nn.py 546.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode, dygraph_only, _dygraph_tracer, default_main_program
28
from .. import dygraph_utils
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
36
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48 49
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'chunk_eval',
    'conv2d',
    'conv3d',
    'softmax',
    'pool2d',
    'pool3d',
50 51
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
52
    'batch_norm',
L
lvmengsi 已提交
53
    'instance_norm',
H
heqiaozhi 已提交
54
    'data_norm',
X
Xin Pan 已提交
55 56 57 58 59 60 61
    'conv2d_transpose',
    'conv3d_transpose',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
62 63
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
64 65 66 67 68 69 70 71 72 73 74
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'transpose',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
75
    'group_norm',
D
dengkaipeng 已提交
76
    'spectral_norm',
X
Xin Pan 已提交
77 78 79 80 81 82 83
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
84
    'lod_append',
X
Xin Pan 已提交
85 86 87 88 89
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
90
    'roi_align',
X
Xin Pan 已提交
91 92 93 94
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
95
    'resize_trilinear',
96
    'resize_nearest',
X
Xin Pan 已提交
97
    'gather',
98
    'gather_nd',
X
Xin Pan 已提交
99
    'scatter',
100 101
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
102 103 104
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
105
    'selu',
X
Xin Pan 已提交
106 107
    'log',
    'crop',
108
    'crop_tensor',
X
Xin Pan 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'stack',
    'pad2d',
    'unstack',
Z
zhoukunsheng 已提交
123
    'unique',
124
    'unique_with_counts',
X
Xin Pan 已提交
125
    'expand',
126
    'expand_as',
X
Xin Pan 已提交
127 128 129 130 131 132 133 134
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
135 136
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
137 138 139 140 141 142
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
143
    'strided_slice',
X
Xin Pan 已提交
144
    'shape',
Z
zhoukunsheng 已提交
145
    'rank',
Z
zhoukunsheng 已提交
146
    'size',
X
Xin Pan 已提交
147 148 149 150 151 152 153 154 155
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'maxout',
J
JiabinYang 已提交
156
    'space_to_depth',
W
whs 已提交
157
    'affine_grid',
158
    'affine_channel',
B
barrierye 已提交
159
    'similarity_focus',
M
minqiyang 已提交
160
    'hash',
D
dengkaipeng 已提交
161
    'grid_sampler',
G
gmcather 已提交
162 163
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
164
    'bilinear_tensor_product',
C
chengduo 已提交
165 166
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
S
shippingwang 已提交
167
    'shuffle_channel',
168
    'temporal_shift',
S
sneaxiy 已提交
169
    'py_func',
170
    'psroi_pool',
171
    'prroi_pool',
R
ruri 已提交
172
    'pixel_shuffle',
173
    'fsp_matrix',
H
heqiaozhi 已提交
174
    'continuous_value_model',
Z
zhoukunsheng 已提交
175
    'where',
Z
zhoukunsheng 已提交
176
    'sign',
177
    'deformable_conv',
178
    'unfold',
C
cjt222 已提交
179
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
180
    'filter_by_instag',
181
    'shard_index',
H
huangjun12 已提交
182
    'hard_swish',
G
Guo Sheng 已提交
183
    'gather_tree',
184
    'uniform_random',
Y
Yu Yang 已提交
185 186 187
]


188 189 190 191 192 193 194 195
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
196
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
197

198 199
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)
200 201


Y
Yu Yang 已提交
202 203 204 205 206 207
def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
208
       name=None):
Y
Yu Yang 已提交
209
    """
210
    **Fully Connected Layer**
Y
Yu Yang 已提交
211

212 213 214
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
215
    which represents a fully connected weight matrix from each input unit to
216 217 218 219
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
220
    is not None, a bias variable will be created and added to the output.
221
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
222

223
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
224

225 226 227 228
    .. math::

        Out = Act({XW + b})

229
    When the input is a list of Tensor(or LoDTensor):
230 231 232

    .. math::

233
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
234 235 236

    In the above equation:

237 238 239
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
240
    * :math:`b`: The bias parameter created by this layer (if needed).
241
    * :math:`Act`: The activation function.
242
    * :math:`Out`: The output Tensor.
243 244 245

    .. code-block:: text

246 247 248 249 250 251 252 253 254 255 256 257 258 259
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
260 261 262 263 264 265 266 267 268 269 270 271 272
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
273
    Args:
274 275 276
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
277
        size(int): The number of output units in this layer, which also means the feature size of output
278 279
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
280
            two dimensions. If this happens, the multidimensional tensor will first be flattened
281 282
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
283
            dimensions will be flatten to form the first dimension of the final matrix (height of
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
299 300

    Raises:
301
        ValueError: If dimensions of the input Tensor is less than 2.
302 303 304 305

    Examples:
        .. code-block:: python

306
          import paddle.fluid as fluid
307
          # when input is single tensor
308
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
309
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
310 311

          # when input are multiple tensors
312 313
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
314
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
315
    """
C
caoying03 已提交
316
    helper = LayerHelper("fc", **locals())
317
    check_type(input, 'input', (list, tuple, Variable), 'fc')
318 319
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
320
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
321
    dtype = helper.input_dtype()
322
    check_dtype(dtype, 'input', ['float16', 'float32', 'float64'], 'fc')
Y
Yu Yang 已提交
323
    mul_results = []
324 325
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
326 327
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
328 329 330
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
331

Y
Yu Yang 已提交
332
        w = helper.create_parameter(
333
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
334
        tmp = helper.create_variable_for_type_inference(dtype)
335
        helper.append_op(
336 337 338
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
339
            outputs={"Out": tmp},
M
mozga-intel 已提交
340 341
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
342 343 344 345
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
346
    else:
X
Xin Pan 已提交
347
        pre_bias = helper.create_variable_for_type_inference(dtype)
348
        helper.append_op(
349 350 351
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
352
            attrs={"use_mkldnn": False})
353 354 355 356
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
357 358


359 360 361
def embedding(input,
              size,
              is_sparse=False,
362
              is_distributed=False,
363 364 365
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
366
    """
367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , 
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
        
        Case 2:
405

406 407 408 409 410 411 412 413 414 415 416 417 418 419
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
420 421

    Args:
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
445
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
446 447 448
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
449

450
    Returns:
451
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
452

453 454
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
455

B
bdzhuxiaoning 已提交
456
          import paddle.fluid as fluid
457 458 459
          import numpy as np
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
460
          # example 1
461 462 463 464 465 466 467 468 469 470
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')   
Y
Yu Yang 已提交
471 472 473
    """

    helper = LayerHelper('embedding', **locals())
474 475
    check_variable_and_dtype(input, 'input', ['int64'],
                             'fluid.layers.embedding')
476 477
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fluid.layers.embedding')
478
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
479 480
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
481 482
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
483
    tmp = helper.create_variable_for_type_inference(dtype)
484 485
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
486 487 488 489 490
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
491 492 493
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
494
            'remote_prefetch': remote_prefetch,
495 496
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
497 498 499
    return tmp


500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
def _pull_sparse(input,
                 size,
                 table_id,
                 accessor_class,
                 name="embedding",
                 ctr_label_name="",
                 padding_id=0,
                 dtype='float32',
                 scale_sparse_grad=True):
    """
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
        'is_distributed': True
    }
    # this is only for compatible with embedding op
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True)
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs,
                'W': w},
        outputs={'Out': outs},
        attrs=attrs)
    if len(outs) == 1:
        return outs[0]
    return outs


def _pull_sparse_v2(input,
                    size,
                    table_id,
                    accessor_class,
                    name="embedding",
                    ctr_label_name="",
                    padding_id=0,
                    dtype='float32',
                    scale_sparse_grad=True):
    """
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
        'is_distributed': True
    }
    # this is only for compatible with embedding op
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True)
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs,
                'W': w},
        outputs={'Out': outs},
        attrs=attrs)
    if len(outs) == 1:
        return outs[0]
    return outs


H
hutuxian 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
690
@templatedoc()
691
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
692 693 694 695 696 697
    """
    Linear Chain CRF.

    ${comment}

    Args:
698
        input(${emission_type}): ${emission_comment} 
Y
yuyang18 已提交
699
        label(${label_type}): ${label_comment}
700
        Length(${length_type}): ${length_comment}
701
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
702 703

    Returns:
D
dzhwinter 已提交
704 705
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
706
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
707

J
JesseyXujin 已提交
708 709 710
    Examples:
        .. code-block:: python

711 712 713 714 715 716 717
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
718 719
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
742 743 744
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
745 746 747 748 749 750
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
751
                     name='crfw',
752 753 754 755 756 757
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
758

759 760 761
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
762
            ll=np.array([[3],[3],[4],[2]])
763 764 765
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
766 767 768 769 770
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

771 772 773
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
774
            
Y
yuyang18 已提交
775
    """
Y
Yu Yang 已提交
776
    helper = LayerHelper('linear_chain_crf', **locals())
777
    size = input.shape[2] if length else input.shape[1]
Y
Yu Yang 已提交
778 779 780 781
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
782 783 784 785 786 787 788 789
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
790 791 792 793 794 795
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
796
        this_inputs['Length'] = [length]
Y
Yu Yang 已提交
797 798
    helper.append_op(
        type='linear_chain_crf',
799
        inputs=this_inputs,
Y
Yu Yang 已提交
800 801 802 803 804 805 806 807 808 809
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
810
@templatedoc()
811
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
812 813
    """
    ${comment}
Y
yi.wu 已提交
814

W
wopeizl 已提交
815 816
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
817

Y
Yibing Liu 已提交
818 819 820
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Y
yuyang18 已提交
821

Y
Yibing Liu 已提交
822
        label(${label_type}, optional): ${label_comment}
823
        
Y
Yibing Liu 已提交
824
        length(${length_type}, optional): ${length_comment}
825

W
wopeizl 已提交
826 827
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
828

W
wopeizl 已提交
829 830
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
831

832
           import paddle.fluid as fluid
833 834 835

           # LoDTensor-based example
           num_labels = 10
Y
Yibing Liu 已提交
836 837
           feature = fluid.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = fluid.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
838 839 840
           emission = fluid.layers.fc(input=feature, size=num_labels)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, 
Y
Yibing Liu 已提交
841
                     param_attr=fluid.ParamAttr(name="crfw"))
842
           crf_decode = fluid.layers.crf_decoding(input=emission, 
Y
Yibing Liu 已提交
843
                     param_attr=fluid.ParamAttr(name="crfw"))
844 845 846

           # Common tensor example
           num_labels, max_len = 10, 20
Y
Yibing Liu 已提交
847 848 849
           feature = fluid.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = fluid.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = fluid.data(name='length', shape=[-1, 1], dtype='int64')
850 851 852 853 854 855 856
           emission = fluid.layers.fc(input=feature, size=num_labels,
                                      num_flatten_dims=2)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, length=length, 
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
           crf_decode = fluid.layers.crf_decoding(input=emission, length=length,
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
857 858 859 860 861
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
862 863 864
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
W
wopeizl 已提交
865 866
    helper.append_op(
        type='crf_decoding',
867
        inputs=inputs,
W
wopeizl 已提交
868
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
869

W
wopeizl 已提交
870
    return viterbi_path
Y
Yu Yang 已提交
871 872


Y
yi.wu 已提交
873
@templatedoc()
F
fengjiayi 已提交
874
def cos_sim(X, Y):
Y
Yu Yang 已提交
875
    """
Y
yi.wu 已提交
876 877 878
    ${comment}

    Args:
879 880
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
881

Y
yi.wu 已提交
882
    Returns:
L
lvmengsi 已提交
883
        A Variable holding LoDTensor representing the output of cosine(X, Y).
L
lvmengsi 已提交
884 885 886 887

    Examples:
        .. code-block:: python

888
            import paddle.fluid as fluid
L
lvmengsi 已提交
889 890
            x = fluid.data(name='x', shape=[3, 7], dtype='float32')
            y = fluid.data(name='y', shape=[1, 7], dtype='float32')
L
lvmengsi 已提交
891
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
892
    """
F
fengjiayi 已提交
893
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
894 895 896
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
897 898 899 900 901 902 903 904 905 906
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
907 908 909 910 911
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
912
            dropout_implementation="downgrade_in_infer"):
913 914 915 916 917
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
918
    training. The dropout operator randomly sets (according to the given dropout
919 920 921
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
922 923
    dropout op can be removed from the program to make the program more efficient.

924
    Args:
L
lvmengsi 已提交
925
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
926
        dropout_prob (float): Probability of setting units to zero.
927 928 929 930
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
931
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
932 933
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
934 935
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
936
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
937 938

                                           - train: out = input * mask
C
ceci3 已提交
939
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
940 941 942

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
943
                                        2. upscale_in_train, upscale the outcome at training time
944

H
haowang101779990 已提交
945 946
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
947

H
haowang101779990 已提交
948 949
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
950

M
minqiyang 已提交
951

952
    Returns:
L
lvmengsi 已提交
953
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
954 955

    Examples:
956

957 958
        .. code-block:: python

959
            import paddle.fluid as fluid
L
lvmengsi 已提交
960
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
961
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
962 963
    """

964 965 966 967 968 969 970 971 972 973 974 975 976
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

    if in_dygraph_mode():
977 978 979 980 981 982 983 984 985 986
        if (seed is None or
                seed == 0) and default_main_program().random_seed != 0:
            seed = default_main_program().random_seed
        seed = seed if seed is not None else 0
        _is_test = not _dygraph_tracer()._train_mode
        out, mask = core.ops.dropout(x, 'dropout_prob', dropout_prob, 'is_test',
                                     _is_test, 'fix_seed', seed is not None,
                                     'seed', seed, 'dropout_implementation',
                                     dropout_implementation)
        return out
987

F
fengjiayi 已提交
988
    helper = LayerHelper('dropout', **locals())
989 990
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'dropout')
991

X
Xin Pan 已提交
992 993
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
994
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
995

996
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
997

998 999 1000 1001 1002
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1003
        attrs=attrs)
1004 1005 1006
    return out


Y
yi.wu 已提交
1007
@templatedoc()
Y
Yu Yang 已提交
1008 1009 1010 1011
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1012 1013
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1014
    """
G
Guo Sheng 已提交
1015 1016
    This operator computes the precision, recall and F1-score for chunk detection.
    It is often used in sequence tagging tasks, such as Named Entity Recognition(NER).
Y
yi.wu 已提交
1017

M
minqiyang 已提交
1018
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1019
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1020

G
Guo Sheng 已提交
1021 1022
    This operator supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example for the usage of these tagging schemes:
Y
yi.wu 已提交
1023 1024

    .. code-block:: python
1025

Y
yi.wu 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
G
Guo Sheng 已提交
1036
    and LOC(location), and we can see that the labels have the form `<tag type>-<chunk type>` .
Y
yi.wu 已提交
1037

G
Guo Sheng 已提交
1038 1039 1040
    Since the implementation of this operator actually uses label ids rather than
    label strings, to make it work, there should be a way to map label ids to
    tag types and chunk types. This operator uses the following way to do mapping:
Y
yi.wu 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1051

Y
yi.wu 已提交
1052 1053 1054 1055 1056 1057
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

G
Guo Sheng 已提交
1058 1059
    Accordingly, in the above NER example, if the tagging scheme is IOB and chunk
    types are ORG, PER and LOC, then the label ids would be as follows:
Y
yi.wu 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

G
Guo Sheng 已提交
1071 1072
    With which we can map each label id to the corresponding tag type and chunk
    type correctly.
Y
yi.wu 已提交
1073

Y
yi.wu 已提交
1074
    Args:
G
Guo Sheng 已提交
1075 1076 1077 1078 1079 1080
        input (Variable): A Tensor or LoDTensor, representing the predicted labels
            from the network. When it is a Tensor, its shape would be `[N, M, 1]`,
            where `N` stands for batch size, `M` for sequence length; When it is
            a LoDTensor, its shape would be `[N, 1]` where `N` stands for the total
            sequence lengths in this mini-batch. The data type should be int64.
        label (Variable): A Tensor or LoDTensor representing the ground-truth labels.
T
tianshuo78520a 已提交
1081
            It should have the same shape, lod and data type as ``input`` .
G
Guo Sheng 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090
        chunk_scheme (str): Indicate the tagging schemes used here. The value must
            be IOB, IOE, IOBES or plain.
        num_chunk_types (int): The number of chunk types.
        excluded_chunk_types (list, optional): Indicate the chunk types shouldn't
            be taken into account. It should be a list of chunk type ids(integer).
            Default None.
        seq_length(Variable, optional): A 1D Tensor containing the length of each
            sequence when ``input`` and ``label`` are Tensor. It needn't be
            provided if ``input`` and ``label`` are LoDTensor. Default None.
F
fengjiayi 已提交
1091

Y
yi.wu 已提交
1092
    Returns:
G
Guo Sheng 已提交
1093 1094 1095 1096
        tuple: A tuple including precision, recall, F1-score, chunk number detected, \
            chunk number in ground-truth, chunk number correctly detected. Each \
            is a Tensor with shape `[1]`. The data type of precision, recall and \
            F1-score all is float32, and the others' data type all is int64.
1097

Y
yi.wu 已提交
1098 1099 1100
    Examples:
        .. code-block:: python

1101 1102 1103 1104
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
G
Guo Sheng 已提交
1105 1106 1107
            sequence = fluid.data(
                name='id', shape=[-1, 1], lod_level=1, dtype='int64')
            embedding = fluid.embedding(
1108 1109 1110 1111
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1112
            crf = fluid.layers.linear_chain_crf(
1113
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1114
            crf_decode = fluid.layers.crf_decoding(
1115
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1116 1117 1118 1119 1120
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1121
    """
F
fengjiayi 已提交
1122
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1123 1124

    # prepare output
X
Xin Pan 已提交
1125 1126 1127 1128 1129 1130 1131
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1132

1133 1134 1135 1136 1137
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1138 1139
    helper.append_op(
        type="chunk_eval",
1140
        inputs=this_input,
Y
Yu Yang 已提交
1141 1142 1143
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1144 1145 1146 1147
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1148 1149 1150
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1151 1152
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1153
        })
1154 1155
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1156 1157


1158
def softmax(input, use_cudnn=False, name=None, axis=-1):
Y
Yu Yang 已提交
1159
    """
1160
    This operator implements the softmax layer. The calculation process is as follows:
1161

1162
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1163
    
1164 1165 1166 1167 1168 1169 1170
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1171

1172 1173
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2 
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1174

1175 1176 1177 1178 1179
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1180

1181
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1182

1183
    .. math::
1184

1185
        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
1186

1187
    Example:
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]] 

Q
qiaolongfei 已提交
1234
    Args:
1235 1236
        input (Variable): The input variable. A multi-dimension ``Tensor`` with type float32 or float64.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
T
tianshuo78520a 已提交
1237
            library is installed. To improve numerical stability, set use_cudnn to \
1238 1239
            False by default.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1240
            will be named automatically. Default: None.
1241
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1242
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
1243
            input variable. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1244 1245

    Returns:
1246
        Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1247 1248 1249 1250 1251

    Examples:

        .. code-block:: python

1252 1253
            import paddle.fluid as fluid
            import numpy as np
Q
qiaolongfei 已提交
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263
            data = fluid.data(name="input", shape=[-1, 3],dtype="float32")
            result = fluid.layers.softmax(data,axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 3).astype("float32")
            output= exe.run(feed={"input": x},
                             fetch_list=[result[0]])
            print(output)
Q
qiaolongfei 已提交
1264
    """
1265 1266

    if in_dygraph_mode():
1267 1268 1269 1270
        return core.ops.softmax(input, 'axis', axis, 'use_cudnn', use_cudnn)

    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}
1271

1272
    helper = LayerHelper('softmax', **locals())
1273 1274
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'softmax')
1275

1276
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1277
    softmax_out = helper.create_variable_for_type_inference(dtype)
1278 1279 1280 1281
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
1282
        attrs=attrs)
1283 1284 1285
    return softmax_out


Y
Yu Yang 已提交
1286 1287 1288
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1289 1290
           stride=1,
           padding=0,
1291
           dilation=1,
Y
Yu Yang 已提交
1292 1293 1294
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1295
           use_cudnn=True,
1296
           act=None,
L
liym27 已提交
1297 1298
           name=None,
           data_format="NCHW"):
Y
Yu Yang 已提交
1299
    """
C
chengduoZH 已提交
1300
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1301
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1302
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1303
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1304 1305 1306 1307 1308 1309
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1310
    for more details.
1311 1312 1313
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1314

1315
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1316

C
chengduoZH 已提交
1317 1318
    .. math::

C
refine  
chengduoZH 已提交
1319
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1320

T
tensor-tang 已提交
1321
    Where:
C
chengduoZH 已提交
1322

L
liym27 已提交
1323
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1324 1325 1326 1327
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1328
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1329 1330 1331

    Example:

1332 1333
        - Input:

W
weixing02 已提交
1334
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1335

W
weixing02 已提交
1336
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1337

1338
        - Output:
T
tensor-tang 已提交
1339

W
weixing02 已提交
1340
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1341

C
chengduoZH 已提交
1342
        Where
1343 1344

        .. math::
C
chengduoZH 已提交
1345

W
weixing02 已提交
1346 1347
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1348 1349

    Args:
L
lvmengsi 已提交
1350 1351
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type 
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1352
        num_filters(int): The number of filter. It is as same as the output
1353
            image channel.
1354 1355
        filter_size (int|tuple): The filter size. If filter_size 
            is a tuple, it must contain two integers, (filter_size_height, 
L
lvmengsi 已提交
1356 1357 1358 1359 1360 1361
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
        stride (int|tuple): The stride size. It means the stride in convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1362
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1363 1364
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
L
lvmengsi 已提交
1365 1366 1367
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1368 1369 1370
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1371 1372 1373 1374
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a tuple, it must contain two integers, (dilation_height, 
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1375 1376 1377 1378
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1379 1380 1381 1382 1383
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1384
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1385 1386 1387 1388 1389
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1390 1391
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1392 1393
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
L
lvmengsi 已提交
1394 1395 1396
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1397 1398
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1399 1400
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1401 1402

    Returns:
L
lvmengsi 已提交
1403 1404 1405 1406
        A Variable holding Tensor representing the conv2d, whose data type is the 
        same with input. If act is None, the tensor variable storing the convolution 
        result, and if act is not None, the tensor variable storing convolution 
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1421 1422 1423
    Examples:
        .. code-block:: python

1424
          import paddle.fluid as fluid
L
lvmengsi 已提交
1425
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
1426
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1427 1428
    """

1429 1430
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'conv2d')
1431
    num_channels = input.shape[1]
L
liym27 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NHWC")
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduo 已提交
1447
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1448

1449
    l_type = 'conv2d'
X
xzl 已提交
1450 1451
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1452
        l_type = 'depthwise_conv2d'
1453 1454 1455 1456

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1457 1458 1459 1460
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1461
            raise ValueError(
1462 1463 1464
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
                ", the groups is {}".format(num_channels, input.shape, groups))
M
minqiyang 已提交
1465
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1466

C
chengduoZH 已提交
1467 1468
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1469
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1470

L
liym27 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1494 1495 1496
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1511
            padding = [0, 0]
L
liym27 已提交
1512 1513
        elif padding == "SAME":
            padding_algorithm = "SAME"
1514
            padding = [0, 0]
L
liym27 已提交
1515 1516

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1517

M
minqiyang 已提交
1518
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1519 1520

    def _get_default_param_initializer():
C
chengduo 已提交
1521 1522
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1523 1524 1525 1526 1527 1528 1529 1530
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1531
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1532 1533

    helper.append_op(
1534
        type=l_type,
Y
Yu Yang 已提交
1535 1536 1537 1538 1539
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1540 1541 1542
        attrs={
            'strides': stride,
            'paddings': padding,
1543
            'dilations': dilation,
C
chengduoZH 已提交
1544
            'groups': groups,
1545
            'use_cudnn': use_cudnn,
1546
            'use_mkldnn': False,
L
liym27 已提交
1547 1548 1549
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1550
        })
Y
Yu Yang 已提交
1551

1552 1553 1554 1555
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1556 1557 1558 1559

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
L
liym27 已提交
1571 1572
           name=None,
           data_format="NCDHW"):
C
chengduoZH 已提交
1573 1574 1575
    """
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
L
liym27 已提交
1576
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
1577 1578 1579 1580 1581
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1582 1583 1584 1585 1586 1587 1588 1589 1590

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

L
liym27 已提交
1591
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
1592
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1593 1594 1595
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1596
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
L
lvmengsi 已提交
1618 1619
        input (Variable): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
            type of input is float16 or float32 or float64.
1620
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
1621
            image channel.
1622 1623 1624 1625
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height, 
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
L
lvmengsi 已提交
1626 1627 1628 1629
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a 
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
T
tianshuo78520a 已提交
1630
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
L
liym27 已提交
1631 1632 1633 1634 1635 1636 1637 1638
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1639 1640 1641 1642
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
chengduoZH 已提交
1643 1644 1645 1646 1647
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1658 1659
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1660 1661
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
L
lvmengsi 已提交
1662 1663 1664
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1665 1666 1667 1668
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1669 1670

    Returns:
L
lvmengsi 已提交
1671 1672 1673 1674
        A Variable holding Tensor representing the conv3d, whose data type is 
        the same with input. If act is None, the tensor variable storing the 
        convolution result, and if act is not None, the tensor variable storing 
        convolution and non-linearity activation result.
C
chengduoZH 已提交
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1689 1690 1691
    Examples:
        .. code-block:: python

1692
          import paddle.fluid as fluid
L
lvmengsi 已提交
1693
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
1694
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1695 1696 1697
    """

    l_type = 'conv3d'
C
chengduo 已提交
1698
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1699 1700 1701
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

L
liym27 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NDHWC")
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduoZH 已提交
1717 1718 1719 1720 1721

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1722 1723 1724 1725
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)." %
                (str(num_channels), str(groups)))
M
minqiyang 已提交
1726
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1727 1728 1729 1730 1731

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

L
liym27 已提交
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
1754 1755
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1756 1757
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
1758 1759
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1774
            padding = [0, 0, 0]
L
liym27 已提交
1775 1776
        elif padding == "SAME":
            padding_algorithm = "SAME"
1777
            padding = [0, 0, 0]
L
liym27 已提交
1778 1779

    padding = _update_padding(padding, data_format)
C
chengduoZH 已提交
1780 1781 1782 1783 1784

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1785 1786 1787
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1788 1789 1790 1791 1792 1793 1794 1795
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1796
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
L
liym27 已提交
1811 1812 1813
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1814 1815
        })

1816 1817 1818 1819
    if data_format == 'NCDHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
C
chengduoZH 已提交
1820 1821 1822 1823

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1824
@templatedoc()
Y
Yu Yang 已提交
1825
def pool2d(input,
C
chengduoZH 已提交
1826 1827
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1828 1829
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1830
           global_pooling=False,
C
chengduoZH 已提交
1831
           use_cudnn=True,
1832
           ceil_mode=False,
1833
           name=None,
1834 1835
           exclusive=True,
           data_format="NCHW"):
Y
Yu Yang 已提交
1836
    """
F
fengjiayi 已提交
1837
    ${comment}
1838 1839

    Args:
K
Kaipeng Deng 已提交
1840 1841 1842 1843 1844
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1845
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1846 1847
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1848
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1849 1850 1851
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1852 1853 1854 1855 1856 1857 1858
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1859
            Otherwise, the pool padding size will be a square of an int.
1860 1861 1862
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1863 1864 1865
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1866
        exclusive (bool): Whether to exclude padding points in average pooling
1867 1868 1869 1870
                          mode, default is `true`.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1871

