232 233
static struct protection_domain *to_pdomain(struct iommu_domain *dom)
{
	return container_of(dom, struct protection_domain, domain);
}

234
static struct iommu_dev_data *alloc_dev_data(u16 devid)
235 236 237 238 239 240 241 242
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

243
	dev_data->devid = devid;
244 245 246 247 248 249 250 251

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

271 272 273 274 275 276 277 278 279 280 281
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

282
	/* The callers make sure that get_device_id() does not fail here */
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
324
		pci_add_dma_alias(pdev, ivrs_alias & 0xff);
325 326 327 328 329 330 331 332
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

333 334 335 336 337 338 339 340 341 342 343 344
static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

345 346 347 348 349
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

350 351 352 353
/*
* Find or create an IOMMU group for a acpihid device.
*/
static struct iommu_group *acpihid_device_group(struct device *dev)
354
{
355
	struct acpihid_map_entry *p, *entry = NULL;
356
	int devid;
357 358 359 360 361 362 363 364 365 366 367 368 369 370

	devid = get_acpihid_device_id(dev, &entry);
	if (devid < 0)
		return ERR_PTR(devid);

	list_for_each_entry(p, &acpihid_map, list) {
		if ((devid == p->devid) && p->group)
			entry->group = p->group;
	}

	if (!entry->group)
		entry->group = generic_device_group(dev);

	return entry->group;
371 372
}

373 374 375 376
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
377 378
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
379 380 381 382 383 384 385 386 387 388 389 390
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

391 392 393 394 395 396 397 398 399
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

400 401 402 403 404 405
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
406
	int devid;
407 408 409 410 411

	if (!dev || !dev->dma_mask)
		return false;

	devid = get_device_id(dev);
412
	if (devid < 0)
413
		return false;
414 415 416 417 418 419 420 421 422 423 424

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

425
static void init_iommu_group(struct device *dev)
426 427 428
{
	struct iommu_group *group;

429
	group = iommu_group_get_for_dev(dev);
430 431 432 433
	if (IS_ERR(group))
		return;

	iommu_group_put(group);
434 435 436 437 438
}

static int iommu_init_device(struct device *dev)
{
	struct iommu_dev_data *dev_data;
439
	int devid;
440 441 442 443

	if (dev->archdata.iommu)
		return 0;

444
	devid = get_device_id(dev);
445
	if (devid < 0)
446 447 448
		return devid;

	dev_data = find_dev_data(devid);
449 450 451
	if (!dev_data)
		return -ENOMEM;

452 453
	dev_data->alias = get_alias(dev);

454
	if (dev_is_pci(dev) && pci_iommuv2_capable(to_pci_dev(dev))) {
455 456
		struct amd_iommu *iommu;

457
		iommu = amd_iommu_rlookup_table[dev_data->devid];
458 459 460
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

461 462
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
463 464 465
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

466 467 468
	return 0;
}

469 470
static void iommu_ignore_device(struct device *dev)
{
471 472
	u16 alias;
	int devid;
473 474

	devid = get_device_id(dev);
475
	if (devid < 0)
476 477
		return;

478
	alias = get_alias(dev);
479 480 481 482 483 484 485 486

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

487 488
static void iommu_uninit_device(struct device *dev)
{
489 490
	int devid;
	struct iommu_dev_data *dev_data;
491

492
	devid = get_device_id(dev);
493
	if (devid < 0)
494
		return;
495

496
	dev_data = search_dev_data(devid);
497 498 499
	if (!dev_data)
		return;

500 501 502
	if (dev_data->domain)
		detach_device(dev);

A
Alex Williamson 已提交
503 504 505
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

506 507
	iommu_group_remove_device(dev);

508 509 510
	/* Remove dma-ops */
	dev->archdata.dma_ops = NULL;

511
	/*
512 513
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
514
	 */
515
}
J
Joerg Roedel 已提交
516

517 518 519 520 521 522
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

523 524 525 526
static void dump_dte_entry(u16 devid)
{
	int i;

527 528
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
529 530 531
			amd_iommu_dev_table[devid].data[i]);
}

532 533 534 535 536 537 538 539 540
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

541
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
542
{
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
564

565
	printk(KERN_ERR "AMD-Vi: Event logged [");
566 567 568 569 570

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
571
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
572
		       address, flags);
573
		dump_dte_entry(devid);
574 575 576 577
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
578
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
579 580 581 582 583
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
584
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
585 586 587 588 589
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
590
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
591 592 593 594
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
595
		dump_command(address);
596 597 598 599 600 601 602 603
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
604
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
605 606 607 608 609
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
610
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
611 612 613 614 615
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
616 617

	memset(__evt, 0, 4 * sizeof(u32));
618 619 620 621 622 623 624 625 626 627
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
628
		iommu_print_event(iommu, iommu->evt_buf + head);
629
		head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
630 631 632 633 634
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

635
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
{
	struct amd_iommu_fault fault;

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
680

681 682 683
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
684

685 686 687 688 689 690 691
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
692 693
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
694 695 696 697 698 699

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
700 701 702 703
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

704
irqreturn_t amd_iommu_int_thread(int irq, void *data)
705
{
706 707
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
708

709 710 711 712
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
713

714 715 716 717
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
718

719 720 721 722
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
723

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
739
	return IRQ_HANDLED;
740 741
}

742 743 744 745 746
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

747 748 749 750 751 752
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
773 774 775
{
	u8 *target;

776
	target = iommu->cmd_buf + tail;
777
	tail   = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
778 779 780 781 782

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
783
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
784
}
785

786
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
787
{
788 789
	WARN_ON(address & 0x7ULL);

790
	memset(cmd, 0, sizeof(*cmd));
791 792 793
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
794 795 796
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

797 798 799 800 801 802 803
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

804 805 806 807
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
808
	bool s;
809 810

	pages = iommu_num_pages(address, size, PAGE_SIZE);
811
	s     = false;
812 813 814 815 816 817 818

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
819
		s = true;
820 821 822 823 824 825 826 827 828 829 830
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
831
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
832 833 834
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

835 836 837 838
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
839
	bool s;
840 841

	pages = iommu_num_pages(address, size, PAGE_SIZE);
842
	s     = false;
843 844 845 846 847 848 849

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
850
		s = true;
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

866 867 868 869 870 871 872
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

873
	cmd->data[0]  = pasid;
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
892
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
893 894
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
895
	cmd->data[1] |= (pasid & 0xff) << 16;
896 897 898 899 900 901 902 903
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

904 905 906 907 908 909 910
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
911
		cmd->data[1]  = pasid;
912 913 914 915 916 917 918 919
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

920 921 922 923
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
924 925
}

926 927 928 929 930 931 932
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

933 934
/*
 * Writes the command to the IOMMUs command buffer and informs the
935
 * hardware about the new command.
936
 */
937 938 939
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
940
{
941
	u32 left, tail, head, next_tail;
942 943
	unsigned long flags;

944
again:
945 946
	spin_lock_irqsave(&iommu->lock, flags);

947 948
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
949 950
	next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
	left      = (head - next_tail) % CMD_BUFFER_SIZE;
951

952 953 954 955
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
956

957 958
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
959

960 961 962 963 964 965
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
966 967
	}

968 969 970
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
971
	iommu->need_sync = sync;
972

973
	spin_unlock_irqrestore(&iommu->lock, flags);
974

975
	return 0;
976 977
}

978 979 980 981 982
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

983 984 985 986
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
987
static int iommu_completion_wait(struct amd_iommu *iommu)
988 989
{
	struct iommu_cmd cmd;
990
	volatile u64 sem = 0;
991
	int ret;
992

993
	if (!iommu->need_sync)
994
		return 0;
995

996
	build_completion_wait(&cmd, (u64)&sem);
997

998
	ret = iommu_queue_command_sync(iommu, &cmd, false);
999
	if (ret)
1000
		return ret;
1001

