nn.py 541.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode, dygraph_only, _dygraph_tracer, default_main_program
28
from .. import dygraph_utils
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
36
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48 49
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'chunk_eval',
    'conv2d',
    'conv3d',
    'softmax',
    'pool2d',
    'pool3d',
50 51
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
52
    'batch_norm',
L
lvmengsi 已提交
53
    'instance_norm',
H
heqiaozhi 已提交
54
    'data_norm',
X
Xin Pan 已提交
55 56 57 58 59 60 61
    'conv2d_transpose',
    'conv3d_transpose',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
62 63
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
64 65 66 67 68 69 70 71 72 73 74
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'transpose',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
75
    'group_norm',
D
dengkaipeng 已提交
76
    'spectral_norm',
X
Xin Pan 已提交
77 78 79 80 81 82 83
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
84
    'lod_append',
X
Xin Pan 已提交
85 86 87 88 89
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
90
    'roi_align',
X
Xin Pan 已提交
91 92 93 94
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
95
    'resize_trilinear',
96
    'resize_nearest',
X
Xin Pan 已提交
97
    'gather',
98
    'gather_nd',
X
Xin Pan 已提交
99
    'scatter',
100 101
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
102 103 104
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
105
    'selu',
X
Xin Pan 已提交
106 107
    'log',
    'crop',
108
    'crop_tensor',
X
Xin Pan 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'stack',
    'pad2d',
    'unstack',
Z
zhoukunsheng 已提交
123
    'unique',
124
    'unique_with_counts',
X
Xin Pan 已提交
125
    'expand',
126
    'expand_as',
X
Xin Pan 已提交
127 128 129 130 131 132 133 134
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
135 136
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
137 138 139 140 141 142
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
143
    'strided_slice',
X
Xin Pan 已提交
144
    'shape',
Z
zhoukunsheng 已提交
145
    'rank',
Z
zhoukunsheng 已提交
146
    'size',
X
Xin Pan 已提交
147 148 149 150 151 152 153 154 155
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'maxout',
J
JiabinYang 已提交
156
    'space_to_depth',
W
whs 已提交
157
    'affine_grid',
158
    'affine_channel',
B
barrierye 已提交
159
    'similarity_focus',
M
minqiyang 已提交
160
    'hash',
D
dengkaipeng 已提交
161
    'grid_sampler',
G
gmcather 已提交
162 163
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
164
    'bilinear_tensor_product',
C
chengduo 已提交
165 166
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
S
shippingwang 已提交
167
    'shuffle_channel',
168
    'temporal_shift',
S
sneaxiy 已提交
169
    'py_func',
170
    'psroi_pool',
171
    'prroi_pool',
R
ruri 已提交
172
    'pixel_shuffle',
173
    'fsp_matrix',
H
heqiaozhi 已提交
174
    'continuous_value_model',
Z
zhoukunsheng 已提交
175
    'where',
Z
zhoukunsheng 已提交
176
    'sign',
177
    'deformable_conv',
178
    'unfold',
C
cjt222 已提交
179
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
180
    'filter_by_instag',
181
    'shard_index',
H
huangjun12 已提交
182
    'hard_swish',
G
Guo Sheng 已提交
183
    'gather_tree',
184
    'uniform_random',
Y
Yu Yang 已提交
185 186 187
]


188 189 190 191 192 193 194 195
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
196
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
197

198 199
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)
200 201


Y
Yu Yang 已提交
202 203 204 205 206 207
def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
208
       name=None):
Y
Yu Yang 已提交
209
    """
210
    **Fully Connected Layer**
Y
Yu Yang 已提交
211

212 213 214
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
215
    which represents a fully connected weight matrix from each input unit to
216 217 218 219
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
220
    is not None, a bias variable will be created and added to the output.
221
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
222

223
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
224

225 226 227 228
    .. math::

        Out = Act({XW + b})

229
    When the input is a list of Tensor(or LoDTensor):
230 231 232

    .. math::

233
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
234 235 236

    In the above equation:

237 238 239
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
240
    * :math:`b`: The bias parameter created by this layer (if needed).
241
    * :math:`Act`: The activation function.
242
    * :math:`Out`: The output Tensor.
243 244 245

    .. code-block:: text

246 247 248 249 250 251 252 253 254 255 256 257 258 259
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
260 261 262 263 264 265 266 267 268 269 270 271 272
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
273
    Args:
274 275 276
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
277
        size(int): The number of output units in this layer, which also means the feature size of output
278 279
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
280
            two dimensions. If this happens, the multidimensional tensor will first be flattened
281 282
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
283
            dimensions will be flatten to form the first dimension of the final matrix (height of
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
299 300

    Raises:
301
        ValueError: If dimensions of the input Tensor is less than 2.
302 303 304 305

    Examples:
        .. code-block:: python

306
          import paddle.fluid as fluid
307
          # when input is single tensor
308
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
309
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
310 311

          # when input are multiple tensors
312 313
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
314
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
315
    """
C
caoying03 已提交
316
    helper = LayerHelper("fc", **locals())
317
    check_type(input, 'input', (list, tuple, Variable), 'fc')
318 319
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
320
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
321
    dtype = helper.input_dtype()
322
    check_dtype(dtype, 'input', ['float16', 'float32', 'float64'], 'fc')
Y
Yu Yang 已提交
323
    mul_results = []
324 325
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
326 327
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
328 329 330
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
331

Y
Yu Yang 已提交
332
        w = helper.create_parameter(
333
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
334
        tmp = helper.create_variable_for_type_inference(dtype)
335
        helper.append_op(
336 337 338
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
339
            outputs={"Out": tmp},
M
mozga-intel 已提交
340 341
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
342 343 344 345
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
346
    else:
X
Xin Pan 已提交
347
        pre_bias = helper.create_variable_for_type_inference(dtype)
348
        helper.append_op(
349 350 351
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
352
            attrs={"use_mkldnn": False})
353 354 355 356
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
357 358


359 360 361
def embedding(input,
              size,
              is_sparse=False,
362
              is_distributed=False,
363 364 365
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
366
    """
367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , 
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
        
        Case 2:
405

406 407 408 409 410 411 412 413 414 415 416 417 418 419
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
420 421

    Args:
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
445
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
446 447 448
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
449

450
    Returns:
451
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
452

453 454
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
455

B
bdzhuxiaoning 已提交
456
          import paddle.fluid as fluid
457 458 459
          import numpy as np
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
460
          # example 1
461 462 463 464 465 466 467 468 469 470
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')   
Y
Yu Yang 已提交
471 472 473
    """

    helper = LayerHelper('embedding', **locals())
474 475
    check_variable_and_dtype(input, 'input', ['int64'],
                             'fluid.layers.embedding')
476 477
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fluid.layers.embedding')
478
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
479 480
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
481 482
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
483
    tmp = helper.create_variable_for_type_inference(dtype)
484 485
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
486 487 488 489 490
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
491 492 493
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
494
            'remote_prefetch': remote_prefetch,
495 496
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
497 498 499
    return tmp


H
hutuxian 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
548
@templatedoc()
549
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
550 551 552 553 554 555
    """
    Linear Chain CRF.

    ${comment}

    Args:
556
        input(${emission_type}): ${emission_comment} 
Y
yuyang18 已提交
557
        label(${label_type}): ${label_comment}
558
        Length(${length_type}): ${length_comment}
559
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
560 561

    Returns:
D
dzhwinter 已提交
562 563
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
564
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
565

J
JesseyXujin 已提交
566 567 568
    Examples:
        .. code-block:: python

569 570 571 572 573 574 575
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
576 577
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
600 601 602
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
603 604 605 606 607 608
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
609
                     name='crfw',
610 611 612 613 614 615
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
616

617 618 619
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
620
            ll=np.array([[3],[3],[4],[2]])
621 622 623
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
624 625 626 627 628
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

629 630 631
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
632
            
Y
yuyang18 已提交
633
    """
Y
Yu Yang 已提交
634
    helper = LayerHelper('linear_chain_crf', **locals())
635
    size = input.shape[2] if length else input.shape[1]
Y
Yu Yang 已提交
636 637 638 639
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
640 641 642 643 644 645 646 647
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
648 649 650 651 652 653
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
654
        this_inputs['Length'] = [length]
Y
Yu Yang 已提交
655 656
    helper.append_op(
        type='linear_chain_crf',
657
        inputs=this_inputs,
Y
Yu Yang 已提交
658 659 660 661 662 663 664 665 666 667
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
668
@templatedoc()
669
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
670 671
    """
    ${comment}
Y
yi.wu 已提交
672

W
wopeizl 已提交
673 674
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
675

Y
Yibing Liu 已提交
676 677 678
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Y
yuyang18 已提交
679

Y
Yibing Liu 已提交
680
        label(${label_type}, optional): ${label_comment}
681
        
Y
Yibing Liu 已提交
682
        length(${length_type}, optional): ${length_comment}
683

W
wopeizl 已提交
684 685
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
686

W
wopeizl 已提交
687 688
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
689

690
           import paddle.fluid as fluid
691 692 693

           # LoDTensor-based example
           num_labels = 10
Y
Yibing Liu 已提交
694 695
           feature = fluid.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = fluid.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
696 697 698
           emission = fluid.layers.fc(input=feature, size=num_labels)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, 
Y
Yibing Liu 已提交
699
                     param_attr=fluid.ParamAttr(name="crfw"))
700
           crf_decode = fluid.layers.crf_decoding(input=emission, 
Y
Yibing Liu 已提交
701
                     param_attr=fluid.ParamAttr(name="crfw"))
702 703 704

           # Common tensor example
           num_labels, max_len = 10, 20
Y
Yibing Liu 已提交
705 706 707
           feature = fluid.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = fluid.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = fluid.data(name='length', shape=[-1, 1], dtype='int64')
708 709 710 711 712 713 714
           emission = fluid.layers.fc(input=feature, size=num_labels,
                                      num_flatten_dims=2)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, length=length, 
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
           crf_decode = fluid.layers.crf_decoding(input=emission, length=length,
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
715 716 717 718 719
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
720 721 722
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
W
wopeizl 已提交
723 724
    helper.append_op(
        type='crf_decoding',
725
        inputs=inputs,
W
wopeizl 已提交
726
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
727

W
wopeizl 已提交
728
    return viterbi_path
Y
Yu Yang 已提交
729 730


Y
yi.wu 已提交
731
@templatedoc()
F
fengjiayi 已提交
732
def cos_sim(X, Y):
Y
Yu Yang 已提交
733
    """
Y
yi.wu 已提交
734 735 736
    ${comment}

    Args:
737 738
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
739

Y
yi.wu 已提交
740
    Returns:
L
lvmengsi 已提交
741
        A Variable holding LoDTensor representing the output of cosine(X, Y).
L
lvmengsi 已提交
742 743 744 745

    Examples:
        .. code-block:: python

746
            import paddle.fluid as fluid
L
lvmengsi 已提交
747 748
            x = fluid.data(name='x', shape=[3, 7], dtype='float32')
            y = fluid.data(name='y', shape=[1, 7], dtype='float32')
L
lvmengsi 已提交
749
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
750
    """
F
fengjiayi 已提交
751
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
752 753 754
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
755 756 757 758 759 760 761 762 763 764
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
765 766 767 768 769
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
770
            dropout_implementation="downgrade_in_infer"):
771 772 773 774 775
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
776
    training. The dropout operator randomly sets (according to the given dropout
777 778 779
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
780 781
    dropout op can be removed from the program to make the program more efficient.

782
    Args:
L
lvmengsi 已提交
783
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
784
        dropout_prob (float): Probability of setting units to zero.
785 786 787 788
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
789
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
790 791
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
792 793
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
794
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
795 796

                                           - train: out = input * mask
C
ceci3 已提交
797
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
798 799 800

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
801
                                        2. upscale_in_train, upscale the outcome at training time
802

H
haowang101779990 已提交
803 804
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
805

H
haowang101779990 已提交
806 807
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
808

M
minqiyang 已提交
809

810
    Returns:
L
lvmengsi 已提交
811
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
812 813

    Examples:
814

815 816
        .. code-block:: python

817
            import paddle.fluid as fluid
L
lvmengsi 已提交
818
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
819
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
820 821
    """

822 823 824 825 826 827 828 829 830 831 832 833 834
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

    if in_dygraph_mode():
835 836 837 838 839 840 841 842 843 844
        if (seed is None or
                seed == 0) and default_main_program().random_seed != 0:
            seed = default_main_program().random_seed
        seed = seed if seed is not None else 0
        _is_test = not _dygraph_tracer()._train_mode
        out, mask = core.ops.dropout(x, 'dropout_prob', dropout_prob, 'is_test',
                                     _is_test, 'fix_seed', seed is not None,
                                     'seed', seed, 'dropout_implementation',
                                     dropout_implementation)
        return out
845

F
fengjiayi 已提交
846
    helper = LayerHelper('dropout', **locals())
847 848
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'dropout')
849

X
Xin Pan 已提交
850 851
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
852
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
853

854
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
855

856 857 858 859 860
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
861
        attrs=attrs)
862 863 864
    return out


Y
yi.wu 已提交
865
@templatedoc()
Y
Yu Yang 已提交
866 867 868 869
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
870 871
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
872
    """
G
Guo Sheng 已提交
873 874
    This operator computes the precision, recall and F1-score for chunk detection.
    It is often used in sequence tagging tasks, such as Named Entity Recognition(NER).
Y
yi.wu 已提交
875

M
minqiyang 已提交
876
    For some basics of chunking, please refer to
H
haowang101779990 已提交
877
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
878

G
Guo Sheng 已提交
879 880
    This operator supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example for the usage of these tagging schemes:
Y
yi.wu 已提交
881 882

    .. code-block:: python
883

Y
yi.wu 已提交
884 885 886 887 888 889 890 891 892 893
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
G
Guo Sheng 已提交
894
    and LOC(location), and we can see that the labels have the form `<tag type>-<chunk type>` .
Y
yi.wu 已提交
895

G
Guo Sheng 已提交
896 897 898
    Since the implementation of this operator actually uses label ids rather than
    label strings, to make it work, there should be a way to map label ids to
    tag types and chunk types. This operator uses the following way to do mapping:
Y
yi.wu 已提交
899 900 901 902 903 904 905 906 907 908