1872
    Returns:
K
Kaipeng Deng 已提交
1873
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1874 1875

    Raises:
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1888 1889 1890 1891 1892

    Examples:

        .. code-block:: python

1893
          import paddle.fluid as fluid
1894

K
Kaipeng Deng 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1938 1939 1940
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1941
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
1942
            str(pool_type))
C
chengduoZH 已提交
1943

C
chengduoZH 已提交
1944 1945
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1946 1947 1948 1949
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received pool_size: %s." % str(pool_size))

    if not isinstance(use_cudnn, bool):
1950 1951
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s." % str(use_cudnn))
1952 1953 1954 1955 1956

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
C
chengduoZH 已提交
1957

C
chengduoZH 已提交
1958 1959 1960
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1983

1984 1985
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2000
            pool_padding = [0, 0]
2001 2002 2003 2004 2005 2006
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2007
            pool_padding = [0, 0]
2008 2009 2010 2011 2012

    pool_padding = update_padding(pool_padding, data_format)

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2013
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2014
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2015 2016

    helper.append_op(
2017
        type=op_type,
2018 2019 2020 2021 2022 2023 2024 2025
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
2026
            "padding_algorithm": padding_algorithm,
2027 2028
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2029 2030
            "use_mkldnn": False,
            "exclusive": exclusive,
2031
            "data_format": data_format,
2032 2033 2034 2035 2036
        })

    return pool_out


D
dengkaipeng 已提交
2037
@templatedoc()
2038 2039 2040 2041 2042 2043 2044 2045
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2046
           name=None,
2047 2048
           exclusive=True,
           data_format="NCDHW"):
2049
    """
2050
    ${comment}
2051 2052

    Args:
K
Kaipeng Deng 已提交
2053 2054
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of
2055 2056 2057
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
2058
                          of the feature.
D
dengkaipeng 已提交
2059 2060 2061 2062 2063
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
2075 2076 2077
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
2078 2079 2080
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2081
        exclusive (bool): Whether to exclude padding points in average pooling
2082 2083 2084 2085
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
2086

2087
    Returns:
K
Kaipeng Deng 已提交
2088
        Variable: The output tensor of pooling result. The data type is same as input tensor.
D
dengkaipeng 已提交
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
    Raises:
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

D
dengkaipeng 已提交
2103 2104 2105 2106
    Examples:

        .. code-block:: python

2107
          import paddle.fluid as fluid
2108

K
Kaipeng Deng 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
          data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')

          # max pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
2157 2158 2159
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
2160
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
2161
            str(pool_type))
C
chengduoZH 已提交
2162

C
chengduoZH 已提交
2163 2164
    if global_pooling is False and pool_size == -1:
        raise ValueError(
2165 2166 2167 2168 2169
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received Attr(pool_size): %s." %
            str(pool_size))

    if not isinstance(use_cudnn, bool):
2170 2171
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s. " % str(use_cudnn))
2172 2173 2174 2175 2176

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s" % str(data_format))
C
chengduoZH 已提交
2177

2178 2179
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
2203 2204
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2205 2206 2207

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
2208 2209
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2224
            pool_padding = [0, 0, 0]
2225 2226 2227 2228 2229 2230
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2231
            pool_padding = [0, 0, 0]
2232 2233 2234 2235 2236

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2237
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2238
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2239 2240

    helper.append_op(
2241
        type=op_type,
Y
Yu Yang 已提交
2242 2243 2244 2245 2246 2247 2248
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2249
            "paddings": pool_padding,
2250
            "padding_algorithm": padding_algorithm,
2251
            "use_cudnn": use_cudnn,
2252
            "ceil_mode": ceil_mode,
2253 2254
            "use_mkldnn": False,
            "exclusive": exclusive,
2255
            "data_format": data_format,
Y
Yu Yang 已提交
2256 2257 2258 2259 2260
        })

    return pool_out


2261 2262 2263 2264 2265 2266 2267
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2268
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2269 2270 2271 2272
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
K
Kaipeng Deng 已提交
2273
    is same as Parameter(pool_size). The output tensor shape will be [N, C, pool_size[0], pool_size[1]]
2274

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2288 2289

    Args:
K
Kaipeng Deng 已提交
2290 2291 2292 2293 2294
        input (Variable): The input tensor of pooling operator, which is a 4-D tensor
                          with shape [N, C, H, W].  The format of input tensor is NCHW,
                          where N is batch size, C is the number of channels, H is the
                          height of the feature, and W is the width of the feature.
                          The data type is float32 or float64.
2295 2296 2297
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2298
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2299 2300 2301 2302
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2303 2304

    Returns:
K
Kaipeng Deng 已提交
2305 2306
        Variable: The output tensor of adaptive pooling result. The data type is same 
                  as input tensor.
2307 2308 2309 2310 2311 2312 2313 2314 2315

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2316
          # average adaptive pool2d
M
minqiyang 已提交
2317
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2318
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
M
minqiyang 已提交
2319
          # of input data into m * n grids averagely and performs poolings in each
2320 2321
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2322
          #
2323 2324 2325 2326 2327 2328 2329 2330
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2331
          import paddle.fluid as fluid
K
Kaipeng Deng 已提交
2332
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2333
          pool_out = fluid.layers.adaptive_pool2d(
2334 2335
                            input=data,
                            pool_size=[3, 3],
2336
                            pool_type='avg')
K
Kaipeng Deng 已提交
2337 2338 2339

          # max adaptive pool2d
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2340
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
K
Kaipeng Deng 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
          # of input data into m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle.fluid as fluid
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool2d(
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max')
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2369
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2395
    return (pool_out, mask) if require_index else pool_out
2396 2397 2398 2399 2400 2401 2402 2403 2404


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2405
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2406 2407 2408 2409
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
K
Kaipeng Deng 已提交
2410 2411
    dimensions of output(Out) is same as Parameter(pool_size). The output tensor shape
    will be [N, C, pool_size[0], pool_size[1], pool_size[2]]
2412

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2430 2431

    Args:
K
Kaipeng Deng 已提交
2432 2433 2434
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with 
                          shape [N, C, D, H, W]. The format of input tensor is NCDHW, where
                          N is batch size, C is the number of channels, D is the depth of the feature,
D
dengkaipeng 已提交
2435
                          H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
2436
                          The data type is float32 or float64.
2437
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2438
            it must contain three integers, (Depth, Height, Width).
2439
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2440
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2441 2442 2443 2444
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2445 2446

    Returns:
K
Kaipeng Deng 已提交
2447
        Variable: The output tensor of adaptive pooling result. The data type is same as input tensor.
2448 2449 2450 2451 2452 2453 2454 2455 2456

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2457
          # average adaptive pool3d
2458
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2459
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
M
minqiyang 已提交
2460
          # of input data into l * m * n grids averagely and performs poolings in each
2461 2462
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2463
          #
2464 2465 2466 2467 2468 2469 2470 2471 2472
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2473
          #                 output[:, :, i, j, k] =
2474 2475
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2476 2477 2478

          import paddle.fluid as fluid

K
Kaipeng Deng 已提交
2479 2480
          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
2481
          pool_out = fluid.layers.adaptive_pool3d(
2482
                            input=data,
D
dengkaipeng 已提交
2483
                            pool_size=[3, 3, 3],
2484
                            pool_type='avg')
K
Kaipeng Deng 已提交
2485 2486 2487

          # max adaptive pool3d
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2488
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
K
Kaipeng Deng 已提交
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
          # of input data into l * m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] =
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #

          import paddle.fluid as fluid

          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
                            input=data,
                            pool_size=[3, 3, 3],
                            pool_type='max')
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2524
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2550
    return (pool_out, mask) if require_index else pool_out
2551 2552


Y
Yu Yang 已提交
2553 2554 2555 2556 2557 2558 2559
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2560
               data_layout='NCHW',
Y
Yang Yang 已提交
2561
               in_place=False,
2562 2563
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2564
               moving_variance_name=None,
2565
               do_model_average_for_mean_and_var=True,
2566
               use_global_stats=False):
Y
Yu Yang 已提交
2567
    """
Q
qiaolongfei 已提交
2568 2569
    **Batch Normalization Layer**

L
lvmengsi 已提交
2570
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
2571
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2572

Q
qiaolongfei 已提交
2573
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2574

Q
qiaolongfei 已提交
2575 2576
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2577 2578 2579
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2592

L
lvmengsi 已提交
2593 2594 2595
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum) 

2596

L
lvmengsi 已提交
2597
    moving_mean is global mean and moving_var is global variance.
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
2611 2612 2613
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.
2614
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
2615

2616
    Args:
2617
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
L
lvmengsi 已提交
2618
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
2619
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2620 2621
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
2622 2623 2624
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
2625 2626 2627 2628 2629
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2630 2631
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
2632 2633 2634
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
2635 2636
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
2637 2638 2639
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
2640 2641 2642 2643
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
2644
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
L
lvmengsi 已提交
2645 2646 2647
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
2648 2649
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
L
lvmengsi 已提交
2650
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
2651 2652
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
2653 2654
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
2655 2656 2657 2658 2659
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2660 2661

    Returns:
L
lvmengsi 已提交
2662 2663
        A Variable holding Tensor which is the result after applying batch normalization on the input, 
        has same shape and data type with input. 
Q
qiaolongfei 已提交
2664 2665 2666 2667 2668

    Examples:

        .. code-block:: python

2669
            import paddle.fluid as fluid
L
lvmengsi 已提交
2670
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
Q
qiaolongfei 已提交
2671 2672
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

        .. code-block:: python

            # batch_norm with momentum as Variable
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            def get_decay_momentum(momentum_init, decay_steps, decay_rate):
                global_step = lr_scheduler._decay_step_counter()
                momentum = fluid.layers.create_global_var(
		    shape=[1],
		    value=float(momentum_init),
		    dtype='float32',
		    # set persistable for save checkpoints and resume
		    persistable=True,
		    name="momentum")
                div_res = global_step / decay_steps
                decayed_momentum = momentum_init * (decay_rate**div_res)
                fluid.layers.assign(decayed_momentum, momentum)

                return momentum

            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            momentum = get_decay_momentum(0.9, 1e5, 0.9)
            hidden2 = fluid.layers.batch_norm(input=hidden1, momentum=momentum)

Y
Yu Yang 已提交
2700
    """
C
chengduo 已提交
2701
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2702 2703
    helper = LayerHelper('batch_norm', **locals())

2704 2705
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'batch_norm')
2706
    dtype = helper.input_dtype()
2707 2708 2709 2710 2711 2712 2713

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

W
Wu Yi 已提交
2714 2715 2716 2717
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
2736
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2737

2738 2739
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2740 2741 2742
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2743
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2744
        shape=param_shape,
W
Wu Yi 已提交
2745
        dtype=dtype)
2746 2747 2748 2749 2750 2751
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2752
            trainable=False,
W
wanghaoshuang 已提交
2753
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2754
        shape=param_shape,
W
Wu Yi 已提交
2755
        dtype=dtype)
2756
    variance.stop_gradient = True
Y
Yu Yang 已提交
2757 2758 2759 2760 2761 2762

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2763 2764 2765 2766
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2767

2768 2769 2770 2771 2772
    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

X
Xin Pan 已提交
2773 2774
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2775

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

Y
Yu Yang 已提交
2806
    helper.append_op(
2807
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
Y
Yu Yang 已提交
2808 2809 2810 2811

    return helper.append_activation(batch_norm_out)


L
lvmengsi 已提交
2812 2813 2814 2815 2816 2817 2818 2819
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

L
lvmengsi 已提交
2820
    Can be used as a normalizer function for convolution or fully_connected operations.
L
lvmengsi 已提交
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
L
lvmengsi 已提交
2834
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2835
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
L
lvmengsi 已提交
2836
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2837 2838 2839 2840
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

L
lvmengsi 已提交
2841 2842
    Note:
        `H` means height of feature map, `W` means width of feature map.
L
lvmengsi 已提交
2843 2844

    Args:
L
lvmengsi 已提交
2845 2846
        input(variable): The rank of input variable can be 2, 3, 4, 5. 
            The data type is float32 or float64.
L
lvmengsi 已提交
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
L
lvmengsi 已提交
2863 2864
        A Variable holding Tensor which is the result after applying instance normalization on the input, 
        has same shape and data type with input. 
L
lvmengsi 已提交
2865 2866 2867 2868 2869 2870

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
L
lvmengsi 已提交
2871
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
L
lvmengsi 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
2935
              do_model_average_for_mean_and_var=True,
H
hutuxian 已提交
2936 2937 2938
              slot_dim=-1,
              sync_stats=False,
              summary_decay_rate=0.9999999):
H
heqiaozhi 已提交
2939 2940 2941
    """
    **Data Normalization Layer**

2942
    This op can be used as a normalizer function for conv2d and fully_connected operations.
H
heqiaozhi 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
2966 2967 2968 2969
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
H
heqiaozhi 已提交
2970 2971 2972 2973 2974
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
2975 2976
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
2977 2978 2979 2980 2981 2982 2983
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we 
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot 
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate 
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
H
hutuxian 已提交
2984 2985 2986
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
H
heqiaozhi 已提交
2987 2988 2989 2990 2991 2992 2993

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
2994 2995
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
2996

2997
            hidden1 = fluid.data(name="hidden1", shape=[64, 200])
2998
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
H
hutuxian 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        attrs={
            "epsilon": epsilon,
            "slot_dim": slot_dim,
            "sync_stats": sync_stats,
            "summary_decay_rate": summary_decay_rate
        })
H
heqiaozhi 已提交
3075 3076 3077 3078

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3079
@templatedoc()
G
guosheng 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
3090 3091 3092 3093
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
3094 3095 3096

    The formula is as follows:

Y
yuyang18 已提交
3097
    ..  math::
G
guosheng 已提交
3098

3099
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
3100

3101
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
3102

3103
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
3104

3105 3106 3107 3108 3109
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3110

G
guosheng 已提交
3111
    Args:
3112 3113 3114 3115 3116 3117
        input(Variable): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
3118
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
3119 3120 3121 3122
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
3123 3124
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3125
            a default :code:`ParamAttr` would be added as scale. The
3126 3127
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
3128 3129
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3130
            a default :code:`ParamAttr` would be added as bias. The
3131
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
3132
        act(str, optional): Activation to be applied to the output of layer normalization.
3133 3134
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
3135 3136

    Returns:
3137
        Variable: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
3138 3139 3140

    Examples:

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            x = fluid.data(name='x', shape=[-1, 32, 32], dtype='float32')
            hidden1 = fluid.layers.layer_norm(input=x, begin_norm_axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            np_x = np.random.random(size=(8, 3, 32, 32)).astype('float32')
            output = exe.run(feed={"x": np_x}, fetch_list = [hidden1])
            print(output)
G
guosheng 已提交
3153
    """
L
lujun 已提交
3154
    assert in_dygraph_mode(
3155
    ) is not True, "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
3156 3157 3158 3159 3160 3161 3162 3163
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
3164
        assert param_attr is not False, "param_attr should not be False when using scale."
G
guosheng 已提交
3165 3166 3167 3168 3169 3170
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
3171 3172
    else:
        if param_attr:
T
tianshuo78520a 已提交
3173
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
3174
    if shift:
3175
        assert bias_attr is not False, "bias_attr should not be False when using shift."
G
guosheng 已提交
3176 3177 3178
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias
3179 3180
    else:
        if bias_attr:
T
tianshuo78520a 已提交
3181
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
3182 3183

    # create output
X
Xin Pan 已提交
3184 3185 3186 3187 3188
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3216
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3217

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
    Parameters:
        input(Variable): 4-D Tensor, the data type is float32 or float64.
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
T
tianshuo78520a 已提交
3232
        act(str, optional): Activation to be applied to the output of group normalization.
3233 3234 3235 3236
        data_layout(str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
3237 3238
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .
D
Dun 已提交
3239 3240

    Returns:
3241 3242 3243 3244
        Variable: A 4-D Tensor has same data type and data format with `input`.

    Raises:
        ValueError: If `data_layout` is neither 'NCHW' nor 'NHWC'.
3245 3246 3247 3248 3249 3250
        ValueError: If `groups` is greater than the number of input channels.
        ValueError: If `groups` is less than 1.
        ShapeError: If the param_attr(Scale) is not 1-D Tensor.
        ShapeError: If the param_attr(Scale)'s first dimension size is not equal to the input channels.
        ShapeError: If the bias_attr(Bias) is not 1-D Tensor.
        ShapeError: If the bias_attr(Bias)'s first dimension size is not equal to the input channels.
D
Dun 已提交
3251 3252

    Examples:
3253
       .. code-block:: python
D
Dun 已提交
3254

3255 3256 3257
            import paddle.fluid as fluid
            data = fluid.data(name='data', shape=[None, 8, 32, 32], dtype='float32')
            x = fluid.layers.group_norm(input=data, groups=4)
D
Dun 已提交
3258 3259 3260 3261 3262 3263 3264
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3265 3266 3267 3268 3269 3270
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3284 3285
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3296 3297 3298 3299 3300
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3301 3302 3303 3304 3305

    return helper.append_activation(group_norm_out)


@templatedoc()
3306
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3307 3308 3309
    """
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
3310
    This operation calculates the spectral normalization value of weight parameters of
3311
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
3312 3313
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
3314

D
dengkaipeng 已提交
3315 3316 3317
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3318
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3319 3320

    Step 2:
T
tianshuo78520a 已提交
3321
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
3322 3323
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
3324 3325 3326 3327 3328 3329 3330 3331

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3332
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3333 3334 3335 3336

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3337

D
dengkaipeng 已提交
3338
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3339 3340
                

D
dengkaipeng 已提交
3341 3342 3343 3344
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3345 3346 3347
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
3348 3349 3350
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
3351 3352

    Returns:
D
dengkaipeng 已提交
3353
        Variable: A tensor variable of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
3354
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
3355 3356

    Examples:
K
Kaipeng Deng 已提交
3357
       .. code-block:: python
D
dengkaipeng 已提交
3358

K
Kaipeng Deng 已提交
3359 3360
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
3361
            weight = fluid.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
3362
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3363 3364
    """
    helper = LayerHelper('spectral_norm', **locals())
3365
    dtype = weight.dtype
D
dengkaipeng 已提交
3366 3367 3368

    # create intput and parameters
    inputs = {'Weight': weight}
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3387 3388

    # create output
3389
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3390 3391

    helper.append_op(
3392
        type="spectral_norm",
D
Dun 已提交
3393
        inputs=inputs,
3394 3395 3396 3397 3398 3399
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3400

3401
    return out
D
Dun 已提交
3402 3403


Y
Yu Yang 已提交
3404 3405 3406 3407
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3408 3409 3410
                     padding=0,
                     stride=1,
                     dilation=1,
3411
                     groups=None,
C
caoying03 已提交
3412
                     param_attr=None,
3413
                     bias_attr=None,
C
chengduoZH 已提交
3414
                     use_cudnn=True,
3415
                     act=None,
3416 3417
                     name=None,
                     data_format='NCHW'):
Y
Yu Yang 已提交
3418
    """
3419 3420
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3421
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
3422 3423 3424
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3425
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3426
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3427 3428 3429
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3430 3431 3432 3433 3434

    For each input :math:`X`, the equation is:

    .. math::

3435
        Out = \sigma (W \\ast X + b)
3436

3437
    Where:
3438

3439 3440
    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
3441
    * :math:`\\ast`: Convolution operation.
3442
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3443
    * :math:`\\sigma`: Activation function.
3444
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3445

3446 3447 3448 3449
    Example:

        - Input:

3450
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3451

3452
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3453 3454 3455

        - Output:

3456
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3457 3458

        Where
Y
Yu Yang 已提交
3459

3460 3461
        .. math::

3462 3463
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3464
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
3465 3466
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

L
lvmengsi 已提交
3467
    Note:
L
lvmengsi 已提交
3468 3469 3470 3471
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
L
lvmengsi 已提交
3472 3473 3474 3475
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3476 3477

    Args:
3478 3479
        input(Variable): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
                         its data type is float32 or float64.
3480 3481
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3482
        output_size(int|tuple, optional): The output image size. If output size is a
3483
            tuple, it must contain two integers, (image_height, image_width). None if use
3484
            filter_size, padding, and stride to calculate output_size.
L
lvmengsi 已提交
3485 3486 3487
            If output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and filter_size 
            should not be None at the same time.
3488
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
3489 3490
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
L
lvmengsi 已提交
3491 3492 3493 3494 3495 3496 3497
            use output size to calculate filter_size. Default: None. filter_size and 
            output_size should not be None at the same time.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
3498 3499 3500 3501 3502 3503 3504 3505 3506
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in three forms:
             `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
            when `data_format` is `'NCHW'`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NHWC'`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3507 3508 3509 3510 3511 3512 3513
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). 
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
            use output size to calculate filter_size. Default: None.
3514
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
3515 3516 3517 3518
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3519
            Default: groups = 1.
3520
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3521 3522 3523
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3524
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
C
chengduo 已提交
3525 3526 3527 3528
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3529
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3530
            library is installed. Default: True.
3531
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3532
            Default: None.
L
lvmengsi 已提交
3533 3534 3535
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3536 3537 3538 3539
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3540 3541

    Returns:
L
lvmengsi 已提交
3542 3543 3544 3545 3546 3547
        A Variable holding Tensor representing the conv2d_transpose, whose 
        data type is the same with input and shape is (num_batches, channels, out_h, 
        out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor variable 
        storing the transposed convolution result, and if act is not None, the 
        tensor variable storing transposed convolution and non-linearity activation 
        result.
3548 3549

    Raises:
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3561 3562 3563 3564

    Examples:
       .. code-block:: python

3565
          import paddle.fluid as fluid
L
lvmengsi 已提交
3566
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
3567
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3568
    """
C
chengduo 已提交
3569
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3570 3571 3572 3573
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received "
            + data_format + " but only NCHW or NHWC supported.")
3574

3575
    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
3576 3577 3578 3579 3580 3581
    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3582 3583 3584
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3585 3586
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3587

C
chengduoZH 已提交
3588 3589
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3590

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

Y
Yu Yang 已提交
3634 3635 3636 3637 3638
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3639

3640 3641
        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
G
guosheng 已提交
3642

3643 3644 3645 3646
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3647
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3648 3649 3650
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3651

3652 3653 3654
    if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
        padding = [padding[0], padding[2]]

3655 3656 3657 3658 3659 3660
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
3661
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3662
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3663

Y
Yu Yang 已提交
3664 3665 3666
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3667
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3668
    helper.append_op(
3669
        type=op_type,
Y
Yu Yang 已提交
3670 3671
        inputs={'Input': [input],
                'Filter': [img_filter]},
3672
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3673
        attrs={
3674
            'output_size': output_size,
3675 3676
            'strides': stride,
            'paddings': padding,
3677
            'padding_algorithm': padding_algorithm,
3678 3679
            'dilations': dilation,
            'groups': groups,
3680 3681
            'use_cudnn': use_cudnn,
            'data_format': data_format
Y
Yu Yang 已提交
3682 3683
        })

3684 3685 3686 3687
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
3688 3689
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3690 3691


3692
def conv3d_transpose(input,
Y
Yu Yang 已提交
3693 3694 3695
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3696 3697 3698
                     padding=0,
                     stride=1,
                     dilation=1,
3699
                     groups=None,
C
caoying03 已提交
3700
                     param_attr=None,
3701
                     bias_attr=None,
C
chengduoZH 已提交
3702
                     use_cudnn=True,
3703
                     act=None,
3704 3705
                     name=None,
                     data_format='NCDHW'):
Y
Yu Yang 已提交
3706
    """
3707
    The convolution3D transpose layer calculates the output based on the input,
3708
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3709
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
3710 3711 3712 3713
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3714
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3715 3716 3717
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3718 3719 3720 3721 3722

    For each input :math:`X`, the equation is:

    .. math::

3723
        Out = \sigma (W \\ast X + b)
3724 3725 3726

    In the above equation:

3727 3728
    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
3729
    * :math:`\\ast`: Convolution operation.
3730
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3731 3732
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3733

3734 3735 3736 3737
    Example:

        - Input:

3738
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3739

3740
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3741 3742 3743

        - Output:

3744
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3745 3746

        Where
Y
Yu Yang 已提交
3747

3748 3749
        .. math::

L
lvmengsi 已提交
3750 3751 3752 3753 3754 3755
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Y
Yu Yang 已提交
3756

L
lvmengsi 已提交
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771
    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

    Args:
        input(Variable): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
            of input is float32 or float64.
3772 3773
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3774
        output_size(int|tuple, optional): The output image size. If output size is a
L
lvmengsi 已提交
3775 3776 3777 3778
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are 
            specified at the same time, They should follow the formula above. Default: None. 
            Output_size and filter_size should not be None at the same time.
3779
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
L
lvmengsi 已提交
3780
            it must contain three integers, (filter_size_depth, filter_size_height,
3781 3782
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
L
lvmengsi 已提交
3783 3784 3785 3786
            calculate filter_size. Default: None. filter_size and output_size should not be 
            None at the same time.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
3787 3788 3789 3790 3791 3792 3793 3794
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3795 3796 3797 3798 3799 3800 3801 3802
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, 
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
3803
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
3804 3805 3806 3807 3808
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
3809
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3810 3811 3812
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3813
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
C
chengduo 已提交
3814 3815 3816 3817
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3818
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
3819
            library is installed. Default: True
3820
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3821
            Default: None.
L
lvmengsi 已提交
3822 3823 3824
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3825 3826 3827 3828
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3829 3830

    Returns:
L
lvmengsi 已提交
3831 3832 3833 3834 3835
        A Variable holding Tensor representing the conv3d_transpose, whose data 
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.
3836 3837

    Raises:
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3849 3850 3851 3852

    Examples:
       .. code-block:: python

3853
          import paddle.fluid as fluid
L
lvmengsi 已提交
3854
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
3855
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3856
    """
C
chengduo 已提交
3857
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3858 3859 3860 3861
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
            + data_format + " but only NCDHW or NDHWC supported.")
3862 3863
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3864
    if not isinstance(input, Variable):
3865
        raise TypeError("Input of conv3d_transpose must be Variable")
3866 3867
    input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
        -1]
Y
Yu Yang 已提交
3868

3869 3870
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3871

C
chengduoZH 已提交
3872 3873 3874
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
3889 3890 3891 3892 3893 3894 3895 3896
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
3897

3898 3899
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
3900

3901 3902 3903 3904 3905 3906 3907
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0], padding[0], padding[1], padding[1], padding[2],
                padding[2]
            ]
        return padding
G
Guo Sheng 已提交
3908

3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]
G
Guo Sheng 已提交
3922

3923
    padding = _update_padding(padding, data_format)
Y
yangyaming 已提交
3924

3925 3926 3927 3928 3929
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
Y
yangyaming 已提交
3930

3931 3932 3933
        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
Y
yangyaming 已提交
3934

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
                         padding[5] - 1) // dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
yangyaming 已提交
3945

3946 3947
    if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
        padding = [padding[0], padding[2], padding[4]]
Y
yangyaming 已提交
3948

3949 3950 3951 3952
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters // groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
3953

3954 3955 3956 3957
    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'
Y
yangyaming 已提交
3958

3959
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
yangyaming 已提交
3960
    helper.append_op(
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        })
Y
yangyaming 已提交
3974

3975 3976 3977 3978 3979 3980
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
    out = helper.append_activation(pre_act)
    return out
G
guosheng 已提交
3981 3982