1002
	return wait_on_sem(&sem);
1003 1004
}

1005
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1006
{
1007
	struct iommu_cmd cmd;
1008

1009
	build_inv_dte(&cmd, devid);
1010

1011 1012
	return iommu_queue_command(iommu, &cmd);
}
1013

1014 1015 1016
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1017

1018 1019
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1020

1021 1022
	iommu_completion_wait(iommu);
}
1023

1024 1025 1026 1027 1028 1029 1030
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1031

1032 1033 1034 1035 1036 1037
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1038

1039
	iommu_completion_wait(iommu);
1040 1041
}

1042
static void iommu_flush_all(struct amd_iommu *iommu)
1043
{
1044
	struct iommu_cmd cmd;
1045

1046
	build_inv_all(&cmd);
1047

1048 1049 1050 1051
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1071 1072
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1073 1074 1075 1076
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1077
		iommu_flush_irt_all(iommu);
1078
		iommu_flush_tlb_all(iommu);
1079 1080 1081
	}
}

1082
/*
1083
 * Command send function for flushing on-device TLB
1084
 */
1085 1086
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1087 1088
{
	struct amd_iommu *iommu;
1089
	struct iommu_cmd cmd;
1090
	int qdep;
1091

1092 1093
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1094

1095
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1096 1097

	return iommu_queue_command(iommu, &cmd);
1098 1099
}

1100 1101 1102
/*
 * Command send function for invalidating a device table entry
 */
1103
static int device_flush_dte(struct iommu_dev_data *dev_data)
1104
{
1105
	struct amd_iommu *iommu;
1106
	u16 alias;
1107
	int ret;
1108

1109
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1110
	alias = dev_data->alias;
1111

1112
	ret = iommu_flush_dte(iommu, dev_data->devid);
1113 1114
	if (!ret && alias != dev_data->devid)
		ret = iommu_flush_dte(iommu, alias);
1115 1116 1117
	if (ret)
		return ret;

1118
	if (dev_data->ats.enabled)
1119
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1120 1121

	return ret;
1122 1123
}

1124 1125 1126 1127 1128
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1129 1130
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1131
{
1132
	struct iommu_dev_data *dev_data;
1133 1134
	struct iommu_cmd cmd;
	int ret = 0, i;
1135

1136
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1137

1138 1139 1140 1141 1142 1143 1144 1145
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1146
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1147 1148
	}

1149 1150
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1151
		if (!dev_data->ats.enabled)
1152 1153
			continue;

1154
		ret |= device_flush_iotlb(dev_data, address, size);
1155 1156
	}

1157
	WARN_ON(ret);
1158 1159
}

1160 1161
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1162
{
1163
	__domain_flush_pages(domain, address, size, 0);
1164
}
1165

1166
/* Flush the whole IO/TLB for a given protection domain */
1167
static void domain_flush_tlb(struct protection_domain *domain)
1168
{
1169
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1170 1171
}

1172
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1173
static void domain_flush_tlb_pde(struct protection_domain *domain)
1174
{
1175
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1176 1177
}

1178
static void domain_flush_complete(struct protection_domain *domain)
1179
{
1180
	int i;
1181

1182
	for (i = 0; i < amd_iommus_present; ++i) {
1183
		if (domain && !domain->dev_iommu[i])
1184
			continue;
1185

1186 1187 1188 1189 1190
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1191
	}
1192 1193
}

1194

1195
/*
1196
 * This function flushes the DTEs for all devices in domain
1197
 */
1198
static void domain_flush_devices(struct protection_domain *domain)
1199
{
1200
	struct iommu_dev_data *dev_data;
1201

1202
	list_for_each_entry(dev_data, &domain->dev_list, list)
1203
		device_flush_dte(dev_data);
1204 1205
}

1206 1207 1208 1209 1210 1211 1212
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1242
		      unsigned long page_size,
1243 1244 1245
		      u64 **pte_page,
		      gfp_t gfp)
{
1246
	int level, end_lvl;
1247
	u64 *pte, *page;
1248 1249

	BUG_ON(!is_power_of_2(page_size));
1250 1251 1252 1253

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1254 1255 1256 1257
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1258 1259

	while (level > end_lvl) {
1260 1261 1262 1263 1264
		u64 __pte, __npte;

		__pte = *pte;

		if (!IOMMU_PTE_PRESENT(__pte)) {
1265 1266 1267
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
1268 1269 1270 1271 1272 1273 1274

			__npte = PM_LEVEL_PDE(level, virt_to_phys(page));

			if (cmpxchg64(pte, __pte, __npte)) {
				free_page((unsigned long)page);
				continue;
			}
1275 1276
		}

1277 1278 1279 1280
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1298 1299 1300
static u64 *fetch_pte(struct protection_domain *domain,
		      unsigned long address,
		      unsigned long *page_size)
1301 1302 1303 1304
{
	int level;
	u64 *pte;

1305 1306 1307
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

1308 1309 1310
	level	   =  domain->mode - 1;
	pte	   = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	*page_size =  PTE_LEVEL_PAGE_SIZE(level);
1311

1312 1313 1314
	while (level > 0) {

		/* Not Present */
1315 1316 1317
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1318
		/* Large PTE */
1319 1320 1321
		if (PM_PTE_LEVEL(*pte) == 7 ||
		    PM_PTE_LEVEL(*pte) == 0)
			break;
1322 1323 1324 1325 1326

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1327 1328
		level -= 1;

1329
		/* Walk to the next level */
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
		pte	   = IOMMU_PTE_PAGE(*pte);
		pte	   = &pte[PM_LEVEL_INDEX(level, address)];
		*page_size = PTE_LEVEL_PAGE_SIZE(level);
	}

	if (PM_PTE_LEVEL(*pte) == 0x07) {
		unsigned long pte_mask;

		/*
		 * If we have a series of large PTEs, make
		 * sure to return a pointer to the first one.
		 */
		*page_size = pte_mask = PTE_PAGE_SIZE(*pte);
		pte_mask   = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
		pte        = (u64 *)(((unsigned long)pte) & pte_mask);
1345 1346 1347 1348 1349
	}

	return pte;
}

1350 1351 1352 1353 1354 1355 1356
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1357 1358 1359
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1360
			  unsigned long page_size,
1361
			  int prot,
1362
			  gfp_t gfp)
1363
{
1364
	u64 __pte, *pte;
1365
	int i, count;
1366

1367 1368 1369
	BUG_ON(!IS_ALIGNED(bus_addr, page_size));
	BUG_ON(!IS_ALIGNED(phys_addr, page_size));

1370
	if (!(prot & IOMMU_PROT_MASK))
1371 1372
		return -EINVAL;

1373
	count = PAGE_SIZE_PTE_COUNT(page_size);
1374
	pte   = alloc_pte(dom, bus_addr, page_size, NULL, gfp);
1375

1376 1377 1378
	if (!pte)
		return -ENOMEM;

1379 1380 1381
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1382

1383
	if (count > 1) {
1384 1385 1386 1387
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1388 1389 1390 1391 1392 1393

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1394 1395
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1396

1397 1398
	update_domain(dom);

1399 1400 1401
	return 0;
}

1402 1403 1404
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1405
{
1406 1407
	unsigned long long unmapped;
	unsigned long unmap_size;
1408 1409 1410 1411 1412
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1413

1414 1415
	while (unmapped < page_size) {

1416 1417 1418 1419 1420 1421
		pte = fetch_pte(dom, bus_addr, &unmap_size);

		if (pte) {
			int i, count;

			count = PAGE_SIZE_PTE_COUNT(unmap_size);
1422 1423 1424 1425 1426 1427 1428 1429
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1430
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1431

1432
	return unmapped;
1433 1434
}

1435 1436 1437
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
1438
 * interface functions.
1439 1440
 *
 ****************************************************************************/
1441