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
909

Y
yi.wu 已提交
910 911 912 913 914 915
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

G
Guo Sheng 已提交
916 917
    Accordingly, in the above NER example, if the tagging scheme is IOB and chunk
    types are ORG, PER and LOC, then the label ids would be as follows:
Y
yi.wu 已提交
918 919 920 921 922 923 924 925 926 927 928

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

G
Guo Sheng 已提交
929 930
    With which we can map each label id to the corresponding tag type and chunk
    type correctly.
Y
yi.wu 已提交
931

Y
yi.wu 已提交
932
    Args:
G
Guo Sheng 已提交
933 934 935 936 937 938
        input (Variable): A Tensor or LoDTensor, representing the predicted labels
            from the network. When it is a Tensor, its shape would be `[N, M, 1]`,
            where `N` stands for batch size, `M` for sequence length; When it is
            a LoDTensor, its shape would be `[N, 1]` where `N` stands for the total
            sequence lengths in this mini-batch. The data type should be int64.
        label (Variable): A Tensor or LoDTensor representing the ground-truth labels.
T
tianshuo78520a 已提交
939
            It should have the same shape, lod and data type as ``input`` .
G
Guo Sheng 已提交
940 941 942 943 944 945 946 947 948
        chunk_scheme (str): Indicate the tagging schemes used here. The value must
            be IOB, IOE, IOBES or plain.
        num_chunk_types (int): The number of chunk types.
        excluded_chunk_types (list, optional): Indicate the chunk types shouldn't
            be taken into account. It should be a list of chunk type ids(integer).
            Default None.
        seq_length(Variable, optional): A 1D Tensor containing the length of each
            sequence when ``input`` and ``label`` are Tensor. It needn't be
            provided if ``input`` and ``label`` are LoDTensor. Default None.
F
fengjiayi 已提交
949

Y
yi.wu 已提交
950
    Returns:
G
Guo Sheng 已提交
951 952 953 954
        tuple: A tuple including precision, recall, F1-score, chunk number detected, \
            chunk number in ground-truth, chunk number correctly detected. Each \
            is a Tensor with shape `[1]`. The data type of precision, recall and \
            F1-score all is float32, and the others' data type all is int64.
955

Y
yi.wu 已提交
956 957 958
    Examples:
        .. code-block:: python

959 960 961 962
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
G
Guo Sheng 已提交
963 964 965
            sequence = fluid.data(
                name='id', shape=[-1, 1], lod_level=1, dtype='int64')
            embedding = fluid.embedding(
966 967 968 969
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
970
            crf = fluid.layers.linear_chain_crf(
971
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
972
            crf_decode = fluid.layers.crf_decoding(
973
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
974 975 976 977 978
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
979
    """
F
fengjiayi 已提交
980
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
981 982

    # prepare output
X
Xin Pan 已提交
983 984 985 986 987 988 989
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
990

991 992 993 994 995
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
996 997
    helper.append_op(
        type="chunk_eval",
998
        inputs=this_input,
Y
Yu Yang 已提交
999 1000 1001
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1002 1003 1004 1005
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1006 1007 1008
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1009 1010
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1011
        })
1012 1013
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1014 1015


1016
def softmax(input, use_cudnn=False, name=None, axis=-1):
Y
Yu Yang 已提交
1017
    """
1018
    This operator implements the softmax layer. The calculation process is as follows:
1019

1020
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1021
    
1022 1023 1024 1025 1026 1027 1028
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1029

1030 1031
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2 
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1032

1033 1034 1035 1036 1037
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1038

1039
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1040

1041
    .. math::
1042

1043
        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
1044

1045
    Example:
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]] 

Q
qiaolongfei 已提交
1092
    Args:
1093 1094
        input (Variable): The input variable. A multi-dimension ``Tensor`` with type float32 or float64.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
T
tianshuo78520a 已提交
1095
            library is installed. To improve numerical stability, set use_cudnn to \
1096 1097
            False by default.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1098
            will be named automatically. Default: None.
1099
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1100
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
1101
            input variable. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1102 1103

    Returns:
1104
        Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1105 1106 1107 1108 1109

    Examples:

        .. code-block:: python

1110 1111
            import paddle.fluid as fluid
            import numpy as np
Q
qiaolongfei 已提交
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121
            data = fluid.data(name="input", shape=[-1, 3],dtype="float32")
            result = fluid.layers.softmax(data,axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 3).astype("float32")
            output= exe.run(feed={"input": x},
                             fetch_list=[result[0]])
            print(output)
Q
qiaolongfei 已提交
1122
    """
1123 1124

    if in_dygraph_mode():
1125 1126 1127 1128
        return core.ops.softmax(input, 'axis', axis, 'use_cudnn', use_cudnn)

    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}
1129

1130
    helper = LayerHelper('softmax', **locals())
1131 1132
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'softmax')
1133

1134
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1135
    softmax_out = helper.create_variable_for_type_inference(dtype)
1136 1137 1138 1139
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
1140
        attrs=attrs)
1141 1142 1143
    return softmax_out


Y
Yu Yang 已提交
1144 1145 1146
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1147 1148
           stride=1,
           padding=0,
1149
           dilation=1,
Y
Yu Yang 已提交
1150 1151 1152
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1153
           use_cudnn=True,
1154
           act=None,
L
liym27 已提交
1155 1156
           name=None,
           data_format="NCHW"):
Y
Yu Yang 已提交
1157
    """
C
chengduoZH 已提交
1158
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1159
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1160
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1161
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1162 1163 1164 1165 1166 1167
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1168
    for more details.
1169 1170 1171
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1172

1173
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1174

C
chengduoZH 已提交
1175 1176
    .. math::

C
refine  
chengduoZH 已提交
1177
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1178

T
tensor-tang 已提交
1179
    Where:
C
chengduoZH 已提交
1180

L
liym27 已提交
1181
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1182 1183 1184 1185
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1186
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1187 1188 1189

    Example:

1190 1191
        - Input:

W
weixing02 已提交
1192
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1193

W
weixing02 已提交
1194
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1195

1196
        - Output:
T
tensor-tang 已提交
1197

W
weixing02 已提交
1198
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1199

C
chengduoZH 已提交
1200
        Where
1201 1202

        .. math::
C
chengduoZH 已提交
1203

W
weixing02 已提交
1204 1205
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1206 1207

    Args:
L
lvmengsi 已提交
1208 1209
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type 
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1210
        num_filters(int): The number of filter. It is as same as the output
1211
            image channel.
1212 1213
        filter_size (int|tuple): The filter size. If filter_size 
            is a tuple, it must contain two integers, (filter_size_height, 
L
lvmengsi 已提交
1214 1215 1216 1217 1218 1219
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
        stride (int|tuple): The stride size. It means the stride in convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1220
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1221 1222
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
L
lvmengsi 已提交
1223 1224 1225
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1226 1227 1228
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1229 1230 1231 1232
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a tuple, it must contain two integers, (dilation_height, 
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1233 1234 1235 1236
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1237 1238 1239 1240 1241
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1242
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1243 1244 1245 1246 1247
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1248 1249
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1250 1251
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
L
lvmengsi 已提交
1252 1253 1254
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1255 1256
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1257 1258
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1259 1260

    Returns:
L
lvmengsi 已提交
1261 1262 1263 1264
        A Variable holding Tensor representing the conv2d, whose data type is the 
        same with input. If act is None, the tensor variable storing the convolution 
        result, and if act is not None, the tensor variable storing convolution 
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1279 1280 1281
    Examples:
        .. code-block:: python

1282
          import paddle.fluid as fluid
L
lvmengsi 已提交
1283
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
1284
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1285 1286
    """

1287 1288
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'conv2d')
1289
    num_channels = input.shape[1]
L
liym27 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NHWC")
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduo 已提交
1305
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1306

1307
    l_type = 'conv2d'
X
xzl 已提交
1308 1309
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1310
        l_type = 'depthwise_conv2d'
1311 1312 1313 1314

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1315 1316 1317 1318
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1319
            raise ValueError(
1320 1321 1322
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
                ", the groups is {}".format(num_channels, input.shape, groups))
M
minqiyang 已提交
1323
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1324

C
chengduoZH 已提交
1325 1326
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1327
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1328

L
liym27 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1352 1353 1354
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1369
            padding = [0, 0]
L
liym27 已提交
1370 1371
        elif padding == "SAME":
            padding_algorithm = "SAME"
1372
            padding = [0, 0]
L
liym27 已提交
1373 1374

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1375

M
minqiyang 已提交
1376
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1377 1378

    def _get_default_param_initializer():
C
chengduo 已提交
1379 1380
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1381 1382 1383 1384 1385 1386 1387 1388
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1389
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1390 1391

    helper.append_op(
1392
        type=l_type,
Y
Yu Yang 已提交
1393 1394 1395 1396 1397
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1398 1399 1400
        attrs={
            'strides': stride,
            'paddings': padding,
1401
            'dilations': dilation,
C
chengduoZH 已提交
1402
            'groups': groups,
1403
            'use_cudnn': use_cudnn,
1404
            'use_mkldnn': False,
L
liym27 已提交
1405 1406 1407
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1408
        })
Y
Yu Yang 已提交
1409

1410 1411 1412 1413
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1414 1415 1416 1417

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
L
liym27 已提交
1429 1430
           name=None,
           data_format="NCDHW"):
C
chengduoZH 已提交
1431 1432 1433
    """
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
L
liym27 已提交
1434
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
1435 1436 1437 1438 1439
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

L
liym27 已提交
1449
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
1450
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1451 1452 1453
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1454
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
L
lvmengsi 已提交
1476 1477
        input (Variable): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
            type of input is float16 or float32 or float64.
1478
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
1479
            image channel.
1480 1481 1482 1483
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height, 
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
L
lvmengsi 已提交
1484 1485 1486 1487
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a 
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
T
tianshuo78520a 已提交
1488
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
L
liym27 已提交
1489 1490 1491 1492 1493 1494 1495 1496
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1497 1498 1499 1500
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
chengduoZH 已提交
1501 1502 1503 1504 1505
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1516 1517
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1518 1519
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
L
lvmengsi 已提交
1520 1521 1522
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1523 1524 1525 1526
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1527 1528

    Returns:
L
lvmengsi 已提交
1529 1530 1531 1532
        A Variable holding Tensor representing the conv3d, whose data type is 
        the same with input. If act is None, the tensor variable storing the 
        convolution result, and if act is not None, the tensor variable storing 
        convolution and non-linearity activation result.
C
chengduoZH 已提交
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1547 1548 1549
    Examples:
        .. code-block:: python

1550
          import paddle.fluid as fluid
L
lvmengsi 已提交
1551
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
1552
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1553 1554 1555
    """

    l_type = 'conv3d'
C
chengduo 已提交
1556
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1557 1558 1559
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

L
liym27 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NDHWC")
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduoZH 已提交
1575 1576 1577 1578 1579

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1580 1581 1582 1583
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)." %
                (str(num_channels), str(groups)))
M
minqiyang 已提交
1584
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1585 1586 1587 1588 1589

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

L
liym27 已提交
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
1612 1613
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1614 1615
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
1616 1617
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1632
            padding = [0, 0, 0]
L
liym27 已提交
1633 1634
        elif padding == "SAME":
            padding_algorithm = "SAME"
1635
            padding = [0, 0, 0]
L
liym27 已提交
1636 1637

    padding = _update_padding(padding, data_format)
C
chengduoZH 已提交
1638 1639 1640 1641 1642

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1643 1644 1645
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1646 1647 1648 1649 1650 1651 1652 1653
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1654
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
L
liym27 已提交
1669 1670 1671
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1672 1673
        })

1674 1675 1676 1677
    if data_format == 'NCDHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
C
chengduoZH 已提交
1678 1679 1680 1681

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1682
@templatedoc()
Y
Yu Yang 已提交
1683
def pool2d(input,
C
chengduoZH 已提交
1684 1685
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1686 1687
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1688
           global_pooling=False,
C
chengduoZH 已提交
1689
           use_cudnn=True,
1690
           ceil_mode=False,
1691
           name=None,
1692 1693
           exclusive=True,
           data_format="NCHW"):
Y
Yu Yang 已提交
1694
    """
F
fengjiayi 已提交
1695
    ${comment}
1696 1697

    Args:
K
Kaipeng Deng 已提交
1698 1699 1700 1701 1702
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1703
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1704 1705
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1706
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1707 1708 1709
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1710 1711 1712 1713 1714 1715 1716
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1717
            Otherwise, the pool padding size will be a square of an int.
1718 1719 1720
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1721 1722 1723
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1724
        exclusive (bool): Whether to exclude padding points in average pooling
1725 1726 1727 1728
                          mode, default is `true`.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1729

1730
    Returns:
K
Kaipeng Deng 已提交
1731
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1732 1733

    Raises:
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1746 1747 1748 1749 1750

    Examples:

        .. code-block:: python

1751
          import paddle.fluid as fluid
1752

K
Kaipeng Deng 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1796 1797 1798
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1799
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
1800
            str(pool_type))
C
chengduoZH 已提交
1801

C
chengduoZH 已提交
1802 1803
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1804 1805 1806 1807
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received pool_size: %s." % str(pool_size))

    if not isinstance(use_cudnn, bool):
1808 1809
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s." % str(use_cudnn))
1810 1811 1812 1813 1814

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
C
chengduoZH 已提交
1815

C
chengduoZH 已提交
1816 1817 1818
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1841

1842 1843
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1858
            pool_padding = [0, 0]
1859 1860 1861 1862 1863 1864
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1865
            pool_padding = [0, 0]
1866 1867 1868 1869 1870

    pool_padding = update_padding(pool_padding, data_format)

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1871
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1872
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1873 1874

    helper.append_op(
1875
        type=op_type,
1876 1877 1878 1879 1880 1881 1882 1883
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
1884
            "padding_algorithm": padding_algorithm,
1885 1886
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
1887 1888
            "use_mkldnn": False,
            "exclusive": exclusive,
1889
            "data_format": data_format,
1890 1891 1892 1893 1894
        })

    return pool_out


D
dengkaipeng 已提交
1895
@templatedoc()
1896 1897 1898 1899 1900 1901 1902 1903
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
1904
           name=None,
1905 1906
           exclusive=True,
           data_format="NCDHW"):
1907
    """
1908
    ${comment}
1909 1910