C
caoying03 已提交
3983
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3984
    """
Y
yangyaming 已提交
3985
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3986 3987

    Args:
3988 3989 3990
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3991 3992
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3993 3994
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3995
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3996
            output Tensor. The result tensor will have one fewer dimension
3997 3998 3999 4000
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
4001 4002

    Returns:
4003 4004
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
4005

4006 4007 4008
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
4009 4010 4011
    Examples:
        .. code-block:: python

4012
            import paddle.fluid as fluid
G
guosheng 已提交
4013 4014 4015
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4016
            # Each example is followed by the corresponding output tensor.
4017
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
4018 4019 4020 4021
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4022

4023
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4024 4025
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4026
            # Each example is followed by the corresponding output tensor.
4027
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4028 4029
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4030

G
guosheng 已提交
4031
    """
4032 4033
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4034 4035 4036 4037 4038 4039

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        return core.ops.reduce_sum(input, 'dim', dim, 'keep_dim', keep_dim,
                                   'reduce_all', reduce_all)
4040
    attrs = {
4041
        'dim': dim if dim != None and dim != [] else [0],
4042
        'keep_dim': keep_dim,
4043
        'reduce_all': True if dim == None or dim == [] else False
4044
    }
4045 4046
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_sum')
4047
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4048
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4049 4050 4051 4052
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
4053
        attrs=attrs)
G
guosheng 已提交
4054
    return out
G
guosheng 已提交
4055 4056


C
caoying03 已提交
4057
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4058
    """
Y
Yibing Liu 已提交
4059
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4060 4061

    Args:
4062 4063 4064
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
4065 4066
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4067
            must be in the range :math:`[-rank(input), rank(input))`. If
4068
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4069
            :math:`rank(input) + dim[i]`.
4070
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4071
            output Tensor. The result tensor will have one fewer dimension
4072 4073 4074 4075 4076
            than the :attr:`input` unless :attr:`keep_dim` is true, default 
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
G
guosheng 已提交
4077
    Returns:
4078 4079 4080 4081 4082 4083
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
4084 4085 4086
    Examples:
        .. code-block:: python

4087
            import paddle.fluid as fluid
G
guosheng 已提交
4088 4089 4090
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4091
            # Each example is followed by the corresponding output tensor.
4092
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
4093 4094 4095
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4096
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4097

4098
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4099 4100
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4101
            # Each example is followed by the corresponding output tensor.
4102
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4103 4104
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4105
    """
4106 4107 4108

    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4109 4110 4111 4112 4113 4114

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        return core.ops.reduce_mean(input, 'dim', dim, 'keep_dim', keep_dim,
                                    'reduce_all', reduce_all)
4115
    attrs = {
4116
        'dim': dim if dim != None and dim != [] else [0],
4117
        'keep_dim': keep_dim,
4118
        'reduce_all': True if dim == None or dim == [] else False
4119
    }
4120 4121
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_mean')
4122
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4123
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4124 4125 4126 4127
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
4128
        attrs=attrs)
G
guosheng 已提交
4129
    return out
4130 4131


C
caoying03 已提交
4132
def reduce_max(input, dim=None, keep_dim=False, name=None):
4133
    """
Y
yangyaming 已提交
4134
    Computes the maximum of tensor elements over the given dimension.
4135 4136

    Args:
4137 4138 4139
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4140 4141 4142
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4143
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4144
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4145
            output Tensor. The result tensor will have one fewer dimension
4146 4147 4148 4149
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4150 4151

    Returns:
4152 4153
        Variable: Tensor, results of maximum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4154

4155 4156 4157
    Examples:
        .. code-block:: python

4158
            import paddle.fluid as fluid
4159 4160 4161
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4162
            # Each example is followed by the corresponding output tensor.
4163
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4164 4165 4166 4167
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4168

4169
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4170 4171
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4172
            # Each example is followed by the corresponding output tensor.
4173
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4174 4175
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4176 4177
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4178
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4179 4180
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4181 4182 4183 4184 4185
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4186
            'dim': dim if dim != None and dim != [] else [0],
4187
            'keep_dim': keep_dim,
4188
            'reduce_all': True if dim == None or dim == [] else False
4189 4190 4191 4192
        })
    return out


C
caoying03 已提交
4193
def reduce_min(input, dim=None, keep_dim=False, name=None):
4194
    """
Y
yangyaming 已提交
4195
    Computes the minimum of tensor elements over the given dimension.
4196 4197

    Args:
4198 4199 4200
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4201 4202 4203
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4204
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4205
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4206
            output Tensor. The result tensor will have one fewer dimension
4207 4208 4209 4210
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4211 4212

    Returns:
4213 4214
        Variable: Tensor, result of minimum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4215

4216 4217 4218
    Examples:
        .. code-block:: python

4219
            import paddle.fluid as fluid
4220 4221 4222
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4223
            # Each example is followed by the corresponding output tensor.
4224
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4225 4226 4227 4228
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4229

4230
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4231 4232
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4233
            # Each example is followed by the corresponding output tensor.
4234
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4235 4236
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4237 4238
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4239
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4240 4241
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4242 4243 4244 4245 4246
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4247
            'dim': dim if dim != None and dim != [] else [0],
4248
            'keep_dim': keep_dim,
4249
            'reduce_all': True if dim == None or dim == [] else False
4250 4251
        })
    return out
G
guosheng 已提交
4252 4253


4254 4255 4256 4257 4258
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
4259 4260 4261
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the product is performed. If
T
tianshuo78520a 已提交
4262
            :attr:`None`, multiply all elements of :attr:`input` and return a
4263
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4264 4265
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4266
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
4267
            output Tensor. The result tensor will have one fewer dimension
4268 4269 4270 4271
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4272 4273

    Returns:
4274 4275 4276
        Variable: Tensor, result of product on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
4277 4278 4279
    Examples:
        .. code-block:: python

4280
            import paddle.fluid as fluid
4281 4282 4283
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4284
            # Each example is followed by the corresponding output tensor.
4285
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4286 4287 4288
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4289
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4290
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4291

4292
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4293 4294
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4295
            # Each example is followed by the corresponding output tensor.
4296
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4297 4298
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4299 4300
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4301
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4302 4303
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4304 4305 4306 4307 4308
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4309
            'dim': dim if dim != None and dim != [] else [0],
4310
            'keep_dim': keep_dim,
4311
            'reduce_all': True if dim == None or dim == [] else False
4312 4313 4314 4315
        })
    return out


Z
zhoukunsheng 已提交
4316 4317
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
4318
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4319 4320

    Args:
4321 4322
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
4323 4324 4325
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4326
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4327 4328
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4329
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4330
        name(str|None): A name for this layer(optional). If set None, the layer
4331
                       will be named automatically. The default value is None. 
Z
zhoukunsheng 已提交
4332

4333 4334
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
4335 4336 4337

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4338
        
4339
            import paddle.fluid as fluid
4340 4341 4342
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4343 4344 4345
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4346 4347 4348 4349 4350 4351
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
4352 4353
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4354
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
4355
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4367
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4368
            'keep_dim': keep_dim,
4369
            'reduce_all': True if dim == None or dim == [] else False
Z
zhoukunsheng 已提交
4370 4371 4372 4373 4374 4375
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
4376
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4377 4378

    Args:
4379 4380 4381
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
4382 4383
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4384
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4385 4386
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4387
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4388 4389
        name(str|None): A name for this layer(optional). If set None, the layer

4390 4391
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
4392 4393 4394

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4395

4396
            import paddle.fluid as fluid
4397 4398 4399
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4400 4401 4402
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
4403 4404 4405 4406 4407 4408
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
4409 4410
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4411
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
4412
                                     keep_dim=True)  # [[True], [False]]
4413
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4425
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4426
            'keep_dim': keep_dim,
4427
            'reduce_all': True if dim == None or dim == [] else False
4428 4429 4430 4431
        })
    return out


C
caoying03 已提交
4432
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4433
    """
4434
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
4435 4436

    Args:
4437
        input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
4438
        num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
4439 4440
            then the integer indicates the number of equal sized sub-Tensors
            that the Tensor will be divided into. If :attr:`num_or_sections`
4441 4442 4443 4444 4445
            is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
        dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
            dimension to split along is :math:`rank(input) + dim`. Default is -1.
4446
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
4447 4448

    Returns:
4449
        list(Variable): The list of segmented Tensor variables.
G
guosheng 已提交
4450

4451 4452 4453 4454
    Raises:
        TypeError: num_or_sections is not int, list or tuple.
        TypeError: dim is not int or Variable.

4455
    Example:
G
guosheng 已提交
4456 4457
        .. code-block:: python

4458 4459
            import paddle.fluid as fluid

4460 4461
            # input is a variable which shape is [3, 9, 5]
            input = fluid.data(
4462 4463
                 name="input", shape=[3, 9, 5], dtype="float32")

4464 4465 4466 4467
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # x0.shape [3, 3, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 3, 5]
4468

4469 4470 4471 4472 4473 4474 4475 4476 4477
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]
G
guosheng 已提交
4478
    """
4479
    if in_dygraph_mode():
4480 4481 4482
        num = None
        attrs = ()

S
songyouwei 已提交
4483 4484 4485 4486 4487 4488
        if isinstance(dim, Variable):
            dim = dim.numpy()
            assert dim.shape == (1,
                                 ), "dim of type Variable should have shape [1]"
            dim = dim[0]
        dim = (len(input.shape) + dim) if dim < 0 else dim
4489
        attrs += ('axis', dim)
4490 4491 4492

        if isinstance(num_or_sections, int):
            num = num_or_sections
4493
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
4494
        elif isinstance(num_or_sections, (list, tuple)):
4495
            num = len(num_or_sections)
L
Leo Chen 已提交
4496
            if utils._contain_var(num_or_sections):
4497
                raise TypeError(
L
Leo Chen 已提交
4498 4499 4500 4501
                    "The type of 'num_or_sections' in split must be int or list[int] or tuple[int] in Dygraph mode, but "
                    "received %s, which contains Variable." %
                    (type(num_or_sections)))
            else:
4502
                attrs += ('sections', list(num_or_sections))
4503 4504 4505 4506
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
                "received %s." % (type(num_or_sections)))
4507
        return core.ops.split(input, num, *attrs)
L
Leo Chen 已提交
4508

4509 4510 4511 4512 4513 4514 4515 4516 4517
    if not isinstance(num_or_sections, (int, list, tuple)):
        raise TypeError(
            "The type of 'num_or_sections' in split must be int, list or "
            "tuple, but received %s." % (type(num_or_sections)))
    if not isinstance(dim, (int, Variable)):
        raise TypeError(
            "The type of 'dim' in split must be int or Variable, but "
            "received %s." % (type(dim)))

G
guosheng 已提交
4518 4519
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
4551 4552
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
4553 4554 4555 4556 4557
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
G
guosheng 已提交
4558 4559
        num = num_or_sections
    else:
4560 4561 4562
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
4563
        num = len(num_or_sections)
4564 4565 4566
        attrs['sections'] = list(
            map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections))
L
Leo Chen 已提交
4567
        if utils._contain_var(num_or_sections):
4568 4569 4570
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

G
guosheng 已提交
4571
    outs = [
X
Xin Pan 已提交
4572
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4573 4574 4575
        for i in range(num)
    ]
    helper.append_op(
4576
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
G
guosheng 已提交
4577
    return outs
C
caoying03 已提交
4578 4579 4580 4581


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
R
ruri 已提交
4582
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
4583 4584
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4585
    .. math::
4586 4587

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4588 4589 4590 4591 4592

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
R
ruri 已提交
4593
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
4594
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4595 4596
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4597
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
4598
            the default value is 1e-12.
R
ruri 已提交
4599 4600
	name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
C
caoying03 已提交
4601
    Returns:
R
ruri 已提交
4602
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
4603 4604

    Examples:
4605

C
caoying03 已提交
4606
        .. code-block:: python
R
ruri 已提交
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	    
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,3])
	    output = fluid.layers.l2_normalize(x=input,axis=0)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3).astype("float32")
	    print(input_data)
C
caoying03 已提交
4619

R
ruri 已提交
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
	    # [[0.5171216  0.12704141 0.56018186]
	    # [0.93251234 0.5382788  0.81709313]]
	
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data)

	    # [array([[0.48496857, 0.22970329, 0.56545246],
	    # [0.8745316 , 0.9732607 , 0.82478094]], dtype=float32)]

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.l2_normalize(x=input, axis=-1)
    		print(output.numpy())
	    	
		# [[0.66907585 0.16437206 0.7247892 ]
		# [0.6899054  0.3982376  0.6045142 ]]
		
C
caoying03 已提交
4644 4645
    """

F
fengjiayi 已提交
4646 4647
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4648 4649
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4650 4651
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4652
    helper.append_op(
4653 4654 4655 4656
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4657
        attrs={
4658 4659
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4660 4661
        })
    return out
4662 4663


S
sneaxiy 已提交
4664
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4665
    """
Y
ying 已提交
4666 4667 4668 4669
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4670

C
chengduoZH 已提交
4671
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4672
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4673

4674 4675 4676 4677 4678
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4679
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4680

C
chengduoZH 已提交
4681
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4682
      performs in the following way.
G
guosheng 已提交
4683

4684
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4685
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4686
        last two dimensions and a batched matrix multiply supporting broadcast
4687
        applies on the two tensors.
G
guosheng 已提交
4688

Y
ying 已提交
4689 4690
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4691
    removed after matrix multiplication.
G
guosheng 已提交
4692 4693 4694

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4695 4696 4697
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4698
        alpha (float): The scale of output. Default 1.0.
4699
        name(str|None): A name for this layer(optional). If set None, the layer
4700
            will be named automatically.
G
guosheng 已提交
4701 4702

    Returns:
石晓伟 已提交
4703
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
4704

G
guosheng 已提交
4705 4706 4707
    Examples:
        .. code-block:: python

4708
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4709
            # x: [B, ..., M, K], y: [B, ..., K, N]
4710
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4711

4712
            # x: [B, M, K], y: [B, K, N]
4713
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4714

4715
            # x: [B, M, K], y: [K, N]
4716
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4717

4718
            # x: [M, K], y: [K, N]
4719
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4720 4721

            # x: [B, M, K], y: [K]
4722
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
4723

4724
            # x: [K], y: [K]
4725
            # fluid.layers.matmul(x, y)  # out: [1]
4726

Y
ying 已提交
4727
            # x: [M], y: [N]
4728 4729
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

4730
            import paddle.fluid as fluid
4731 4732 4733
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
4734
    """
4735 4736 4737 4738 4739 4740 4741
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

    if in_dygraph_mode():
4742 4743
        return core.ops.matmul(x, y, 'transpose_X', transpose_x, 'transpose_Y',
                               transpose_y, 'alpha', float(alpha))
Y
ying 已提交
4744 4745

    def __check_input(x, y):
4746 4747
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
4748 4749
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul')
Y
ying 已提交
4750 4751 4752 4753 4754
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4755
            y_shape = y_shape + [1]
Y
ying 已提交
4756 4757 4758 4759 4760 4761 4762

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4763 4764 4765 4766 4767
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1),                         \
                "After performing an optional transpose, Input X's width should be "   \
                "equal to Y's width for multiplication "                               \
                "prerequisites. But received X's shape: %s, Y's shape: %s\n" %         \
                (x_shape, y_shape)
Y
ying 已提交
4768

C
chengduo 已提交
4769
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4770
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4771 4772 4773
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4774
                if dim_x != y_shape[i]:
4775 4776 4777 4778 4779
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))
Y
ying 已提交
4780 4781 4782

    __check_input(x, y)

4783
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4784
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4785
    helper.append_op(
4786 4787 4788 4789
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
4790
        attrs=attrs)
4791
    return out
4792 4793


4794
def topk(input, k, name=None):
Q
qingqing01 已提交
4795
    """
4796
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
4797 4798
    for the last dimension.

4799 4800
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
4801 4802 4803 4804

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4805 4806
    .. code-block:: text

4807 4808 4809 4810 4811
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
4812 4813 4814 4815
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

4816
          Output:
F
fengjiayi 已提交
4817
            The first output:
4818 4819
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
4820 4821 4822 4823
                      [10, 25],
                      [6, 10]]

            The second output:
4824 4825
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
4826 4827 4828
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4829
    Args:
4830 4831 4832 4833
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
4834 4835

    Returns:
4836 4837
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
4838

F
fengjiayi 已提交
4839
    Raises:
4840
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
4841 4842 4843 4844

    Examples:
        .. code-block:: python

4845
            import paddle.fluid as fluid
4846
            import paddle.fluid.layers as layers
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
4860
    """
4861
    if in_dygraph_mode():
4862 4863 4864 4865 4866
        _k = k.numpy().item(0) if isinstance(k, Variable) else k
        out, indices = core.ops.top_k(input, 'k', _k)
        out.stop_gradient = True
        indices.stop_gradient = True
        return out, indices
4867

4868 4869
    inputs = {"X": [input]}
    attrs = {}
S
songyouwei 已提交
4870 4871 4872 4873 4874
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}

4875 4876 4877 4878
    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

Q
qingqing01 已提交
4879 4880
    helper.append_op(
        type="top_k",
W
whs 已提交
4881
        inputs=inputs,
Q
qingqing01 已提交
4882 4883
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4884
        attrs=attrs)
Q
qingqing01 已提交
4885 4886 4887 4888 4889
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4890 4891 4892 4893 4894
def ctc_greedy_decoder(input,
                       blank,
                       input_length=None,
                       padding_value=0,
                       name=None):
4895
    """
S
SunGaofeng 已提交
4896
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
4897

S
SunGaofeng 已提交
4898
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
4899 4900 4901
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4902

S
SunGaofeng 已提交
4903 4904 4905 4906
    This op is implemented in two modes: lod and padding, either of them can be used.
    The input can be either LoDTensor or Tensor, corresponding to lod and padding 
    mode respectively.

4907 4908 4909 4910 4911
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
4912
        (1) for lod mode:
4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4924
        input.lod = [[4, 4]]
M
minqiyang 已提交
4925

W
whs 已提交
4926
        Computation:
4927

W
whs 已提交
4928 4929 4930 4931 4932 4933
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4934 4935 4936 4937 4938

        output.data = [[2],
                       [1],
                       [3]]

4939
        output.lod = [[2, 1]]
4940

S
SunGaofeng 已提交
4941
        (2) for padding mode:
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
        step2: Change the argmax result to use padding mode, then argmax result is 
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
4968
    Parameters:
4969

S
SunGaofeng 已提交
4970 4971
        input(Variable): the probabilities of variable-length sequences. When in lod mode, 
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1] 
Y
ying 已提交
4972
                         where Lp is the sum of all input sequences' length and
4973 4974
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
4975
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
4976
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
4977
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
4978
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
4979 4980
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
4981
        padding_value(int): padding value.
S
SunGaofeng 已提交
4982 4983 4984
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name` 
4985 4986

    Returns:
S
SunGaofeng 已提交
4987 4988 4989 4990 4991
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

T
tianshuo78520a 已提交
4992
        For padding mode, returns a tuple of (output, output_length), which was described as below: 
S
SunGaofeng 已提交
4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

5004 5005 5006 5007

    Examples:
        .. code-block:: python

5008
            # for lod mode
S
SunGaofeng 已提交
5009
            import paddle.fluid as fluid
S
SunGaofeng 已提交
5010
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
5011
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
5012 5013

            # for padding mode
S
SunGaofeng 已提交
5014 5015
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
5016 5017 5018
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
5019
    """
5020
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5021
    _, topk_indices = topk(input, k=1)
5022 5023

    # ctc align op
X
Xin Pan 已提交
5024
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len
5050 5051


Y
fix ci.  
ying 已提交
5052
def transpose(x, perm, name=None):
Y
ying 已提交
5053
    """
5054
    Permute the data dimensions of `input` according to `perm`.
Y
ying 已提交
5055 5056 5057 5058 5059

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5060
        x (Variable): The input Tensor. It is a N-D Tensor of data types float32, float64, int32.
T
tianshuo78520a 已提交
5061
        perm (list): Permute the input according to the data of perm.
5062
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5063 5064

    Returns:
5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
        Variable: A transposed n-D Tensor, with data type being float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]
Y
ying 已提交
5089 5090

    Examples:
5091

Y
ying 已提交
5092 5093
        .. code-block:: python

5094
            # use append_batch_size=False to avoid prepending extra
5095
            # batch size in shape
5096
            import paddle.fluid as fluid
5097
            x = fluid.layers.data(name='x', shape=[2, 3, 4],
5098
                            dtype='float32', append_batch_size=False)
5099
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
5100 5101
            print x_transposed.shape
            #(3L, 2L, 4L)
Y
ying 已提交
5102

5103
    """
5104
    if in_dygraph_mode():
5105 5106
        out, _ = core.ops.transpose2(x, 'axis', perm)
        return out
5107

5108 5109 5110
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
5111
    check_type(perm, 'perm', list, 'transpose')
5112

Y
fix ci.  
ying 已提交
5113
    if len(perm) != len(x.shape):
Y
ying 已提交
5114
        raise ValueError(
5115 5116 5117 5118
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
Y
ying 已提交
5119 5120 5121
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
5122 5123 5124
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5125 5126

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5127 5128
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5129
    helper.append_op(
5130
        type='transpose2',
Y
fix ci.  
ying 已提交
5131
        inputs={'X': [x]},
5132 5133
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5134 5135
        attrs={'axis': perm})
    return out
5136 5137


5138 5139 5140 5141 5142 5143 5144
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5145
    """
5146
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
5147 5148 5149
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
5150 5151
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5152 5153 5154

    .. math::

L
Liufang Sang 已提交
5155 5156 5157 5158
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
5159

L
Liufang Sang 已提交
5160
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
5161

L
Liufang Sang 已提交
5162 5163
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
5164

L
Liufang Sang 已提交
5165 5166 5167
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
5168

L
Liufang Sang 已提交
5169 5170
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
5171

L
Liufang Sang 已提交
5172 5173 5174 5175 5176 5177 5178
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding. 
            Default is 0.
5179

L
Liufang Sang 已提交
5180 5181 5182 5183
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
5184
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
    
    Returns: 
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \ 
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5223 5224 5225
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5238
            output.dims = {8, 8}
5239

5240
            output.lod = [[4, 4]]
5241

T
Tink_Y 已提交
5242
    Examples:
5243 5244 5245

        .. code-block:: python

B
Bai Yifan 已提交
5246
            import paddle.fluid as fluid
L
Liufang Sang 已提交
5247
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
5248
                                     dtype='float32')
5249
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
5250 5251
                input=data, stride=[1, 1], filter_size=[2, 2])

5252 5253

    """
L
lujun 已提交
5254
    assert not in_dygraph_mode(), (
5255
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5256 5257 5258 5259 5260 5261 5262 5263 5264 5265

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5266
    inputs = {"X": input}
5267
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
5268 5269 5270 5271 5272
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5273
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5274
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5275
    helper.append_op(
5276
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5277
    return out
5278 5279


Y
yuyang18 已提交
5280
@templatedoc()
5281
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5282 5283
    """
    ${comment}
5284 5285

    Args:
Y
yuyang18 已提交
5286
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5287 5288
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5289 5290 5291 5292 5293
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5294
        ${out_comment}.
5295 5296

    Examples:
D
Double_V 已提交
5297
        >>>  # for LodTensor inputs
Y
yuyang18 已提交
5298
        >>> import paddle.fluid as fluid
D
Double_V 已提交
5299
        >>> x = fluid.data(name='x', shape=[9, 16],
Y
yuyang18 已提交
5300 5301
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
D
Double_V 已提交
5302 5303 5304
        >>> # for Tensor inputs
        >>> x = fluid.data(name='x', shape=[9, 4, 16], dtype='float32')
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5305 5306 5307 5308 5309 5310
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5311
    out = helper.create_variable_for_type_inference(dtype)
5312 5313 5314 5315 5316
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5317
    return helper.append_activation(out)
5318 5319


Y
yuyang18 已提交
5320
@templatedoc()
5321 5322
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5323

5324
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
5325

5326
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
5327

5328
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
5329

5330
    For Example:
L
lujun 已提交
5331

5332
            .. code-block:: text
L
lujun 已提交
5333

5334
                Given:
L
lujun 已提交
5335

5336 5337 5338 5339
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
5340

5341
                index = [[3],[0],[1],[2]]
L
lujun 已提交
5342

5343 5344 5345 5346
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
5347 5348


5349 5350 5351
    Args:
       inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
       index (Variable): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
L
lujun 已提交
5352

5353
    Returns:
5354
        Variable(Tensor): Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
5355 5356

    Examples:
5357

X
xuezhong 已提交
5358 5359
        .. code-block:: python

5360
            import paddle.fluid as fluid
5361
            import numpy as np
5362

5363 5364 5365 5366
            x1 = fluid.data(name='x1', shape=[None, 2], dtype='float32')
            x2 = fluid.data(name='x2', shape=[None, 2], dtype='float32')
            index = fluid.data(name='index', shape=[None, 1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
X
xuezhong 已提交
5367

5368 5369 5370 5371 5372 5373 5374 5375 5376
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
            index = np.array([[1], [0]]).astype(np.int32)

            res = exe.run(fluid.default_main_program(), feed={'x1':img1, 'x2':img2, 'index':index}, fetch_list=[out])
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
5377

5378 5379 5380 5381 5382 5383 5384 5385
    """
    helper = LayerHelper('multiplex', **locals())

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5386
    helper.append_op(
5387 5388 5389 5390 5391
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
X
xuezhong 已提交
5392 5393


5394 5395
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5396 5397
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5398
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
5399
    and then sums all the losses. So the shape of output Variable is
5400
    [batch_size, 1].
5401

5402 5403
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5404
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5405
            A LoDTensor or Tensor with type float32.
5406
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5407
            L1 loss op with same shape as :attr:`x`.
5408
            A LoDTensor or Tensor with type float32.
5409
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5410 5411
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5412
            by this tensor element by element.
5413
            A Tensor with type float32.
5414
        outside_weight (Variable|None): A tensor with rank at least 2. This
5415 5416
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5417
            element by element.
5418
            A Tensor with type float32.
5419
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5420 5421
           scalar with default value 1.0.