1442

1443 1444 1445
static unsigned long dma_ops_alloc_iova(struct device *dev,
					struct dma_ops_domain *dma_dom,
					unsigned int pages, u64 dma_mask)
1446
{
1447
	unsigned long pfn = 0;
1448

1449
	pages = __roundup_pow_of_two(pages);
1450

1451 1452 1453
	if (dma_mask > DMA_BIT_MASK(32))
		pfn = alloc_iova_fast(&dma_dom->iovad, pages,
				      IOVA_PFN(DMA_BIT_MASK(32)));
1454

1455 1456
	if (!pfn)
		pfn = alloc_iova_fast(&dma_dom->iovad, pages, IOVA_PFN(dma_mask));
1457

1458
	return (pfn << PAGE_SHIFT);
1459 1460
}

1461 1462 1463
static void dma_ops_free_iova(struct dma_ops_domain *dma_dom,
			      unsigned long address,
			      unsigned int pages)
1464
{
1465 1466
	pages = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;
1467

1468
	free_iova_fast(&dma_dom->iovad, address, pages);
1469 1470
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
1543
		/* PTE present? */				\
1544 1545 1546
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
1547 1548 1549 1550 1551
		/* Large PTE? */				\
		if (PM_PTE_LEVEL(pt[i]) == 0 ||			\
		    PM_PTE_LEVEL(pt[i]) == 7)			\
			continue;				\
								\
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1564
static void free_pagetable(struct protection_domain *domain)
1565
{
1566
	unsigned long root = (unsigned long)domain->pt_root;
1567

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1591 1592 1593
	}
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1624 1625
static void free_gcr3_table(struct protection_domain *domain)
{
1626 1627 1628 1629
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
1630 1631
	else
		BUG_ON(domain->glx != 0);
1632

1633 1634 1635
	free_page((unsigned long)domain->gcr3_tbl);
}

1636 1637 1638 1639
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1640 1641 1642 1643 1644
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
	if (!dom)
		return;

1645 1646
	del_domain_from_list(&dom->domain);

1647
	put_iova_domain(&dom->iovad);
1648

1649
	free_pagetable(&dom->domain);
1650 1651 1652 1653

	kfree(dom);
}

1654 1655
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1656
 * It also initializes the page table and the address allocator data
1657 1658
 * structures required for the dma_ops interface
 */
1659
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1660 1661 1662 1663 1664 1665 1666
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

1667
	if (protection_domain_init(&dma_dom->domain))
1668
		goto free_dma_dom;
1669

1670
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1671
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1672
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1673 1674 1675 1676
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1677 1678 1679
	init_iova_domain(&dma_dom->iovad, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

1680 1681 1682
	/* Initialize reserved ranges */
	copy_reserved_iova(&reserved_iova_ranges, &dma_dom->iovad);

1683 1684
	add_domain_to_list(&dma_dom->domain);

1685 1686 1687 1688 1689 1690 1691 1692
	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1693 1694 1695 1696 1697 1698 1699 1700 1701
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1702
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1703
{
1704
	u64 pte_root = 0;
1705
	u64 flags = 0;
1706

1707 1708 1709
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1710 1711 1712
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1713

1714 1715
	flags = amd_iommu_dev_table[devid].data[1];

1716 1717 1718
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1745 1746 1747 1748 1749
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1750 1751 1752 1753 1754
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
1755 1756
	amd_iommu_dev_table[devid].data[0]  = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
1757 1758

	amd_iommu_apply_erratum_63(devid);
1759 1760
}

1761 1762
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1763 1764
{
	struct amd_iommu *iommu;
1765
	u16 alias;
1766
	bool ats;
1767

1768
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1769
	alias = dev_data->alias;
1770
	ats   = dev_data->ats.enabled;
1771 1772 1773 1774 1775 1776 1777 1778 1779

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

1780 1781 1782
	/* Update device table */
	set_dte_entry(dev_data->devid, domain, ats);
	if (alias != dev_data->devid)
1783
		set_dte_entry(alias, domain, ats);
1784

1785
	device_flush_dte(dev_data);
1786 1787
}

1788
static void do_detach(struct iommu_dev_data *dev_data)
1789 1790
{
	struct amd_iommu *iommu;
1791
	u16 alias;
1792

1793 1794 1795 1796 1797 1798 1799 1800 1801
	/*
	 * First check if the device is still attached. It might already
	 * be detached from its domain because the generic
	 * iommu_detach_group code detached it and we try again here in
	 * our alias handling.
	 */
	if (!dev_data->domain)
		return;

1802
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1803
	alias = dev_data->alias;
1804 1805

	/* decrease reference counters */
1806 1807 1808 1809 1810 1811
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1812
	clear_dte_entry(dev_data->devid);
1813 1814
	if (alias != dev_data->devid)
		clear_dte_entry(alias);
1815

1816
	/* Flush the DTE entry */
1817
	device_flush_dte(dev_data);
1818 1819 1820 1821 1822 1823
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1824
static int __attach_device(struct iommu_dev_data *dev_data,
1825
			   struct protection_domain *domain)
1826
{
1827
	int ret;
1828

1829 1830 1831 1832 1833 1834
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());

1835 1836 1837
	/* lock domain */
	spin_lock(&domain->lock);

1838
	ret = -EBUSY;
1839
	if (dev_data->domain != NULL)
1840
		goto out_unlock;
1841

1842
	/* Attach alias group root */
1843
	do_attach(dev_data, domain);
1844

1845 1846 1847 1848
	ret = 0;

out_unlock:

1849 1850
	/* ready */
	spin_unlock(&domain->lock);
1851

1852
	return ret;
1853
}
1854

1855 1856 1857 1858 1859 1860 1861 1862

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1863 1864 1865 1866 1867 1868
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1869
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1870 1871 1872
	if (!pos)
		return -EINVAL;

1873 1874 1875
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1876 1877 1878 1879

	return 0;
}

1880 1881
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
1882 1883 1884 1885 1886 1887 1888 1889
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

1901 1902
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
1903 1904 1905
	if (ret)
		goto out_err;

1906 1907 1908 1909 1910 1911
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

1925
/* FIXME: Move this to PCI code */
1926
#define PCI_PRI_TLP_OFF		(1 << 15)
1927

J
Joerg Roedel 已提交
1928
static bool pci_pri_tlp_required(struct pci_dev *pdev)
1929
{
1930
	u16 status;
1931 1932
	int pos;

1933
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1934 1935 1936
	if (!pos)
		return false;

1937
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
1938

1939
	return (status & PCI_PRI_TLP_OFF) ? true : false;
1940 1941
}

1942
/*
F
Frank Arnold 已提交
1943
 * If a device is not yet associated with a domain, this function
1944 1945
 * assigns it visible for the hardware
 */
1946 1947
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
1948
{
1949
	struct pci_dev *pdev;
1950
	struct iommu_dev_data *dev_data;
1951
	unsigned long flags;
1952
	int ret;
1953

1954 1955
	dev_data = get_dev_data(dev);

1956 1957 1958 1959
	if (!dev_is_pci(dev))
		goto skip_ats_check;

	pdev = to_pci_dev(dev);
1960
	if (domain->flags & PD_IOMMUV2_MASK) {
1961
		if (!dev_data->passthrough)
1962 1963
			return -EINVAL;

1964 1965 1966
		if (dev_data->iommu_v2) {
			if (pdev_iommuv2_enable(pdev) != 0)
				return -EINVAL;
1967

1968 1969 1970 1971
			dev_data->ats.enabled = true;
			dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
			dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
		}
1972 1973
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1974 1975 1976
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
1977

1978
skip_ats_check:
1979
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1980
	ret = __attach_device(dev_data, domain);
1981 1982
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

1983 1984 1985 1986 1987
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
1988
	domain_flush_tlb_pde(domain);
1989 1990

	return ret;
1991 1992
}

1993 1994 1995
/*
 * Removes a device from a protection domain (unlocked)
 */
1996
static void __detach_device(struct iommu_dev_data *dev_data)
1997
{
1998
	struct protection_domain *domain;
1999