    Args:
K
Kaipeng Deng 已提交
1911 1912
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of
1913 1914 1915
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
1916
                          of the feature.
D
dengkaipeng 已提交
1917 1918 1919 1920 1921
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
1933 1934 1935
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1936 1937 1938
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1939
        exclusive (bool): Whether to exclude padding points in average pooling
1940 1941 1942 1943
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
1944

1945
    Returns:
K
Kaipeng Deng 已提交
1946
        Variable: The output tensor of pooling result. The data type is same as input tensor.
D
dengkaipeng 已提交
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
    Raises:
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

D
dengkaipeng 已提交
1961 1962 1963 1964
    Examples:

        .. code-block:: python

1965
          import paddle.fluid as fluid
1966

K
Kaipeng Deng 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
          data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')

          # max pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
2015 2016 2017
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
2018
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
2019
            str(pool_type))
C
chengduoZH 已提交
2020

C
chengduoZH 已提交
2021 2022
    if global_pooling is False and pool_size == -1:
        raise ValueError(
2023 2024 2025 2026 2027
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received Attr(pool_size): %s." %
            str(pool_size))

    if not isinstance(use_cudnn, bool):
2028 2029
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s. " % str(use_cudnn))
2030 2031 2032 2033 2034

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s" % str(data_format))
C
chengduoZH 已提交
2035

2036 2037
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2038

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
2061 2062
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2063 2064 2065

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
2066 2067
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2082
            pool_padding = [0, 0, 0]
2083 2084 2085 2086 2087 2088
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2089
            pool_padding = [0, 0, 0]
2090 2091 2092 2093 2094

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2095
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2096
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2097 2098

    helper.append_op(
2099
        type=op_type,
Y
Yu Yang 已提交
2100 2101 2102 2103 2104 2105 2106
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2107
            "paddings": pool_padding,
2108
            "padding_algorithm": padding_algorithm,
2109
            "use_cudnn": use_cudnn,
2110
            "ceil_mode": ceil_mode,
2111 2112
            "use_mkldnn": False,
            "exclusive": exclusive,
2113
            "data_format": data_format,
Y
Yu Yang 已提交
2114 2115 2116 2117 2118
        })

    return pool_out


2119 2120 2121 2122 2123 2124 2125
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2126
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2127 2128 2129 2130
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
K
Kaipeng Deng 已提交
2131
    is same as Parameter(pool_size). The output tensor shape will be [N, C, pool_size[0], pool_size[1]]
2132

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2146 2147

    Args:
K
Kaipeng Deng 已提交
2148 2149 2150 2151 2152
        input (Variable): The input tensor of pooling operator, which is a 4-D tensor
                          with shape [N, C, H, W].  The format of input tensor is NCHW,
                          where N is batch size, C is the number of channels, H is the
                          height of the feature, and W is the width of the feature.
                          The data type is float32 or float64.
2153 2154 2155
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2156
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2157 2158 2159 2160
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2161 2162

    Returns:
K
Kaipeng Deng 已提交
2163 2164
        Variable: The output tensor of adaptive pooling result. The data type is same 
                  as input tensor.
2165 2166 2167 2168 2169 2170 2171 2172 2173

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2174
          # average adaptive pool2d
M
minqiyang 已提交
2175
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2176
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
M
minqiyang 已提交
2177
          # of input data into m * n grids averagely and performs poolings in each
2178 2179
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2180
          #
2181 2182 2183 2184 2185 2186 2187 2188
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2189
          import paddle.fluid as fluid
K
Kaipeng Deng 已提交
2190
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2191
          pool_out = fluid.layers.adaptive_pool2d(
2192 2193
                            input=data,
                            pool_size=[3, 3],
2194
                            pool_type='avg')
K
Kaipeng Deng 已提交
2195 2196 2197

          # max adaptive pool2d
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2198
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
K
Kaipeng Deng 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
          # of input data into m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle.fluid as fluid
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool2d(
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max')
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2227
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2253
    return (pool_out, mask) if require_index else pool_out
2254 2255 2256 2257 2258 2259 2260 2261 2262


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2263
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2264 2265 2266 2267
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
K
Kaipeng Deng 已提交
2268 2269
    dimensions of output(Out) is same as Parameter(pool_size). The output tensor shape
    will be [N, C, pool_size[0], pool_size[1], pool_size[2]]
2270

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2288 2289

    Args:
K
Kaipeng Deng 已提交
2290 2291 2292
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with 
                          shape [N, C, D, H, W]. The format of input tensor is NCDHW, where
                          N is batch size, C is the number of channels, D is the depth of the feature,
D
dengkaipeng 已提交
2293
                          H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
2294
                          The data type is float32 or float64.
2295
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2296
            it must contain three integers, (Depth, Height, Width).
2297
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2298
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2299 2300 2301 2302
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2303 2304

    Returns:
K
Kaipeng Deng 已提交
2305
        Variable: The output tensor of adaptive pooling result. The data type is same as input tensor.
2306 2307 2308 2309 2310 2311 2312 2313 2314

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2315
          # average adaptive pool3d
2316
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2317
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
M
minqiyang 已提交
2318
          # of input data into l * m * n grids averagely and performs poolings in each
2319 2320
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2321
          #
2322 2323 2324 2325 2326 2327 2328 2329 2330
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2331
          #                 output[:, :, i, j, k] =
2332 2333
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2334 2335 2336

          import paddle.fluid as fluid

K
Kaipeng Deng 已提交
2337 2338
          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
2339
          pool_out = fluid.layers.adaptive_pool3d(
2340
                            input=data,
D
dengkaipeng 已提交
2341
                            pool_size=[3, 3, 3],
2342
                            pool_type='avg')
K
Kaipeng Deng 已提交
2343 2344 2345

          # max adaptive pool3d
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2346
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
K
Kaipeng Deng 已提交
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
          # of input data into l * m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] =
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #

          import paddle.fluid as fluid

          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
                            input=data,
                            pool_size=[3, 3, 3],
                            pool_type='max')
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2382
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2408
    return (pool_out, mask) if require_index else pool_out
2409 2410


Y
Yu Yang 已提交
2411 2412 2413 2414 2415 2416 2417
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2418
               data_layout='NCHW',
Y
Yang Yang 已提交
2419
               in_place=False,
2420 2421
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2422
               moving_variance_name=None,
2423
               do_model_average_for_mean_and_var=True,
2424
               use_global_stats=False):
Y
Yu Yang 已提交
2425
    """
Q
qiaolongfei 已提交
2426 2427
    **Batch Normalization Layer**

L
lvmengsi 已提交
2428
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
2429
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2430

Q
qiaolongfei 已提交
2431
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2432

Q
qiaolongfei 已提交
2433 2434
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2435 2436 2437
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2450

L
lvmengsi 已提交
2451 2452 2453
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum) 

2454

L
lvmengsi 已提交
2455
    moving_mean is global mean and moving_var is global variance.
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
2469 2470 2471
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.
2472
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
2473

2474
    Args:
2475
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
L
lvmengsi 已提交
2476
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
2477
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2478 2479
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
2480 2481 2482
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
2483 2484 2485 2486 2487
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2488 2489
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
2490 2491 2492
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
2493 2494
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
2495 2496 2497
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
2498 2499 2500 2501
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
2502
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
L
lvmengsi 已提交
2503 2504 2505
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
2506 2507
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
L
lvmengsi 已提交
2508
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
2509 2510
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
2511 2512
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
2513 2514 2515 2516 2517
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2518 2519

    Returns:
L
lvmengsi 已提交
2520 2521
        A Variable holding Tensor which is the result after applying batch normalization on the input, 
        has same shape and data type with input. 
Q
qiaolongfei 已提交
2522 2523 2524 2525 2526

    Examples:

        .. code-block:: python

2527
            import paddle.fluid as fluid
L
lvmengsi 已提交
2528
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
Q
qiaolongfei 已提交
2529 2530
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

        .. code-block:: python

            # batch_norm with momentum as Variable
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            def get_decay_momentum(momentum_init, decay_steps, decay_rate):
                global_step = lr_scheduler._decay_step_counter()
                momentum = fluid.layers.create_global_var(
		    shape=[1],
		    value=float(momentum_init),
		    dtype='float32',
		    # set persistable for save checkpoints and resume
		    persistable=True,
		    name="momentum")
                div_res = global_step / decay_steps
                decayed_momentum = momentum_init * (decay_rate**div_res)
                fluid.layers.assign(decayed_momentum, momentum)

                return momentum

            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            momentum = get_decay_momentum(0.9, 1e5, 0.9)
            hidden2 = fluid.layers.batch_norm(input=hidden1, momentum=momentum)

Y
Yu Yang 已提交
2558
    """
C
chengduo 已提交
2559
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2560 2561
    helper = LayerHelper('batch_norm', **locals())

2562 2563
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'batch_norm')
2564
    dtype = helper.input_dtype()
2565 2566 2567 2568 2569 2570 2571

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

W
Wu Yi 已提交
2572 2573 2574 2575
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
2594
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2595

2596 2597
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2598 2599 2600
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2601
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2602
        shape=param_shape,
W
Wu Yi 已提交
2603
        dtype=dtype)
2604 2605 2606 2607 2608 2609
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2610
            trainable=False,
W
wanghaoshuang 已提交
2611
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2612
        shape=param_shape,
W
Wu Yi 已提交
2613
        dtype=dtype)
2614
    variance.stop_gradient = True
Y
Yu Yang 已提交
2615 2616 2617 2618 2619 2620

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2621 2622 2623 2624
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2625

2626 2627 2628 2629 2630
    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

X
Xin Pan 已提交
2631 2632
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2633

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

Y
Yu Yang 已提交
2664
    helper.append_op(
2665
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
Y
Yu Yang 已提交
2666 2667 2668 2669

    return helper.append_activation(batch_norm_out)


L
lvmengsi 已提交
2670 2671 2672 2673 2674 2675 2676 2677
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

L
lvmengsi 已提交
2678
    Can be used as a normalizer function for convolution or fully_connected operations.
L
lvmengsi 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
L
lvmengsi 已提交
2692
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2693
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
L
lvmengsi 已提交
2694
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
2695 2696 2697 2698
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

L
lvmengsi 已提交
2699 2700
    Note:
        `H` means height of feature map, `W` means width of feature map.
L
lvmengsi 已提交
2701 2702

    Args:
L
lvmengsi 已提交
2703 2704
        input(variable): The rank of input variable can be 2, 3, 4, 5. 
            The data type is float32 or float64.
L
lvmengsi 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
L
lvmengsi 已提交
2721 2722
        A Variable holding Tensor which is the result after applying instance normalization on the input, 
        has same shape and data type with input. 
L
lvmengsi 已提交
2723 2724 2725 2726 2727 2728

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
L
lvmengsi 已提交
2729
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
L
lvmengsi 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
2784 2785 2786 2787 2788 2789 2790 2791 2792
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
2793
              do_model_average_for_mean_and_var=True,
H
hutuxian 已提交
2794 2795 2796
              slot_dim=-1,
              sync_stats=False,
              summary_decay_rate=0.9999999):
H
heqiaozhi 已提交
2797 2798 2799
    """
    **Data Normalization Layer**

2800
    This op can be used as a normalizer function for conv2d and fully_connected operations.
H
heqiaozhi 已提交
2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
2824 2825 2826 2827
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
H
heqiaozhi 已提交
2828 2829 2830 2831 2832
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
2833 2834
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
2835 2836 2837 2838 2839 2840 2841
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we 
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot 
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate 
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
H
hutuxian 已提交
2842 2843 2844
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
H
heqiaozhi 已提交
2845 2846 2847 2848 2849 2850 2851

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
2852 2853
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
2854

2855
            hidden1 = fluid.data(name="hidden1", shape=[64, 200])
2856
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
H
hutuxian 已提交
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        attrs={
            "epsilon": epsilon,
            "slot_dim": slot_dim,
            "sync_stats": sync_stats,
            "summary_decay_rate": summary_decay_rate
        })
H
heqiaozhi 已提交
2933 2934 2935 2936

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
2937
@templatedoc()
G
guosheng 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
2948 2949 2950 2951
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
2952 2953 2954

    The formula is as follows:

Y
yuyang18 已提交
2955
    ..  math::
G
guosheng 已提交
2956

2957
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
2958

2959
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
2960

2961
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
2962

2963 2964 2965 2966 2967
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2968

G
guosheng 已提交
2969
    Args:
2970 2971 2972 2973 2974 2975
        input(Variable): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
2976
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2977 2978 2979 2980
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2981 2982
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2983
            a default :code:`ParamAttr` would be added as scale. The
2984 2985
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2986 2987
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2988
            a default :code:`ParamAttr` would be added as bias. The
2989
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
2990
        act(str, optional): Activation to be applied to the output of layer normalization.
2991 2992
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2993 2994

    Returns:
2995
        Variable: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
2996 2997 2998

    Examples:

2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            x = fluid.data(name='x', shape=[-1, 32, 32], dtype='float32')
            hidden1 = fluid.layers.layer_norm(input=x, begin_norm_axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            np_x = np.random.random(size=(8, 3, 32, 32)).astype('float32')
            output = exe.run(feed={"x": np_x}, fetch_list = [hidden1])
            print(output)
G
guosheng 已提交
3011
    """
L
lujun 已提交
3012
    assert in_dygraph_mode(
3013
    ) is not True, "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
3014 3015 3016 3017 3018 3019 3020 3021
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
3022
        assert param_attr is not False, "param_attr should not be False when using scale."
G
guosheng 已提交
3023 3024 3025 3026 3027 3028
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
3029 3030
    else:
        if param_attr:
T
tianshuo78520a 已提交
3031
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
3032
    if shift:
3033
        assert bias_attr is not False, "bias_attr should not be False when using shift."
G
guosheng 已提交
3034 3035 3036
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias
3037 3038
    else:
        if bias_attr:
T
tianshuo78520a 已提交
3039
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
3040 3041

    # create output
X
Xin Pan 已提交
3042 3043 3044 3045 3046
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3074
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3075

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
    Parameters:
        input(Variable): 4-D Tensor, the data type is float32 or float64.
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
T
tianshuo78520a 已提交
3090
        act(str, optional): Activation to be applied to the output of group normalization.
3091 3092 3093 3094
        data_layout(str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
3095 3096
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .
D
Dun 已提交
3097 3098

    Returns:
3099 3100 3101 3102
        Variable: A 4-D Tensor has same data type and data format with `input`.