5422
    Returns:
5423
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
5424 5425 5426 5427

    Examples:
        .. code-block:: python

5428
            import paddle.fluid as fluid
5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
            import numpy as np
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
        
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

5446
    """
5447

5448
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5449 5450
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
5461
        attrs={'sigma': sigma if sigma is not None else 1.0})
5462
    return loss
5463 5464


5465
def one_hot(input, depth, allow_out_of_range=False):
5466
    """
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.], 
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than depth.  
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
5521 5522

    Args:
5523 5524 5525 5526 5527
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input 
            is word id, depth is generally the dictionary size.
5528
        allow_out_of_range(bool): A bool value indicating whether the input
5529 5530 5531 5532
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
5533 5534

    Returns:
5535
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
5536 5537

    Examples:
C
caoying03 已提交
5538
        .. code-block:: python
5539

5540
            import paddle.fluid as fluid
5541 5542 5543
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
5544
    """
5545
    if in_dygraph_mode():
S
songyouwei 已提交
5546 5547 5548 5549 5550
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
                1, ), "depth of type Variable should have shape [1]"
            depth = depth[0]
5551 5552 5553 5554
        out = core.ops.one_hot(input, 'depth', depth, 'allow_out_of_range',
                               allow_out_of_range)
        out.stop_gradient = True
        return out
5555

5556
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5557
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5558

5559 5560
    if not isinstance(depth, Variable):
        # user attribute
5561
        inputs = {'X': input}
Y
Yi Liu 已提交
5562
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
5563
    else:
5564 5565 5566
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
5567 5568
    helper.append_op(
        type="one_hot",
5569 5570
        inputs=inputs,
        attrs=attrs,
5571 5572
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
5573
    return one_hot_out
Y
Yu Yang 已提交
5574 5575


Y
Yu Yang 已提交
5576
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5577
    """
Y
Yibing Liu 已提交
5578 5579 5580
    Create an auto-increase variable. which will be automatically increased 
    by 1 in every iteration. By default, the first return of this counter is 1, 
    and the step size is 1.
Y
Yu Yang 已提交
5581 5582

    Args:
Y
Yibing Liu 已提交
5583 5584 5585
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
5586

5587
    Returns:
Y
Yibing Liu 已提交
5588
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
5589 5590 5591 5592

    Examples:
        .. code-block:: python

5593
           import paddle.fluid as fluid
Y
yi.wu 已提交
5594
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
5595
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
5596 5597
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5598 5599
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5600
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
5601 5602 5603 5604 5605
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
        belong_to_optimizer=True)
Y
Yu Yang 已提交
5606 5607 5608
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5609
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5610
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5611 5612
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5613
            outputs={'Out': [counter]},
5614
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5615 5616 5617
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5618 5619


5620
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5621
    """
5622
    This operator changes the shape of ``x`` without changing its data.
C
caoying03 已提交
5623

5624 5625 5626 5627
    The target shape can be given by ``shape`` or ``actual_shape``.
    When ``shape`` and ``actual_shape`` are set at the same time,
    ``actual_shape`` has a higher priority than ``shape``
    but at this time ``shape`` can only be an integer list or tuple, and ``shape`` still should be set correctly to
T
tianshuo78520a 已提交
5628
    guarantee shape inference in compile-time.
C
caoying03 已提交
5629

5630
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5631

5632 5633 5634 5635
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5636
    2. 0 means the actual dimension value is going to be copied from the
T
tianshuo78520a 已提交
5637
    corresponding dimension of x. The index of 0s in shape can not exceed
5638
    the dimension of x.
5639 5640

    Here are some examples to explain it.
C
caoying03 已提交
5641 5642

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5643
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5644
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5645

5646
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5647 5648
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5649 5650
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5651
    dimensions.
C
caoying03 已提交
5652

5653
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5654 5655 5656 5657
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5658

5659 5660
    **Note**:
        The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape.
5661

C
caoying03 已提交
5662
    Args:
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Variable): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Variable, it should be an 1-D Tensor .
        actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape
                                according to this given shape rather than ``shape`` specifying shape.
                                That is to say ``actual_shape`` has a higher priority
                                than ``shape(list|tuple)`` but not ``shape(Variable)``. \
                                This argument ``actual_shape`` will be removed in a future version. \
                                Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``.
        act (str, optional): The non-linear activation to be applied to the reshaped input. Default None.
        inplace(bool, optional): If ``inplace`` is True, the input and output of ``layers.reshape``
                       are the same variable. Otherwise, the input and output of
                       ``layers.reshape`` are different variable. Default False. Note that if ``x``
                       is more than one OPs' input, ``inplace`` must be False.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .
C
caoying03 已提交
5680

5681
    Returns:
5682
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable.
C
caoying03 已提交
5683

X
Xin Pan 已提交
5684
    Raises:
5685 5686 5687 5688
        TypeError: If actual_shape is neither Variable nor None.
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.
X
Xin Pan 已提交
5689

C
caoying03 已提交
5690 5691
    Examples:
        .. code-block:: python
G
guosheng 已提交
5692

5693
            import paddle.fluid as fluid
5694 5695 5696

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
5697 5698
            data_1 = fluid.data(
              name='data_1', shape=[2, 4, 6], dtype='float32')
5699
            reshaped_1 = fluid.layers.reshape(
5700 5701
              x=data_1, shape=[-1, 0, 3, 2], inplace=True)
            # the shape of reshaped_1 is [2,4,3,2].
5702 5703 5704 5705 5706 5707

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
5708
            # the shape of reshaped_2 is [5,10].
M
mapingshuo 已提交
5709 5710 5711 5712 5713 5714

            # example 3:
            data_3 = fluid.data(
              name="data_3", shape=[2,4,6], dtype='float32')
            reshaped_3 = fluid.layers.reshape(x=data_3, shape=[6,8])
            # the shape of reshaped_3 is [6,8].
C
caoying03 已提交
5715
    """
5716
    if in_dygraph_mode():
L
Leo Chen 已提交
5717
        #TODO(zhiqiu): enable inplace in dygraph mode.
5718 5719 5720 5721 5722 5723
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        attrs = {}
        if isinstance(shape, (list, tuple)):
L
Leo Chen 已提交
5724
            if utils._contain_var(shape):
5725 5726 5727 5728 5729 5730 5731 5732 5733
                raise TypeError(
                    "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['shape'] = shape
        else:
            raise TypeError(
                "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

5734
        out, _ = core.ops.reshape2(x, 'shape', shape)
5735
        return dygraph_utils._append_activation_in_dygraph(out, act)
5736

5737 5738
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'reshape')
5739 5740
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')
5741

5742
    helper = LayerHelper("reshape2", **locals())
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
5767 5768
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1." % dim_idx)
5769 5770 5771
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
5772 5773 5774 5775
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
5776 5777
                else:
                    assert dim_size > 0, (
5778
                        "Each dimension value of 'shape' in reshape must not "
T
tianshuo78520a 已提交
5779
                        "be negative except one unknown dimension. "
5780 5781
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
5782 5783
        return attrs_shape

5784 5785 5786 5787 5788 5789 5790 5791 5792
    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
5793
        if utils._contain_var(shape):
5794 5795 5796 5797 5798 5799 5800
            inputs['ShapeTensor'] = get_new_shape_tensor(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5801
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5802
    helper.append_op(
5803
        type="reshape2",
X
Xin Pan 已提交
5804
        inputs=inputs,
5805
        attrs=attrs,
5806 5807
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5808

D
dzhwinter 已提交
5809
    return helper.append_activation(out)
5810

5811

5812
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5813
    """
5814 5815 5816
    This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
    remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
    to one will be deleted.
M
minqiyang 已提交
5817

H
haowang101779990 已提交
5818

5819
    .. code-block:: text 
H
haowang101779990 已提交
5820

5821
        Case1:
H
haowang101779990 已提交
5822

5823
          Input:
H
haowang101779990 已提交
5824 5825
            X.shape = (1, 3, 1, 5)
            axes = [0]
5826
          Output:
H
haowang101779990 已提交
5827 5828
            Out.shape = (3, 1, 5)

5829
        Case2:
H
haowang101779990 已提交
5830

5831
          Input:
H
haowang101779990 已提交
5832 5833
            X.shape = (1, 3, 1, 5)
            axes = []
5834
          Output:
H
haowang101779990 已提交
5835
            Out.shape = (3, 5)
M
minqiyang 已提交
5836

5837 5838 5839 5840 5841 5842 5843 5844
        Case3:

          Input:
            X.shape = [1,3,1,5]
            axes = [-2]
          Output:
            Out.shape = [1,3,5]

Y
Yibing Liu 已提交
5845
    Args:
5846 5847 5848 5849 5850
        input (Variable): The input Tensor. Support data type: float32, float64, int8, int32, int64.
                          axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
                          Axes range is :math:`[-rank(input), rank(input))`.
                          If axes is negative, :math:`axes=axes+rank(input)`.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Y
Yibing Liu 已提交
5851 5852

    Returns:
5853
        Variable: Output squeezed Tensor. Data type is same as input Tensor.
Y
Yibing Liu 已提交
5854 5855 5856 5857

    Examples:
        .. code-block:: python

5858
            import paddle.fluid as fluid
5859
            import paddle.fluid.layers as layers
5860 5861 5862 5863
            # set batch size=None
            x = fluid.data(name='x', shape=[None, 5, 1, 10])
            y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10]

Y
Yibing Liu 已提交
5864 5865
    """
    helper = LayerHelper("squeeze", **locals())
5866 5867 5868
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int8', 'int32', 'int64'],
                             'squeeze')
5869
    check_type(axes, 'axes', list, 'squeeze')
X
Xin Pan 已提交
5870 5871
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5872
    helper.append_op(
5873
        type="squeeze2",
5874
        inputs={"X": input},
Y
Yibing Liu 已提交
5875
        attrs={"axes": axes},
5876 5877
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5878

5879 5880 5881
    return out


5882
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5883
    """
5884
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
5885 5886
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5887

M
minqiyang 已提交
5888
    For example:
H
haowang101779990 已提交
5889 5890 5891

    .. code-block:: text

M
minqiyang 已提交
5892
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5893
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5894

Y
Yibing Liu 已提交
5895
    Args:
5896
        input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
5897
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
5898
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5899 5900

    Returns:
5901
        Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.
Y
Yibing Liu 已提交
5902 5903 5904 5905

    Examples:
        .. code-block:: python

5906 5907 5908
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
5909

Y
Yibing Liu 已提交
5910
    """
5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937
    if not isinstance(axes, (int, list, tuple, Variable)):
        raise TypeError(
            "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
            "received %s." % (type(axes)))
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    def _to_Variable_list(one_list):
        Variable_list = []
        for ele in one_list:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                Variable_list.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                Variable_list.append(temp_out)
        return Variable_list

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
5938
        if utils._contain_var(axes):
5939 5940 5941 5942
            inputs["AxesTensorList"] = _to_Variable_list(axes)
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
5943 5944
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5945
    helper.append_op(
5946
        type="unsqueeze2",
5947 5948
        inputs=inputs,
        attrs=attrs,
5949 5950
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5951

5952 5953
    return out

5954

Y
yangyaming 已提交
5955
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5956
    """
Y
Yibing Liu 已提交
5957
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5958 5959 5960 5961
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
5962
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5963 5964 5965 5966 5967 5968

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5969
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5970 5971 5972
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5973
            target_lod: [4, 2]
Y
yangyaming 已提交
5974 5975

            then we get a 1-level LoDTensor:
5976
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5977 5978 5979 5980 5981 5982
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5983
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5984 5985 5986 5987
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5988
                y.data = [[2, 4]]
Y
yangyaming 已提交
5989 5990 5991
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5992
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5993 5994 5995 5996 5997 5998
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5999
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6000 6001 6002 6003
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6004
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6005 6006 6007 6008
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6009
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6010 6011 6012 6013
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
6014
        x (Variable): Input variable which could be a Tensor or LoDTensor.
6015
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6016
                           from :attr:`y`.
Y
yangyaming 已提交
6017
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6018
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6019 6020

    Returns:
Y
Yibing Liu 已提交
6021
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6022 6023

    Raises:
Y
Yibing Liu 已提交
6024
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6025 6026 6027 6028

    Examples:
        .. code-block:: python

6029
            import paddle.fluid as fluid
6030 6031 6032
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
6033 6034
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6035
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
6073
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
6074 6075 6076 6077 6078 6079

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
6080

6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
6091 6092 6093
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

6094 6095
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6096 6097 6098 6099 6100 6101 6102 6103

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
6104
    helper.append_op(
6105
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
6106
    return out
D
dragonwarrior 已提交
6107 6108


6109 6110
def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None,
        data_format='NCHW'):
D
dragonwarrior 已提交
6111
    """
6112 6113 6114
    This operator implements the Local Response Normalization Layer.
    This layer performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
D
dragonwarrior 已提交
6115 6116 6117 6118 6119

    The formula is as follows:

    .. math::

6120
        Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6121 6122 6123

    In the above equation:

6124 6125 6126 6127
    - :math:`n` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.
D
dragonwarrior 已提交
6128 6129 6130


    Args:
6131 6132 6133
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W] or [N, H, W, C], 
            where N is the batch size, C is the input channel, H is Height, W is weight. The data 
            type is float32. The rank of this tensor must be 4, otherwise it will raise ValueError.
6134 6135 6136 6137
        n (int, optional): The number of channels to sum over. Default: 5
        k (float, optional): An offset, positive. Default: 1.0
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
6138 6139
        name (str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` 
6140 6141 6142 6143 6144
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        
D
dragonwarrior 已提交
6145
    Returns:
6146 6147
        Variable: A tensor variable storing the transformation result with the same shape and data type as input.

D
dragonwarrior 已提交
6148 6149 6150

    Examples:

6151 6152 6153 6154 6155 6156 6157 6158
    .. code-block:: python

        import paddle.fluid as fluid
        data = fluid.data(
            name="data", shape=[None, 3, 112, 112], dtype="float32")
        lrn = fluid.layers.lrn(input=data)
        print(lrn.shape)  # [-1, 3, 112, 112]
        print(lrn.dtype)  # float32
D
dragonwarrior 已提交
6159 6160 6161 6162 6163 6164 6165 6166
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
6167
            "Input's dimension size of Op(lrn) must be 4, but received %d." %
D
dragonwarrior 已提交
6168
            (dims))
6169 6170 6171 6172
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(lrn) got wrong value: received " +
            data_format + " but only NCHW or NHWC supported.")
D
dragonwarrior 已提交
6173

X
Xin Pan 已提交
6174 6175 6176
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6177 6178 6179 6180 6181 6182 6183
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
6184 6185 6186 6187 6188 6189 6190
        attrs={
            "n": n,
            "k": k,
            "alpha": alpha,
            "beta": beta,
            "data_format": data_format
        })
D
dragonwarrior 已提交
6191 6192

    return lrn_out
G
guosheng 已提交
6193 6194 6195 6196


def pad(x, paddings, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6197 6198
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
6199

S
SunGaofeng 已提交
6200 6201 6202 6203
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
6223
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
6224
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
6225 6226
                         width before and after each dimension in turn.
                         The length of :attr:`paddings` must be equal to 
G
guosheng 已提交
6227 6228
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6229 6230 6231
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
6232 6233

    Returns:
S
SunGaofeng 已提交
6234 6235 6236 6237
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
6238 6239 6240

    Examples:
        .. code-block:: python
G
guosheng 已提交
6241

S
SunGaofeng 已提交
6242 6243
            # x is a rank 2 tensor variable with shape [100, 224].
            # out will be a tensor of shape [101, 227] 
S
SunGaofeng 已提交
6244
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6245
            x = fluid.data(name='data', shape=[100, 224], dtype='float32')
G
guosheng 已提交
6246 6247 6248 6249 6250
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6251
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6252 6253 6254 6255 6256 6257 6258
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6259 6260


C
chengduo 已提交
6261 6262
def pad_constant_like(x, y, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6263
    Pad :attr:`y` with :attr:`pad_value`, the number of values padded to
C
chengduo 已提交
6264
    the edges of each axis is specified by the difference of the shape
S
SunGaofeng 已提交
6265 6266
    of :attr:`x` and :attr:`y` . ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    specify padding widths for each axis. The input should be a k-D tensor(k > 0 and k < 7).
C
chengduo 已提交
6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6291 6292
		And
            pad_value = -1,
C
chengduo 已提交
6293

T
Tink_Y 已提交
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6308 6309

    Args:
T
tianshuo78520a 已提交
6310
        x (Variable): Tensor, its shape specifies the shape of output.
S
SunGaofeng 已提交
6311 6312
        y (Variable): Tensor, its rank is the same with :attr:`x`, and for each dimension :math:`i` , 
                      :math:`y\_shape[i] <= x\_shape[i]` . The data type can be float32 or float64.
C
chengduo 已提交
6313
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6314 6315 6316
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
C
chengduo 已提交
6317 6318

    Returns:
S
SunGaofeng 已提交
6319 6320 6321 6322
        The padded tensor, with the same shape as :attr:`x` and the same data type as :attr:`y`

    Return Type:
        Variable
C
chengduo 已提交
6323 6324 6325 6326 6327 6328

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6329
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6330 6331
            x = fluid.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
6332 6333 6334 6335 6336
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6337
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6338 6339 6340 6341 6342 6343 6344 6345 6346
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6347 6348 6349 6350 6351 6352
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
D
DuYao 已提交
6353 6354
    Label smoothing is a mechanism to regularize the classifier layer and is called 
    label-smoothing regularization (LSR). 
6355

6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

D
DuYao 已提交
6373
    Parameters:
6374
        label(Variable): The input variable containing the label data. The
D
DuYao 已提交
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389
                        label data should use one-hot representation. It's 
                        a multidimensional tensor with a shape of 
                        :math:`[N_1, ..., Depth]`, where Depth is class number.
        prior_dist(Variable, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is 
                        0.1.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set
                        as 'float32', 'float64'. The default value is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user 
                        to set this property. For more information, please refer to 
                        :ref:`api_guide_Name`.
6390 6391 6392 6393 6394 6395

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
6396
            
6397
            import paddle.fluid as fluid
6398
            import paddle.fluid.layers as layers
6399 6400 6401 6402 6403 6404 6405 6406

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
6407 6408

    if in_dygraph_mode():
6409 6410
        return core.ops.label_smooth(label, prior_dist, 'epsilon',
                                     float(epsilon))
6411

6412 6413
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6414
    smooth_label = helper.create_variable_for_type_inference(dtype)
6415 6416 6417 6418 6419 6420 6421
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6422 6423


W
wopeizl 已提交
6424 6425 6426
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
    This operator implements the roi_pooling layer. 
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
    
    The operator has three steps:
    
        1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height;
        2. Finding the largest value in each section;
        3. Copying these max values to the output buffer.
    
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
    
W
wopeizl 已提交
6438
    Args:
6439 6440 6441 6442 6443 6444
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64.
        rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
        pooled_height (int, optional): The pooled output height, data type is int32. Default: 1
        pooled_width (int, optional): The pooled output height, data type is int32. Default: 1
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
    
W
wopeizl 已提交
6445
    Returns:
6446 6447 6448
        Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width].
    
    
W
wopeizl 已提交
6449
    Examples:
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467
    
    ..  code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
    
        input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE)
        roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place)
    
        x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE)
        rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE)
    
        pool_out = fluid.layers.roi_pool(
6468 6469
                input=x,
                rois=rois,
6470 6471
                pooled_height=1,
                pooled_width=1,
6472
                spatial_scale=1.0)
6473 6474 6475 6476 6477
    
        exe = fluid.Executor(place)
        out, = exe.run(feed={'input':input_data ,'roi':roi_data}, fetch_list=[pool_out.name])
        print(out)   #array([[[[11.]]], [[[16.]]]], dtype=float32)
        print(np.array(out).shape)  # (2, 1, 1, 1)
W
wopeizl 已提交
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6495 6496


J
jerrywgz 已提交
6497 6498 6499 6500 6501 6502
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6503 6504
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6505 6506 6507 6508 6509
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
6510
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
W
wangguanzhong 已提交
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
            a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The 
            data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], 
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
            right coordinates. 
        pooled_height (int32, optional): ${pooled_height_comment} Default: 1
        pooled_width (int32, optional): ${pooled_width_comment} Default: 1
        spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
6522 6523

    Returns:
W
wangguanzhong 已提交
6524 6525 6526 6527 6528
        Variable:

        Output: ${out_comment}.


J
jerrywgz 已提交
6529 6530 6531
    Examples:
        .. code-block:: python

6532
            import paddle.fluid as fluid
6533 6534 6535 6536
            x = fluid.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
            rois = fluid.data(
                name='rois', shape=[None, 4], dtype='float32')
6537 6538 6539
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6540 6541 6542 6543 6544 6545
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6546
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


S
SunGaofeng 已提交
6561
def dice_loss(input, label, epsilon=0.00001, name=None):
W
whs 已提交
6562
    """
S
SunGaofeng 已提交
6563 6564 6565 6566
    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:
W
whs 已提交
6567 6568 6569 6570 6571 6572 6573 6574

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


S
SunGaofeng 已提交
6575 6576 6577 6578 6579 6580
    Parameters:
        input (Variable): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
                          the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
                          The data type can be float32 or float64.
        label (Variable): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`. 
                          where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
W
whs 已提交
6581 6582 6583
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
S
SunGaofeng 已提交
6584 6585 6586
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
6587 6588

    Returns:
S
SunGaofeng 已提交
6589 6590 6591
        The dice loss with shape [1], data type is the same as `input` .
    Return Type:
        Varaible
W
whs 已提交
6592

S
SunGaofeng 已提交
6593
    Example:
6594 6595
        .. code-block:: python

S
SunGaofeng 已提交
6596
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6597 6598 6599
            x = fluid.data(name='data', shape = [3, 224, 224, 1], dtype='float32')
            label = fluid.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
            predictions = fluid.layers.sigmoid(x)
S
SunGaofeng 已提交
6600
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
6601 6602
    """
    label = one_hot(label, depth=input.shape[-1])
6603
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6604 6605 6606 6607 6608 6609
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6610 6611


6612 6613 6614 6615
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6616
                 resample='BILINEAR',
6617 6618
                 actual_shape=None,
                 align_corners=True,
6619 6620
                 align_mode=1,
                 data_format='NCHW'):
6621
    """
R
ruri 已提交
6622
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
6623

6624 6625 6626
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
T
tianshuo78520a 已提交
6627
    and the resizing only applies on the three dimensions(depth, height and width).
6628

6629
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
6630 6631
    future and only use :attr:`out_shape` instead.

6632
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6633

6634
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6635

K
Kaipeng Deng 已提交
6636 6637
        'TRILINEAR' : Trilinear interpolation

6638
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6639

6640
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
T
tianshuo78520a 已提交
6641
    in both the 3rd dimension(in height direction) and the 4th dimension(in width 
6642 6643 6644 6645 6646 6647 6648 6649
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
6650 6651 6652 6653 6654
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tianshuo78520a 已提交
6655
    Align_corners and align_mode are optional parameters,the calculation method 
6656 6657 6658 6659
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6660
    .. code-block:: text
6661

T
Tink_Y 已提交
6662
        For scale:
6663
          
T
Tink_Y 已提交
6664
            if align_corners = True && out_size > 1 :
6665

T
Tink_Y 已提交
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6677

T
Tink_Y 已提交
6678 6679
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6680

T
Tink_Y 已提交
6681 6682
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6683

T
Tink_Y 已提交
6684 6685
          else:
              align_corners = True
6686

T
Tink_Y 已提交
6687 6688
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6689

T
Tink_Y 已提交
6690 6691
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6692

T
Tink_Y 已提交
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6703

T
Tink_Y 已提交
6704 6705 6706 6707
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6708

T
Tink_Y 已提交
6709 6710
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6711

K
Kaipeng Deng 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
6734 6735 6736 6737 6738 6739
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
6740 6741 6742
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

6743 6744


R
ruri 已提交
6745
    Parameters:
6746 6747
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
6748
        out_shape(list|tuple|Variable|None): Output shape of image resize
6749 6750 6751 6752
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
6753 6754 6755
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
6756
             Default: None.
6757 6758
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
6759 6760
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
6761 6762 6763
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6764
                                :attr:`out_shape` and :attr:`scale` specifying
6765 6766
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6767 6768 6769 6770 6771
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
6772
                                errors would be occurred in graph constructing stage.
6773
                                Default: None
6774 6775 6776 6777
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6778
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6779
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
6780
                            src_idx = scale*dst_index.
6781 6782 6783 6784 6785
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored 
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
6786 6787

    Returns:
6788 6789
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
6790

6791 6792 6793
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
6794 6795 6796 6797
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
6798
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
6799 6800
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
6801
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
6802
        TypeError: align_corners should be a bool value
6803
        ValueError: align_mode can only be '0' or '1'
6804
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
6805

6806 6807
    Examples:
        .. code-block:: python
R
ruri 已提交
6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.image_resize(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.image_resize(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
6840

R
ruri 已提交
6841 6842 6843 6844 6845 6846
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
6847

R
ruri 已提交
6848 6849 6850 6851 6852 6853 6854 6855
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
6856

R
ruri 已提交
6857 6858
	    #imperative mode
	    import paddle.fluid.dygraph as dg
6859

R
ruri 已提交
6860 6861 6862 6863
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.image_resize(input=input, out_shape=[12,12])
    		print(output.shape)
6864

R
ruri 已提交
6865
		# [2L, 3L, 12L, 12L]
6866

6867
    """
6868 6869
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
6870
        'TRILINEAR': 'trilinear',
6871 6872
        'NEAREST': 'nearest',
    }
6873 6874
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
6875 6876
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
6877
    resample_type = resample_methods[resample]
6878

K
Kaipeng Deng 已提交
6879 6880 6881 6882 6883
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

6884 6885 6886 6887 6888
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6889
    if out_shape is None and scale is None:
6890
        raise ValueError("One of out_shape and scale must not be None.")
6891
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6892
    dtype = helper.input_dtype()
6893

6894 6895 6896 6897 6898 6899 6900 6901 6902
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

6903 6904 6905
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6906 6907 6908 6909 6910
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

6911
    inputs = {"X": input}
D
dengkaipeng 已提交
6912
    attrs = {
6913 6914 6915
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
6916 6917
        "interp_method": resample_type,
        "align_corners": align_corners,
6918 6919
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
6920 6921
    }

6922
    if out_shape is not None:
6923
        if isinstance(out_shape, Variable):
6924
            out_shape.stop_gradient = True
6925
            inputs['OutSize'] = out_shape
6926 6927
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
6928 6929
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
6958 6959 6960 6961
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
6962 6963 6964 6965 6966 6967 6968
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
6969 6970 6971 6972
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
6973 6974 6975 6976 6977 6978 6979 6980 6981
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
6982

6983
    else:
6984 6985 6986
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
6987
        elif isinstance(scale, float) or isinstance(scale, int):
6988
            if scale <= 0:
6989
                raise ValueError("Attr(scale) should be greater than zero.")
6990
            attrs['scale'] = float(scale)
6991 6992 6993
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")
6994

6995
    if isinstance(actual_shape, Variable):
6996 6997 6998 6999 7000
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
7001 7002 7003 7004
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7005
    out = helper.create_variable_for_type_inference(dtype)
7006
    helper.append_op(
7007
        type='{}_interp'.format(resample_type),
7008
        inputs=inputs,
7009
        outputs={"Out": out},
D
dengkaipeng 已提交
7010
        attrs=attrs)
7011
    return out
F
stash  
fengjiayi 已提交
7012 7013


7014
@templatedoc(op_type="bilinear_interp")
7015 7016 7017 7018
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7019 7020
                    actual_shape=None,
                    align_corners=True,
7021 7022
                    align_mode=1,
                    data_format='NCHW'):
7023
    """
R
ruri 已提交
7024
    This op resizes the input by performing bilinear interpolation based on given
7025
    output shape which specified by actual_shape, out_shape and scale
7026 7027
    in priority order.

7028 7029 7030
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

7031 7032 7033 7034
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7035 7036
    again in the other direction.

7037
    For details of bilinear interpolation, please refer to Wikipedia:
7038
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7039

T
tianshuo78520a 已提交
7040
    Align_corners and align_mode are optional parameters,the calculation 
7041 7042 7043 7044
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7045
    .. code-block:: text
7046

T
Tink_Y 已提交
7047
        For scale:
7048
          
T
Tink_Y 已提交
7049
            if align_corners = True && out_size > 1 :
7050

T
Tink_Y 已提交
7051 7052 7053 7054
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
7055
              scale_factor = float(in_size/out_size)
7056

T
Tink_Y 已提交
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7067

T
Tink_Y 已提交
7068
          else:
T
tink2123 已提交
7069

T
Tink_Y 已提交
7070 7071 7072 7073
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7074

R
ruri 已提交
7075 7076
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
7077
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
7078
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
7079
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
7080 7081
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
7082
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7083
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7084
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7085
             Default: None.
7086 7087 7088
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7089
                                :attr:`out_shape` and :attr:`scale` specifying
7090 7091
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7092 7093 7094 7095 7096
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7097
                                errors would be occurred in graph constructing stage.
7098
                                Default: None
7099 7100
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7101 7102 7103 7104
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
7105
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
7106 7107

    Returns:
R
ruri 已提交
7108 7109
	Variable: 4-D tensor(NCHW or NHWC).
    