2000 2001 2002 2003 2004
	/*
	 * Must be called with IRQs disabled. Warn here to detect early
	 * when its not.
	 */
	WARN_ON(!irqs_disabled());
2005

2006 2007
	if (WARN_ON(!dev_data->domain))
		return;
2008

2009
	domain = dev_data->domain;
2010

2011
	spin_lock(&domain->lock);
2012

2013
	do_detach(dev_data);
2014

2015
	spin_unlock(&domain->lock);
2016 2017 2018 2019 2020
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2021
static void detach_device(struct device *dev)
2022
{
2023
	struct protection_domain *domain;
2024
	struct iommu_dev_data *dev_data;
2025 2026
	unsigned long flags;

2027
	dev_data = get_dev_data(dev);
2028
	domain   = dev_data->domain;
2029

2030 2031
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2032
	__detach_device(dev_data);
2033
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2034

2035 2036 2037
	if (!dev_is_pci(dev))
		return;

2038
	if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2039 2040
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2041
		pci_disable_ats(to_pci_dev(dev));
2042 2043

	dev_data->ats.enabled = false;
2044
}
2045

2046
static int amd_iommu_add_device(struct device *dev)
2047
{
2048
	struct iommu_dev_data *dev_data;
2049
	struct iommu_domain *domain;
2050
	struct amd_iommu *iommu;
2051
	int ret, devid;
2052

2053
	if (!check_device(dev) || get_dev_data(dev))
2054
		return 0;
2055

2056
	devid = get_device_id(dev);
2057
	if (devid < 0)
2058 2059
		return devid;

2060
	iommu = amd_iommu_rlookup_table[devid];
2061

2062
	ret = iommu_init_device(dev);
2063 2064 2065 2066
	if (ret) {
		if (ret != -ENOTSUPP)
			pr_err("Failed to initialize device %s - trying to proceed anyway\n",
				dev_name(dev));
2067

2068
		iommu_ignore_device(dev);
2069
		dev->archdata.dma_ops = &nommu_dma_ops;
2070 2071 2072
		goto out;
	}
	init_iommu_group(dev);
2073

2074
	dev_data = get_dev_data(dev);
2075

2076
	BUG_ON(!dev_data);
2077

2078
	if (iommu_pass_through || dev_data->iommu_v2)
2079
		iommu_request_dm_for_dev(dev);
2080

2081 2082
	/* Domains are initialized for this device - have a look what we ended up with */
	domain = iommu_get_domain_for_dev(dev);
2083
	if (domain->type == IOMMU_DOMAIN_IDENTITY)
2084
		dev_data->passthrough = true;
2085
	else
2086
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2087

2088
out:
2089 2090 2091 2092 2093
	iommu_completion_wait(iommu);

	return 0;
}

2094
static void amd_iommu_remove_device(struct device *dev)
2095
{
2096
	struct amd_iommu *iommu;
2097
	int devid;
2098 2099 2100 2101 2102

	if (!check_device(dev))
		return;

	devid = get_device_id(dev);
2103
	if (devid < 0)
2104 2105
		return;

2106 2107 2108 2109
	iommu = amd_iommu_rlookup_table[devid];

	iommu_uninit_device(dev);
	iommu_completion_wait(iommu);
2110 2111
}

2112 2113 2114 2115 2116 2117 2118 2119
static struct iommu_group *amd_iommu_device_group(struct device *dev)
{
	if (dev_is_pci(dev))
		return pci_device_group(dev);

	return acpihid_device_group(dev);
}

2120 2121 2122 2123 2124 2125
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

J
Joerg Roedel 已提交
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
static void __queue_flush(struct flush_queue *queue)
{
	struct protection_domain *domain;
	unsigned long flags;
	int idx;

	/* First flush TLB of all known domains */
	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_for_each_entry(domain, &amd_iommu_pd_list, list)
		domain_flush_tlb(domain);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);

	/* Wait until flushes have completed */
	domain_flush_complete(NULL);

	for (idx = 0; idx < queue->next; ++idx) {
		struct flush_queue_entry *entry;

		entry = queue->entries + idx;

		free_iova_fast(&entry->dma_dom->iovad,
				entry->iova_pfn,
				entry->pages);

		/* Not really necessary, just to make sure we catch any bugs */
		entry->dma_dom = NULL;
	}

	queue->next = 0;
}

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
void queue_flush_timeout(unsigned long unsused)
{
	int cpu;

	atomic_set(&queue_timer_on, 0);

	for_each_possible_cpu(cpu) {
		struct flush_queue *queue;
		unsigned long flags;

		queue = per_cpu_ptr(&flush_queue, cpu);
		spin_lock_irqsave(&queue->lock, flags);
		if (queue->next > 0)
			__queue_flush(queue);
		spin_unlock_irqrestore(&queue->lock, flags);
	}
}

J
Joerg Roedel 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
static void queue_add(struct dma_ops_domain *dma_dom,
		      unsigned long address, unsigned long pages)
{
	struct flush_queue_entry *entry;
	struct flush_queue *queue;
	unsigned long flags;
	int idx;

	pages     = __roundup_pow_of_two(pages);
	address >>= PAGE_SHIFT;

	queue = get_cpu_ptr(&flush_queue);
	spin_lock_irqsave(&queue->lock, flags);

	if (queue->next == FLUSH_QUEUE_SIZE)
		__queue_flush(queue);

	idx   = queue->next++;
	entry = queue->entries + idx;

	entry->iova_pfn = address;
	entry->pages    = pages;
	entry->dma_dom  = dma_dom;

	spin_unlock_irqrestore(&queue->lock, flags);
2200 2201 2202 2203

	if (atomic_cmpxchg(&queue_timer_on, 0, 1) == 0)
		mod_timer(&queue_timer, jiffies + msecs_to_jiffies(10));

J
Joerg Roedel 已提交
2204 2205 2206 2207
	put_cpu_ptr(&flush_queue);
}


2208 2209 2210 2211 2212 2213 2214
/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2215
static struct protection_domain *get_domain(struct device *dev)
2216
{
2217
	struct protection_domain *domain;
2218

2219
	if (!check_device(dev))
2220
		return ERR_PTR(-EINVAL);
2221

2222
	domain = get_dev_data(dev)->domain;
2223
	if (!dma_ops_domain(domain))
2224
		return ERR_PTR(-EBUSY);
2225

2226
	return domain;
2227 2228
}

2229 2230
static void update_device_table(struct protection_domain *domain)
{
2231
	struct iommu_dev_data *dev_data;
2232

2233 2234
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2235 2236 2237 2238 2239 2240 2241 2242
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2243 2244 2245

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2246 2247 2248 2249

	domain->updated = false;
}

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
static int dir2prot(enum dma_data_direction direction)
{
	if (direction == DMA_TO_DEVICE)
		return IOMMU_PROT_IR;
	else if (direction == DMA_FROM_DEVICE)
		return IOMMU_PROT_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		return IOMMU_PROT_IW | IOMMU_PROT_IR;
	else
		return 0;
}
2261 2262
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2263 2264
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2265 2266
 * Must be called with the domain lock held.
 */
2267 2268 2269 2270
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2271
			       enum dma_data_direction direction,
2272
			       u64 dma_mask)
2273 2274
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2275
	dma_addr_t address, start, ret;
2276
	unsigned int pages;
2277
	int prot = 0;
2278 2279
	int i;

2280
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2281 2282
	paddr &= PAGE_MASK;

2283
	address = dma_ops_alloc_iova(dev, dma_dom, pages, dma_mask);
2284 2285
	if (address == DMA_ERROR_CODE)
		goto out;
2286

2287
	prot = dir2prot(direction);
2288

2289 2290
	start = address;
	for (i = 0; i < pages; ++i) {
2291 2292 2293
		ret = iommu_map_page(&dma_dom->domain, start, paddr,
				     PAGE_SIZE, prot, GFP_ATOMIC);
		if (ret)
2294 2295
			goto out_unmap;