    Raises:
        ValueError: If `data_layout` is neither 'NCHW' nor 'NHWC'.
3103 3104 3105 3106 3107 3108
        ValueError: If `groups` is greater than the number of input channels.
        ValueError: If `groups` is less than 1.
        ShapeError: If the param_attr(Scale) is not 1-D Tensor.
        ShapeError: If the param_attr(Scale)'s first dimension size is not equal to the input channels.
        ShapeError: If the bias_attr(Bias) is not 1-D Tensor.
        ShapeError: If the bias_attr(Bias)'s first dimension size is not equal to the input channels.
D
Dun 已提交
3109 3110

    Examples:
3111
       .. code-block:: python
D
Dun 已提交
3112

3113 3114 3115
            import paddle.fluid as fluid
            data = fluid.data(name='data', shape=[None, 8, 32, 32], dtype='float32')
            x = fluid.layers.group_norm(input=data, groups=4)
D
Dun 已提交
3116 3117 3118 3119 3120 3121 3122
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3123 3124 3125 3126 3127 3128
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3142 3143
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3154 3155 3156 3157 3158
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3159 3160 3161 3162 3163

    return helper.append_activation(group_norm_out)


@templatedoc()
3164
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3165 3166 3167
    """
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
3168
    This operation calculates the spectral normalization value of weight parameters of
3169
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
3170 3171
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
3172

D
dengkaipeng 已提交
3173 3174 3175
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3176
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3177 3178

    Step 2:
T
tianshuo78520a 已提交
3179
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
3180 3181
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
3182 3183 3184 3185 3186 3187 3188 3189

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3190
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3191 3192 3193 3194

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3195

D
dengkaipeng 已提交
3196
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3197 3198
                

D
dengkaipeng 已提交
3199 3200 3201 3202
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3203 3204 3205
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
3206 3207 3208
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
3209 3210

    Returns:
D
dengkaipeng 已提交
3211
        Variable: A tensor variable of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
3212
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
3213 3214

    Examples:
K
Kaipeng Deng 已提交
3215
       .. code-block:: python
D
dengkaipeng 已提交
3216

K
Kaipeng Deng 已提交
3217 3218
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
3219
            weight = fluid.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
3220
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3221 3222
    """
    helper = LayerHelper('spectral_norm', **locals())
3223
    dtype = weight.dtype
D
dengkaipeng 已提交
3224 3225 3226

    # create intput and parameters
    inputs = {'Weight': weight}
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3245 3246

    # create output
3247
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3248 3249

    helper.append_op(
3250
        type="spectral_norm",
D
Dun 已提交
3251
        inputs=inputs,
3252 3253 3254 3255 3256 3257
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3258

3259
    return out
D
Dun 已提交
3260 3261


Y
Yu Yang 已提交
3262 3263 3264 3265
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3266 3267 3268
                     padding=0,
                     stride=1,
                     dilation=1,
3269
                     groups=None,
C
caoying03 已提交
3270
                     param_attr=None,
3271
                     bias_attr=None,
C
chengduoZH 已提交
3272
                     use_cudnn=True,
3273
                     act=None,
3274 3275
                     name=None,
                     data_format='NCHW'):
Y
Yu Yang 已提交
3276
    """
3277 3278
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3279
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
3280 3281 3282
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3283
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3284
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3285 3286 3287
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3288 3289 3290 3291 3292

    For each input :math:`X`, the equation is:

    .. math::

3293
        Out = \sigma (W \\ast X + b)
3294

3295
    Where:
3296

3297 3298
    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
3299
    * :math:`\\ast`: Convolution operation.
3300
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3301
    * :math:`\\sigma`: Activation function.
3302
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3303

3304 3305 3306 3307
    Example:

        - Input:

3308
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3309

3310
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3311 3312 3313

        - Output:

3314
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3315 3316

        Where
Y
Yu Yang 已提交
3317

3318 3319
        .. math::

3320 3321
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3322
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
3323 3324
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

L
lvmengsi 已提交
3325
    Note:
L
lvmengsi 已提交
3326 3327 3328 3329
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
L
lvmengsi 已提交
3330 3331 3332 3333
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3334 3335

    Args:
3336 3337
        input(Variable): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
                         its data type is float32 or float64.
3338 3339
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3340
        output_size(int|tuple, optional): The output image size. If output size is a
3341
            tuple, it must contain two integers, (image_height, image_width). None if use
3342
            filter_size, padding, and stride to calculate output_size.
L
lvmengsi 已提交
3343 3344 3345
            If output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and filter_size 
            should not be None at the same time.
3346
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
3347 3348
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
L
lvmengsi 已提交
3349 3350 3351 3352 3353 3354 3355
            use output size to calculate filter_size. Default: None. filter_size and 
            output_size should not be None at the same time.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
3356 3357 3358 3359 3360 3361 3362 3363 3364
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in three forms:
             `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
            when `data_format` is `'NCHW'`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NHWC'`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3365 3366 3367 3368 3369 3370 3371
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). 
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
            use output size to calculate filter_size. Default: None.
3372
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
3373 3374 3375 3376
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3377
            Default: groups = 1.
3378
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3379 3380 3381
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3382
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
C
chengduo 已提交
3383 3384 3385 3386
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3387
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3388
            library is installed. Default: True.
3389
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3390
            Default: None.
L
lvmengsi 已提交
3391 3392 3393
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3394 3395 3396 3397
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3398 3399

    Returns:
L
lvmengsi 已提交
3400 3401 3402 3403 3404 3405
        A Variable holding Tensor representing the conv2d_transpose, whose 
        data type is the same with input and shape is (num_batches, channels, out_h, 
        out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor variable 
        storing the transposed convolution result, and if act is not None, the 
        tensor variable storing transposed convolution and non-linearity activation 
        result.
3406 3407

    Raises:
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3419 3420 3421 3422

    Examples:
       .. code-block:: python

3423
          import paddle.fluid as fluid
L
lvmengsi 已提交
3424
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
3425
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3426
    """
C
chengduo 已提交
3427
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3428 3429 3430 3431
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received "
            + data_format + " but only NCHW or NHWC supported.")
3432

3433
    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
3434 3435 3436 3437 3438 3439
    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3440 3441 3442
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3443 3444
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3445

C
chengduoZH 已提交
3446 3447
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3448

3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

Y
Yu Yang 已提交
3492 3493 3494 3495 3496
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3497

3498 3499
        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
G
guosheng 已提交
3500

3501 3502 3503 3504
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3505
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3506 3507 3508
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3509

3510 3511 3512
    if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
        padding = [padding[0], padding[2]]

3513 3514 3515 3516 3517 3518
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
3519
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3520
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3521

Y
Yu Yang 已提交
3522 3523 3524
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3525
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3526
    helper.append_op(
3527
        type=op_type,
Y
Yu Yang 已提交
3528 3529
        inputs={'Input': [input],
                'Filter': [img_filter]},
3530
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3531
        attrs={
3532
            'output_size': output_size,
3533 3534
            'strides': stride,
            'paddings': padding,
3535
            'padding_algorithm': padding_algorithm,
3536 3537
            'dilations': dilation,
            'groups': groups,
3538 3539
            'use_cudnn': use_cudnn,
            'data_format': data_format
Y
Yu Yang 已提交
3540 3541
        })

3542 3543 3544 3545
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
3546 3547
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3548 3549


3550
def conv3d_transpose(input,
Y
Yu Yang 已提交
3551 3552 3553
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3554 3555 3556
                     padding=0,
                     stride=1,
                     dilation=1,
3557
                     groups=None,
C
caoying03 已提交
3558
                     param_attr=None,
3559
                     bias_attr=None,
C
chengduoZH 已提交
3560
                     use_cudnn=True,
3561
                     act=None,
3562 3563
                     name=None,
                     data_format='NCDHW'):
Y
Yu Yang 已提交
3564
    """
3565
    The convolution3D transpose layer calculates the output based on the input,
3566
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3567
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
3568 3569 3570 3571
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3572
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3573 3574 3575
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3576 3577 3578 3579 3580

    For each input :math:`X`, the equation is:

    .. math::

3581
        Out = \sigma (W \\ast X + b)
3582 3583 3584

    In the above equation:

3585 3586
    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
3587
    * :math:`\\ast`: Convolution operation.
3588
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3589 3590
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3591

3592 3593 3594 3595
    Example:

        - Input:

3596
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3597

3598
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3599 3600 3601

        - Output:

3602
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3603 3604

        Where
Y
Yu Yang 已提交
3605

3606 3607
        .. math::

L
lvmengsi 已提交
3608 3609 3610 3611 3612 3613
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Y
Yu Yang 已提交
3614

L
lvmengsi 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

    Args:
        input(Variable): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
            of input is float32 or float64.
3630 3631
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3632
        output_size(int|tuple, optional): The output image size. If output size is a
L
lvmengsi 已提交
3633 3634 3635 3636
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are 
            specified at the same time, They should follow the formula above. Default: None. 
            Output_size and filter_size should not be None at the same time.
3637
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
L
lvmengsi 已提交
3638
            it must contain three integers, (filter_size_depth, filter_size_height,
3639 3640
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
L
lvmengsi 已提交
3641 3642 3643 3644
            calculate filter_size. Default: None. filter_size and output_size should not be 
            None at the same time.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
3645 3646 3647 3648 3649 3650 3651 3652
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3653 3654 3655 3656 3657 3658 3659 3660
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, 
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
3661
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
3662 3663 3664 3665 3666
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
3667
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3668 3669 3670
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3671
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
C
chengduo 已提交
3672 3673 3674 3675
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3676
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
3677
            library is installed. Default: True
3678
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3679
            Default: None.
L
lvmengsi 已提交
3680 3681 3682
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3683 3684 3685 3686
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3687 3688

    Returns:
L
lvmengsi 已提交
3689 3690 3691 3692 3693
        A Variable holding Tensor representing the conv3d_transpose, whose data 
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.
3694 3695

    Raises:
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3707 3708 3709 3710

    Examples:
       .. code-block:: python

3711
          import paddle.fluid as fluid
L
lvmengsi 已提交
3712
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
3713
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3714
    """
C
chengduo 已提交
3715
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3716 3717 3718 3719
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
            + data_format + " but only NCDHW or NDHWC supported.")
3720 3721
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3722
    if not isinstance(input, Variable):
3723
        raise TypeError("Input of conv3d_transpose must be Variable")
3724 3725
    input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
        -1]
Y
Yu Yang 已提交
3726

3727 3728
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3729

C
chengduoZH 已提交
3730 3731 3732
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
3747 3748 3749 3750 3751 3752 3753 3754
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
3755

3756 3757
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
3758

3759 3760 3761 3762 3763 3764 3765
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0], padding[0], padding[1], padding[1], padding[2],
                padding[2]
            ]
        return padding
G
Guo Sheng 已提交
3766

3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]
G
Guo Sheng 已提交
3780

3781
    padding = _update_padding(padding, data_format)
Y
yangyaming 已提交
3782

3783 3784 3785 3786 3787
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
Y
yangyaming 已提交
3788

3789 3790 3791
        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
Y
yangyaming 已提交
3792

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
                         padding[5] - 1) // dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
yangyaming 已提交
3803

3804 3805
    if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
        padding = [padding[0], padding[2], padding[4]]
Y
yangyaming 已提交
3806

3807 3808 3809 3810
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters // groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
3811

3812 3813 3814 3815
    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'
Y
yangyaming 已提交
3816

3817
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
yangyaming 已提交
3818
    helper.append_op(
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        })
Y
yangyaming 已提交
3832

3833 3834 3835 3836 3837 3838
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
    out = helper.append_activation(pre_act)
    return out
G
guosheng 已提交
3839 3840


C
caoying03 已提交
3841
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3842
    """
Y
yangyaming 已提交
3843
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3844 3845

    Args:
3846 3847 3848
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3849 3850
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3851 3852
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3853
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3854
            output Tensor. The result tensor will have one fewer dimension
3855 3856 3857 3858
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
3859 3860

    Returns:
3861 3862
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
3863

3864 3865 3866
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
3867 3868 3869
    Examples:
        .. code-block:: python

3870
            import paddle.fluid as fluid
G
guosheng 已提交
3871 3872 3873
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3874
            # Each example is followed by the corresponding output tensor.
3875
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3876 3877 3878 3879
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3880

3881
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3882 3883
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3884
            # Each example is followed by the corresponding output tensor.
3885
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3886 3887
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
3888

G
guosheng 已提交
3889
    """
3890 3891
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3892 3893 3894 3895 3896 3897

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        return core.ops.reduce_sum(input, 'dim', dim, 'keep_dim', keep_dim,
                                   'reduce_all', reduce_all)
3898
    attrs = {
3899
        'dim': dim if dim != None and dim != [] else [0],
3900
        'keep_dim': keep_dim,
3901
        'reduce_all': True if dim == None or dim == [] else False
3902
    }
3903 3904
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_sum')
3905
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3906
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3907 3908 3909 3910
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
3911
        attrs=attrs)
G
guosheng 已提交
3912
    return out
G
guosheng 已提交
3913 3914


C
caoying03 已提交
3915
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3916
    """
Y
Yibing Liu 已提交
3917
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3918 3919

    Args:
3920 3921 3922
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
3923 3924
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3925
            must be in the range :math:`[-rank(input), rank(input))`. If
3926
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3927
            :math:`rank(input) + dim[i]`.
3928
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3929
            output Tensor. The result tensor will have one fewer dimension
3930 3931 3932 3933 3934
            than the :attr:`input` unless :attr:`keep_dim` is true, default 
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
G
guosheng 已提交
3935
    Returns:
3936 3937 3938 3939 3940 3941
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
3942 3943 3944
    Examples:
        .. code-block:: python