7110 7111
    Examples:
        .. code-block:: python
R
ruri 已提交
7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7144

R
ruri 已提交
7145 7146 7147 7148 7149 7150
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7151

R
ruri 已提交
7152 7153 7154 7155 7156 7157 7158 7159
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7160

R
ruri 已提交
7161 7162
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7163

R
ruri 已提交
7164 7165 7166 7167
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
    		print(output.shape)
7168

R
ruri 已提交
7169
		# [2L, 3L, 12L, 12L]
7170

7171 7172
    """

7173
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
7174
                        align_corners, align_mode, data_format)
7175 7176


K
Kaipeng Deng 已提交
7177 7178 7179 7180 7181 7182 7183
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
7184 7185
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
7186
    """
R
ruri 已提交
7187
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
7188 7189 7190
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

7191 7192 7193
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
7194 7195 7196 7197 7198 7199 7200 7201
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

T
tianshuo78520a 已提交
7202
    Align_corners and align_mode are optional parameters,the calculation 
K
Kaipeng Deng 已提交
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
7222

K
Kaipeng Deng 已提交
7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
7241
    Parameters:
7242 7243
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7244
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
7245
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
7246 7247 7248
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
R
ruri 已提交
7249
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
7250 7251 7252 7253 7254 7255
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7256 7257 7258 7259 7260
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7261
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
7262 7263 7264
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7265 7266 7267 7268
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
7269 7270

    Returns:
R
ruri 已提交
7271
        Variable: A 5-D Tensor(NCDHW or NDHWC) 
K
Kaipeng Deng 已提交
7272 7273 7274

    Examples:
        .. code-block:: python
R
ruri 已提交
7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,8,10])

	    #1
	    output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])

	    #3
	    #x = np.array([3,12,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
7307

R
ruri 已提交
7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12, 12)
	    #2
	    # (2, 3, 12, 2, 4)
	    #3
	    # (2, 3, 3, 12, 12)
	    #4
	    # (2, 3, 3, 4, 5)

	    #imperative mode
	    import paddle.fluid.dygraph as dg
7326

R
ruri 已提交
7327 7328 7329 7330
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
    		print(output.shape)
7331

R
ruri 已提交
7332
		# [2L, 3L, 12L, 12L, 12L]
7333 7334 7335



K
Kaipeng Deng 已提交
7336 7337 7338
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
7339
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
7340 7341


7342
@templatedoc(op_type="nearest_interp")
7343 7344 7345 7346
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7347
                   actual_shape=None,
7348 7349
                   align_corners=True,
                   data_format='NCHW'):
7350
    """
R
ruri 已提交
7351
    This op resizes the input by performing nearest neighbor interpolation in both the
7352 7353
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
7354

7355 7356 7357
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

7358 7359
    Example:

T
Tink_Y 已提交
7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
7372
          
T
Tink_Y 已提交
7373 7374
          if:
              align_corners = False
7375

T
Tink_Y 已提交
7376 7377
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7378

T
Tink_Y 已提交
7379 7380
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7381

T
Tink_Y 已提交
7382 7383
          else:
              align_corners = True
7384

T
Tink_Y 已提交
7385 7386
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7387

T
Tink_Y 已提交
7388 7389
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7390 7391


7392
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7393
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7394

R
ruri 已提交
7395
    Parameters:
7396 7397
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7398
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
7399
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7400
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7401
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
R
ruri 已提交
7402 7403 7404
             Default: None. 
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
	actual_shape(Variable): An optional input to specify output shape
7405 7406
                                dynamically. If provided, image resize
                                according to this given shape rather than
7407
                                :attr:`out_shape` and :attr:`scale` specifying
7408 7409
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7410 7411 7412 7413 7414
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7415
                                errors would be occurred in graph constructing stage.
7416
                                Default: None
7417
        align_corners(bool): ${align_corners_comment}
7418 7419 7420 7421
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
7422 7423

    Returns:
R
ruri 已提交
7424
	Variable: 4-D tensor(NCHW or NHWC).
7425 7426 7427

    Examples:
        .. code-block:: python
R
ruri 已提交
7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7460

R
ruri 已提交
7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7476

R
ruri 已提交
7477 7478
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7479

R
ruri 已提交
7480 7481 7482 7483 7484 7485
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
    		print(output.shape)

		# [2L, 3L, 12L, 12L]
7486 7487 7488



7489 7490
    """

7491 7492 7493 7494 7495 7496 7497 7498 7499 7500
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
7501 7502 7503 7504


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
R
ruri 已提交
7505
    This op resizes a batch of images. The short edge of input images will be
7506 7507
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7508 7509
    constant.

R
ruri 已提交
7510 7511
    Parameters:
        input (Variable): 4-D tensor(NCHW), The input tensor of image resize layer.
7512
        out_short_len(int): The length of output images' short edge.
7513
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7514

7515
    Returns:
R
ruri 已提交
7516
        Variable: 4-D tensor(NCHW).
R
ruri 已提交
7517 7518 7519 7520

    Examples:
        .. code-block:: python

7521
            import paddle.fluid as fluid
R
ruri 已提交
7522
            input = fluid.data(name="input", shape=[None,3,6,9], dtype="float32")
R
ruri 已提交
7523
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7524 7525 7526 7527 7528 7529 7530 7531 7532 7533
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7534 7535 7536
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7537 7538 7539
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7540
def gather(input, index, overwrite=True):
W
whs 已提交
7541
    """
Q
qiaolongfei 已提交
7542 7543
    **Gather Layer**

7544
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7545 7546 7547 7548
    of X indexed by `index` and concatenate them together.

    .. math::

7549
        Out = X[Index]
W
whs 已提交
7550 7551 7552 7553 7554 7555 7556


    .. code-block:: text


                Given:

7557 7558
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
Y
Yibing Liu 已提交
7569 7570 7571 7572 7573
        input (Variable): The source input tensor with rank>=1. Supported data type is 
            int32, int64, float32, float64 and uint8 (only for CPU), 
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
7574 7575 7576 7577 7578
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7579 7580 7581 7582 7583

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7584

W
whs 已提交
7585 7586
        .. code-block:: python

7587
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7588 7589
            x = fluid.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7590 7591 7592 7593
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7594
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7595 7596 7597 7598
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7599 7600
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7601 7602 7603
    return out


7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
7656 7657 7658
        input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
                          Its dtype should be int32, int64.
7659
        name (str|None): A name for this layer(optional). If set None, the
7660
                         layer will be named automatically.
7661 7662 7663 7664 7665 7666 7667 7668 7669

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
7670 7671
            x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.data(name='index', shape=[2, 2], dtype='int32')
7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


7690
def scatter(input, index, updates, name=None, overwrite=True):
7691 7692 7693
    """
    **Scatter Layer**

7694
    Output is obtained by updating the input on selected indices based on updates.
7695

7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719
    .. code-block:: python
        import numpy as np
                
        #input:
        input = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as input
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False

        # calculation:
        if not overwrite:
            for i in range(len(index)):
                input[index[i]] = np.zeros((2))

        for i in range(len(index)):
            if (overwrite):
                input[index[i]] = updates[i]
            else:
                input[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]
7720 7721

    Args:
7722 7723
        input (Variable): The input N-D Tensor with rank>=1. Data type can be float32.
        index (Variable): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
T
tianshuo78520a 已提交
7724
        updates (Variable): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
7725 7726
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
        overwrite (bool): The mode that updating the output when there are same indices.
7727 7728
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
7729
	    Default value is True.
7730 7731

    Returns:
7732
        Variable(Tensor|LoDTensor): The output is a Tensor with the same shape as input.
7733 7734 7735 7736 7737

    Examples:

        .. code-block:: python

7738
            import numpy as np
7739 7740
            import paddle.fluid as fluid

7741 7742 7743
            input = fluid.layers.data(name='data', shape=[3, 2], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[4], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[4, 2], dtype='float32', append_batch_size=False)
7744

7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758
            output = fluid.layers.scatter(input, index, updates, overwrite=False)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            in_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            update_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'data':in_data, "index":index_data, "update":update_data}, fetch_list=[output])
            print(res)
            # [array([[3., 3.],
            #   [6., 6.],
            #   [1., 1.]], dtype=float32)]
7759 7760 7761
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7762
    out = helper.create_variable_for_type_inference(dtype)
7763 7764 7765 7766 7767
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7768
        attrs={'overwrite': overwrite},
7769 7770 7771 7772
        outputs={"Out": out})
    return out


7773 7774 7775 7776 7777
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
7778 7779 7780
    or slice in a Variable. 

    :attr:`ref` is a Tensor with rank :math:`R` 
7781 7782 7783 7784
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
7785

7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
S
ShenLiang 已提交
7817
        ref (Variable): The ref input. Its dtype should be float32, float64.
7818 7819
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
7820 7821 7822
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:].
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7823 7824

    Returns:
7825
        output (Variable): The output is a tensor with the same shape and dtype as ref.
7826 7827 7828 7829 7830 7831 7832

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7833 7834 7835
            ref = fluid.data(name='ref', shape=[3, 5, 9, 10], dtype='float32')
            index = fluid.data(name='index', shape=[3, 2], dtype='int32')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
7836 7837 7838 7839 7840 7841 7842

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
7843
    dtype = helper.input_dtype(input_param_name='ref')
7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
S
ShenLiang 已提交
7874
        updates (Variable): The updated value of scatter_nd op. Its dtype should be float32, float64.
7875 7876
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
7877
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7878 7879 7880 7881 7882 7883 7884 7885 7886 7887

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7888 7889
            index = fluid.data(name='index', shape=[3, 2], dtype='int64')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
7890 7891 7892 7893 7894 7895 7896
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Y
yuyang18 已提交
7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7910

7911
    Examples:
Q
qingqing01 已提交
7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924
        .. code-block:: python

            import paddle.fluid as fluid
            img = fluid.data("img", [None, 3, 256, 256])
            # cropped_img is [-1, 3, 224, 224]
            cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

            # cropped_img2 shape: [-1, 2, 224, 224]
            # cropped_img2 = fluid.layers.random_crop(img, shape=[2, 224, 224])

            # cropped_img3 shape: [-1, 3, 128, 224]
            # cropped_img3 = fluid.layers.random_crop(img, shape=[128, 224])

Y
yuyang18 已提交
7925
    """
F
stash  
fengjiayi 已提交
7926
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7927
    dtype = x.dtype
X
Xin Pan 已提交
7928
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7929
    if seed is None:
7930
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7931
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7932
    if isinstance(seed, int):
F
fengjiayi 已提交
7933 7934 7935 7936 7937
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7938 7939 7940 7941
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7942
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7943 7944
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7945 7946
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7947
    return out
W
whs 已提交
7948 7949


7950
def log(x, name=None):
W
wanghaoshuang 已提交
7951 7952 7953 7954 7955
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7956
        Out = \\ln(x)
W
wanghaoshuang 已提交
7957 7958

    Args:
W
Wilber 已提交
7959 7960 7961
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
W
wanghaoshuang 已提交
7962 7963

    Returns:
W
Wilber 已提交
7964
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
W
wanghaoshuang 已提交
7965 7966 7967 7968 7969

    Examples:

        .. code-block:: python

7970
            import paddle.fluid as fluid
W
Wilber 已提交
7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[1], dtype="float32")
            res = fluid.layers.log(x)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1], [2]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
W
wanghaoshuang 已提交
7984
    """
7985
    if in_dygraph_mode():
7986
        return core.ops.log(x)
7987

7988
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
7989
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7990
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7991
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7992
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7993 7994 7995
    return out


Z
zhupengyang 已提交
7996
@templatedoc()
7997
def relu(x, name=None):
W
wanghaoshuang 已提交
7998
    """
Z
zhupengyang 已提交
7999
    ${comment}
W
wanghaoshuang 已提交
8000 8001

    Args:
Z
zhupengyang 已提交
8002 8003 8004 8005
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
8006 8007

    Returns:
Z
zhupengyang 已提交
8008
        Variable: ${out_comment}
W
wanghaoshuang 已提交
8009 8010 8011 8012 8013

    Examples:

        .. code-block:: python

8014
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8015 8016 8017 8018 8019 8020 8021 8022 8023
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
                #  [1.  2.6]]
"""
8024
    if in_dygraph_mode():
8025
        return core.ops.relu(x)
8026

8027
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
8028
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8029
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8030
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8031 8032
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8033
    return out
8034 8035


C
chengduo 已提交
8036 8037
def selu(x, scale=None, alpha=None, name=None):
    """
8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051
    Selu Operator.

    The equation is:
    
    .. math::
        selu= \\lambda*
        \\begin{cases}
            x                      &\\quad \\text{ if } x>0 \n
            \\alpha * e^x - \\alpha  &\\quad \\text{ if } x<=0
        \\end{cases}
    

    The input `X` can carry the LoD (Level of Details) information,
    or not. And the output shares the LoD information with input `X`.
C
chengduo 已提交
8052 8053

    Args:
8054 8055
        x (Variable): The input N-D Tensor.
        scale(float, optional): lambda in selu activation function,
C
chengduo 已提交
8056 8057 8058
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
8059
        alpha(float, optional): alpha in selu activation function,
C
chengduo 已提交
8060 8061 8062
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
8063 8064
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

C
chengduo 已提交
8065 8066

    Returns:
8067
        Variable(Tensor|LoDTensor): The output Tensor or LoDTensor with the same shape and LoD information as input.
C
chengduo 已提交
8068 8069 8070 8071

    Examples:

        .. code-block:: python
8072 8073
             
            import paddle.fluid as fluid
8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.selu(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.      , 1.050701],[2.101402, 3.152103]], dtype=float32)]
C
chengduo 已提交
8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8101 8102 8103
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8104 8105 8106 8107
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8108
    .. math::
8109

H
haowang101779990 已提交
8110
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8111

8112
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8113 8114 8115
    is then calculated from it.


L
Liufang Sang 已提交
8116 8117
    Parameters:
        input (Variable): A n-D Tensor of prediction results for semantic labels with type int32 or int64.
8118
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8119
                           Its shape should be the same as input.
L
Liufang Sang 已提交
8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131
        num_classes (int32): The possible number of labels.

    Returns: 
	Three Variables.

        - mean_iou(Variable) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \
			    Data type is float32.
        - out_wrong(Variable) : A 1-D Tensor with shape [num_classes]. Data type is int32. \
			     The wrong numbers of each class.
        - out_correct(Variable): A 1-D  Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class.
 
   
W
whs 已提交
8132 8133 8134
    Examples:

        .. code-block:: python
8135

B
Bai Yifan 已提交
8136
            import paddle.fluid as fluid
L
Liufang Sang 已提交
8137
            iou_shape = [None, 32, 32]
8138
            num_classes = 5
L
Liufang Sang 已提交
8139 8140 8141
            predict = fluid.data(name='predict', shape=iou_shape, dtype='int64')
            label = fluid.data(name='label', shape=iou_shape, dtype='int64')
            mean_iou, out_wrong, out_correct = fluid.layers.mean_iou(predict, label,
8142
                                                          num_classes)
W
whs 已提交
8143 8144 8145
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8146 8147 8148
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8149 8150
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8151 8152
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8153
        outputs={
W
whs 已提交
8154 8155 8156
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8157 8158 8159
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8160 8161 8162 8163 8164 8165


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

S
SunGaofeng 已提交
8166 8167
    **Warning:** THIS OP IS DEPRECATED. It will be removed in the future version.
    Instructions for updating: Use :ref:`api_fluid_layers_crop_tensor` instead.
8168

8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

S
SunGaofeng 已提交
8197 8198 8199 8200 8201 8202
    Parameters:
        x (Variable): Tensor, data type can be float32 or float64.
        shape (Variable|list/tuple of integers): The output shape is specified
            by `shape`, which can be a Tensor or a list/tuple of integers.
            If it is a Tensor, it's rank must be the same as `x` , only 
            it's shape will be used, and the value of it will be ignored. This way
8203
            is suitable for the case that the output shape may be changed each
S
SunGaofeng 已提交
8204
            iteration. If it is a list/tuple of integers, it's length must be the same
8205
            as the rank of `x`
S
SunGaofeng 已提交
8206 8207 8208
        offsets (Variable|list/tuple of integers|None): Specifies the cropping
            offsets at each dimension. It can be a Tensor or a list/tuple
            of integers. If it is a Tensor, it's rank must be the same as `x`.
8209
            This way is suitable for the case that the offsets may be changed
S
SunGaofeng 已提交
8210 8211 8212 8213 8214
            each iteration. If it is a list/tuple of integers, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each dimension.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name` . Usually name is no need to set and 
            None by default. 
8215 8216

    Returns:
S
SunGaofeng 已提交
8217 8218 8219 8220
        The cropped Tensor, which has the same rank and data type with `x`

    Return Type:
        Variable
8221 8222 8223 8224 8225 8226 8227 8228

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8229
            import paddle.fluid as fluid
S
SunGaofeng 已提交
8230 8231
            x = fluid.data(name="x", shape=[3, 3, 5], dtype="float32")
            y = fluid.data(name="y", shape=[2, 2, 3], dtype="float32")
8232 8233 8234
            crop = fluid.layers.crop(x, shape=y)

            # or
S
SunGaofeng 已提交
8235 8236
            z = fluid.data(name="z", shape=[3, 3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 2, 3])
8237 8238 8239 8240 8241

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8242
            isinstance(shape, Variable)):
8243 8244 8245 8246 8247
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8248
    out = helper.create_variable_for_type_inference(x.dtype)
8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8266 8267


8268 8269 8270 8271 8272 8273
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

8274 8275
        * Case 1 (input is a 2-D Tensor):
            Input:
8276
                X.shape = [3, 5]
8277 8278 8279 8280 8281 8282 8283
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
8284 8285 8286
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
8287 8288 8289 8290 8291 8292 8293 8294 8295 8296
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
8297
                shape = [2, 2, -1]
8298 8299
                offsets = [0, 0, 1]
            Output:
8300 8301 8302 8303 8304
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]
8305 8306

    Parameters:
8307
        x (Variable): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
8308 8309
        shape (list|tuple|Variable): The output shape is specified
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
T
tianshuo78520a 已提交
8310
            the same as the dimension size of `x`. If a Variable, it should be a 1-D Tensor.
8311
            When it is a list, each element can be an integer or a Tensor of shape: [1].
8312 8313
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
8314 8315
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
T
tianshuo78520a 已提交
8316
            must be the same as the dimension size of `x`. If a Variable, it should be a 1-D
8317 8318 8319 8320 8321
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
        name(str, optional): The default value is None. Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
8322 8323

    Returns:
8324
        Variable: The cropped Tensor has same data type with `x`.
8325 8326

    Raises:
8327 8328 8329 8330 8331 8332
        TypeError: If the data type of `x` is not in: float32, float64, int32, int64.
        TypeError: If `shape` is not a list, tuple or Variable.
        TypeError: If the data type of `shape` is not int32.
        TypeError: If `offsets` is not None and not a list, tuple or Variable.
        TypeError: If the data type of `offsets` is not int32.
        ValueError: If the element in `offsets` is less than zero.
8333 8334 8335 8336 8337 8338

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
8339
            x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32")
8340 8341
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

8342 8343
            # shape is a 1-D Tensor
            crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32")
8344 8345 8346 8347
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
8348
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, -1, 3], offsets=[0, 1, 0])
8349 8350
            # crop1.shape = [-1, 2, 3]

8351 8352 8353 8354 8355
            # or shape is a list in which each element is a constant or Variable
            y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
            # crop2.shape = [3, -1, 4]
8356

8357 8358
            # offsets is a 1-D Tensor
            crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32")
8359 8360 8361
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

8362 8363
            # offsets is a list in which each element is a constant or Variable
            offsets_var =  fluid.data(name="dim1", shape=[1], dtype="int32")
8364 8365 8366 8367 8368
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())
8369 8370
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'crop_tensor')
8371 8372 8373
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')
8374 8375 8376 8377 8378 8379 8380 8381

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405
    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

8406 8407 8408
    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
8409
        attrs['offsets'] = [-1] * len(x.shape)
L
Leo Chen 已提交
8410
    elif utils._contain_var(offsets):
8411
        new_offsets_tensor = []
8412
        offsets_attr = []
8413 8414 8415 8416
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
8417
                offsets_attr.append(-1)
8418
            else:
8419
                _attr_offsets_check(dim)
8420 8421 8422
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
8423
                offsets_attr.append(dim)
8424
        ipts['OffsetsTensor'] = new_offsets_tensor
8425
        attrs['offsets'] = offsets_attr
8426
    else:
8427 8428
        for offset in offsets:
            _attr_offsets_check(offset)
8429 8430 8431 8432 8433
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
L
Leo Chen 已提交
8434
    elif utils._contain_var(shape):
8435 8436
        new_shape_tensor = []
        shape_attr = []
8437
        for dim_size in shape:
8438 8439 8440
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
8441
                shape_attr.append(0)
8442
            else:
8443
                _attr_shape_check(dim_size)
8444 8445 8446 8447 8448 8449 8450 8451
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
8452 8453
        for dim_size in shape:
            _attr_shape_check(dim_size)
8454 8455 8456 8457 8458 8459 8460 8461 8462 8463
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8464 8465 8466 8467 8468 8469 8470 8471
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
8472 8473 8474 8475 8476 8477
        theta (Variable) - A Tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Variable | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
W
whs 已提交
8478 8479

    Returns:
8480
        Variable: A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`. 
W
whs 已提交
8481 8482 8483 8484 8485 8486 8487

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8488

S
SunGaofeng 已提交
8489
            import paddle.fluid as fluid
8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503
            import numpy as np
            place = fluid.CPUPlace()
            theta = fluid.data(name="x", shape=[None, 2, 3], dtype="float32")
            out_shape = fluid.data(name="y", shape=[4], dtype="int32")
            grid_0 = fluid.layers.affine_grid(theta, out_shape)
            grid_1 = fluid.layers.affine_grid(theta, [5, 3, 28, 28])
            batch_size=2
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output= exe.run(feed={"x": np.random.rand(batch_size,2,3).astype("float32"),
                                  "y": np.array([5, 3, 28, 28]).astype("int32")},
                                  fetch_list=[grid_0.name, grid_1.name])
            print(output[0])
            print(output[1])
W
whs 已提交
8504 8505 8506 8507
    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8508
            isinstance(out_shape, Variable)):
W
whs 已提交
8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8530 8531 8532 8533 8534 8535 8536
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
T
tianshuo78520a 已提交
8537
    Pad 2-d images according to 'paddings' and 'mode'.
W
whs 已提交
8538 8539 8540
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

L
Liufang Sang 已提交
8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558
    Parameters:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32.
        paddings (Variable | List[int32]): The padding size. If padding is a List, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Otherwise, it is a 1-D Tensor with shape [4]. Data type is int32.
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

T
tianshuo78520a 已提交
8559
    Returns: a 4-D Tensor padded according to paddings and mode and data type is same as input.
L
Liufang Sang 已提交
8560 8561 8562 8563 8564

    Return Type: Variable


    Examples:
T
Tink_Y 已提交
8565
        .. code-block:: text
W
whs 已提交
8566

T
Tink_Y 已提交
8567
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8568

T
Tink_Y 已提交
8569 8570
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8571

T
Tink_Y 已提交
8572
	      Case 0:
M
minqiyang 已提交
8573

T
Tink_Y 已提交
8574 8575 8576
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8577

T
Tink_Y 已提交
8578 8579 8580
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8581

T
Tink_Y 已提交
8582
	      Case 1:
M
minqiyang 已提交
8583

T
Tink_Y 已提交
8584 8585
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8586

T
Tink_Y 已提交
8587 8588 8589
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8590

T
Tink_Y 已提交
8591
	      Case 2:
M
minqiyang 已提交
8592

T
Tink_Y 已提交
8593 8594
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8595

T
Tink_Y 已提交
8596 8597 8598
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8599

L
Liufang Sang 已提交
8600
    Code Examples:
W
whs 已提交
8601 8602
        .. code-block:: python

B
Bai Yifan 已提交
8603
          import paddle.fluid as fluid
L
Liufang Sang 已提交
8604
          data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
8605 8606 8607
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8608
    """
8609 8610 8611 8612 8613 8614 8615

    if in_dygraph_mode():
        _paddings = paddings.numpy().tolist() if isinstance(
            paddings, Variable) else paddings
        return core.ops.pad2d(input, 'mode', mode, 'pad_value', pad_value,
                              'data_format', data_format, 'paddings', _paddings)

8616 8617 8618 8619 8620 8621 8622 8623
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}
    inputs = {'X': [input]}
    if isinstance(paddings, Variable):
        inputs['Paddings'] = [paddings]
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8624
    helper = LayerHelper('pad2d', **locals())
8625 8626 8627 8628

    assert mode in ['reflect', 'edge', 'constant'
                    ], "mode should be one of constant, reflect, edge."

W
whs 已提交
8629
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8630
    out = helper.create_variable_for_type_inference(dtype)
8631

W
whs 已提交
8632
    helper.append_op(
8633
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8634 8635 8636 8637

    return out


8638 8639 8640 8641 8642 8643 8644
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
8645 8646
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8647
    Returns:
8648
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8649 8650 8651 8652 8653

    Examples:

        .. code-block:: python

8654
            import paddle.fluid as fluid
8655 8656 8657 8658 8659 8660 8661 8662 8663
            import numpy as np
         
            input_elu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_elu)
                y = fluid.layers.elu(x, alpha=0.2)
                print(y.numpy())
                # [[-0.12642411  6.        ]
                # [ 1.          15.6       ]]
8664 8665
    """
    helper = LayerHelper('elu', **locals())
8666
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
X
Xin Pan 已提交
8667
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
Z
zhupengyang 已提交
8680

8681 8682
    Args:
        x(${x_type}): ${x_comment}
Z
zhupengyang 已提交
8683 8684 8685 8686
        threshold(float, optional): ${threshold_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
8687 8688 8689

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8690 8691 8692 8693 8694

    Examples:

        .. code-block:: python

8695
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8696 8697 8698 8699 8700 8701 8702 8703
            import numpy as np
            in1 = np.array([[-1,0],[2.5,7.8]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu6(x=x1, threshold=6.0)
                print(out1.numpy())
                # [[0.  0. ]
                #  [2.5 6. ]]
8704 8705
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8706
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
8718 8719 8720 8721
    This is Pow Activation Operator.