2296 2297 2298 2299 2300
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2301
	if (unlikely(amd_iommu_np_cache)) {
2302
		domain_flush_pages(&dma_dom->domain, address, size);
2303 2304
		domain_flush_complete(&dma_dom->domain);
	}
2305

2306 2307
out:
	return address;
2308 2309 2310 2311 2312

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2313
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2314 2315
	}

2316 2317 2318 2319
	domain_flush_tlb(&dma_dom->domain);
	domain_flush_complete(&dma_dom->domain);

	dma_ops_free_iova(dma_dom, address, pages);
2320

2321
	return DMA_ERROR_CODE;
2322 2323
}

2324 2325 2326 2327
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2328
static void __unmap_single(struct dma_ops_domain *dma_dom,
2329 2330 2331 2332
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2333
	dma_addr_t flush_addr;
2334 2335 2336
	dma_addr_t i, start;
	unsigned int pages;

2337
	flush_addr = dma_addr;
2338
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2339 2340 2341 2342
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2343
		iommu_unmap_page(&dma_dom->domain, start, PAGE_SIZE);
2344 2345 2346
		start += PAGE_SIZE;
	}

J
Joerg Roedel 已提交
2347 2348 2349 2350 2351 2352 2353
	if (amd_iommu_unmap_flush) {
		dma_ops_free_iova(dma_dom, dma_addr, pages);
		domain_flush_tlb(&dma_dom->domain);
		domain_flush_complete(&dma_dom->domain);
	} else {
		queue_add(dma_dom, dma_addr, pages);
	}
2354 2355
}

2356 2357 2358
/*
 * The exported map_single function for dma_ops.
 */
2359 2360 2361 2362
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2363
{
2364
	phys_addr_t paddr = page_to_phys(page) + offset;
2365
	struct protection_domain *domain;
2366
	u64 dma_mask;
2367

2368 2369
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2370
		return (dma_addr_t)paddr;
2371 2372
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2373

2374 2375
	dma_mask = *dev->dma_mask;

2376
	return __map_single(dev, domain->priv, paddr, size, dir, dma_mask);
2377 2378
}

2379 2380 2381
/*
 * The exported unmap_single function for dma_ops.
 */
2382 2383
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2384 2385 2386
{
	struct protection_domain *domain;

2387 2388
	domain = get_domain(dev);
	if (IS_ERR(domain))
2389 2390
		return;

2391
	__unmap_single(domain->priv, dma_addr, size, dir);
2392 2393
}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
static int sg_num_pages(struct device *dev,
			struct scatterlist *sglist,
			int nelems)
{
	unsigned long mask, boundary_size;
	struct scatterlist *s;
	int i, npages = 0;

	mask          = dma_get_seg_boundary(dev);
	boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
				   1UL << (BITS_PER_LONG - PAGE_SHIFT);

	for_each_sg(sglist, s, nelems, i) {
		int p, n;

		s->dma_address = npages << PAGE_SHIFT;
		p = npages % boundary_size;
		n = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);
		if (p + n > boundary_size)
			npages += boundary_size - p;
		npages += n;
	}

	return npages;
}

2420 2421 2422 2423
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2424
static int map_sg(struct device *dev, struct scatterlist *sglist,
2425
		  int nelems, enum dma_data_direction direction,
2426
		  struct dma_attrs *attrs)
2427
{
2428
	int mapped_pages = 0, npages = 0, prot = 0, i;
2429
	struct protection_domain *domain;
2430
	struct dma_ops_domain *dma_dom;
2431
	struct scatterlist *s;
2432
	unsigned long address;
2433
	u64 dma_mask;
2434

2435
	domain = get_domain(dev);
2436
	if (IS_ERR(domain))
2437
		return 0;
2438

2439
	dma_dom  = domain->priv;
2440
	dma_mask = *dev->dma_mask;
2441

2442 2443 2444 2445 2446 2447 2448 2449 2450
	npages = sg_num_pages(dev, sglist, nelems);

	address = dma_ops_alloc_iova(dev, dma_dom, npages, dma_mask);
	if (address == DMA_ERROR_CODE)
		goto out_err;

	prot = dir2prot(direction);

	/* Map all sg entries */
2451
	for_each_sg(sglist, s, nelems, i) {
2452 2453 2454 2455 2456
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr, phys_addr;
			int ret;
2457

2458 2459 2460 2461 2462
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			phys_addr = (sg_phys(s) & PAGE_MASK) + (j << PAGE_SHIFT);
			ret = iommu_map_page(domain, bus_addr, phys_addr, PAGE_SIZE, prot, GFP_ATOMIC);
			if (ret)
				goto out_unmap;
2463

2464 2465
			mapped_pages += 1;
		}
2466 2467
	}

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	/* Everything is mapped - write the right values into s->dma_address */
	for_each_sg(sglist, s, nelems, i) {
		s->dma_address += address + s->offset;
		s->dma_length   = s->length;
	}

	return nelems;

out_unmap:
	pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
	       dev_name(dev), npages);

	for_each_sg(sglist, s, nelems, i) {
		int j, pages = iommu_num_pages(sg_phys(s), s->length, PAGE_SIZE);

		for (j = 0; j < pages; ++j) {
			unsigned long bus_addr;
2485

2486 2487 2488 2489 2490 2491
			bus_addr  = address + s->dma_address + (j << PAGE_SHIFT);
			iommu_unmap_page(domain, bus_addr, PAGE_SIZE);

			if (--mapped_pages)
				goto out_free_iova;
		}
2492 2493
	}

2494 2495 2496 2497
out_free_iova:
	free_iova_fast(&dma_dom->iovad, address, npages);

out_err:
2498
	return 0;
2499 2500
}

2501 2502 2503 2504
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2505
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2506 2507
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2508 2509
{
	struct protection_domain *domain;
2510 2511
	unsigned long startaddr;
	int npages = 2;
2512

2513 2514
	domain = get_domain(dev);
	if (IS_ERR(domain))
2515 2516
		return;

2517 2518 2519 2520
	startaddr = sg_dma_address(sglist) & PAGE_MASK;
	npages    = sg_num_pages(dev, sglist, nelems);

	__unmap_single(domain->priv, startaddr, npages << PAGE_SHIFT, dir);
2521 2522
}

2523 2524 2525
/*
 * The exported alloc_coherent function for dma_ops.
 */
2526
static void *alloc_coherent(struct device *dev, size_t size,
2527 2528
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2529
{
2530
	u64 dma_mask = dev->coherent_dma_mask;
2531 2532
	struct protection_domain *domain;
	struct page *page;
2533

2534 2535
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2536 2537 2538
		page = alloc_pages(flag, get_order(size));
		*dma_addr = page_to_phys(page);
		return page_address(page);
2539 2540
	} else if (IS_ERR(domain))
		return NULL;
2541

2542
	size	  = PAGE_ALIGN(size);
2543 2544
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2545
	flag     |= __GFP_ZERO;
2546

2547 2548
	page = alloc_pages(flag | __GFP_NOWARN,  get_order(size));
	if (!page) {
2549
		if (!gfpflags_allow_blocking(flag))
2550
			return NULL;
2551

2552 2553 2554 2555 2556
		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
						 get_order(size));
		if (!page)
			return NULL;
	}
2557

2558 2559 2560
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2561
	*dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2562
				 size, DMA_BIDIRECTIONAL, dma_mask);
2563

2564
	if (*dma_addr == DMA_ERROR_CODE)
2565
		goto out_free;
2566

2567
	return page_address(page);
2568 2569 2570

out_free:

2571 2572
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2573 2574

	return NULL;
2575 2576
}

2577 2578 2579
/*
 * The exported free_coherent function for dma_ops.
 */
2580
static void free_coherent(struct device *dev, size_t size,
2581 2582
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2583 2584
{
	struct protection_domain *domain;
2585
	struct page *page;
2586