3945
            import paddle.fluid as fluid
G
guosheng 已提交
3946 3947 3948
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
3949
            # Each example is followed by the corresponding output tensor.
3950
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
3951 3952 3953
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
3954
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3955

3956
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
3957 3958
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
3959
            # Each example is followed by the corresponding output tensor.
3960
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
3961 3962
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3963
    """
3964 3965 3966

    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3967 3968 3969 3970 3971 3972

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        return core.ops.reduce_mean(input, 'dim', dim, 'keep_dim', keep_dim,
                                    'reduce_all', reduce_all)
3973
    attrs = {
3974
        'dim': dim if dim != None and dim != [] else [0],
3975
        'keep_dim': keep_dim,
3976
        'reduce_all': True if dim == None or dim == [] else False
3977
    }
3978 3979
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_mean')
3980
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3981
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3982 3983 3984 3985
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
3986
        attrs=attrs)
G
guosheng 已提交
3987
    return out
3988 3989


C
caoying03 已提交
3990
def reduce_max(input, dim=None, keep_dim=False, name=None):
3991
    """
Y
yangyaming 已提交
3992
    Computes the maximum of tensor elements over the given dimension.
3993 3994

    Args:
3995 3996 3997
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3998 3999 4000
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4001
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4002
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4003
            output Tensor. The result tensor will have one fewer dimension
4004 4005 4006 4007
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4008 4009

    Returns:
4010 4011
        Variable: Tensor, results of maximum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4012

4013 4014 4015
    Examples:
        .. code-block:: python

4016
            import paddle.fluid as fluid
4017 4018 4019
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4020
            # Each example is followed by the corresponding output tensor.
4021
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4022 4023 4024 4025
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4026

4027
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4028 4029
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4030
            # Each example is followed by the corresponding output tensor.
4031
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4032 4033
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4034 4035
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4036
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4037 4038
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4039 4040 4041 4042 4043
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4044
            'dim': dim if dim != None and dim != [] else [0],
4045
            'keep_dim': keep_dim,
4046
            'reduce_all': True if dim == None or dim == [] else False
4047 4048 4049 4050
        })
    return out


C
caoying03 已提交
4051
def reduce_min(input, dim=None, keep_dim=False, name=None):
4052
    """
Y
yangyaming 已提交
4053
    Computes the minimum of tensor elements over the given dimension.
4054 4055

    Args:
4056 4057 4058
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4059 4060 4061
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4062
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4063
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4064
            output Tensor. The result tensor will have one fewer dimension
4065 4066 4067 4068
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4069 4070

    Returns:
4071 4072
        Variable: Tensor, result of minimum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4073

4074 4075 4076
    Examples:
        .. code-block:: python

4077
            import paddle.fluid as fluid
4078 4079 4080
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4081
            # Each example is followed by the corresponding output tensor.
4082
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4083 4084 4085 4086
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4087

4088
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4089 4090
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4091
            # Each example is followed by the corresponding output tensor.
4092
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4093 4094
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4095 4096
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4097
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4098 4099
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4100 4101 4102 4103 4104
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4105
            'dim': dim if dim != None and dim != [] else [0],
4106
            'keep_dim': keep_dim,
4107
            'reduce_all': True if dim == None or dim == [] else False
4108 4109
        })
    return out
G
guosheng 已提交
4110 4111


4112 4113 4114 4115 4116
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
4117 4118 4119
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the product is performed. If
T
tianshuo78520a 已提交
4120
            :attr:`None`, multiply all elements of :attr:`input` and return a
4121
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4122 4123
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4124
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
4125
            output Tensor. The result tensor will have one fewer dimension
4126 4127 4128 4129
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4130 4131

    Returns:
4132 4133 4134
        Variable: Tensor, result of product on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
4135 4136 4137
    Examples:
        .. code-block:: python

4138
            import paddle.fluid as fluid
4139 4140 4141
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4142
            # Each example is followed by the corresponding output tensor.
4143
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4144 4145 4146
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4147
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4148
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4149

4150
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4151 4152
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4153
            # Each example is followed by the corresponding output tensor.
4154
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4155 4156
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4157 4158
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4159
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4160 4161
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4162 4163 4164 4165 4166
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4167
            'dim': dim if dim != None and dim != [] else [0],
4168
            'keep_dim': keep_dim,
4169
            'reduce_all': True if dim == None or dim == [] else False
4170 4171 4172 4173
        })
    return out


Z
zhoukunsheng 已提交
4174 4175
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
4176
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4177 4178

    Args:
4179 4180
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
4181 4182 4183
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4184
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4185 4186
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4187
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4188
        name(str|None): A name for this layer(optional). If set None, the layer
4189
                       will be named automatically. The default value is None. 
Z
zhoukunsheng 已提交
4190

4191 4192
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
4193 4194 4195

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4196
        
4197
            import paddle.fluid as fluid
4198 4199 4200
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4201 4202 4203
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4204 4205 4206 4207 4208 4209
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
4210 4211
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4212
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
4213
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4225
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4226
            'keep_dim': keep_dim,
4227
            'reduce_all': True if dim == None or dim == [] else False
Z
zhoukunsheng 已提交
4228 4229 4230 4231 4232 4233
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
4234
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4235 4236

    Args:
4237 4238 4239
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
4240 4241
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4242
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4243 4244
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4245
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4246 4247
        name(str|None): A name for this layer(optional). If set None, the layer

4248 4249
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
4250 4251 4252

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4253

4254
            import paddle.fluid as fluid
4255 4256 4257
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4258 4259 4260
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
4261 4262 4263 4264 4265 4266
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
4267 4268
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4269
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
4270
                                     keep_dim=True)  # [[True], [False]]
4271
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4283
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4284
            'keep_dim': keep_dim,
4285
            'reduce_all': True if dim == None or dim == [] else False
4286 4287 4288 4289
        })
    return out


C
caoying03 已提交
4290
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4291
    """
4292
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
4293 4294

    Args:
4295
        input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
4296
        num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
4297 4298
            then the integer indicates the number of equal sized sub-Tensors
            that the Tensor will be divided into. If :attr:`num_or_sections`
4299 4300 4301 4302 4303
            is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
        dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
            dimension to split along is :math:`rank(input) + dim`. Default is -1.
4304
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
4305 4306

    Returns:
4307
        list(Variable): The list of segmented Tensor variables.
G
guosheng 已提交
4308

4309 4310 4311 4312
    Raises:
        TypeError: num_or_sections is not int, list or tuple.
        TypeError: dim is not int or Variable.

4313
    Example:
G
guosheng 已提交
4314 4315
        .. code-block:: python

4316 4317
            import paddle.fluid as fluid

4318 4319
            # input is a variable which shape is [3, 9, 5]
            input = fluid.data(
4320 4321
                 name="input", shape=[3, 9, 5], dtype="float32")

4322 4323 4324 4325
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # x0.shape [3, 3, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 3, 5]
4326

4327 4328 4329 4330 4331 4332 4333 4334 4335
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]
G
guosheng 已提交
4336
    """
4337
    if in_dygraph_mode():
4338 4339 4340
        num = None
        attrs = ()

S
songyouwei 已提交
4341 4342 4343 4344 4345 4346
        if isinstance(dim, Variable):
            dim = dim.numpy()
            assert dim.shape == (1,
                                 ), "dim of type Variable should have shape [1]"
            dim = dim[0]
        dim = (len(input.shape) + dim) if dim < 0 else dim
4347
        attrs += ('axis', dim)
4348 4349 4350

        if isinstance(num_or_sections, int):
            num = num_or_sections
4351
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
4352
        elif isinstance(num_or_sections, (list, tuple)):
4353
            num = len(num_or_sections)
L
Leo Chen 已提交
4354
            if utils._contain_var(num_or_sections):
4355
                raise TypeError(
L
Leo Chen 已提交
4356 4357 4358 4359
                    "The type of 'num_or_sections' in split must be int or list[int] or tuple[int] in Dygraph mode, but "
                    "received %s, which contains Variable." %
                    (type(num_or_sections)))
            else:
4360
                attrs += ('sections', list(num_or_sections))
4361 4362 4363 4364
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
                "received %s." % (type(num_or_sections)))
4365
        return core.ops.split(input, num, *attrs)
L
Leo Chen 已提交
4366

4367 4368 4369 4370 4371 4372 4373 4374 4375
    if not isinstance(num_or_sections, (int, list, tuple)):
        raise TypeError(
            "The type of 'num_or_sections' in split must be int, list or "
            "tuple, but received %s." % (type(num_or_sections)))
    if not isinstance(dim, (int, Variable)):
        raise TypeError(
            "The type of 'dim' in split must be int or Variable, but "
            "received %s." % (type(dim)))

G
guosheng 已提交
4376 4377
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
4409 4410
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
4411 4412 4413 4414 4415
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
G
guosheng 已提交
4416 4417
        num = num_or_sections
    else:
4418 4419 4420
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
4421
        num = len(num_or_sections)
4422 4423 4424
        attrs['sections'] = list(
            map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections))
L
Leo Chen 已提交
4425
        if utils._contain_var(num_or_sections):
4426 4427 4428
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

G
guosheng 已提交
4429
    outs = [
X
Xin Pan 已提交
4430
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4431 4432 4433
        for i in range(num)
    ]
    helper.append_op(
4434
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
G
guosheng 已提交
4435
    return outs
C
caoying03 已提交
4436 4437 4438 4439


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
R
ruri 已提交
4440
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
4441 4442
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4443
    .. math::
4444 4445

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4446 4447 4448 4449 4450

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
R
ruri 已提交
4451
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
4452
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4453 4454
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4455
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
4456
            the default value is 1e-12.
R
ruri 已提交
4457 4458
	name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
C
caoying03 已提交
4459
    Returns:
R
ruri 已提交
4460
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
4461 4462

    Examples:
4463

C
caoying03 已提交
4464
        .. code-block:: python
R
ruri 已提交
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476
	    
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,3])
	    output = fluid.layers.l2_normalize(x=input,axis=0)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3).astype("float32")
	    print(input_data)
C
caoying03 已提交
4477

R
ruri 已提交
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
	    # [[0.5171216  0.12704141 0.56018186]
	    # [0.93251234 0.5382788  0.81709313]]
	
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data)

	    # [array([[0.48496857, 0.22970329, 0.56545246],
	    # [0.8745316 , 0.9732607 , 0.82478094]], dtype=float32)]

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.l2_normalize(x=input, axis=-1)
    		print(output.numpy())
	    	
		# [[0.66907585 0.16437206 0.7247892 ]
		# [0.6899054  0.3982376  0.6045142 ]]
		
C
caoying03 已提交
4502 4503
    """

F
fengjiayi 已提交
4504 4505
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4506 4507
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4508 4509
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4510
    helper.append_op(
4511 4512 4513 4514
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4515
        attrs={
4516 4517
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4518 4519
        })
    return out
4520 4521


S
sneaxiy 已提交
4522
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4523
    """
Y
ying 已提交
4524 4525 4526 4527
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4528

C
chengduoZH 已提交
4529
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4530
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4531

4532 4533 4534 4535 4536
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4537
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4538

C
chengduoZH 已提交
4539
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4540
      performs in the following way.
G
guosheng 已提交
4541

4542
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4543
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4544
        last two dimensions and a batched matrix multiply supporting broadcast
4545
        applies on the two tensors.
G
guosheng 已提交
4546

Y
ying 已提交
4547 4548
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4549
    removed after matrix multiplication.
G
guosheng 已提交
4550 4551 4552

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4553 4554 4555
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4556
        alpha (float): The scale of output. Default 1.0.
4557
        name(str|None): A name for this layer(optional). If set None, the layer
4558
            will be named automatically.
G
guosheng 已提交
4559 4560

    Returns:
石晓伟 已提交
4561
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
4562

G
guosheng 已提交
4563 4564 4565
    Examples:
        .. code-block:: python

4566
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4567
            # x: [B, ..., M, K], y: [B, ..., K, N]
4568
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4569

4570
            # x: [B, M, K], y: [B, K, N]
4571
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4572

4573
            # x: [B, M, K], y: [K, N]
4574
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4575

4576
            # x: [M, K], y: [K, N]
4577
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4578 4579

            # x: [B, M, K], y: [K]
4580
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
4581

4582
            # x: [K], y: [K]
4583
            # fluid.layers.matmul(x, y)  # out: [1]
4584

Y
ying 已提交
4585
            # x: [M], y: [N]
4586 4587
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

4588
            import paddle.fluid as fluid
4589 4590 4591
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
4592
    """
4593 4594 4595 4596 4597 4598 4599
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

    if in_dygraph_mode():
4600 4601
        return core.ops.matmul(x, y, 'transpose_X', transpose_x, 'transpose_Y',
                               transpose_y, 'alpha', float(alpha))
Y
ying 已提交
4602 4603

    def __check_input(x, y):
4604 4605
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
4606 4607
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul')
Y
ying 已提交
4608 4609 4610 4611 4612
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4613
            y_shape = y_shape + [1]
Y
ying 已提交
4614 4615 4616 4617 4618 4619 4620

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4621 4622 4623 4624 4625
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1),                         \
                "After performing an optional transpose, Input X's width should be "   \
                "equal to Y's width for multiplication "                               \
                "prerequisites. But received X's shape: %s, Y's shape: %s\n" %         \
                (x_shape, y_shape)
Y
ying 已提交
4626

C
chengduo 已提交
4627
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4628
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4629 4630 4631
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4632
                if dim_x != y_shape[i]:
4633 4634 4635 4636 4637
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))
Y
ying 已提交
4638 4639 4640

    __check_input(x, y)

4641
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4642
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4643
    helper.append_op(
4644 4645 4646 4647
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
4648
        attrs=attrs)
4649
    return out
4650 4651


4652
def topk(input, k, name=None):
Q
qingqing01 已提交
4653
    """
4654
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
4655 4656
    for the last dimension.