    :math:`out = x^{factor}`

8722
    Args:
8723 8724 8725
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        factor(float32|Variable, optional): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.  The exponential factor of Pow. Default 1.0.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
8726 8727

    Returns:
8728
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``.
Z
ZhenWang 已提交
8729 8730 8731 8732 8733

    Examples:

        .. code-block:: python

8734
            import paddle.fluid as fluid
8735

8736
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
8737 8738 8739

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)
8740
            # y_1 is x^{2.0}
8741 8742 8743 8744

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
8745
            # y_2 is x^{3.0}
8746 8747
    """
    helper = LayerHelper('pow', **locals())
8748 8749 8750 8751 8752 8753 8754 8755
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
8756
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8757
    helper.append_op(
8758
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8759 8760 8761 8762
    return out


@templatedoc()
8763
def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
8764 8765 8766 8767 8768 8769 8770 8771 8772 8773
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
8774
        output(${out_type}): ${out_comment}. 
Z
ZhenWang 已提交
8775 8776 8777 8778 8779

    Examples:

        .. code-block:: python

8780
            import paddle.fluid as fluid
8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795
            import numpy as np
            data = fluid.data(name="input", shape=[-1, 3])
            result = fluid.layers.stanh(data,scale_a=0.67, scale_b=1.72)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.random(size=(3, 3)).astype('float32')
            output= exe.run(feed={"input": x},
                         fetch_list=[result])
            print(output)

            #[array([[0.626466  , 0.89842904, 0.7501062 ],
            #       [0.25147712, 0.7484996 , 0.22902708],
            #       [0.62705994, 0.23110689, 0.56902856]], dtype=float32)]

8796 8797
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8798
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
8812 8813 8814 8815 8816 8817 8818
    Parameters:
        x (${x_type}): ${x_comment}
        slope (float, optional): ${slope_comment}
        offset (float, optional): ${offset_comment}
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`
8819 8820

    Returns:
8821
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8822 8823 8824 8825 8826

    Examples:

        .. code-block:: python

8827
            import paddle.fluid as fluid
8828 8829
            data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
            result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
8830 8831
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8832
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
8845 8846 8847 8848 8849 8850 8851
    Elementwise swish activation function. See `Searching for Activation Functions <https://arxiv.org/abs/1710.05941>`_ for more details.
    
    Equation:

    .. math::
        out = \\frac{x}{1 + e^{- beta * x}}
    
8852
    Args:
8853 8854 8855 8856 8857
        x(Variable): Tensor or LoDTensor, dtype: float32 or float64, the input of swish activation.
        
        beta(float): Constant beta of swish operator, default 1.0.
        
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
8858 8859

    Returns:
8860 8861

        Variable: Output of the swish activation, Tensor or LoDTensor, with the same dtype and shape with the input x.
Z
ZhenWang 已提交
8862 8863 8864 8865

    Examples:

        .. code-block:: python
8866 8867 8868 8869 8870 8871
            
            # declarative mode
            import numpy as np
            from paddle import fluid
            
            x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
Z
ZhenWang 已提交
8872
            y = fluid.layers.swish(x, beta=2.0)
8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909
            
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            start = fluid.default_startup_program()
            main = fluid.default_main_program()
            
            data = np.random.randn(2, 3).astype("float32")
            exe.run(start)
            y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
            
            data
            # array([[-1.1239197 ,  1.3391294 ,  0.03921051],
            #        [ 1.1970421 ,  0.02440812,  1.2055548 ]], dtype=float32)
            y_np
            # array([[-0.2756806 ,  1.0610548 ,  0.01998957],
            #        [ 0.9193261 ,  0.01235299,  0.9276883 ]], dtype=float32)


        .. code-block:: python

            # imperative mode
            import numpy as np
            from paddle import fluid
            import paddle.fluid.dygraph as dg
            
            data = np.random.randn(2, 3).astype("float32")
            place = fluid.CPUPlace()
            with dg.guard(place) as g:
                x = dg.to_variable(data)
                y = fluid.layers.swish(x)
                y_np = y.numpy()
            data
            # array([[-0.0816701 ,  1.1603649 , -0.88325626],
            #        [ 0.7522361 ,  1.0978601 ,  0.12987892]], dtype=float32)
            y_np
            # array([[-0.03916847,  0.8835007 , -0.25835553],
            #        [ 0.51126915,  0.82324016,  0.06915068]], dtype=float32)
8910 8911
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8912
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8913 8914 8915 8916 8917 8918 8919 8920
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8921 8922 8923 8924
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8925 8926
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8927

J
jerrywgz 已提交
8928 8929 8930 8931 8932 8933 8934 8935
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8936
    Args:
W
wangguanzhong 已提交
8937 8938
        x (Variable): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing. 
J
jerrywgz 已提交
8939
        param_attr(ParamAttr|None): The parameter attribute for the learnable
W
wangguanzhong 已提交
8940 8941 8942 8943 8944
          weight (alpha), it can be create by ParamAttr. None by default.
          For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
        name(str|None): For detailed information, please refer 
          to :ref:`api_guide_Name`. Usually name is no need to set and 
          None by default. 
J
jerrywgz 已提交
8945 8946

    Returns:
W
wangguanzhong 已提交
8947 8948 8949 8950
        Variable:

        output(Variable): The tensor or LoDTensor with the same shape as input.
        The data type is float32.
J
jerrywgz 已提交
8951 8952 8953 8954 8955

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8956 8957
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
8958
            x = fluid.data(name="x", shape=[None,5,10,10], dtype="float32")
J
jerrywgz 已提交
8959
            mode = 'channel'
J
jerrywgz 已提交
8960 8961 8962
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8963 8964 8965 8966 8967 8968 8969 8970
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
8971
        alpha_shape = [1, x.shape[1], x.shape[2], x.shape[3]]
J
jerrywgz 已提交
8972 8973
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8974
        attr=helper.param_attr,
J
jerrywgz 已提交
8975 8976 8977
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
8978
        default_initializer=Constant(0.25))
X
Xin Pan 已提交
8979
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8980 8981 8982 8983 8984 8985 8986 8987 8988
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8989 8990 8991 8992 8993 8994 8995 8996
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
8997 8998
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8999
    Returns:
9000
        ${out_type}: ${out_comment}
9001 9002 9003

    Examples:

9004
    .. code-block:: python
9005

9006
            import paddle.fluid as fluid
9007 9008 9009 9010 9011 9012 9013 9014 9015
            import numpy as np
            
            input_brelu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_brelu)
                y = fluid.layers.brelu(x, t_min=1.0, t_max=10.0)
                print(y.numpy())
                #[[ 1.  6.]
                #[ 1. 10.]] 
9016 9017
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9018
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
W
Wilber 已提交
9035 9036
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

9037
    Returns:
9038
        output(${out_type}): ${out_comment}
9039 9040 9041 9042 9043

    Examples:

        .. code-block:: python

9044
            import paddle.fluid as fluid
W
Wilber 已提交
9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[2], dtype="float32")
            res = fluid.layers.leaky_relu(x, alpha=0.1)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[-1, 2], [3, -4]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[-0.1, 2], [3, -0.4]]
9058
    """
9059
    if in_dygraph_mode():
9060
        return core.ops.leaky_relu(x, 'alpha', alpha)
9061

9062 9063
    inputs = {'X': [x]}
    attrs = {'alpha': alpha}
9064
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9065
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9066
    helper.append_op(
9067
        type='leaky_relu', inputs=inputs, outputs={'Out': out}, attrs=attrs)
9068 9069 9070 9071 9072
    return out


def soft_relu(x, threshold=40.0, name=None):
    """
9073 9074 9075 9076
    SoftRelu Activation Operator.

    $out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$

9077
    Args:
9078 9079 9080 9081
        x(Variable): Input of soft_relu operator. Data type can be float32, float64.
        threshold(float, optional): The threshold value of soft_relu, default value being 40.0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

9082
    Returns:
9083
        Variable(Tensor|LoDTensor)): Output of soft_relu operator, shape and LoD same as input.
9084 9085 9086

    Examples:

9087 9088 9089
        .. code-block:: python 
 
            import paddle.fluid as fluid
9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.soft_relu(inputs, threshold=20.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.6931472, 1.3132616], [2.126928 , 3.0485873]], dtype=float32)]
9102 9103
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9104
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9105 9106 9107 9108 9109 9110 9111 9112
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9113 9114
def flatten(x, axis=1, name=None):
    """
9115 9116 9117
    **Flatten op**

    Flatten the input tensor into a 2D matrix.
M
minqiyang 已提交
9118

H
haowang101779990 已提交
9119
    For Example:
M
minqiyang 已提交
9120

H
haowang101779990 已提交
9121
    .. code-block:: text
9122

H
haowang101779990 已提交
9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9144 9145

    Args:
9146 9147
        x (Variable): A tensor of rank >= axis. A tensor with type float32,
                      float64, int8, int32, int64.
9148 9149
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9150
                    The value for axis must be in the range [0, R], where R
9151 9152 9153
                    is the rank of the input tensor. Default: 1.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
9154 9155

    Returns:
H
haowang101779990 已提交
9156 9157 9158
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9159
                  inner dimension of the output. A Tensor with type same as input x.
9160 9161 9162

    Raises:
        ValueError: If x is not a variable.
9163
        ValueError: If axis is not in range [0, rank(x)].
9164 9165 9166 9167 9168

    Examples:

        .. code-block:: python

9169
            import paddle.fluid as fluid
B
Bai Yifan 已提交
9170
            x = fluid.data(name="x", shape=[4, 4, 3], dtype="float32")
9171
            # x shape is [4, 4, 3]
9172
            out = fluid.layers.flatten(x=x, axis=2)
9173
            # out shape is [16, 3]
9174 9175 9176 9177 9178 9179 9180 9181 9182
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9183 9184
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9185
    helper.append_op(
9186
        type='flatten2',
9187
        inputs={"X": x},
9188 9189
        outputs={'Out': out,
                 'XShape': x_shape},
9190 9191
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9192 9193 9194


def stack(x, axis=0):
S
sneaxiy 已提交
9195
    """
9196

9197
    This OP stacks all the inputs :code:`x` along axis.
C
chengduozh 已提交
9198

C
chengduozh 已提交
9199 9200 9201
    .. code-block:: text

        Case 1:
9202

C
chengduozh 已提交
9203
          Input:
9204
            x[0].shape = [1, 2]
C
chengduozh 已提交
9205
            x[0].data = [ [1.0 , 2.0 ] ]
9206
            x[1].shape = [1, 2]
C
chengduozh 已提交
9207
            x[1].data = [ [3.0 , 4.0 ] ]
9208
            x[2].shape = [1, 2]
C
chengduozh 已提交
9209 9210 9211 9212 9213 9214
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
9215
            Out.dims = [3, 1, 2]
C
chengduozh 已提交
9216 9217 9218
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
9219

C
chengduozh 已提交
9220 9221

        Case 2:
9222 9223 9224 9225


          Input:
            x[0].shape = [1, 2]
C
chengduozh 已提交
9226
            x[0].data = [ [1.0 , 2.0 ] ]
9227
            x[1].shape = [1, 2]
C
chengduozh 已提交
9228
            x[1].data = [ [3.0 , 4.0 ] ]
9229
            x[2].shape = [1, 2]
C
chengduozh 已提交
9230
            x[2].data = [ [5.0 , 6.0 ] ]
9231

C
chengduozh 已提交
9232 9233 9234 9235 9236

          Attrs:
            axis = 1 or axis = -2

          Output:
9237
            Out.shape = [1, 3, 2]
C
chengduozh 已提交
9238 9239 9240
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
9241

C
chengduozh 已提交
9242

S
sneaxiy 已提交
9243
    Args:
9244 9245 9246 9247 9248 9249 9250 9251 9252
        x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
                                     If :code:`x` is a :code:`list`, the shapes of all these Tensors
                                     must be the same. Supposing input is N dims
                                     Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
                                     Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
                                     Support data types: float32, float64, int32, int64.
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
                              R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
                              The default value of axis is 0.
9253

S
sneaxiy 已提交
9254
    Returns:
9255
        Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.
9256

9257 9258 9259
    Examples:
        .. code-block:: python

9260
            import paddle.fluid as fluid
9261
            import paddle.fluid.layers as layers
9262 9263 9264 9265 9266 9267 9268 9269 9270 9271
            # set batch size=None
            x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32')
            x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32')
            # stack Tensor list
            data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2]

            data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]

            # stack single Tensor
            data = layers.stack(x1)  # stack according to axis 0, data.shape=[1, None, 1, 2]
9272

S
sneaxiy 已提交
9273 9274
    """

X
Xin Pan 已提交
9275 9276 9277 9278 9279
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]
X
Xin Pan 已提交
9280
    out = helper.create_variable_for_type_inference(x[0].dtype)
9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298
    if not in_dygraph_mode() and \
            x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': True})
    else:
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis})
9299

X
Xin Pan 已提交
9300
    return out
D
dzhwinter 已提交
9301 9302


J
Jiawei Wang 已提交
9303
@templatedoc(op_type="filter_by_instag")
Y
yaoxuefeng 已提交
9304
def filter_by_instag(ins, ins_tag, filter_tag, is_lod, out_val_if_empty=0):
J
Jiawei Wang 已提交
9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.
Y
yaoxuefeng 已提交
9341 9342
        out_val_if_empty(Int64): If the output after filter is empty, this value
                        will be set to Output tensor.
J
Jiawei Wang 已提交
9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
Y
yaoxuefeng 已提交
9370 9371
        attrs={'is_lod': is_lod,
               'out_val_if_empty': out_val_if_empty})
J
Jiawei Wang 已提交
9372 9373 9374 9375

    return [out, loss_weight]


D
dzhwinter 已提交
9376 9377 9378 9379
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

9380
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.
M
minqiyang 已提交
9381

D
dzhwinter 已提交
9382 9383 9384
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9385
    raised.
D
dzhwinter 已提交
9386 9387

    Args:
9388
        x (Variable): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
D
dzhwinter 已提交
9389 9390
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9391

D
dzhwinter 已提交
9392
    Returns:
9393 9394 9395 9396
        list(Variable): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).
M
minqiyang 已提交
9397

9398 9399 9400 9401
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
9402 9403
            x = fluid.layers.data(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = fluid.layers.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]
D
dzhwinter 已提交
9404

9405
    """
D
dzhwinter 已提交
9406 9407 9408 9409 9410 9411 9412 9413
    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9414
    for _ in range(num):
X
Xin Pan 已提交
9415
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9416 9417 9418 9419 9420 9421 9422 9423

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9424 9425 9426


def expand(x, expand_times, name=None):
9427 9428 9429 9430
    """
    This operation tiles ``x`` multiple times according to the parameter ``expand_times``.
    The times number for each dimension of ``x`` is set by the parameter ``expand_times``.
    The rank of ``x`` should be less than or equal to 6. Please note that size of ``expand_times`` must be the same
W
whs 已提交
9431 9432 9433 9434 9435 9436
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9437

W
whs 已提交
9438 9439 9440 9441
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9442

W
whs 已提交
9443
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9444

W
whs 已提交
9445
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9446

W
whs 已提交
9447 9448 9449 9450
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9451

W
whs 已提交
9452
    Args:
9453 9454 9455 9456 9457
        x (Variable): A ``Tensor`` or ``LoDTensor`` with dimension in [1, 6]. The data type is ``bool``, ``float32``, ``float64`` or ``int32`` .
        expand_times (list|tuple|Variable): The data type is ``int32`` . If ``expand_times`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``expand_times`` is an Variable, it should be an 1-D Tensor.
                Expand times number for each dimension of ``x`` .
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
W
whs 已提交
9458 9459

    Returns:
9460
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. After expanding, size of each dimension of output is equal to the size of the corresponding dimension of ``x`` multiplying the corresponding value given by ``expand_times`` .
W
whs 已提交
9461

9462 9463 9464
    Raises:
        TypeError: The type of ``expand_times`` must be list, tuple or Variable.
        ValueError: The elements of ``expand_times`` cannot be negative.
W
whs 已提交
9465 9466 9467

    Examples:
        .. code-block:: python
L
liym27 已提交
9468

W
wangchaochaohu 已提交
9469
            import paddle.fluid as fluid
L
liym27 已提交
9470 9471 9472 9473

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])
9474
            # the shape of expanded_1 is [2, 6, 2].
L
liym27 已提交
9475 9476 9477 9478 9479

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
9480
            # the shape of expanded_2 is [48, 56].
W
whs 已提交
9481
    """
9482 9483
    if in_dygraph_mode():
        if isinstance(expand_times, (list, tuple)):
L
Leo Chen 已提交
9484
            if utils._contain_var(expand_times):
9485 9486 9487 9488 9489 9490 9491 9492
                raise TypeError(
                    "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

9493
        return core.ops.expand(x, 'expand_times', expand_times)
9494

9495 9496
    inputs = {"X": [x]}
    attrs = {}
9497 9498
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
9499
    check_type(expand_times, 'expand_times', (list, tuple, Variable), 'expand')
W
wangchaochaohu 已提交
9500 9501 9502
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True:
        raise ValueError(
            "expand op bool date type must set the stop_gradient to be False")
L
liym27 已提交
9503

W
whs 已提交
9504
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
9505 9506 9507 9508 9509 9510 9511 9512 9513

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
T
tianshuo78520a 已提交
9514
                    "Each element given in expand_times must not be negative.")
L
liym27 已提交
9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
9529

L
Leo Chen 已提交
9530 9531 9532 9533 9534 9535 9536 9537
    if isinstance(expand_times, Variable):
        expand_times.stop_gradient = True
        inputs['ExpandTimes'] = expand_times
    elif isinstance(expand_times, (list, tuple)):
        attrs['expand_times'] = get_attr_expand_times(expand_times)
        if utils._contain_var(expand_times):
            inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                expand_times)
9538

L
liym27 已提交
9539 9540
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9541
    helper.append_op(
9542
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9543
    return out
S
sneaxiy 已提交
9544 9545


9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615
def expand_as(x, target_tensor, name=None):
    """
    expand_as operator tiles to the input by given expand tensor. You should set expand tensor
    for each dimension by providing tensor 'target_tensor'. The rank of X
    should be in [1, 6]. Please note that size of 'target_tensor' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:

                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]

        target_tensor's shape:  [2, 6, 2] 

        Output(Out) is a 3-D tensor with shape [2, 6, 2]:

                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
                

    Args:
        x (Variable): A Tensor with dtype float64, float32, int32.
        A tensor with rank in [1, 6].
        target_tensor (Variable): A Tensor with dtype float64, float32, int32.
        target_tensor for expanding to Input(X). Only use target_tensor'shape.

    Returns:
        Variable: A Tensor with dtype float64, float32, int32. 
        After expanding, size of each dimension of Output(Out) is equal to the size 
        of the corresponding dimension of target_tensor multiplying the corresponding
        value given by target_tensor.


    Examples:
        .. code-block:: python
          
        import paddle.fluid as fluid
        import numpy as np

        data = fluid.layers.data(name="data", shape=[-1,10], dtype='float64')
        target_tensor = fluid.layers.data(
          name="target_tensor", shape=[-1,20], dtype='float64')
        result = fluid.layers.expand_as(x=data, target_tensor=target_tensor) 
        use_cuda = False
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        x = np.random.rand(3,10)
        y = np.random.rand(3,20)
        output= exe.run(feed={"data":x,"target_tensor":y},fetch_list=[result.name])
        print(output[0].shape)
        #(3,20)

    """

    helper = LayerHelper('expand_as', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    inputs = {'X': x, 'target_tensor': target_tensor}
    helper.append_op(type='expand_as', inputs=inputs, outputs={'Out': out})
    return out


G
fix  
gongweibao 已提交
9616 9617 9618
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9619
@templatedoc()
G
fix  
gongweibao 已提交
9620 9621 9622 9623 9624 9625 9626 9627 9628
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
9629 9630 9631 9632 9633 9634
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.

    .. code-block:: text

        *Case 1:
G
fix  
gongweibao 已提交
9635

9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]

            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0, 
            input_dim_idx = 0,
            result.shape[0] = input.shape[0], 
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
            
       *Case 2:
           
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
         
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1, 
           input_dim_idx = 1,
           result.shape[1] = input.shape[1], 
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
G
fix  
gongweibao 已提交
9662
    Args:
9663 9664 9665 9666 9667 9668 9669 9670
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0. 
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
G
fix  
gongweibao 已提交
9671
    Returns:
9672
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
G
fix  
gongweibao 已提交
9673

9674 9675 9676
    Examples:
        .. code-block:: python

9677
            import paddle.fluid as fluid
9678 9679 9680 9681
            
            # example 1: 
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
9682

9683 9684 9685 9686
            # example 2: 
            out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]

            
G
fix  
gongweibao 已提交
9687 9688 9689
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9690
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9707 9708


G
gongweibao 已提交
9709
@templatedoc()
X
Xin Pan 已提交
9710
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9711
    """
9712
    Generate a random tensor whose data is drawn from a Gaussian distribution.
G
fix  
gongweibao 已提交
9713 9714

    Args:
9715 9716 9717 9718 9719 9720 9721 9722 9723
        shape (Tuple[int] | List[int]): Shape of the generated random tensor.
        
        mean (float): Mean of the random tensor, defaults to 0.0.
            
        std (float): Standard deviation of the random tensor, defaults to 1.0.
        
        seed (int): ${seed_comment}
        
        dtype(np.dtype | core.VarDesc.VarType | str): Output data type, float32 or float64.
G
fix  
gongweibao 已提交
9724 9725

    Returns:
9726
        Variable: Random tensor whose data is drawn from a Gaussian distribution, dtype: flaot32 or float64 as specified.
G
fix  
gongweibao 已提交
9727

9728
    Examples:
9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743
       .. code-block:: python
       
           # declarative mode 
           import numpy as np
           from paddle import fluid
   
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
   
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
   
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
9744

9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
    
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
               x_np = x.numpy()       
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
9763 9764 9765
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9766
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9767 9768 9769 9770 9771 9772 9773 9774 9775 9776
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9777
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9778 9779 9780 9781 9782
        })

    return out


G
gongweibao 已提交
9783
@templatedoc()
G
fix  
gongweibao 已提交
9784
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9785
    """
R
ruri 已提交
9786
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
9787

R
ruri 已提交
9788 9789 9790 9791 9792
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time. 
G
fix  
gongweibao 已提交
9793
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9794 9795

    Returns:
R
ruri 已提交
9796
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
9797

9798 9799 9800
    Examples:
        .. code-block:: python

9801
            import paddle.fluid as fluid
R
ruri 已提交
9802
            x = fluid.data(
9803 9804
                name="X",
                shape=[13, 11],
R
ruri 已提交
9805
                dtype='float32')
9806

Y
Yibing Liu 已提交
9807
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9808 9809 9810
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9811
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9823
@templatedoc()
G
fix  
gongweibao 已提交
9824 9825 9826 9827 9828 9829 9830 9831 9832
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9833
    ${comment}
G
fix  
gongweibao 已提交
9834 9835

    Args:
G
gongweibao 已提交
9836 9837
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
Y
Yibing Liu 已提交
9838 9839 9840 9841 9842 9843
        input_dim_idx (int): ${input_dim_idx_comment}
        output_dim_idx (int): ${output_dim_idx_comment}
        mean (float): ${mean_comment}
        std (float): ${std_comment}
        seed (int): ${seed_comment}
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data, float32 or float_64.
G
fix  
gongweibao 已提交
9844 9845

    Returns:
G
gongweibao 已提交
9846
        out (Variable): ${out_comment}
9847 9848 9849 9850

    Examples:
        .. code-block:: python

9851
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9852
            input = fluid.data(name="input", shape=[13, 11], dtype='float32')
9853

Y
Yibing Liu 已提交
9854
            out = fluid.layers.gaussian_random_batch_size_like(
9855
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9856 9857 9858
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9859
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9878
@templatedoc()
X
Xin Pan 已提交
9879
def sum(x):
G
fix  
gongweibao 已提交
9880
    """
G
gongweibao 已提交
9881
    ${comment}
9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911
    
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]
G
fix  
gongweibao 已提交
9912 9913

    Args:
9914
        x (Variable|list(Variable)): ${x_comment}
G
fix  
gongweibao 已提交
9915 9916

    Returns:
9917
        Variable: ${out_comment}
9918 9919 9920 9921

    Examples:
        .. code-block:: python

9922
            import paddle.fluid as fluid
9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = fluid.layers.sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
G
fix  
gongweibao 已提交
9945 9946 9947
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9948 9949
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9950 9951 9952 9953
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9954
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9955 9956 9957 9958

    return out


G
gongweibao 已提交
9959
@templatedoc()
G
fix  
gongweibao 已提交
9960 9961
def slice(input, axes, starts, ends):
    """
9962
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
9963
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
9964 9965 9966 9967 9968 9969 9970
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
9971
    For slicing to the end of a dimension with unknown size, it is recommended
9972
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
9973 9974 9975
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9976

9977 9978 9979 9980 9981 9982 9983 9984
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
9985

9986 9987 9988 9989 9990
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
9991
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
9992
            Then:
9993
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
G
fix  
gongweibao 已提交
9994
    Args:
9995 9996 9997 9998 9999 10000 10001 10002 10003
        input (Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
G
fix  
gongweibao 已提交
10004 10005

    Returns:
10006 10007 10008 10009 10010
        Variable:  A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
G
fix  
gongweibao 已提交
10011

10012 10013 10014
    Examples:
        .. code-block:: python

10015
            import paddle.fluid as fluid
10016

10017 10018
            input = fluid.data(
                name="input", shape=[4, 5, 6], dtype='float32')
10019

10020 10021 10022 10023 10024 10025
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
10026
            # sliced_1 is input[0:3, 0:2, 2:4].
10027 10028 10029 10030 10031

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
10032
            # sliced_2 is input[0:3, 0:2, 2:4].
G
fix  
gongweibao 已提交
10033
    """
10034 10035 10036
    if in_dygraph_mode():
        infer_flags = list(1 for i in range(len(axes)))
        if isinstance(starts, (list, tuple)):
L
Leo Chen 已提交
10037
            if utils._contain_var(starts):
10038 10039 10040 10041 10042 10043 10044 10045 10046
                raise TypeError(
                    "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        if isinstance(ends, (list, tuple)):
L
Leo Chen 已提交
10047
            if utils._contain_var(ends):
10048 10049 10050 10051 10052 10053 10054 10055
                raise TypeError(
                    "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

10056 10057
        return core.ops.slice(input, 'axes', axes, 'starts', starts, 'ends',
                              ends, 'infer_flags', infer_flags)
10058

10059 10060 10061 10062 10063 10064 10065
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
10066
    helper = LayerHelper('slice', **locals())
10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

10085 10086 10087 10088 10089 10090 10091
    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
L
Leo Chen 已提交
10092
        if utils._contain_var(starts):
10093 10094 10095 10096 10097 10098 10099
            inputs['StartsTensorList'] = get_new_list_tensor(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
L
Leo Chen 已提交
10100 10101
        else:
            attrs['starts'] = starts
10102 10103 10104 10105 10106 10107 10108 10109

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
L
Leo Chen 已提交
10110
        if utils._contain_var(ends):
10111 10112 10113 10114 10115 10116 10117
            inputs['EndsTensorList'] = get_new_list_tensor(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
L
Leo Chen 已提交
10118 10119 10120
        else:
            attrs['ends'] = ends

10121 10122
    # infer_flags
    attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
10123 10124
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10125
    helper.append_op(
10126
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
10127 10128 10129 10130

    return out


W
wangchaochaohu 已提交
10131 10132 10133
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
W
wangchaochaohu 已提交
10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:
W
wangchaochaohu 已提交
10147 10148 10149 10150 10151 10152 10153 10154 10155

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
W
wangchaochaohu 已提交
10156
                strides = [1, 1]
W
wangchaochaohu 已提交
10157
            Then:
10158
                result = [ [5, 6, 7], ]
W
wangchaochaohu 已提交
10159 10160 10161 10162 10163
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10164
                starts = [0, 1]
W
wangchaochaohu 已提交
10165 10166 10167 10168 10169 10170 10171 10172 10173
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10174
                starts = [0, 1]
10175 10176
                ends = [-1, 1000]
                strides = [1, 3]
W
wangchaochaohu 已提交
10177
            Then:
10178 10179
                result = [ [2], ]
    Args:
W
wangchaochaohu 已提交
10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191
        input (Variable): An N-D ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Variable): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Variable, it should be an 1-D Tensor .
                It represents slice step of corresponding axis in ``axes``.
10192 10193

    Returns:
W
wangchaochaohu 已提交
10194 10195 10196 10197 10198 10199
        Variable:  A ``Tensor`` or ``LoDTensor`` with the same dimension as ``input``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
        TypeError: The type of ``strides`` must be list, tuple or Variable.
10200

W
wangchaochaohu 已提交
10201 10202 10203 10204 10205
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

W
wangchaochaohu 已提交
10206
            input = fluid.data(
W
wangchaochaohu 已提交
10207 10208
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10209 10210 10211 10212 10213
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
W
wangchaochaohu 已提交
10214 10215 10216 10217 10218
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is input[:, 0:3:1, 0:2:1, 2:4:1].