2587 2588 2589
	page = virt_to_page(virt_addr);
	size = PAGE_ALIGN(size);

2590 2591
	domain = get_domain(dev);
	if (IS_ERR(domain))
2592 2593
		goto free_mem;

2594
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2595 2596

free_mem:
2597 2598
	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
		__free_pages(page, get_order(size));
2599 2600
}

2601 2602 2603 2604 2605 2606
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2607
	return check_device(dev);
2608 2609
}

2610
static struct dma_map_ops amd_iommu_dma_ops = {
2611 2612 2613 2614 2615 2616 2617
	.alloc		= alloc_coherent,
	.free		= free_coherent,
	.map_page	= map_page,
	.unmap_page	= unmap_page,
	.map_sg		= map_sg,
	.unmap_sg	= unmap_sg,
	.dma_supported	= amd_iommu_dma_supported,
2618 2619
};

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
static int init_reserved_iova_ranges(void)
{
	struct pci_dev *pdev = NULL;
	struct iova *val;

	init_iova_domain(&reserved_iova_ranges, PAGE_SIZE,
			 IOVA_START_PFN, DMA_32BIT_PFN);

	lockdep_set_class(&reserved_iova_ranges.iova_rbtree_lock,
			  &reserved_rbtree_key);

	/* MSI memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(MSI_RANGE_START), IOVA_PFN(MSI_RANGE_END));
	if (!val) {
		pr_err("Reserving MSI range failed\n");
		return -ENOMEM;
	}

	/* HT memory range */
	val = reserve_iova(&reserved_iova_ranges,
			   IOVA_PFN(HT_RANGE_START), IOVA_PFN(HT_RANGE_END));
	if (!val) {
		pr_err("Reserving HT range failed\n");
		return -ENOMEM;
	}

	/*
	 * Memory used for PCI resources
	 * FIXME: Check whether we can reserve the PCI-hole completly
	 */
	for_each_pci_dev(pdev) {
		int i;

		for (i = 0; i < PCI_NUM_RESOURCES; ++i) {
			struct resource *r = &pdev->resource[i];

			if (!(r->flags & IORESOURCE_MEM))
				continue;

			val = reserve_iova(&reserved_iova_ranges,
					   IOVA_PFN(r->start),
					   IOVA_PFN(r->end));
			if (!val) {
				pr_err("Reserve pci-resource range failed\n");
				return -ENOMEM;
			}
		}
	}

	return 0;
}

2673
int __init amd_iommu_init_api(void)
2674
{
2675
	int ret, cpu, err = 0;
2676 2677 2678 2679

	ret = iova_cache_get();
	if (ret)
		return ret;
2680

2681 2682 2683 2684
	ret = init_reserved_iova_ranges();
	if (ret)
		return ret;

2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		queue->entries = kzalloc(FLUSH_QUEUE_SIZE *
					 sizeof(*queue->entries),
					 GFP_KERNEL);
		if (!queue->entries)
			goto out_put_iova;

		spin_lock_init(&queue->lock);
	}

2697 2698 2699 2700 2701 2702 2703 2704
	err = bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
	if (err)
		return err;
#ifdef CONFIG_ARM_AMBA
	err = bus_set_iommu(&amba_bustype, &amd_iommu_ops);
	if (err)
		return err;
#endif
2705 2706 2707
	err = bus_set_iommu(&platform_bus_type, &amd_iommu_ops);
	if (err)
		return err;
2708
	return 0;
2709 2710 2711 2712 2713 2714 2715 2716 2717

out_put_iova:
	for_each_possible_cpu(cpu) {
		struct flush_queue *queue = per_cpu_ptr(&flush_queue, cpu);

		kfree(queue->entries);
	}

	return -ENOMEM;
2718 2719
}

2720 2721
int __init amd_iommu_init_dma_ops(void)
{
2722 2723 2724
	setup_timer(&queue_timer, queue_flush_timeout, 0);
	atomic_set(&queue_timer_on, 0);

2725
	swiotlb        = iommu_pass_through ? 1 : 0;
2726 2727
	iommu_detected = 1;

2728 2729 2730 2731 2732 2733 2734 2735 2736
	/*
	 * In case we don't initialize SWIOTLB (actually the common case
	 * when AMD IOMMU is enabled), make sure there are global
	 * dma_ops set as a fall-back for devices not handled by this
	 * driver (for example non-PCI devices).
	 */
	if (!swiotlb)
		dma_ops = &nommu_dma_ops;

2737 2738 2739 2740 2741
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

2742
	return 0;
2743

2744
}
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2758
	struct iommu_dev_data *entry;
2759 2760 2761 2762
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2763 2764 2765 2766
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
2767
	}
2768 2769 2770 2771

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2772 2773 2774 2775 2776
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2777 2778
	del_domain_from_list(domain);

2779 2780 2781 2782 2783 2784
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
static int protection_domain_init(struct protection_domain *domain)
{
	spin_lock_init(&domain->lock);
	mutex_init(&domain->api_lock);
	domain->id = domain_id_alloc();
	if (!domain->id)
		return -ENOMEM;
	INIT_LIST_HEAD(&domain->dev_list);

	return 0;
}

2797
static struct protection_domain *protection_domain_alloc(void)
2798 2799 2800 2801 2802
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2803
		return NULL;
2804

2805
	if (protection_domain_init(domain))
2806 2807
		goto out_err;

2808 2809
	add_domain_to_list(domain);

2810 2811 2812 2813 2814 2815 2816 2817
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

2818
static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2819
{
2820
	struct protection_domain *pdomain;
2821
	struct dma_ops_domain *dma_domain;
2822

2823 2824 2825 2826 2827
	switch (type) {
	case IOMMU_DOMAIN_UNMANAGED:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2828

2829 2830 2831 2832 2833 2834
		pdomain->mode    = PAGE_MODE_3_LEVEL;
		pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
		if (!pdomain->pt_root) {
			protection_domain_free(pdomain);
			return NULL;
		}
2835

2836 2837 2838
		pdomain->domain.geometry.aperture_start = 0;
		pdomain->domain.geometry.aperture_end   = ~0ULL;
		pdomain->domain.geometry.force_aperture = true;
2839

2840 2841 2842 2843 2844 2845 2846 2847 2848
		break;
	case IOMMU_DOMAIN_DMA:
		dma_domain = dma_ops_domain_alloc();
		if (!dma_domain) {
			pr_err("AMD-Vi: Failed to allocate\n");
			return NULL;
		}
		pdomain = &dma_domain->domain;
		break;
2849 2850 2851 2852
	case IOMMU_DOMAIN_IDENTITY:
		pdomain = protection_domain_alloc();
		if (!pdomain)
			return NULL;
2853

2854 2855
		pdomain->mode = PAGE_MODE_NONE;
		break;
2856 2857 2858
	default:
		return NULL;
	}
2859

2860
	return &pdomain->domain;
2861 2862
}

2863
static void amd_iommu_domain_free(struct iommu_domain *dom)
2864
{
2865
	struct protection_domain *domain;
2866

2867
	if (!dom)
2868 2869
		return;

2870 2871
	domain = to_pdomain(dom);

2872 2873 2874 2875 2876
	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

2877 2878
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
2879

2880 2881 2882
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

2883
	protection_domain_free(domain);
2884 2885
}

2886 2887 2888
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
2889
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
2890
	struct amd_iommu *iommu;
2891
	int devid;
2892

2893
	if (!check_device(dev))
2894 2895
		return;

2896
	devid = get_device_id(dev);
2897
	if (devid < 0)
2898
		return;
2899

2900
	if (dev_data->domain != NULL)
2901
		detach_device(dev);
2902 2903 2904 2905 2906 2907 2908 2909

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

2910 2911 2912
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
2913
	struct protection_domain *domain = to_pdomain(dom);
2914
	struct iommu_dev_data *dev_data;
2915
	struct amd_iommu *iommu;
2916
	int ret;
2917