4657 4658
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
4659 4660 4661 4662

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4663 4664
    .. code-block:: text

4665 4666 4667 4668 4669
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
4670 4671 4672 4673
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

4674
          Output:
F
fengjiayi 已提交
4675
            The first output:
4676 4677
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
4678 4679 4680 4681
                      [10, 25],
                      [6, 10]]

            The second output:
4682 4683
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
4684 4685 4686
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4687
    Args:
4688 4689 4690 4691
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
4692 4693

    Returns:
4694 4695
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
4696

F
fengjiayi 已提交
4697
    Raises:
4698
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
4699 4700 4701 4702

    Examples:
        .. code-block:: python

4703
            import paddle.fluid as fluid
4704
            import paddle.fluid.layers as layers
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
4718
    """
4719
    if in_dygraph_mode():
4720 4721 4722 4723 4724
        _k = k.numpy().item(0) if isinstance(k, Variable) else k
        out, indices = core.ops.top_k(input, 'k', _k)
        out.stop_gradient = True
        indices.stop_gradient = True
        return out, indices
4725

4726 4727
    inputs = {"X": [input]}
    attrs = {}
S
songyouwei 已提交
4728 4729 4730 4731 4732
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}

4733 4734 4735 4736
    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

Q
qingqing01 已提交
4737 4738
    helper.append_op(
        type="top_k",
W
whs 已提交
4739
        inputs=inputs,
Q
qingqing01 已提交
4740 4741
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
4742
        attrs=attrs)
Q
qingqing01 已提交
4743 4744 4745 4746 4747
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4748 4749 4750 4751 4752
def ctc_greedy_decoder(input,
                       blank,
                       input_length=None,
                       padding_value=0,
                       name=None):
4753
    """
S
SunGaofeng 已提交
4754
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
4755

S
SunGaofeng 已提交
4756
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
4757 4758 4759
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4760

S
SunGaofeng 已提交
4761 4762 4763 4764
    This op is implemented in two modes: lod and padding, either of them can be used.
    The input can be either LoDTensor or Tensor, corresponding to lod and padding 
    mode respectively.

4765 4766 4767 4768 4769
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
4770
        (1) for lod mode:
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4782
        input.lod = [[4, 4]]
M
minqiyang 已提交
4783

W
whs 已提交
4784
        Computation:
4785

W
whs 已提交
4786 4787 4788 4789 4790 4791
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4792 4793 4794 4795 4796

        output.data = [[2],
                       [1],
                       [3]]

4797
        output.lod = [[2, 1]]
4798

S
SunGaofeng 已提交
4799
        (2) for padding mode:
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
        step2: Change the argmax result to use padding mode, then argmax result is 
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
4826
    Parameters:
4827

S
SunGaofeng 已提交
4828 4829
        input(Variable): the probabilities of variable-length sequences. When in lod mode, 
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1] 
Y
ying 已提交
4830
                         where Lp is the sum of all input sequences' length and
4831 4832
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
4833
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
4834
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
4835
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
4836
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
4837 4838
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
4839
        padding_value(int): padding value.
S
SunGaofeng 已提交
4840 4841 4842
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name` 
4843 4844

    Returns:
S
SunGaofeng 已提交
4845 4846 4847 4848 4849
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

T
tianshuo78520a 已提交
4850
        For padding mode, returns a tuple of (output, output_length), which was described as below: 
S
SunGaofeng 已提交
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

4862 4863 4864 4865

    Examples:
        .. code-block:: python

4866
            # for lod mode
S
SunGaofeng 已提交
4867
            import paddle.fluid as fluid
S
SunGaofeng 已提交
4868
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
4869
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
4870 4871

            # for padding mode
S
SunGaofeng 已提交
4872 4873
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
4874 4875 4876
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
4877
    """
4878
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4879
    _, topk_indices = topk(input, k=1)
4880 4881

    # ctc align op
X
Xin Pan 已提交
4882
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len
4908 4909


Y
fix ci.  
ying 已提交
4910
def transpose(x, perm, name=None):
Y
ying 已提交
4911
    """
4912
    Permute the data dimensions of `input` according to `perm`.
Y
ying 已提交
4913 4914 4915 4916 4917

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4918
        x (Variable): The input Tensor. It is a N-D Tensor of data types float32, float64, int32.
T
tianshuo78520a 已提交
4919
        perm (list): Permute the input according to the data of perm.
4920
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4921 4922

    Returns:
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
        Variable: A transposed n-D Tensor, with data type being float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]
Y
ying 已提交
4947 4948

    Examples:
4949

Y
ying 已提交
4950 4951
        .. code-block:: python

4952
            # use append_batch_size=False to avoid prepending extra
4953
            # batch size in shape
4954
            import paddle.fluid as fluid
4955
            x = fluid.layers.data(name='x', shape=[2, 3, 4],
4956
                            dtype='float32', append_batch_size=False)
4957
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
4958 4959
            print x_transposed.shape
            #(3L, 2L, 4L)
Y
ying 已提交
4960

4961
    """
4962
    if in_dygraph_mode():
4963 4964
        out, _ = core.ops.transpose2(x, 'axis', perm)
        return out
4965

4966 4967 4968
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
4969
    check_type(perm, 'perm', list, 'transpose')
4970

Y
fix ci.  
ying 已提交
4971
    if len(perm) != len(x.shape):
Y
ying 已提交
4972
        raise ValueError(
4973 4974 4975 4976
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
Y
ying 已提交
4977 4978 4979
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
4980 4981 4982
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4983 4984

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4985 4986
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4987
    helper.append_op(
4988
        type='transpose2',
Y
fix ci.  
ying 已提交
4989
        inputs={'X': [x]},
4990 4991
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4992 4993
        attrs={'axis': perm})
    return out
4994 4995


4996 4997 4998 4999 5000 5001 5002
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5003
    """
5004
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
5005 5006 5007
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
5008 5009
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5010 5011 5012

    .. math::

L
Liufang Sang 已提交
5013 5014 5015 5016
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
5017

L
Liufang Sang 已提交
5018
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
5019

L
Liufang Sang 已提交
5020 5021
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
5022

L
Liufang Sang 已提交
5023 5024 5025
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
5026

L
Liufang Sang 已提交
5027 5028
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
5029

L
Liufang Sang 已提交
5030 5031 5032 5033 5034 5035 5036
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding. 
            Default is 0.
5037

L
Liufang Sang 已提交
5038 5039 5040 5041
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
5042
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
    
    Returns: 
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \ 
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5081 5082 5083
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5096
            output.dims = {8, 8}
5097

5098
            output.lod = [[4, 4]]
5099

T
Tink_Y 已提交
5100
    Examples:
5101 5102 5103

        .. code-block:: python

B
Bai Yifan 已提交
5104
            import paddle.fluid as fluid
L
Liufang Sang 已提交
5105
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
5106
                                     dtype='float32')
5107
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
5108 5109
                input=data, stride=[1, 1], filter_size=[2, 2])

5110 5111

    """
L
lujun 已提交
5112
    assert not in_dygraph_mode(), (
5113
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5124
    inputs = {"X": input}
5125
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
5126 5127 5128 5129 5130
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5131
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5132
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5133
    helper.append_op(
5134
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5135
    return out
5136 5137


Y
yuyang18 已提交
5138
@templatedoc()
5139
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5140 5141
    """
    ${comment}
5142 5143

    Args:
Y
yuyang18 已提交
5144
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5145 5146
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5147 5148 5149 5150 5151
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5152
        ${out_comment}.
5153 5154

    Examples:
D
Double_V 已提交
5155
        >>>  # for LodTensor inputs
Y
yuyang18 已提交
5156
        >>> import paddle.fluid as fluid
D
Double_V 已提交
5157
        >>> x = fluid.data(name='x', shape=[9, 16],
Y
yuyang18 已提交
5158 5159
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
D
Double_V 已提交
5160 5161 5162
        >>> # for Tensor inputs
        >>> x = fluid.data(name='x', shape=[9, 4, 16], dtype='float32')
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5163 5164 5165 5166 5167 5168
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5169
    out = helper.create_variable_for_type_inference(dtype)
5170 5171 5172 5173 5174
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5175
    return helper.append_activation(out)
5176 5177


Y
yuyang18 已提交
5178
@templatedoc()
5179 5180
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5181

5182
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
5183

5184
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
5185

5186
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
5187

5188
    For Example:
L
lujun 已提交
5189

5190
            .. code-block:: text
L
lujun 已提交
5191

5192
                Given:
L
lujun 已提交
5193

5194 5195 5196 5197
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
5198

5199
                index = [[3],[0],[1],[2]]
L
lujun 已提交
5200

5201 5202 5203 5204
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
5205 5206


5207 5208 5209
    Args:
       inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
       index (Variable): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
L
lujun 已提交
5210

5211
    Returns:
5212
        Variable(Tensor): Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
5213 5214

    Examples:
5215

X
xuezhong 已提交
5216 5217
        .. code-block:: python

5218
            import paddle.fluid as fluid
5219
            import numpy as np
5220

5221 5222 5223 5224
            x1 = fluid.data(name='x1', shape=[None, 2], dtype='float32')
            x2 = fluid.data(name='x2', shape=[None, 2], dtype='float32')
            index = fluid.data(name='index', shape=[None, 1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
X
xuezhong 已提交
5225

5226 5227 5228 5229 5230 5231 5232 5233 5234
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
            index = np.array([[1], [0]]).astype(np.int32)

            res = exe.run(fluid.default_main_program(), feed={'x1':img1, 'x2':img2, 'index':index}, fetch_list=[out])
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
5235

5236 5237 5238 5239 5240 5241 5242 5243
    """
    helper = LayerHelper('multiplex', **locals())

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5244
    helper.append_op(
5245 5246 5247 5248 5249
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
X
xuezhong 已提交
5250 5251


5252 5253
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5254 5255
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5256
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
5257
    and then sums all the losses. So the shape of output Variable is
5258
    [batch_size, 1].
5259

5260 5261
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5262
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5263
            A LoDTensor or Tensor with type float32.
5264
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5265
            L1 loss op with same shape as :attr:`x`.
5266
            A LoDTensor or Tensor with type float32.
5267
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5268 5269
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5270
            by this tensor element by element.
5271
            A Tensor with type float32.
5272
        outside_weight (Variable|None): A tensor with rank at least 2. This
5273 5274
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5275
            element by element.
5276
            A Tensor with type float32.
5277
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5278 5279
           scalar with default value 1.0.

5280
    Returns:
5281
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
5282 5283 5284 5285

    Examples:
        .. code-block:: python

5286
            import paddle.fluid as fluid
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
            import numpy as np
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
        
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

5304
    """
5305

5306
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5307 5308
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
5319
        attrs={'sigma': sigma if sigma is not None else 1.0})
5320
    return loss
5321 5322


5323
def one_hot(input, depth, allow_out_of_range=False):
5324
    """
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.], 
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than depth.  
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
5379 5380

    Args:
5381 5382 5383 5384 5385
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input 
            is word id, depth is generally the dictionary size.
5386
        allow_out_of_range(bool): A bool value indicating whether the input
5387 5388 5389 5390
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
5391 5392

    Returns:
5393
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
5394 5395

    Examples:
C
caoying03 已提交
5396
        .. code-block:: python
5397

5398
            import paddle.fluid as fluid
5399 5400 5401
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
5402
    """
5403
    if in_dygraph_mode():
S
songyouwei 已提交
5404 5405 5406 5407 5408
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
                1, ), "depth of type Variable should have shape [1]"
            depth = depth[0]
5409 5410 5411 5412
        out = core.ops.one_hot(input, 'depth', depth, 'allow_out_of_range',
                               allow_out_of_range)
        out.stop_gradient = True
        return out
5413

5414
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5415
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5416

5417 5418
    if not isinstance(depth, Variable):
        # user attribute
5419
        inputs = {'X': input}
Y
Yi Liu 已提交
5420
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
5421
    else:
5422 5423 5424
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
5425 5426
    helper.append_op(
        type="one_hot",
5427 5428
        inputs=inputs,
        attrs=attrs,
5429 5430
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
5431
    return one_hot_out
Y
Yu Yang 已提交
5432 5433


Y
Yu Yang 已提交
5434
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5435
    """
Y
Yibing Liu 已提交
5436 5437 5438
    Create an auto-increase variable. which will be automatically increased 
    by 1 in every iteration. By default, the first return of this counter is 1, 
    and the step size is 1.
Y
Yu Yang 已提交
5439 5440

    Args:
Y
Yibing Liu 已提交
5441 5442 5443
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
5444

5445
    Returns:
Y
Yibing Liu 已提交
5446
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
5447 5448 5449 5450

    Examples:
        .. code-block:: python

5451
           import paddle.fluid as fluid
Y
yi.wu 已提交
5452
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
5453
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
5454 5455
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5456 5457
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5458
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
5459 5460 5461 5462 5463
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
        belong_to_optimizer=True)
Y
Yu Yang 已提交
5464 5465 5466
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5467
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5468
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5469 5470
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5471
            outputs={'Out': [counter]},
5472
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5473 5474 5475
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5476 5477


5478
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5479
    """
5480
    This operator changes the shape of ``x`` without changing its data.
C
caoying03 已提交
5481

5482 5483 5484 5485
    The target shape can be given by ``shape`` or ``actual_shape``.
    When ``shape`` and ``actual_shape`` are set at the same time,
    ``actual_shape`` has a higher priority than ``shape``
    but at this time ``shape`` can only be an integer list or tuple, and ``shape`` still should be set correctly to
T
tianshuo78520a 已提交
5486
    guarantee shape inference in compile-time.
C
caoying03 已提交
5487

5488
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5489

5490 5491 5492 5493
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5494
    2. 0 means the actual dimension value is going to be copied from the
T
tianshuo78520a 已提交
5495
    corresponding dimension of x. The index of 0s in shape can not exceed
5496
    the dimension of x.
5497 5498

    Here are some examples to explain it.
C
caoying03 已提交
5499 5500

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5501
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5502
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5503

5504
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5505 5506
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5507 5508
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5509
    dimensions.
C
caoying03 已提交
5510

5511
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5512 5513 5514 5515
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5516

5517 5518
    **Note**:
        The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape.
5519

C
caoying03 已提交
5520
    Args:
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Variable): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Variable, it should be an 1-D Tensor .
        actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape
                                according to this given shape rather than ``shape`` specifying shape.
                                That is to say ``actual_shape`` has a higher priority
                                than ``shape(list|tuple)`` but not ``shape(Variable)``. \
                                This argument ``actual_shape`` will be removed in a future version. \
                                Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``.
        act (str, optional): The non-linear activation to be applied to the reshaped input. Default None.
        inplace(bool, optional): If ``inplace`` is True, the input and output of ``layers.reshape``
                       are the same variable. Otherwise, the input and output of
                       ``layers.reshape`` are different variable. Default False. Note that if ``x``
                       is more than one OPs' input, ``inplace`` must be False.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .
C
caoying03 已提交
5538