10219 10220 10221 10222

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
W
wangchaochaohu 已提交
10223 10224
            sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is input[:, 0:3:1, 0:2:1, 2:4:2].
W
wangchaochaohu 已提交
10225
    """
10226 10227 10228 10229 10230 10231 10232 10233 10234 10235
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")
    if not isinstance(strides, (list, tuple, Variable)):
        raise ValueError(
            "Input strides must be an Variable, python list or tuple.")

W
wangchaochaohu 已提交
10236 10237
    helper = LayerHelper('strided_slice', **locals())

10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257
    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
W
wangchaochaohu 已提交
10258 10259 10260
            'axes': axes,
            'starts': starts,
            'ends': ends,
10261 10262 10263 10264 10265 10266 10267 10268 10269 10270
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
L
Leo Chen 已提交
10271
            if utils._contain_var(starts):
10272 10273 10274 10275 10276 10277 10278
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
L
Leo Chen 已提交
10279 10280
            else:
                attrs['starts'] = starts
10281 10282 10283 10284 10285 10286 10287

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
L
Leo Chen 已提交
10288
            if utils._contain_var(ends):
10289 10290 10291 10292 10293 10294 10295
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
L
Leo Chen 已提交
10296 10297 10298
            else:
                attrs['ends'] = ends

10299 10300 10301 10302 10303 10304
        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
L
Leo Chen 已提交
10305
            if utils._contain_var(strides):
10306 10307 10308 10309 10310 10311 10312
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
L
Leo Chen 已提交
10313 10314
            else:
                attrs['strides'] = strides
10315 10316 10317 10318 10319
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
W
wangchaochaohu 已提交
10320 10321 10322 10323

    return out


G
fix  
gongweibao 已提交
10324 10325
def shape(input):
    """
C
chengduozh 已提交
10326 10327
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10328
    Get the shape of the input.
G
fix  
gongweibao 已提交
10329 10330

    Args:
10331
        input (Variable): The input N-D Tensor. Datatype can be float32, float64, int32, int64.
G
fix  
gongweibao 已提交
10332 10333

    Returns:
10334
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
10335

10336 10337 10338
    Examples:
        .. code-block:: python

10339
            import paddle.fluid as fluid
10340
            import numpy as np
10341

10342 10343 10344 10345 10346 10347 10348 10349 10350 10351
            inputs = fluid.layers.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
10352 10353 10354
    """

    helper = LayerHelper('shape', **locals())
10355
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10356
    helper.append_op(
G
fix  
gongweibao 已提交
10357
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10358 10359

    return out
G
merge  
gongweibao 已提交
10360 10361


Z
zhoukunsheng 已提交
10362 10363
def rank(input):
    """
10364
    The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10365 10366

    Args:
10367
        input (Variable): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
Z
zhoukunsheng 已提交
10368 10369

    Returns:
10370
        Variable, the output data type is int32.: The 0-D tensor with the dimensions of the input variable.
Z
zhoukunsheng 已提交
10371 10372 10373 10374

    Examples:
        .. code-block:: python

10375 10376
            import paddle.fluid as fluid

10377 10378
            input = fluid.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # rank=(3,)
Z
zhoukunsheng 已提交
10379 10380 10381 10382 10383 10384 10385 10386
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10416 10417 10418 10419
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
10420

S
sneaxiy 已提交
10421 10422
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
10423 10424 10425 10426
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
10427

S
sneaxiy 已提交
10428 10429
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10430 10431
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10432
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10433 10434 10435
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10436

S
sneaxiy 已提交
10437 10438 10439 10440 10441 10442 10443 10444 10445 10446
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


S
sneaxiy 已提交
10447
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10448
    """
10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)
S
sneaxiy 已提交
10462 10463

    Args:
10464
        x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
10465
        scale(float|Variable): The scale factor of the input, it should be a float number or a Variable with shape [1] and data type as float32.
10466 10467 10468 10469
        bias(float): The bias to be put on the input.
        bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` 
S
sneaxiy 已提交
10470 10471

    Returns:
10472
        Variable(Tensor|LoDTensor): Output tensor of scale operator, with shape and data type same as input.
10473 10474 10475 10476 10477

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
10478 10479 10480 10481 10482 10483 10484 10485 10486
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
            output = fluid.layers.scale(inputs, scale = 2.0, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
10487

10488 10489
            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]
10490 10491 10492 10493 10494 10495 10496 10497

        .. code-block:: python

            # scale with parameter scale as Variable
            import paddle.fluid as fluid
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
10498
            scale = fluid.layers.data(name="scale", shape=[1], dtype='float32',
10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510
                                      append_batch_size=False)
            output = fluid.layers.scale(inputs, scale = scale, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
            scale_np = np.array([2.]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img, 'scale':scale_np}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]

S
sneaxiy 已提交
10511
    """
10512 10513 10514 10515 10516 10517 10518 10519

    if in_dygraph_mode():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
        out = core.ops.scale(x, 'scale',
                             float(_scale), 'bias',
                             float(bias), 'bias_after_scale', bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out)

10520
    inputs = {'X': [x]}
10521 10522 10523 10524 10525
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
10526
        inputs['ScaleTensor'] = [scale]
10527 10528
    else:
        attrs['scale'] = float(scale)
10529 10530 10531 10532 10533 10534 10535
    helper = LayerHelper('scale', **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

S
sneaxiy 已提交
10536
    helper.append_op(
10537
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
sneaxiy 已提交
10538
    return helper.append_activation(out)
S
sneaxiy 已提交
10539 10540


X
Xin Pan 已提交
10541
def elementwise_add(x, y, axis=-1, act=None, name=None):
10542 10543 10544 10545 10546 10547 10548 10549 10550 10551
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10552 10553
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10554 10555
            }

10556 10557
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10558
        z = fluid.layers.elementwise_add(x, y)
10559
        # z = x + y
10560 10561 10562 10563 10564 10565

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10566
        print(z_value) # [3., 8., 6.]
10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10580 10581
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10582
        z = fluid.layers.elementwise_add(x, y, axis=1)
10583
        # z = x + y
10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10605 10606
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10607
        z = fluid.layers.elementwise_add(x, y, axis=3)
10608
        # z = x + y
10609 10610 10611 10612 10613 10614 10615 10616 10617

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10618 10619 10620 10621
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_add')

S
sneaxiy 已提交
10622 10623 10624
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10625
def elementwise_div(x, y, axis=-1, act=None, name=None):
10626 10627 10628 10629 10630 10631 10632 10633 10634 10635
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10636 10637
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10638 10639
            }

10640 10641
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10642
        z = fluid.layers.elementwise_div(x, y)
10643
        # z = x / y
10644 10645 10646 10647 10648 10649

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10650
        print(z_value) # [2., 0.6, 2.]
10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10664 10665
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10666
        z = fluid.layers.elementwise_div(x, y, axis=1)
10667
        # z = x / y
10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10689 10690
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10691
        z = fluid.layers.elementwise_div(x, y, axis=3)
10692
        # z = x / y
10693 10694 10695 10696 10697 10698 10699 10700 10701

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10702 10703 10704 10705
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div')

S
sneaxiy 已提交
10706 10707 10708
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10709
def elementwise_sub(x, y, axis=-1, act=None, name=None):
10710 10711 10712 10713 10714 10715 10716 10717 10718 10719
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10720 10721
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10722 10723
            }

10724 10725
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10726
        z = fluid.layers.elementwise_sub(x, y)
10727
        # z = x - y
10728 10729 10730 10731 10732 10733

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10734
        print(z_value) # [1., -2., 2.]
10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10748 10749
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10750
        z = fluid.layers.elementwise_sub(x, y, axis=1)
10751
        # z = x - y
10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10773 10774
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10775
        z = fluid.layers.elementwise_sub(x, y, axis=3)
10776
        # z = x - y
10777 10778 10779 10780 10781 10782 10783 10784 10785

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10786 10787 10788 10789
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub')

S
sneaxiy 已提交
10790 10791 10792
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10793
def elementwise_mul(x, y, axis=-1, act=None, name=None):
10794 10795 10796 10797 10798 10799 10800 10801 10802 10803
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10804 10805
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10806 10807
            }

10808 10809
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10810
        z = fluid.layers.elementwise_mul(x, y)
10811
        # z = x * y
10812 10813 10814 10815 10816 10817

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10818
        print(z_value) # [2., 15., 8.]
10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10832 10833
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10834
        z = fluid.layers.elementwise_mul(x, y, axis=1)
10835
        # z = x * y
10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10857 10858
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10859
        z = fluid.layers.elementwise_mul(x, y, axis=3)
10860
        # z = x * y
10861 10862 10863 10864 10865 10866 10867 10868 10869

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]
 
    """
10870 10871 10872 10873
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul')

S
sneaxiy 已提交
10874 10875 10876
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10877
def elementwise_max(x, y, axis=-1, act=None, name=None):
10878 10879 10880 10881 10882 10883 10884 10885 10886 10887
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10888 10889
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10890 10891
            }

10892 10893
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 5, 4]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10915 10916
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]]

    """
10928 10929 10930 10931
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_max')

S
sneaxiy 已提交
10932 10933 10934
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10935
def elementwise_min(x, y, axis=-1, act=None, name=None):
10936 10937 10938 10939 10940 10941 10942 10943 10944 10945
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10946 10947
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10948 10949
            }

10950 10951
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10952
        z = fluid.layers.elementwise_min(x, y)
10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 2]

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10972 10973
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10974
        z = fluid.layers.elementwise_min(x, y, axis=1)
10975 10976 10977 10978 10979 10980 10981 10982 10983

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]]
    """
10984 10985 10986
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_min')
10987

S
sneaxiy 已提交
10988 10989 10990
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10991
def elementwise_pow(x, y, axis=-1, act=None, name=None):
10992 10993 10994 10995 10996 10997 10998 10999 11000 11001
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11002 11003
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11004 11005
            }

11006 11007
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11008 11009 11010 11011 11012 11013 11014 11015 11016
        z = fluid.layers.elementwise_pow(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 243, 16]
    """
11017 11018 11019
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_pow')
S
sneaxiy 已提交
11020 11021 11022
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


11023
def elementwise_mod(x, y, axis=-1, act=None, name=None):
11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 6, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_mod(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 3]
    """
11049 11050 11051 11052
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mod')

11053 11054 11055 11056
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 7, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_floordiv(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3, 2, 1]
    """
11082 11083 11084 11085
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_floordiv')

11086 11087 11088
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
11089
for func in [
11090 11091 11092 11093
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
11094 11095
        elementwise_max,
        elementwise_pow,
11096
        elementwise_min,
11097 11098
        elementwise_mod,
        elementwise_floordiv,
11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "axis (int32, optional): If X.dimension != Y.dimension, \
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
            "act (string, optional): Activation applied to the output. \
            Default is None. Details: :ref:`api_guide_activations_en` ",
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ],
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)

11116
for func in []:
S
sneaxiy 已提交
11117 11118 11119 11120
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
11121 11122
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
11123
        ])
11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11161 11162


11163
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11164 11165
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11166 11167
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11168 11169 11170

    if out is None:
        if name is None:
X
Xin Pan 已提交
11171
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11187
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11188
    """
W
Wilber 已提交
11189 11190 11191 11192 11193 11194 11195 11196
    logical_and Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \land Y
M
minqiyang 已提交
11197 11198 11199 11200

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11201 11202
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11203 11204

    Returns:
W
Wilber 已提交
11205
        ${out_type}: ${out_comment}
11206 11207 11208 11209

    Examples:
        .. code-block:: python

11210
            import paddle.fluid as fluid
W
Wilber 已提交
11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_and(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_and(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, False], [False, False]]
M
minqiyang 已提交
11229 11230 11231 11232 11233 11234 11235
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11236
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11237
    """
W
Wilber 已提交
11238 11239 11240 11241 11242 11243 11244 11245
    logical_or Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \lor Y
M
minqiyang 已提交
11246 11247 11248 11249

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11250 11251
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11252 11253

    Returns:
W
Wilber 已提交
11254
        ${out_type}: ${out_comment}
11255 11256 11257 11258

    Examples:
        .. code-block:: python

11259
            import paddle.fluid as fluid
W
Wilber 已提交
11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_or(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_or(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, True], [False, True]]
M
minqiyang 已提交
11278 11279 11280 11281 11282 11283 11284
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11285
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11286
    """
W
Wilber 已提交
11287 11288 11289 11290 11291 11292 11293 11294
    logical_xor Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = (X \lor Y) \land \lnot (X \land Y)
M
minqiyang 已提交
11295 11296 11297 11298

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11299 11300
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11301 11302

    Returns:
W
Wilber 已提交
11303
        ${out_type}: ${out_comment}
11304 11305 11306 11307

    Examples:
        .. code-block:: python

11308
            import paddle.fluid as fluid
W
Wilber 已提交
11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_xor(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_xor(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[False, True], [False, True]]
M
minqiyang 已提交
11327 11328 11329 11330 11331 11332 11333
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11334
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11335
    """
W
Wilber 已提交
11336 11337 11338 11339 11340 11341 11342 11343
    logical_not Operator

    It operates element-wise on X, and returns the Out. X and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = \lnot X
M
minqiyang 已提交
11344 11345 11346

    Args:
        x(${x_type}): ${x_comment}
W
Wilber 已提交
11347 11348
        out(LoDTensor/Tensor): The LoDTensor/Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11349 11350

    Returns:
W
Wilber 已提交
11351
        ${out_type}: ${out_comment}
11352 11353 11354 11355

    Examples:
        .. code-block:: python

11356
            import paddle.fluid as fluid
W
Wilber 已提交
11357 11358 11359 11360 11361
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            res = fluid.layers.logical_not(x)
T
tianshuo78520a 已提交
11362
            # The comment lists another avaliable method.
W
Wilber 已提交
11363 11364 11365 11366 11367 11368 11369 11370 11371 11372
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_not(x, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[False, True]]
M
minqiyang 已提交
11373 11374 11375 11376
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11377 11378 11379 11380 11381 11382 11383 11384 11385


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
11386 11387 11388 11389 11390
        min(float): ${min_comment}
        max(float): ${max_comment}
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
11391 11392

    Returns:
S
SunGaofeng 已提交
11393 11394 11395 11396
        ${out_comment}

    Return Type:
        ${out_type}
11397 11398 11399 11400

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11401
            import paddle.fluid as fluid
S
SunGaofeng 已提交
11402
            input = fluid.data(
11403 11404
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11405 11406 11407 11408 11409
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11410 11411
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11412 11413 11414

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
W
wangguanzhong 已提交
11434 11435 11436
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
11437 11438

    Returns:
W
wangguanzhong 已提交
11439 11440
        Variable:

11441
        out(${out_type}): ${out_comment}
11442

W
wangguanzhong 已提交
11443

11444 11445 11446
    Examples:
        .. code-block:: python

11447
            import paddle.fluid as fluid
11448 11449
            input = fluid.data(
                name='data', shape=[None, 1], dtype='float32')
11450
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11451 11452 11453 11454 11455
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11456 11457
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11458 11459 11460

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11461 11462 11463 11464 11465 11466 11467 11468

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11482 11483 11484 11485

    Examples:
        .. code-block:: python

11486
            import paddle.fluid as fluid
11487 11488 11489
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11490
    """
11491
    if in_dygraph_mode():
11492
        return core.ops.mean(x)
X
Xin Pan 已提交
11493 11494

    helper = LayerHelper("mean", **locals())
11495
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
X
Xin Pan 已提交
11496
    if name is None:
X
Xin Pan 已提交
11497
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11498 11499 11500 11501 11502 11503 11504 11505 11506 11507
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11519 11520 11521 11522

    Examples:
        .. code-block:: python

11523
            import paddle.fluid as fluid
11524 11525 11526 11527 11528
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11541 11542
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
11543 11544 11545 11546 11547 11548 11549 11550
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
11551 11552

    Args:
L
liu zhengxi 已提交
11553 11554 11555 11556 11557
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. 
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1. 
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
X
Xin Pan 已提交
11558 11559

    Returns:
L
liu zhengxi 已提交
11560
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
11561 11562

    Examples:
L
liu zhengxi 已提交
11563
        ..  code-block:: python
11564 11565 11566 11567 11568 11569 11570 11571 11572
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11573
    """
11574
    if in_dygraph_mode():
11575 11576
        return core.ops.mul(x, y, 'x_num_col_dims', x_num_col_dims,
                            'y_num_col_dims', y_num_col_dims)
X
Xin Pan 已提交
11577

11578 11579
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
11580
    helper = LayerHelper("mul", **locals())
11581 11582
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
X
Xin Pan 已提交
11583
    if name is None:
X
Xin Pan 已提交
11584
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11585 11586 11587 11588 11589
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
11590 11591
        type="mul", inputs={"X": x,
                            "Y": y}, attrs=attrs, outputs={"Out": out})
X
Xin Pan 已提交
11592 11593 11594 11595
    return out


@templatedoc()
11596
def maxout(x, groups, name=None, axis=1):
X
Xin Pan 已提交
11597 11598 11599 11600 11601
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
11602 11603
        groups(int): ${groups_comment}
        axis(int, optional): ${axis_comment}
W
wangguanzhong 已提交
11604 11605 11606
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
X
Xin Pan 已提交
11607 11608

    Returns:
11609
        Variable: ${out_comment}
J
jerrywgz 已提交
11610

11611 11612
    Raises:
        ValueError: If `axis` is not 1, -1 or 3.
11613
        ValueError: If the number of input channels can not be divisible by `groups`.
W
wangguanzhong 已提交
11614

J
jerrywgz 已提交
11615 11616 11617
    Examples:
        .. code-block:: python

11618
            import paddle.fluid as fluid
11619
            input = fluid.data(
J
jerrywgz 已提交
11620
                name='data', 
11621
                shape=[None, 256, 32, 32], 
J
jerrywgz 已提交
11622 11623
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11624 11625
    """
    helper = LayerHelper("maxout", **locals())
11626 11627 11628 11629 11630 11631
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3
X
Xin Pan 已提交
11632 11633

    if name is None:
X
Xin Pan 已提交
11634
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11635 11636 11637 11638 11639 11640 11641
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
11642 11643
        attrs={"groups": groups,
               "axis": axis},
X
Xin Pan 已提交
11644 11645
        outputs={"Out": out})
    return out
11646 11647


J
JiabinYang 已提交
11648
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11649
    """
J
JiabinYang 已提交
11650
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11651

11652 11653 11654
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
        theinput LoDtensor where values from the height and width dimensions are moved to the channel \
        dimension.
J
JiabinYang 已提交
11655
    The attr blocksize indicates the input block size.
11656

T
tianshuo78520a 已提交
11657
    space_to_depth will reorganize the elements of input with shape[batch, channel, height, width] \
11658 11659
        according to blocksize to construct output with shape \
        [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
11660

J
JiabinYang 已提交
11661 11662 11663 11664 11665
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize

11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682
    This OP is useful for resizing the activations between convolutions \
        (but keeping all data)

    .. code-block:: text

        Given the input x with the shape [1, 1, 4, 4]:
        x.data = [[[[1,   2,  5,  6],
                    [3,   4,  7,  8],
                    [9,  10, 13, 14],
                    [11, 12, 15, 16]]]]
        blocksize = 2

        then get the output with the shape [1, 4, 2, 2]:
        out.data = [[[[1,   2],  [3,  4]],
                     [[5,   6],  [7,  8]],
                     [[9,  10], [11, 12]],
                     [[13, 14], [15, 16]]]]
J
JiabinYang 已提交
11683

J
JiabinYang 已提交
11684
    Args:
11685 11686 11687 11688 11689 11690
        x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel, height, width]
        blocksize (int): The blocksize to select the element on each feature map should be > 2
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.
J
JiabinYang 已提交
11691

11692 11693 11694 11695
    Returns: The output, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]

    Return Type: Variable
J
JiabinYang 已提交
11696 11697

    Raises:
11698
        TypeError: blocksize type must be int64.
J
JiabinYang 已提交
11699 11700 11701

    Examples:
        .. code-block:: python
11702
    
11703 11704
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11705

11706 11707
            data = fluid.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
11708
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11709
                x=data, blocksize=2)
11710

11711
            exe = fluid.Executor(fluid.CPUPlace())
11712
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
11713 11714 11715 11716 11717 11718 11719

            print(data_np)
            #array([[[[ 0.,  1.], [ 2.,  3.]],
            #        [[ 4.,  5.], [ 6.,  7.]],
            #        [[ 8.,  9.], [10., 11.]],
            #        [[12., 13.], [14., 15.]]]], dtype=float32)

11720
            out_main = exe.run(fluid.default_main_program(),
11721 11722 11723 11724 11725 11726 11727 11728
                        feed={'data': data_np},
                        fetch_list=[space_to_depthed])

            print(out_main)
            #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
            #         [[ 8.]], [[12.]], [[ 9.]], [[13.]],
            #         [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
            #         [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
11729

J
JiabinYang 已提交
11730 11731
    """

J
JiabinYang 已提交
11732
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11733

J
JiabinYang 已提交
11734 11735
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11736 11737

    if name is None:
J
JiabinYang 已提交
11738 11739
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
11740 11741 11742 11743 11744
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
11745
        type="space_to_depth",
J
JiabinYang 已提交
11746
        inputs={"X": x},
J
JiabinYang 已提交
11747
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11748
        outputs={"Out": out})
J
JiabinYang 已提交
11749 11750
    return out

J
JiabinYang 已提交
11751

11752 11753 11754 11755 11756 11757
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11758 11759 11760 11761 11762
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11763

11764 11765 11766
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
L
LielinJiang 已提交
11767
            is applied in the second dimension.The data type is float32 or float64.
11768 11769
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
L
LielinJiang 已提交
11770
            the input.The data type is float32 or float64.
11771 11772
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
L
LielinJiang 已提交
11773
            The data type is float32 or float64.
11774 11775 11776 11777 11778
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore 
            data_layout.
L
LielinJiang 已提交
11779 11780
        name (str, default None): The name of this layer. For more information,
            please refer to :ref:`api_guide_Name` .
11781
        act (str, default None): Activation to be applied to the output of this layer.
11782 11783

    Returns:
L
LielinJiang 已提交
11784
        Variable: A tensor which has the same shape, data layout and data type with x.
B
Bai Yifan 已提交
11785 11786 11787

    Examples:
        .. code-block:: python
L
LielinJiang 已提交
11788 11789

            import numpy as np
B
Bai Yifan 已提交
11790
            import paddle.fluid as fluid
L
LielinJiang 已提交
11791 11792 11793 11794 11795 11796 11797 11798 11799 11800

            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
                                    default_initializer=fluid.initializer.Constant(2.0))
            input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
                                    default_initializer=fluid.initializer.Constant(0.5))
B
Bai Yifan 已提交
11801
            out = fluid.layers.affine_channel(data,scale=input_scale,
L
LielinJiang 已提交
11802 11803 11804 11805 11806 11807 11808 11809 11810 11811
                                    bias=input_bias)

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_array] = exe.run(test_program,
                                  fetch_list=out,
                                  feed={'data': np.ones([1,1,2,2]).astype('float32')})
            # out_array is [[[[2.5, 2.5],
            #                [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
B
Bai Yifan 已提交
11812

11813 11814 11815 11816
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11817
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11829
    return helper.append_activation(out)
11830 11831


B
barrierye 已提交
11832
def similarity_focus(input, axis, indexes, name=None):
11833
    """
B
barrierye 已提交
11834
    SimilarityFocus Operator
B
barrierye 已提交
11835 11836

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11837

11838 11839 11840
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11841
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11842 11843 11844 11845 11846 11847 11848
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11849
       each index.
B
barrierye 已提交
11850 11851 11852 11853
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11903
    Args:
11904
        input(Variable): The input tensor variable(default float). It should
Y
Yibing Liu 已提交
11905 11906
            be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is 
            float32 or float64.
B
barrierye 已提交
11907
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11908
            1, 2 or 3.
B
barrierye 已提交
11909
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11910 11911

    Returns:
H
haowang101779990 已提交
11912 11913
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11914

B
barrierye 已提交
11915 11916
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11917

11918
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11919
            data = fluid.data(
Y
Yibing Liu 已提交
11920 11921
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11934 11935 11936 11937 11938
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11939 11940 11941 11942 11943 11944 11945
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11946 11947


M
minqiyang 已提交
11948 11949
def hash(input, hash_size, num_hash=1, name=None):
    """
Z
zhupengyang 已提交
11950
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
11951 11952
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11953 11954

    Args:
Z
zhupengyang 已提交
11955 11956 11957 11958 11959 11960
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
11961 11962

    Returns:
Z
zhupengyang 已提交
11963
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
11964 11965

    Examples:
Z
zhupengyang 已提交
11966
        .. code-block:: python
H
haowang101779990 已提交
11967

11968
            import paddle.fluid as fluid
Z
zhupengyang 已提交
11969
            import numpy as np
11970

Z
zhupengyang 已提交
11971
            place = fluid.core.CPUPlace()
11972

Z
zhupengyang 已提交
11973 11974
            x = fluid.data(name="x", shape=[1], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res",input=x, hash_size=1000, num_hash=4)
11975

Z
zhupengyang 已提交
11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
            x_i = fluid.core.LoDTensor()
            x_i.set(in1,place)
            x_i.set_recursive_sequence_lengths([[0,2]])
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
11993 11994
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11995 11996
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11997 11998 11999 12000 12001 12002 12003
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
12004 12005


D
dengkaipeng 已提交
12006
@templatedoc()
12007 12008
def grid_sampler(x, grid, name=None):
    """
12009
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
12010
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
12011 12012
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
12013 12014
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
K
Kaipeng Deng 已提交
12015 12016
    interpolation value of 4 nearest corner points. The output tensor 
    shape will be [N, C, H, W].
12017

H
haowang101779990 已提交
12018
    .. code-block:: text
12019

H
haowang101779990 已提交
12020 12021
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
12022

K
Kaipeng Deng 已提交
12023 12024 12025 12026
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
12027

H
haowang101779990 已提交
12028 12029 12030
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
12031

H
haowang101779990 已提交
12032 12033 12034 12035 12036 12037 12038 12039 12040
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
12041

H
haowang101779990 已提交
12042 12043 12044 12045
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
12046

H
haowang101779990 已提交
12047 12048 12049 12050
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
12051

H
haowang101779990 已提交
12052 12053 12054 12055
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
12056

H
haowang101779990 已提交
12057 12058
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
12059 12060

    Args:
K
Kaipeng Deng 已提交
12061 12062 12063 12064 12065 12066 12067 12068 12069
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
12070 12071