2918
	if (!check_device(dev))
2919 2920
		return -EINVAL;

2921 2922
	dev_data = dev->archdata.iommu;

2923
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2924 2925 2926
	if (!iommu)
		return -EINVAL;

2927
	if (dev_data->domain)
2928
		detach_device(dev);
2929

2930
	ret = attach_device(dev, domain);
2931 2932 2933

	iommu_completion_wait(iommu);

2934
	return ret;
2935 2936
}

2937
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2938
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
2939
{
2940
	struct protection_domain *domain = to_pdomain(dom);
2941 2942 2943
	int prot = 0;
	int ret;

2944 2945 2946
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

2947 2948 2949 2950 2951
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

2952
	mutex_lock(&domain->api_lock);
2953
	ret = iommu_map_page(domain, iova, paddr, page_size, prot, GFP_KERNEL);
2954 2955
	mutex_unlock(&domain->api_lock);

2956
	return ret;
2957 2958
}

2959 2960
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
2961
{
2962
	struct protection_domain *domain = to_pdomain(dom);
2963
	size_t unmap_size;
2964

2965 2966 2967
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

2968
	mutex_lock(&domain->api_lock);
2969
	unmap_size = iommu_unmap_page(domain, iova, page_size);
2970
	mutex_unlock(&domain->api_lock);
2971

2972
	domain_flush_tlb_pde(domain);
2973

2974
	return unmap_size;
2975 2976
}

2977
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2978
					  dma_addr_t iova)
2979
{
2980
	struct protection_domain *domain = to_pdomain(dom);
2981
	unsigned long offset_mask, pte_pgsize;
2982
	u64 *pte, __pte;
2983

2984 2985 2986
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

2987
	pte = fetch_pte(domain, iova, &pte_pgsize);
2988

2989
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
2990 2991
		return 0;

2992 2993
	offset_mask = pte_pgsize - 1;
	__pte	    = *pte & PM_ADDR_MASK;
2994

2995
	return (__pte & ~offset_mask) | (iova & offset_mask);
2996 2997
}

2998
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
2999
{
3000 3001
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3002
		return true;
3003
	case IOMMU_CAP_INTR_REMAP:
3004
		return (irq_remapping_enabled == 1);
3005 3006
	case IOMMU_CAP_NOEXEC:
		return false;
3007 3008
	}

3009
	return false;
S
Sheng Yang 已提交
3010 3011
}

3012 3013 3014 3015
static void amd_iommu_get_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct unity_map_entry *entry;
3016
	int devid;
3017 3018

	devid = get_device_id(dev);
3019
	if (devid < 0)
3020
		return;
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		struct iommu_dm_region *region;

		if (devid < entry->devid_start || devid > entry->devid_end)
			continue;

		region = kzalloc(sizeof(*region), GFP_KERNEL);
		if (!region) {
			pr_err("Out of memory allocating dm-regions for %s\n",
				dev_name(dev));
			return;
		}

		region->start = entry->address_start;
		region->length = entry->address_end - entry->address_start;
		if (entry->prot & IOMMU_PROT_IR)
			region->prot |= IOMMU_READ;
		if (entry->prot & IOMMU_PROT_IW)
			region->prot |= IOMMU_WRITE;

		list_add_tail(&region->list, head);
	}
}

static void amd_iommu_put_dm_regions(struct device *dev,
				     struct list_head *head)
{
	struct iommu_dm_region *entry, *next;

	list_for_each_entry_safe(entry, next, head, list)
		kfree(entry);
}

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
static void amd_iommu_apply_dm_region(struct device *dev,
				      struct iommu_domain *domain,
				      struct iommu_dm_region *region)
{
	struct protection_domain *pdomain = to_pdomain(domain);
	struct dma_ops_domain *dma_dom = pdomain->priv;
	unsigned long start, end;

	start = IOVA_PFN(region->start);
	end   = IOVA_PFN(region->start + region->length);

	WARN_ON_ONCE(reserve_iova(&dma_dom->iovad, start, end) == NULL);
}

3069
static const struct iommu_ops amd_iommu_ops = {
3070
	.capable = amd_iommu_capable,
3071 3072
	.domain_alloc = amd_iommu_domain_alloc,
	.domain_free  = amd_iommu_domain_free,
3073 3074
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3075 3076
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3077
	.map_sg = default_iommu_map_sg,
3078
	.iova_to_phys = amd_iommu_iova_to_phys,
3079 3080
	.add_device = amd_iommu_add_device,
	.remove_device = amd_iommu_remove_device,
3081
	.device_group = amd_iommu_device_group,
3082 3083
	.get_dm_regions = amd_iommu_get_dm_regions,
	.put_dm_regions = amd_iommu_put_dm_regions,
3084
	.apply_dm_region = amd_iommu_apply_dm_region,
3085
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3086 3087
};

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3110 3111 3112

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
3113
	struct protection_domain *domain = to_pdomain(dom);
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3131 3132 3133

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
3134
	struct protection_domain *domain = to_pdomain(dom);
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

3212 3213 3214 3215 3216 3217
		/*
		   There might be non-IOMMUv2 capable devices in an IOMMUv2
		 * domain.
		 */
		if (!dev_data->ats.enabled)
			continue;
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
3249
	struct protection_domain *domain = to_pdomain(dom);
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
3269
	struct protection_domain *domain = to_pdomain(dom);
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
3349
	struct protection_domain *domain = to_pdomain(dom);
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
3363
	struct protection_domain *domain = to_pdomain(dom);
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3391 3392 3393

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
3394
	struct protection_domain *pdomain;
3395

3396 3397
	pdomain = get_domain(&pdev->dev);
	if (IS_ERR(pdomain))
3398 3399 3400
		return NULL;

	/* Only return IOMMUv2 domains */
3401
	if (!(pdomain->flags & PD_IOMMUV2_MASK))
3402 3403
		return NULL;

3404
	return &pdomain->domain;
3405 3406
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

3486 3487 3488 3489 3490
struct irq_2_irte {
	u16 devid; /* Device ID for IRTE table */
	u16 index; /* Index into IRTE table*/
};

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
struct amd_ir_data {
	struct irq_2_irte			irq_2_irte;
	union irte				irte_entry;
	union {
		struct msi_msg			msi_entry;
	};
};

static struct irq_chip amd_ir_chip;

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3553 3554 3555
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3556 3557 3558 3559 3560 3561 3562
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3563
		table = NULL;
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3581
		set_dte_irq_entry(alias, table);
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

3594
static int alloc_irq_index(u16 devid, int count)
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;
			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

3678
static int get_devid(struct irq_alloc_info *info)
3679
{
3680
	int devid = -1;
3681

3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		devid     = get_ioapic_devid(info->ioapic_id);
		break;
	case X86_IRQ_ALLOC_TYPE_HPET:
		devid     = get_hpet_devid(info->hpet_id);
		break;
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
		break;
	default:
		BUG_ON(1);
		break;
	}
3697

3698 3699
	return devid;
}
3700

3701 3702 3703 3704
static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
{
	struct amd_iommu *iommu;
	int devid;
3705

3706 3707
	if (!info)
		return NULL;
3708

3709 3710 3711 3712 3713 3714
	devid = get_devid(info);
	if (devid >= 0) {
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->ir_domain;
	}
3715

3716
	return NULL;
3717 3718
}

3719
static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3720
{
3721 3722
	struct amd_iommu *iommu;
	int devid;
3723

3724 3725
	if (!info)
		return NULL;
3726

3727 3728 3729 3730
	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		devid = get_device_id(&info->msi_dev->dev);
3731
		if (devid < 0)
3732 3733
			return NULL;

3734 3735 3736
		iommu = amd_iommu_rlookup_table[devid];
		if (iommu)
			return iommu->msi_domain;
3737 3738 3739 3740
		break;
	default:
		break;
	}
3741