5539
    Returns:
5540
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable.
C
caoying03 已提交
5541

X
Xin Pan 已提交
5542
    Raises:
5543 5544 5545 5546
        TypeError: If actual_shape is neither Variable nor None.
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.
X
Xin Pan 已提交
5547

C
caoying03 已提交
5548 5549
    Examples:
        .. code-block:: python
G
guosheng 已提交
5550

5551
            import paddle.fluid as fluid
5552 5553 5554

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
5555 5556
            data_1 = fluid.data(
              name='data_1', shape=[2, 4, 6], dtype='float32')
5557
            reshaped_1 = fluid.layers.reshape(
5558 5559
              x=data_1, shape=[-1, 0, 3, 2], inplace=True)
            # the shape of reshaped_1 is [2,4,3,2].
5560 5561 5562 5563 5564 5565

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
5566
            # the shape of reshaped_2 is [5,10].
M
mapingshuo 已提交
5567 5568 5569 5570 5571 5572

            # example 3:
            data_3 = fluid.data(
              name="data_3", shape=[2,4,6], dtype='float32')
            reshaped_3 = fluid.layers.reshape(x=data_3, shape=[6,8])
            # the shape of reshaped_3 is [6,8].
C
caoying03 已提交
5573
    """
5574
    if in_dygraph_mode():
L
Leo Chen 已提交
5575
        #TODO(zhiqiu): enable inplace in dygraph mode.
5576 5577 5578 5579 5580 5581
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        attrs = {}
        if isinstance(shape, (list, tuple)):
L
Leo Chen 已提交
5582
            if utils._contain_var(shape):
5583 5584 5585 5586 5587 5588 5589 5590 5591
                raise TypeError(
                    "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['shape'] = shape
        else:
            raise TypeError(
                "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

5592
        out, _ = core.ops.reshape2(x, 'shape', shape)
5593
        return dygraph_utils._append_activation_in_dygraph(out, act)
5594

5595 5596
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'reshape')
5597 5598
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')
5599

5600
    helper = LayerHelper("reshape2", **locals())
5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
5625 5626
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1." % dim_idx)
5627 5628 5629
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
5630 5631 5632 5633
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
5634 5635
                else:
                    assert dim_size > 0, (
5636
                        "Each dimension value of 'shape' in reshape must not "
T
tianshuo78520a 已提交
5637
                        "be negative except one unknown dimension. "
5638 5639
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
5640 5641
        return attrs_shape

5642 5643 5644 5645 5646 5647 5648 5649 5650
    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
5651
        if utils._contain_var(shape):
5652 5653 5654 5655 5656 5657 5658
            inputs['ShapeTensor'] = get_new_shape_tensor(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5659
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5660
    helper.append_op(
5661
        type="reshape2",
X
Xin Pan 已提交
5662
        inputs=inputs,
5663
        attrs=attrs,
5664 5665
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5666

D
dzhwinter 已提交
5667
    return helper.append_activation(out)
5668

5669

5670
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5671
    """
5672 5673 5674
    This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
    remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
    to one will be deleted.
M
minqiyang 已提交
5675

H
haowang101779990 已提交
5676

5677
    .. code-block:: text 
H
haowang101779990 已提交
5678

5679
        Case1:
H
haowang101779990 已提交
5680

5681
          Input:
H
haowang101779990 已提交
5682 5683
            X.shape = (1, 3, 1, 5)
            axes = [0]
5684
          Output:
H
haowang101779990 已提交
5685 5686
            Out.shape = (3, 1, 5)

5687
        Case2:
H
haowang101779990 已提交
5688

5689
          Input:
H
haowang101779990 已提交
5690 5691
            X.shape = (1, 3, 1, 5)
            axes = []
5692
          Output:
H
haowang101779990 已提交
5693
            Out.shape = (3, 5)
M
minqiyang 已提交
5694

5695 5696 5697 5698 5699 5700 5701 5702
        Case3:

          Input:
            X.shape = [1,3,1,5]
            axes = [-2]
          Output:
            Out.shape = [1,3,5]

Y
Yibing Liu 已提交
5703
    Args:
5704 5705 5706 5707 5708
        input (Variable): The input Tensor. Support data type: float32, float64, int8, int32, int64.
                          axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
                          Axes range is :math:`[-rank(input), rank(input))`.
                          If axes is negative, :math:`axes=axes+rank(input)`.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Y
Yibing Liu 已提交
5709 5710

    Returns:
5711
        Variable: Output squeezed Tensor. Data type is same as input Tensor.
Y
Yibing Liu 已提交
5712 5713 5714 5715

    Examples:
        .. code-block:: python

5716
            import paddle.fluid as fluid
5717
            import paddle.fluid.layers as layers
5718 5719 5720 5721
            # set batch size=None
            x = fluid.data(name='x', shape=[None, 5, 1, 10])
            y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10]

Y
Yibing Liu 已提交
5722 5723
    """
    helper = LayerHelper("squeeze", **locals())
5724 5725 5726
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int8', 'int32', 'int64'],
                             'squeeze')
5727
    check_type(axes, 'axes', list, 'squeeze')
X
Xin Pan 已提交
5728 5729
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5730
    helper.append_op(
5731
        type="squeeze2",
5732
        inputs={"X": input},
Y
Yibing Liu 已提交
5733
        attrs={"axes": axes},
5734 5735
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5736

5737 5738 5739
    return out


5740
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5741
    """
5742
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
5743 5744
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5745

M
minqiyang 已提交
5746
    For example:
H
haowang101779990 已提交
5747 5748 5749

    .. code-block:: text

M
minqiyang 已提交
5750
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5751
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5752

Y
Yibing Liu 已提交
5753
    Args:
5754
        input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
5755
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
5756
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5757 5758

    Returns:
5759
        Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.
Y
Yibing Liu 已提交
5760 5761 5762 5763

    Examples:
        .. code-block:: python

5764 5765 5766
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
5767

Y
Yibing Liu 已提交
5768
    """
5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
    if not isinstance(axes, (int, list, tuple, Variable)):
        raise TypeError(
            "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
            "received %s." % (type(axes)))
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    def _to_Variable_list(one_list):
        Variable_list = []
        for ele in one_list:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                Variable_list.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                Variable_list.append(temp_out)
        return Variable_list

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
5796
        if utils._contain_var(axes):
5797 5798 5799 5800
            inputs["AxesTensorList"] = _to_Variable_list(axes)
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
5801 5802
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5803
    helper.append_op(
5804
        type="unsqueeze2",
5805 5806
        inputs=inputs,
        attrs=attrs,
5807 5808
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5809

5810 5811
    return out

5812

Y
yangyaming 已提交
5813
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5814
    """
Y
Yibing Liu 已提交
5815
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5816 5817 5818 5819
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
5820
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5821 5822 5823 5824 5825 5826

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5827
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5828 5829 5830
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5831
            target_lod: [4, 2]
Y
yangyaming 已提交
5832 5833

            then we get a 1-level LoDTensor:
5834
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5835 5836 5837 5838 5839 5840
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5841
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5842 5843 5844 5845
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5846
                y.data = [[2, 4]]
Y
yangyaming 已提交
5847 5848 5849
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5850
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5851 5852 5853 5854 5855 5856
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5857
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5858 5859 5860 5861
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5862
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5863 5864 5865 5866
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5867
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5868 5869 5870 5871
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
5872
        x (Variable): Input variable which could be a Tensor or LoDTensor.
5873
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5874
                           from :attr:`y`.
Y
yangyaming 已提交
5875
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5876
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5877 5878

    Returns:
Y
Yibing Liu 已提交
5879
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5880 5881

    Raises:
Y
Yibing Liu 已提交
5882
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5883 5884 5885 5886

    Examples:
        .. code-block:: python

5887
            import paddle.fluid as fluid
5888 5889 5890
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
5891 5892
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5893
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
5931
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
5932 5933 5934 5935 5936 5937

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
5938

5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
5949 5950 5951
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

5952 5953
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
5954 5955 5956 5957 5958 5959 5960 5961

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
5962
    helper.append_op(
5963
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
5964
    return out
D
dragonwarrior 已提交
5965 5966


5967 5968
def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None,
        data_format='NCHW'):
D
dragonwarrior 已提交
5969
    """
5970 5971 5972
    This operator implements the Local Response Normalization Layer.
    This layer performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
D
dragonwarrior 已提交
5973 5974 5975 5976 5977

    The formula is as follows:

    .. math::

5978
        Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5979 5980 5981

    In the above equation:

5982 5983 5984 5985
    - :math:`n` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.
D
dragonwarrior 已提交
5986 5987 5988


    Args:
5989 5990 5991
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W] or [N, H, W, C], 
            where N is the batch size, C is the input channel, H is Height, W is weight. The data 
            type is float32. The rank of this tensor must be 4, otherwise it will raise ValueError.
5992 5993 5994 5995
        n (int, optional): The number of channels to sum over. Default: 5
        k (float, optional): An offset, positive. Default: 1.0
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
5996 5997
        name (str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` 
5998 5999 6000 6001 6002
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        
D
dragonwarrior 已提交
6003
    Returns:
6004 6005
        Variable: A tensor variable storing the transformation result with the same shape and data type as input.

D
dragonwarrior 已提交
6006 6007 6008

    Examples:

6009 6010 6011 6012 6013 6014 6015 6016
    .. code-block:: python

        import paddle.fluid as fluid
        data = fluid.data(
            name="data", shape=[None, 3, 112, 112], dtype="float32")
        lrn = fluid.layers.lrn(input=data)
        print(lrn.shape)  # [-1, 3, 112, 112]
        print(lrn.dtype)  # float32
D
dragonwarrior 已提交
6017 6018 6019 6020 6021 6022 6023 6024
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
6025
            "Input's dimension size of Op(lrn) must be 4, but received %d." %
D
dragonwarrior 已提交
6026
            (dims))
6027 6028 6029 6030
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(lrn) got wrong value: received " +
            data_format + " but only NCHW or NHWC supported.")
D
dragonwarrior 已提交
6031

X
Xin Pan 已提交
6032 6033 6034
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6035 6036 6037 6038 6039 6040 6041
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
6042 6043 6044 6045 6046 6047 6048
        attrs={
            "n": n,
            "k": k,
            "alpha": alpha,
            "beta": beta,
            "data_format": data_format
        })
D
dragonwarrior 已提交
6049 6050

    return lrn_out
G
guosheng 已提交
6051 6052 6053 6054


def pad(x, paddings, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6055 6056
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
6057

S
SunGaofeng 已提交
6058 6059 6060 6061
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
6081
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
6082
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
6083 6084
                         width before and after each dimension in turn.
                         The length of :attr:`paddings` must be equal to 
G
guosheng 已提交
6085 6086
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6087 6088 6089
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
6090 6091

    Returns:
S
SunGaofeng 已提交
6092 6093 6094 6095
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
6096 6097 6098

    Examples:
        .. code-block:: python
G
guosheng 已提交
6099

S
SunGaofeng 已提交
6100 6101
            # x is a rank 2 tensor variable with shape [100, 224].
            # out will be a tensor of shape [101, 227] 
S
SunGaofeng 已提交
6102
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6103
            x = fluid.data(name='data', shape=[100, 224], dtype='float32')
G
guosheng 已提交
6104 6105 6106 6107 6108
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6109
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6110 6111 6112 6113 6114 6115 6116
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6117 6118


C
chengduo 已提交
6119 6120
def pad_constant_like(x, y, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6121
    Pad :attr:`y` with :attr:`pad_value`, the number of values padded to
C
chengduo 已提交
6122
    the edges of each axis is specified by the difference of the shape
S
SunGaofeng 已提交
6123 6124
    of :attr:`x` and :attr:`y` . ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    specify padding widths for each axis. The input should be a k-D tensor(k > 0 and k < 7).
C
chengduo 已提交
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6149 6150
		And
            pad_value = -1,
C
chengduo 已提交
6151

T
Tink_Y 已提交
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6166 6167

    Args:
T
tianshuo78520a 已提交
6168
        x (Variable): Tensor, its shape specifies the shape of output.
S
SunGaofeng 已提交
6169 6170
        y (Variable): Tensor, its rank is the same with :attr:`x`, and for each dimension :math:`i` , 
                      :math:`y\_shape[i] <= x\_shape[i]` . The data type can be float32 or float64.
C
chengduo 已提交
6171
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6172 6173 6174
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
C
chengduo 已提交
6175 6176

    Returns:
S
SunGaofeng 已提交
6177 6178 6179 6180
        The padded tensor, with the same shape as :attr:`x` and the same data type as :attr:`y`

    Return Type:
        Variable
C
chengduo 已提交
6181 6182 6183 6184 6185 6186

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6187
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6188 6189
            x = fluid.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
6190 6191 6192 6193 6194
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6195
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6196 6197 6198 6199 6200 6201 6202 6203 6204
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6205 6206 6207 6208 6209 6210
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
D
DuYao 已提交
6211 6212
    Label smoothing is a mechanism to regularize the classifier layer and is called 
    label-smoothing regularization (LSR). 
6213

6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

D
DuYao 已提交
6231
    Parameters:
6232
        label(Variable): The input variable containing the label data. The
D
DuYao 已提交
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
                        label data should use one-hot representation. It's 
                        a multidimensional tensor with a shape of 
                        :math:`[N_1, ..., Depth]`, where Depth is class number.
        prior_dist(Variable, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is 
                        0.1.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set
                        as 'float32', 'float64'. The default value is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user 
                        to set this property. For more information, please refer to 
                        :ref:`api_guide_Name`.
6248 6249 6250 6251 6252 6253

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
6254
            
6255
            import paddle.fluid as fluid
6256
            import paddle.fluid.layers as layers
6257 6258 6259 6260 6261 6262 6263 6264

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
6265 6266

    if in_dygraph_mode():
6267 6268
        return core.ops.label_smooth(label, prior_dist, 'epsilon',
                                     float(epsilon))
6269

6270 6271
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6272
    smooth_label = helper.create_variable_for_type_inference(dtype)
6273 6274 6275 6276 6277 6278 6279
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6280 6281


W
wopeizl 已提交
6282 6283 6284
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
    This operator implements the roi_pooling layer. 
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
    
    The operator has three steps:
    
        1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height;
        2. Finding the largest value in each section;
        3. Copying these max values to the output buffer.
    