    Returns:
H
haowang101779990 已提交
12072
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
12073 12074
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
12075

H
haowang101779990 已提交
12076 12077 12078 12079
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
12080 12081
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
12082 12083
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
12084 12085
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
12086
            out = fluid.layers.grid_sampler(x=x, grid=grid)
12087

D
dengkaipeng 已提交
12088 12089 12090 12091 12092 12093 12094 12095 12096
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

12097
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
12098 12099
    ipts = {'X': x, 'Grid': grid}

12100
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
12101 12102 12103
    return out


G
gmcather 已提交
12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
Y
Yibing Liu 已提交
12117
        input (Variable|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
12118
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
12119 12120 12121 12122 12123 12124 12125
                                by the previous operator. Data type float32.
        label (Variable|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size. 
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
12126 12127 12128 12129 12130 12131 12132

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

12133
          import paddle.fluid as fluid
12134 12135
          label = fluid.data(name='label', shape=[None, 1], dtype='float32')
          prob = fluid.data(name='prob', shape=[None, 1], dtype='float32')
G
gmcather 已提交
12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
G
Guo Sheng 已提交
12157 12158
    This operator performs weighted sum of input feature at each position
    (position in the sequence) and the corresponding position encoding.
G
gmcather 已提交
12159

G
Guo Sheng 已提交
12160 12161
    For more details of position encoding, please refer to `Attention Is All You 
    Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12162

G
Guo Sheng 已提交
12163
    The formula is as follows:
G
gmcather 已提交
12164 12165

    .. math::
H
haowang101779990 已提交
12166 12167 12168
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12169 12170

    Where:
G
Guo Sheng 已提交
12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187
      - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`.
      - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos`

    Args:
        input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a
            Tensor, the shape should be `[N, M, P]`, where `N` stands for
            batch size, `M` for sequence length, `P` for the size of feature
            dimension. If it is a LoDTensor, the shape should be `[N, P]`,
            where `N` stands for the total sequence lengths in this mini-batch,
            `P` for the size of feature. The data type should be float32 or float64.
        alpha(float): Indicate the weight coefficient for `input` when performing
            weighted sum.
        beta(float): Indicate the weight coefficient for position encoding when
            performing weighted sum.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
G
gmcather 已提交
12188 12189

    Returns:
G
Guo Sheng 已提交
12190
        Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`.
G
gmcather 已提交
12191 12192 12193 12194

    Examples:
        .. code-block:: python

12195 12196
          import paddle.fluid as fluid

G
Guo Sheng 已提交
12197
          tensor = fluid.data(
12198
              name='tensor',
G
Guo Sheng 已提交
12199 12200
              shape=[None, 64, 512],
              dtype='float32')
12201 12202
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12203

G
gmcather 已提交
12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12220 12221 12222 12223 12224 12225 12226 12227 12228 12229


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Y
Yibing Liu 已提交
12230
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12231

Q
Qiao Longfei 已提交
12232
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12233 12234 12235
    For example:

    .. math::
H
haowang101779990 已提交
12236
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12237

Q
Qiao Longfei 已提交
12238
    In this formula:
12239 12240
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
12241
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
12242
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12243 12244 12245
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
Y
Yibing Liu 已提交
12246 12247 12248 12249
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type 
            is float32 or float64.
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type 
            should be same as **x**.
Q
Qiao Longfei 已提交
12250
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
12251 12252 12253 12254 12255 12256 12257 12258 12259
        act (str|None): Activation to be applied to the output of this layer. Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr|None): To specify the bias parameter attribute. 
            Default: None, which means the default bias parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
12260
    Returns:
Y
Yibing Liu 已提交
12261
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
12262 12263 12264 12265

    Examples:
        .. code-block:: python

12266
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12267 12268
          layer1 = fluid.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.data("t2", shape=[-1, 4], dtype="float32")
Y
Yibing Liu 已提交
12269
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12270 12271
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12272
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12273 12274 12275 12276

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12277
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12295 12296 12297 12298 12299


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

        Ouput is LoDTensor:
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
12316 12317

    Args:
12318 12319 12320
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
12321 12322

    Returns:
12323
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
12324 12325 12326 12327 12328 12329 12330 12331

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12332 12333 12334 12335 12336 12337 12338 12339 12340 12341
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12342 12343


S
shippingwang 已提交
12344
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12345
    """
S
shippingwang 已提交
12346 12347 12348 12349 12350 12351
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12352
    
S
shippingwang 已提交
12353
    .. code-block:: text
12354

S
shippingwang 已提交
12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12383
    Args: 
S
shippingwang 已提交
12384
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
T
tianshuo78520a 已提交
12385
        group(int): Indicating the counts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12386 12387

    Returns:
S
shippingwang 已提交
12388 12389
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12390 12391

    Raises:
S
shippingwang 已提交
12392
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12393 12394 12395

    Examples:
        .. code-block:: python
12396

12397
            import paddle.fluid as fluid
R
ruri 已提交
12398
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
S
shippingwang 已提交
12399
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12400 12401 12402
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12403
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12404 12405 12406 12407 12408 12409 12410 12411 12412

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12413
    return out
S
Add  
shippingwang 已提交
12414 12415


12416
@templatedoc()
D
dengkaipeng 已提交
12417
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12418 12419 12420 12421 12422 12423 12424 12425
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12426
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
12427 12428 12429
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
12430 12431 12432

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
K
Kaipeng Deng 已提交
12433
        same shape and same data type as the input.
12434 12435 12436 12437 12438 12439 12440

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12441
            import paddle.fluid as fluid
K
Kaipeng Deng 已提交
12442
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
D
dengkaipeng 已提交
12443
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12456 12457
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12458 12459 12460
    return out


S
sneaxiy 已提交
12461
class PyFuncRegistry(object):
S
sneaxiy 已提交
12462 12463 12464
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12465
        if func is None or not callable(func):
S
sneaxiy 已提交
12466 12467 12468
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12469
        # find named args using reflection
S
sneaxiy 已提交
12470 12471 12472 12473 12474 12475 12476
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12477 12478 12479
        '''
        Why record self here?

M
minqiyang 已提交
12480 12481
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12482
           to find the registered function corresponding
M
minqiyang 已提交
12483
           to :code:`idx`.
S
sneaxiy 已提交
12484

M
minqiyang 已提交
12485 12486
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12487
           whose reference count is 1 would cause
M
minqiyang 已提交
12488
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12489 12490
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12491
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12506 12507 12508 12509 12510 12511 12512 12513 12514
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12515

S
sneaxiy 已提交
12516 12517
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12518 12519

        ret = []
S
sneaxiy 已提交
12520 12521 12522
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12523 12524
                continue

S
sneaxiy 已提交
12525 12526
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12527

S
sneaxiy 已提交
12528 12529 12530
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12531

S
sneaxiy 已提交
12532
        return tuple(ret)
S
sneaxiy 已提交
12533 12534


S
sneaxiy 已提交
12535 12536 12537
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
12538 12539 12540 12541 12542 12543 12544
    This OP is used to register customized Python OP to Paddle Fluid. The design 
    principe of py_func is that LodTensor and numpy array can be converted to each
    other easily. So you can use Python and numpy API to register a python OP.

    The forward  function of the registered OP is ``func`` and the backward function 
    of that is  ``backward_func``. Paddle will call ``func`` at forward runtime and 
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None). 
12545
    ``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is 
12546
    the output of ``func``, whose type can be either LoDTensor or numpy array.
12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562

    The input of the backward function ``backward_func`` is ``x``, ``out`` and 
    the gradient of ``out``. If some variables of ``out`` have no gradient, the 
    relevant input variable of ``backward_func`` is None. If some variables of 
    ``x`` do not have a gradient, the user should return None in ``backward_func``.

    The data type and shape of ``out`` should also be set correctly before this 
    API is called, and the data type and shape of the gradient of ``out`` and 
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
            is running, the forward output ``out`` will be calculated according to this 
12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573
            function and the forward input ``x``. In ``func`` , it's suggested that we 
            actively convert LoDTensor into a numpy array, so that we can use Python and
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
        x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``. 
            It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or 
            Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
            or list[Variale].
        out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``, 
            it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
            or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``, 
            you must create ``out`` in advance.
12574 12575 12576 12577 12578
        backward_func (callable, optional): The backward function of the registered OP. 
            Its default value is None, which means there is no reverse calculation. If 
            it is not None, ``backward_func`` is called to calculate the gradient of 
            ``x`` when the network is at backward runtime.
        skip_vars_in_backward_input (Variable, optional): It's used to limit the input 
12579 12580 12581 12582 12583
            variable list of ``backward_func``, and it can be Variable|tuple(Variale)|list[Variale]. 
            It must belong to either ``x`` or ``out``. The default  value is None, which means 
            that no variables need to be removed from ``x`` and ``out``. If it is not None, 
            these variables will not be the input of ``backward_func``. This parameter is only 
            useful when ``backward_func`` is not None.
12584 12585
    
    Returns: 
12586
        Variable|tuple(Variale)|list[Variale]: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
12587 12588

    Examples:
12589
        .. code-block:: python
12590 12591
	    
            # example 1:
12592 12593 12594
            import paddle.fluid as fluid
            import six

12595 12596
            # Creates a forward function, LodTensor can be input directly without
            # being converted into numpy array.
12597 12598 12599
            def tanh(x):
                return np.tanh(x)

12600 12601 12602
            # Skip x in backward function and return the gradient of x
            # LodTensor must be actively converted to numpy array, otherwise, 
            # operations such as +/- can't be used.
12603 12604
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
12605 12606
            
            # Creates a forward function for debugging running networks(print value)
12607 12608
            def debug_func(x):
                print(x)
12609 12610 12611 12612
            
            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                    name=name, dtype=dtype, shape=shape)
12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625

            def simple_net(img, label):
                hidden = img
                for idx in six.moves.range(4):
                    hidden = fluid.layers.fc(hidden, size=200)
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

                    # User-defined forward and backward 
                    hidden = fluid.layers.py_func(func=tanh, x=hidden,
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

12626
                    # User-defined debug functions that print out the input LodTensor
12627 12628 12629 12630 12631
                    fluid.layers.py_func(func=debug_func, x=hidden, out=None)

                prediction = fluid.layers.fc(hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                return fluid.layers.mean(loss)
12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688

            # example 2: 
            # This example shows how to turn LoDTensor into numpy array and 
            # use numpy API to register an Python OP
            import paddle.fluid as fluid
            import numpy as np

            def element_wise_add(x, y): 
                # LodTensor must be actively converted to numpy array, otherwise, 
                # numpy.shape can't be used.
                x = np.array(x)    
                y = np.array(y)

                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")

                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]

                return result

            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                            name=name, dtype=dtype, shape=shape)

            def py_func_demo():
                start_program = fluid.default_startup_program()
                main_program = fluid.default_main_program()

                # Input of the forward function
                x = fluid.data(name='x', shape=[2,3], dtype='int32')
                y = fluid.data(name='y', shape=[2,3], dtype='int32')
                
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])

                # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
                fluid.layers.py_func(func=element_wise_add, x=[x,y], out=output)

                exe=fluid.Executor(fluid.CPUPlace())
                exe.run(start_program)

                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                out = exe.run(main_program, 
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))

            py_func_demo()

            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
S
sneaxiy 已提交
12689
    """
S
sneaxiy 已提交
12690
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12691 12692 12693
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12694
        x = [x]
12695 12696 12697
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
12698
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12699

S
sneaxiy 已提交
12700 12701 12702
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12703
        out_list = [out]
12704 12705
    elif isinstance(out, tuple):
        out_list = list(out)
12706 12707 12708
    elif isinstance(out, list):
        out_list = out
    else:
S
sneaxiy 已提交
12709 12710
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12711

S
sneaxiy 已提交
12712 12713
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12714
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12715 12716

    for each_out in out_list:
S
sneaxiy 已提交
12717 12718
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12719 12720
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12721

S
sneaxiy 已提交
12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12737 12738 12739 12740

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12741 12742
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12743 12744 12745
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12746
        })
S
sneaxiy 已提交
12747
    return out
S
sneaxiy 已提交
12748 12749 12750


# For debug usage
S
sneaxiy 已提交
12751 12752 12753 12754
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

S
SunGaofeng 已提交
12766
    Parameters:
12767
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12768
        rois (Variable): LoDTensor, ROIs (Regions of Interest) to pool over.It should be
S
SunGaofeng 已提交
12769 12770 12771
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
S
SunGaofeng 已提交
12772 12773
                         right coordinates. The data type is the same as `input`
        output_channels (int): ${output_channels_comment}
12774
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
S
SunGaofeng 已提交
12775 12776 12777 12778 12779
        pooled_height (int): ${pooled_height_comment} Default: 1
        pooled_width (int): ${pooled_width_comment} Default: 1
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
12780 12781

    Returns:
S
SunGaofeng 已提交
12782 12783 12784 12785
        ${out_comment}.

    Return Type:
        Variable
12786 12787 12788 12789

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12790
            import paddle.fluid as fluid
S
SunGaofeng 已提交
12791 12792
            x = fluid.data(name='x', shape=[100, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
S
SunGaofeng 已提交
12793
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12819 12820 12821 12822 12823 12824 12825 12826


@templatedoc()
def prroi_pool(input,
               rois,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
12827
               batch_roi_nums=None,
12828 12829
               name=None):
    """
12830
    The precise roi pooling implementation for paddle. Reference: https://arxiv.org/pdf/1807.11590.pdf
12831 12832

    Args:
12833
        input (Variable):The input of precise roi pooliing.The shape of input tensor is
12834 12835 12836
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
12837 12838 12839 12840 12841
                        a 2-D LoDTensor or Tensor of shape (num_rois, 4), the lod level
                        is 1 when it is LoDTensor. The LoD include the rois's batch index
                        information. If rois is Tensor, its batch index information should
                        be provided by batch_index.
                        Given as [[x1, y1, x2, y2], ...], (x1, y1) is
12842 12843 12844 12845 12846 12847
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
12848
        batch_roi_nums (Variable): The number of roi for each image in batch. It 
T
tianshuo78520a 已提交
12849
                         should be 1-D Tensor, with shape [N] and dtype int64, 
12850 12851
                         where N is the batch size. Default: None. Be note: The lod of input should be
                         empty when batch_roi_nums has values;
12852 12853 12854
        name (str, default None): The name of this operation.

    Returns:
12855
        Variable(Tensor):The shape of the returned Tensor is (N, C, pooled_height, pooled_width), with value type float32,float16. N, C denote batch_size and channels of input respectively.
12856 12857 12858 12859

    Examples:
        .. code-block:: python

12860
            ## prroi_pool without batch_roi_num
12861
            import paddle.fluid as fluid
12862 12863
            x = fluid.data(name='x', shape=[None, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
12864
            pool_out = fluid.layers.prroi_pool(x, rois, 1.0, 7, 7)
12865 12866 12867 12868 12869 12870 12871 12872 12873
            
            ## prroi_pool with batch_roi_num
            batchsize=4
            x2 = fluid.data(name='x2', shape=[batchsize, 490, 28, 28], dtype='float32')
            rois2 = fluid.data(name='rois2', shape=[batchsize, 4], dtype='float32')
            batch_rois_num = fluid.data(name='rois_nums', shape=[batchsize], dtype='int64')
            pool_out2 = fluid.layers.prroi_pool(x2, rois2, 1.0, 7, 7, batch_roi_nums=batch_rois_num)


12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
12885 12886 12887
    inputs_op = {'X': input, 'ROIs': rois}
    if batch_roi_nums is not None:
        inputs_op['BatchRoINums'] = batch_roi_nums
12888 12889
    helper.append_op(
        type='prroi_pool',
12890
        inputs=inputs_op,
12891 12892 12893 12894 12895 12896 12897
        outputs={'Out': out},
        attrs={
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12898

M
minqiyang 已提交
12899

R
ruri 已提交
12900 12901 12902
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
12903
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
12904 12905 12906 12907 12908 12909 12910
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
12911
    Parameters:
R
ruri 已提交
12912

R
ruri 已提交
12913 12914
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
12915 12916

    Returns:
12917
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12918 12919 12920 12921 12922 12923 12924

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

R
ruri 已提交
12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,9,4,4])
	    output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,9,4,4).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
 	    # print(output.shape)
	    # (2L, 1L, 12L, 12L)
R
ruri 已提交
12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12960 12961 12962 12963 12964
def fsp_matrix(x, y):
    """

    **FSP matrix op**

12965
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

12977 12978 12979
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
12980
                      The y_channel can be different with the x_channel of Input(X)
12981 12982
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
12983 12984 12985 12986

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
12987 12988
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
12989 12990 12991 12992 12993

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12994
            import paddle.fluid as fluid
B
Bai Yifan 已提交
12995
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
12996 12997 12998 12999
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
13000 13001 13002 13003 13004 13005 13006 13007
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
13008 13009 13010 13011


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
13012

H
heqiaozhi 已提交
13013
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
13014

Z
zhoushiyu 已提交
13015
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
13016

Z
zhoushiyu 已提交
13017 13018
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
13019
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
13020 13021
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
13022

Z
zhoushiyu 已提交
13023 13024 13025 13026 13027 13028 13029
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
13030

H
heqiaozhi 已提交
13031
    Returns:
H
fix doc  
heqiaozhi 已提交
13032

Z
zhoushiyu 已提交
13033 13034
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
13035

H
heqiaozhi 已提交
13036
    Examples:
H
fix doc  
heqiaozhi 已提交
13037

H
heqiaozhi 已提交
13038
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
13039

13040
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
13041 13042
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
13043 13044 13045 13046 13047 13048 13049 13050
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
13051

H
heqiaozhi 已提交
13052 13053 13054 13055 13056 13057 13058 13059 13060
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
13061
    return out
Z
zhoukunsheng 已提交
13062 13063 13064 13065 13066 13067 13068


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
13069
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
13070 13071

    Returns:
13072
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate. 
Z
zhoukunsheng 已提交
13073 13074 13075 13076

    Examples:
        .. code-block:: python

13077
             import paddle.fluid as fluid
13078 13079 13080
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
13081
             # condition is a tensor [True, False, True]
13082 13083 13084
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
13085 13086

             # condition is a tensor [[True, False], [False, True]]
13087 13088 13089
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
13090 13091

             # condition is a tensor [False, False, False]
13092 13093 13094 13095
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
13096
    """
13097
    helper = LayerHelper("where_index", **locals())
Z
zhoukunsheng 已提交
13098 13099 13100 13101 13102

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
13103 13104 13105
        type='where_index',
        inputs={'Condition': condition},
        outputs={'Out': [out]})
Z
zhoukunsheng 已提交
13106
    return out
Z
zhoukunsheng 已提交
13107 13108 13109 13110


def sign(x):
    """
13111
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
13112 13113

    Args:
13114 13115
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
13116 13117

    Returns:
13118
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
13119 13120 13121 13122

    Examples:
        .. code-block:: python

13123 13124 13125
          import paddle.fluid as fluid
          import numpy as np

13126 13127
          # [1.0, 0.0, -1.0]
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32')) 
Z
zhoukunsheng 已提交
13128 13129 13130
    """

    helper = LayerHelper("sign", **locals())
13131 13132 13133 13134
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
13135 13136 13137 13138 13139
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
13140 13141


Z
zhoukunsheng 已提交
13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13181 13182
def unique_with_counts(x, dtype='int32'):
    """
T
tianshuo78520a 已提交
13183
    This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \
13184
    and an index tensor pointing to this unique tensor. 
13185

13186
    **NOTICE**: This op support the variable type of Tensor only.
13187 13188

    Args:
13189 13190
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Defalut value is int32.
13191

13192 13193 13194 13195
    Returns: 
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
T
tianshuo78520a 已提交
13196
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\
13197
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
13198 13199 13200 13201 13202 13203 13204 13205 13206

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
13207
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13250
                    modulated=True,
13251 13252
                    name=None):
    """
13253
    **Deformable Convolution op**
13254 13255 13256

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13257 13258 13259
   
    
    Deformable Convolution v2: 
13260 13261 13262 13263
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13264 13265

    Deformable Convolution v1:
13266
    
13267 13268 13269 13270 13271
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
13272
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
13273
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
13298 13299
        input (Variable): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
13300
        offset (Variable): The input coordinate offset of deformable convolution layer.
13301
            A Tensor with type float32, float64.
13302 13303 13304
        Mask (Variable, Optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
13305 13306
        num_filters(int): The number of filter. It is as same as the output
            image channel.
13307
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
T
tianshuo78520a 已提交
13327
            The total batch size should be devisable by this value or smaller
13328 13329 13330
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
13331
        param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
13332 13333 13334 13335 13336
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
13337
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
13338 13339 13340 13341
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13342 13343
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13344 13345
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
13346 13347
    Returns:
        Variable: The tensor variable storing the deformable convolution \
13348
                  result. A Tensor with type float32, float64.
13349 13350 13351 13352 13353 13354
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13355 13356
          #deformable conv v2:
         
13357
          import paddle.fluid as fluid
13358 13359
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13360 13361 13362
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          mask = fluid.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13363
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13364
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=True)
13365 13366 13367 13368

          #deformable conv v1:

          import paddle.fluid as fluid
13369 13370
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13371 13372
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13373
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
13374
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=False)
13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13452 13453 13454

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13455 13456 13457 13458 13459


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

S
SunGaofeng 已提交
13460
    This op returns a col buffer of sliding local blocks of input x, also known
13461
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
13462
    all element will be rearranged as a column. While the convolution filter sliding over
13463 13464
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
13465
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


S
SunGaofeng 已提交
13483 13484 13485
    Parameters:
        x(Varaible):              4-D Tensor, input tensor of format [N, C, H, W], 
                                  data type can be float32 or float64
13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
13498
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
13499
                                  [dilation_h, dilation_w], or an integer dilation treated as
13500
                                  [dilation, dilation]. For default, it will be [1, 1].
S
SunGaofeng 已提交
13501 13502 13503
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
13504 13505 13506

    
    Returns:
S
SunGaofeng 已提交
13507
        The tensor variable corresponding to the sliding local blocks. 
T
tianshuo78520a 已提交
13508
        The output shape is [N, Cout, Lout] as decriabled above. 
S
SunGaofeng 已提交
13509 13510 13511 13512 13513 13514
        Cout is the  total number of values within each block, 
        and Lout is the total number of such blocks. 
        The data type of output is the same as the input :math:`x`

    Return Type:
        Variable
13515 13516 13517 13518 13519 13520

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
S
SunGaofeng 已提交
13521
            x = fluid.data(name = 'data', shape = [100, 3, 224, 224], dtype = 'float32')
13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
13592 13593 13594 13595 13596 13597 13598
    Deformable ROI Pooling Layer
  
    Performs deformable region-of-interest pooling on inputs. As described
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after 
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
  
    The operation has three steps:
C
cjt222 已提交
13599
    
13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
  
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
     
    3. Sample several points in each bin to get average values as output.
  
  
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where 
                          N is number of ROIs, C is number of channels, which indicate the offset distance 
                          in the x and y directions, H is pooled height, and W is pooled width. 
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels 
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
13626
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
13627 13628 13629 13630 13631 13632 13633
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
13634
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
13635 13636 13637 13638
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
13639 13640 13641 13642

    Examples:
      .. code-block:: python

13643 13644
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=True)
13667 13668
  
        # position_sensitive=False
13669
        import paddle.fluid as fluid
C
chengjuntao 已提交
13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13729 13730 13731 13732


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
13733
    This operator recomputes the `input` indices according to the offset of the
13734 13735 13736 13737 13738
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
13739
        
13740 13741
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
13742

13743 13744
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
13745 13746

    Examples:
13747
    ::
13748
    
13749
        Input:
13750 13751
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
13752 13753 13754
          index_num = 20
          nshards = 2
          ignore_value = -1
13755
        
13756
        if shard_id == 0, we get:
13757 13758 13759
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
13760
        if shard_id == 1, we get:
13761 13762 13763 13764
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
13765
        - **input** (Variable): Input indices, last dimension must be 1.
T
tianshuo78520a 已提交
13766
        - **index_num** (scalar): An integer defining the range of the index.
13767 13768
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
T
tianshuo78520a 已提交
13769
        - **ignore_value** (scalar): An integer value out of sharded index range
13770 13771

    Returns:
13772
        Variable: The sharded index of input.
13773 13774 13775 13776 13777

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
13778 13779
            batch_size = 32
            label = fluid.data(name="label", shape=[batch_size, 1], dtype="int64")
13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13804 13805 13806 13807 13808


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
13809 13810 13811
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
13812

13813
    The formula is as follows:
H
huangjun12 已提交
13814

13815
    .. math::
H
huangjun12 已提交
13816

13817
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
13818

13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` 
        
    Returns:
        Variable: The output tensor with the same shape and data type as input.
    
    
    Examples:
    
    .. code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
    
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
13864 13865


G
Guo Sheng 已提交
13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940
def gather_tree(ids, parents):
    """
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:                
                gather_tree(ids, parents)  
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Variable): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
        Variable: A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            ids = fluid.layers.data(name='ids',
                                    shape=[5, 2, 2],
                                    dtype='int64',
                                    append_batch_size=False)
            parents = fluid.layers.data(name='parents',
                                        shape=[5, 2, 2],
                                        dtype='int64',
                                        append_batch_size=False)
            final_sequences = fluid.layers.gather_tree(ids, parents)
    """
    helper = LayerHelper('gather_tree', **locals())
    out = helper.create_variable_for_type_inference(dtype=ids.dtype)

    helper.append_op(
        type="gather_tree",
        inputs={"Ids": ids,
                "Parents": parents},
        outputs={"Out": out})

    return out


13941 13942 13943
@templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
    """
13944 13945
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max).
13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956

    Examples:
    ::
    
        Input:
          shape = [1, 2]
        
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
13957 13958
        shape (list|tuple|Variable): The shape of the output Tensor,  if the shape is a list or tuple, 
                                     its elements can be an integer
13959 13960
                                     or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. 
                                     If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be int32 or int64.
13961
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
13962
                                                  Default: float32.
13963 13964
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
13965 13966 13967 13968 13969
        seed (int, optional): Random seed used for generating samples. 0 means use a
            seed generated by the system. Note that if seed is not 0, this
            operator will always generate the same random numbers every time.
            Default 0.

13970 13971
    Returns: 
        Variable: A Tensor of the specified shape filled with uniform_random values.
13972

13973
    Raises:
T
tianshuo78520a 已提交
13974
        TypeError: The shape type should be list or tuple or variable.
13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
13988 13989
            dim_2 = fluid.layers.fill_constant([1],"int32",5)
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
13990 13991

            # example 3:
13992
            # attr shape is a Variable, the data type must be int64 or int32.
13993
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
13994
            result_3 = fluid.layers.uniform_random(var_shape)
13995 13996 13997 13998
            var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
            result_4 = fluid.layers.uniform_random(var_shape_int32)
             

13999 14000

    """
14001
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
14002 14003
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
14004
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
14005

14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027
    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
T
tianshuo78520a 已提交
14028
                    "Each dimension size given in shape must not be negative "
14029 14030 14031 14032 14033
                    "except one unknown dimension.")
        return attrs_shape

    helper = LayerHelper("uniform_random", **locals())
    inputs = dict()
14034
    attrs = {'seed': seed, 'min': min, 'max': max}
14035
    if in_dygraph_mode():
H
hong 已提交
14036
        attrs['shape'] = shape
14037 14038 14039 14040 14041 14042 14043 14044
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
14045
            if utils._contain_var(shape):
14046 14047 14048 14049 14050 14051 14052 14053
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})

    return helper.append_activation(out)