3742 3743
	return NULL;
}
3744

3745 3746 3747 3748 3749 3750
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
3751 3752 3753
	.get_ir_irq_domain	= get_ir_irq_domain,
	.get_irq_domain		= get_irq_domain,
};
3754

3755 3756 3757 3758 3759 3760 3761 3762 3763
static void irq_remapping_prepare_irte(struct amd_ir_data *data,
				       struct irq_cfg *irq_cfg,
				       struct irq_alloc_info *info,
				       int devid, int index, int sub_handle)
{
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	struct msi_msg *msg = &data->msi_entry;
	union irte *irte = &data->irte_entry;
	struct IO_APIC_route_entry *entry;
3764

3765 3766
	data->irq_2_irte.devid = devid;
	data->irq_2_irte.index = index + sub_handle;
3767

3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	/* Setup IRTE for IOMMU */
	irte->val = 0;
	irte->fields.vector      = irq_cfg->vector;
	irte->fields.int_type    = apic->irq_delivery_mode;
	irte->fields.destination = irq_cfg->dest_apicid;
	irte->fields.dm          = apic->irq_dest_mode;
	irte->fields.valid       = 1;

	switch (info->type) {
	case X86_IRQ_ALLOC_TYPE_IOAPIC:
		/* Setup IOAPIC entry */
		entry = info->ioapic_entry;
		info->ioapic_entry = NULL;
		memset(entry, 0, sizeof(*entry));
		entry->vector        = index;
		entry->mask          = 0;
		entry->trigger       = info->ioapic_trigger;
		entry->polarity      = info->ioapic_polarity;
		/* Mask level triggered irqs. */
		if (info->ioapic_trigger)
			entry->mask = 1;
		break;
3790

3791 3792 3793 3794 3795 3796 3797
	case X86_IRQ_ALLOC_TYPE_HPET:
	case X86_IRQ_ALLOC_TYPE_MSI:
	case X86_IRQ_ALLOC_TYPE_MSIX:
		msg->address_hi = MSI_ADDR_BASE_HI;
		msg->address_lo = MSI_ADDR_BASE_LO;
		msg->data = irte_info->index;
		break;
3798

3799 3800 3801 3802
	default:
		BUG_ON(1);
		break;
	}
3803 3804
}

3805 3806
static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs, void *arg)
3807
{
3808 3809 3810
	struct irq_alloc_info *info = arg;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
3811
	struct irq_cfg *cfg;
3812 3813
	int i, ret, devid;
	int index = -1;
3814

3815 3816 3817 3818
	if (!info)
		return -EINVAL;
	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
	    info->type != X86_IRQ_ALLOC_TYPE_MSIX)
3819 3820
		return -EINVAL;

3821 3822 3823 3824 3825 3826
	/*
	 * With IRQ remapping enabled, don't need contiguous CPU vectors
	 * to support multiple MSI interrupts.
	 */
	if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
		info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
3827

3828 3829 3830
	devid = get_devid(info);
	if (devid < 0)
		return -EINVAL;
3831

3832 3833 3834
	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
	if (ret < 0)
		return ret;
3835

3836 3837 3838 3839 3840 3841
	if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
		if (get_irq_table(devid, true))
			index = info->ioapic_pin;
		else
			ret = -ENOMEM;
	} else {
3842
		index = alloc_irq_index(devid, nr_irqs);
3843 3844 3845 3846 3847
	}
	if (index < 0) {
		pr_warn("Failed to allocate IRTE\n");
		goto out_free_parent;
	}
3848

3849 3850 3851 3852 3853 3854 3855
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		cfg = irqd_cfg(irq_data);
		if (!irq_data || !cfg) {
			ret = -EINVAL;
			goto out_free_data;
		}
3856

3857 3858 3859 3860 3861
		ret = -ENOMEM;
		data = kzalloc(sizeof(*data), GFP_KERNEL);
		if (!data)
			goto out_free_data;

3862 3863 3864 3865 3866 3867
		irq_data->hwirq = (devid << 16) + i;
		irq_data->chip_data = data;
		irq_data->chip = &amd_ir_chip;
		irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
	}
3868

3869
	return 0;
3870

3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
out_free_data:
	for (i--; i >= 0; i--) {
		irq_data = irq_domain_get_irq_data(domain, virq + i);
		if (irq_data)
			kfree(irq_data->chip_data);
	}
	for (i = 0; i < nr_irqs; i++)
		free_irte(devid, index + i);
out_free_parent:
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
	return ret;
3882 3883
}

3884 3885
static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
			       unsigned int nr_irqs)
3886
{
3887 3888 3889 3890
	struct irq_2_irte *irte_info;
	struct irq_data *irq_data;
	struct amd_ir_data *data;
	int i;
3891

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
	for (i = 0; i < nr_irqs; i++) {
		irq_data = irq_domain_get_irq_data(domain, virq  + i);
		if (irq_data && irq_data->chip_data) {
			data = irq_data->chip_data;
			irte_info = &data->irq_2_irte;
			free_irte(irte_info->devid, irte_info->index);
			kfree(data);
		}
	}
	irq_domain_free_irqs_common(domain, virq, nr_irqs);
}
3903

3904 3905 3906 3907 3908
static void irq_remapping_activate(struct irq_domain *domain,
				   struct irq_data *irq_data)
{
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
3909

3910
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
3911 3912
}

3913 3914
static void irq_remapping_deactivate(struct irq_domain *domain,
				     struct irq_data *irq_data)
3915
{
3916 3917 3918
	struct amd_ir_data *data = irq_data->chip_data;
	struct irq_2_irte *irte_info = &data->irq_2_irte;
	union irte entry;
3919

3920 3921 3922
	entry.val = 0;
	modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
}
3923

3924 3925 3926 3927 3928
static struct irq_domain_ops amd_ir_domain_ops = {
	.alloc = irq_remapping_alloc,
	.free = irq_remapping_free,
	.activate = irq_remapping_activate,
	.deactivate = irq_remapping_deactivate,
3929
};
3930

3931 3932 3933 3934 3935 3936 3937 3938
static int amd_ir_set_affinity(struct irq_data *data,
			       const struct cpumask *mask, bool force)
{
	struct amd_ir_data *ir_data = data->chip_data;
	struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
	struct irq_cfg *cfg = irqd_cfg(data);
	struct irq_data *parent = data->parent_data;
	int ret;
3939

3940 3941 3942
	ret = parent->chip->irq_set_affinity(parent, mask, force);
	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
		return ret;
3943

3944 3945 3946 3947 3948 3949 3950
	/*
	 * Atomically updates the IRTE with the new destination, vector
	 * and flushes the interrupt entry cache.
	 */
	ir_data->irte_entry.fields.vector = cfg->vector;
	ir_data->irte_entry.fields.destination = cfg->dest_apicid;
	modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
3951

3952 3953 3954 3955 3956
	/*
	 * After this point, all the interrupts will start arriving
	 * at the new destination. So, time to cleanup the previous
	 * vector allocation.
	 */
3957
	send_cleanup_vector(cfg);
3958 3959

	return IRQ_SET_MASK_OK_DONE;
3960 3961
}

3962
static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3963
{
3964
	struct amd_ir_data *ir_data = irq_data->chip_data;
3965

3966 3967
	*msg = ir_data->msi_entry;
}
3968

3969 3970 3971 3972 3973
static struct irq_chip amd_ir_chip = {
	.irq_ack = ir_ack_apic_edge,
	.irq_set_affinity = amd_ir_set_affinity,
	.irq_compose_msi_msg = ir_compose_msi_msg,
};
3974

3975 3976 3977 3978 3979
int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
{
	iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
	if (!iommu->ir_domain)
		return -ENOMEM;
3980

3981 3982
	iommu->ir_domain->parent = arch_get_ir_parent_domain();
	iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
3983 3984 3985

	return 0;
}
3986
#endif