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
    
W
wopeizl 已提交
6296
    Args:
6297 6298 6299 6300 6301 6302
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64.
        rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
        pooled_height (int, optional): The pooled output height, data type is int32. Default: 1
        pooled_width (int, optional): The pooled output height, data type is int32. Default: 1
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
    
W
wopeizl 已提交
6303
    Returns:
6304 6305 6306
        Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width].
    
    
W
wopeizl 已提交
6307
    Examples:
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
    
    ..  code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
    
        input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE)
        roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place)
    
        x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE)
        rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE)
    
        pool_out = fluid.layers.roi_pool(
6326 6327
                input=x,
                rois=rois,
6328 6329
                pooled_height=1,
                pooled_width=1,
6330
                spatial_scale=1.0)
6331 6332 6333 6334 6335
    
        exe = fluid.Executor(place)
        out, = exe.run(feed={'input':input_data ,'roi':roi_data}, fetch_list=[pool_out.name])
        print(out)   #array([[[[11.]]], [[[16.]]]], dtype=float32)
        print(np.array(out).shape)  # (2, 1, 1, 1)
W
wopeizl 已提交
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6353 6354


J
jerrywgz 已提交
6355 6356 6357 6358 6359 6360
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6361 6362
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6363 6364 6365 6366 6367
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
6368
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
W
wangguanzhong 已提交
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379
            a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The 
            data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], 
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
            right coordinates. 
        pooled_height (int32, optional): ${pooled_height_comment} Default: 1
        pooled_width (int32, optional): ${pooled_width_comment} Default: 1
        spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
6380 6381

    Returns:
W
wangguanzhong 已提交
6382 6383 6384 6385 6386
        Variable:

        Output: ${out_comment}.


J
jerrywgz 已提交
6387 6388 6389
    Examples:
        .. code-block:: python

6390
            import paddle.fluid as fluid
6391 6392 6393 6394
            x = fluid.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
            rois = fluid.data(
                name='rois', shape=[None, 4], dtype='float32')
6395 6396 6397
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6398 6399 6400 6401 6402 6403
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6404
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


S
SunGaofeng 已提交
6419
def dice_loss(input, label, epsilon=0.00001, name=None):
W
whs 已提交
6420
    """
S
SunGaofeng 已提交
6421 6422 6423 6424
    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:
W
whs 已提交
6425 6426 6427 6428 6429 6430 6431 6432

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


S
SunGaofeng 已提交
6433 6434 6435 6436 6437 6438
    Parameters:
        input (Variable): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
                          the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
                          The data type can be float32 or float64.
        label (Variable): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`. 
                          where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
W
whs 已提交
6439 6440 6441
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
S
SunGaofeng 已提交
6442 6443 6444
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
6445 6446

    Returns:
S
SunGaofeng 已提交
6447 6448 6449
        The dice loss with shape [1], data type is the same as `input` .
    Return Type:
        Varaible
W
whs 已提交
6450

S
SunGaofeng 已提交
6451
    Example:
6452 6453
        .. code-block:: python

S
SunGaofeng 已提交
6454
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6455 6456 6457
            x = fluid.data(name='data', shape = [3, 224, 224, 1], dtype='float32')
            label = fluid.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
            predictions = fluid.layers.sigmoid(x)
S
SunGaofeng 已提交
6458
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
6459 6460
    """
    label = one_hot(label, depth=input.shape[-1])
6461
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6462 6463 6464 6465 6466 6467
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6468 6469


6470 6471 6472 6473
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6474
                 resample='BILINEAR',
6475 6476
                 actual_shape=None,
                 align_corners=True,
6477 6478
                 align_mode=1,
                 data_format='NCHW'):
6479
    """
R
ruri 已提交
6480
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
6481

6482 6483 6484
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
T
tianshuo78520a 已提交
6485
    and the resizing only applies on the three dimensions(depth, height and width).
6486

6487
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
6488 6489
    future and only use :attr:`out_shape` instead.

6490
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6491

6492
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6493

K
Kaipeng Deng 已提交
6494 6495
        'TRILINEAR' : Trilinear interpolation

6496
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6497

6498
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
T
tianshuo78520a 已提交
6499
    in both the 3rd dimension(in height direction) and the 4th dimension(in width 
6500 6501 6502 6503 6504 6505 6506 6507
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
6508 6509 6510 6511 6512
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tianshuo78520a 已提交
6513
    Align_corners and align_mode are optional parameters,the calculation method 
6514 6515 6516 6517
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6518
    .. code-block:: text
6519

T
Tink_Y 已提交
6520
        For scale:
6521
          
T
Tink_Y 已提交
6522
            if align_corners = True && out_size > 1 :
6523

T
Tink_Y 已提交
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6535

T
Tink_Y 已提交
6536 6537
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6538

T
Tink_Y 已提交
6539 6540
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6541

T
Tink_Y 已提交
6542 6543
          else:
              align_corners = True
6544

T
Tink_Y 已提交
6545 6546
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6547

T
Tink_Y 已提交
6548 6549
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6550

T
Tink_Y 已提交
6551 6552 6553 6554 6555 6556 6557 6558 6559 6560
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6561

T
Tink_Y 已提交
6562 6563 6564 6565
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6566

T
Tink_Y 已提交
6567 6568
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6569

K
Kaipeng Deng 已提交
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
6592 6593 6594 6595 6596 6597
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
6598 6599 6600
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

6601 6602


R
ruri 已提交
6603
    Parameters:
6604 6605
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
6606
        out_shape(list|tuple|Variable|None): Output shape of image resize
6607 6608 6609 6610
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
6611 6612 6613
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
6614
             Default: None.
6615 6616
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
6617 6618
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
6619 6620 6621
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6622
                                :attr:`out_shape` and :attr:`scale` specifying
6623 6624
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6625 6626 6627 6628 6629
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
6630
                                errors would be occurred in graph constructing stage.
6631
                                Default: None
6632 6633 6634 6635
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6636
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6637
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
6638
                            src_idx = scale*dst_index.
6639 6640 6641 6642 6643
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored 
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
6644 6645

    Returns:
6646 6647
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
6648

6649 6650 6651
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
6652 6653 6654 6655
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
6656
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
6657 6658
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
6659
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
6660
        TypeError: align_corners should be a bool value
6661
        ValueError: align_mode can only be '0' or '1'
6662
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
6663

6664 6665
    Examples:
        .. code-block:: python
R
ruri 已提交
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.image_resize(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.image_resize(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
6698

R
ruri 已提交
6699 6700 6701 6702 6703 6704
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
6705

R
ruri 已提交
6706 6707 6708 6709 6710 6711 6712 6713
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
6714

R
ruri 已提交
6715 6716
	    #imperative mode
	    import paddle.fluid.dygraph as dg
6717

R
ruri 已提交
6718 6719 6720 6721
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.image_resize(input=input, out_shape=[12,12])
    		print(output.shape)
6722

R
ruri 已提交
6723
		# [2L, 3L, 12L, 12L]
6724

6725
    """
6726 6727
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
6728
        'TRILINEAR': 'trilinear',
6729 6730
        'NEAREST': 'nearest',
    }
6731 6732
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
6733 6734
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
6735
    resample_type = resample_methods[resample]
6736

K
Kaipeng Deng 已提交
6737 6738 6739 6740 6741
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

6742 6743 6744 6745 6746
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

6747
    if out_shape is None and scale is None:
6748
        raise ValueError("One of out_shape and scale must not be None.")
6749
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6750
    dtype = helper.input_dtype()
6751

6752 6753 6754 6755 6756 6757 6758 6759 6760
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

6761 6762 6763
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6764 6765 6766 6767 6768
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

6769
    inputs = {"X": input}
D
dengkaipeng 已提交
6770
    attrs = {
6771 6772 6773
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
6774 6775
        "interp_method": resample_type,
        "align_corners": align_corners,
6776 6777
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
6778 6779
    }

6780
    if out_shape is not None:
6781
        if isinstance(out_shape, Variable):
6782
            out_shape.stop_gradient = True
6783
            inputs['OutSize'] = out_shape
6784 6785
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
6786 6787
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
6816 6817 6818 6819
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
6820 6821 6822 6823 6824 6825 6826
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
6827 6828 6829 6830
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
6831 6832 6833 6834 6835 6836 6837 6838 6839
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
6840

6841
    else:
6842 6843 6844
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
6845
        elif isinstance(scale, float) or isinstance(scale, int):
6846
            if scale <= 0:
6847
                raise ValueError("Attr(scale) should be greater than zero.")
6848
            attrs['scale'] = float(scale)
6849 6850 6851
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")
6852

6853
    if isinstance(actual_shape, Variable):
6854 6855 6856 6857 6858
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
6859 6860 6861 6862
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6863
    out = helper.create_variable_for_type_inference(dtype)
6864
    helper.append_op(
6865
        type='{}_interp'.format(resample_type),
6866
        inputs=inputs,
6867
        outputs={"Out": out},
D
dengkaipeng 已提交
6868
        attrs=attrs)
6869
    return out
F
stash  
fengjiayi 已提交
6870 6871


6872
@templatedoc(op_type="bilinear_interp")
6873 6874 6875 6876
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
6877 6878
                    actual_shape=None,
                    align_corners=True,
6879 6880
                    align_mode=1,
                    data_format='NCHW'):
6881
    """
R
ruri 已提交
6882
    This op resizes the input by performing bilinear interpolation based on given
6883
    output shape which specified by actual_shape, out_shape and scale
6884 6885
    in priority order.

6886 6887 6888
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

6889 6890 6891 6892
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6893 6894
    again in the other direction.

6895
    For details of bilinear interpolation, please refer to Wikipedia:
6896
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6897

T
tianshuo78520a 已提交
6898
    Align_corners and align_mode are optional parameters,the calculation 
6899 6900 6901 6902
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6903
    .. code-block:: text
6904

T
Tink_Y 已提交
6905
        For scale:
6906
          
T
Tink_Y 已提交
6907
            if align_corners = True && out_size > 1 :
6908

T
Tink_Y 已提交
6909 6910 6911 6912
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
6913
              scale_factor = float(in_size/out_size)
6914

T
Tink_Y 已提交
6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6925

T
Tink_Y 已提交
6926
          else:
T
tink2123 已提交
6927

T
Tink_Y 已提交
6928 6929 6930 6931
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6932

R
ruri 已提交
6933 6934
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
6935
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
6936
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
6937
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
6938 6939
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
6940
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
6941
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
6942
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
6943
             Default: None.
6944 6945 6946
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6947
                                :attr:`out_shape` and :attr:`scale` specifying
6948 6949
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6950 6951 6952 6953 6954
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
6955
                                errors would be occurred in graph constructing stage.
6956
                                Default: None
6957 6958
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
6959 6960 6961 6962
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
6963
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
6964 6965

    Returns:
R
ruri 已提交
6966 6967
	Variable: 4-D tensor(NCHW or NHWC).
    
6968 6969
    Examples:
        .. code-block:: python
R
ruri 已提交
6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7002

R
ruri 已提交
7003 7004 7005 7006 7007 7008
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7009

R
ruri 已提交
7010 7011 7012 7013 7014 7015 7016 7017
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7018

R
ruri 已提交
7019 7020
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7021

R
ruri 已提交
7022 7023 7024 7025
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
    		print(output.shape)
7026

R
ruri 已提交
7027
		# [2L, 3L, 12L, 12L]
7028

7029 7030
    """

7031
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
7032
                        align_corners, align_mode, data_format)
7033 7034


K
Kaipeng Deng 已提交
7035 7036 7037 7038 7039 7040 7041
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
7042 7043
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
7044
    """
R
ruri 已提交
7045
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
7046 7047 7048
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

7049 7050 7051
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
7052 7053 7054 7055 7056 7057 7058 7059
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

T
tianshuo78520a 已提交
7060
    Align_corners and align_mode are optional parameters,the calculation 
K
Kaipeng Deng 已提交
7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
7080

K
Kaipeng Deng 已提交
7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
7099
    Parameters:
7100 7101
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7102
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
7103
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
7104 7105 7106
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
R
ruri 已提交
7107
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
7108 7109 7110 7111 7112 7113
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7114 7115 7116 7117 7118
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7119
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
7120 7121 7122
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7123 7124 7125 7126
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
7127 7128

    Returns:
R
ruri 已提交
7129
        Variable: A 5-D Tensor(NCDHW or NDHWC) 
K
Kaipeng Deng 已提交
7130 7131 7132

    Examples:
        .. code-block:: python
R
ruri 已提交
7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,8,10])

	    #1
	    output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])

	    #3
	    #x = np.array([3,12,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
7165

R
ruri 已提交
7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12, 12)
	    #2
	    # (2, 3, 12, 2, 4)
	    #3
	    # (2, 3, 3, 12, 12)
	    #4
	    # (2, 3, 3, 4, 5)

	    #imperative mode
	    import paddle.fluid.dygraph as dg
7184

R
ruri 已提交
7185 7186 7187 7188
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
    		print(output.shape)
7189

R
ruri 已提交
7190
		# [2L, 3L, 12L, 12L, 12L]
7191 7192 7193



K
Kaipeng Deng 已提交
7194 7195 7196
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
7197
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
7198 7199


7200
@templatedoc(op_type="nearest_interp")
7201 7202 7203 7204
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7205
                   actual_shape=None,
7206 7207
                   align_corners=True,
                   data_format='NCHW'):
7208
    """
R
ruri 已提交
7209
    This op resizes the input by performing nearest neighbor interpolation in both the
7210 7211
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
7212

7213 7214 7215
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

7216 7217
    Example:

T
Tink_Y 已提交
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
7230
          
T
Tink_Y 已提交
7231 7232
          if:
              align_corners = False
7233

T
Tink_Y 已提交
7234 7235
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7236

T
Tink_Y 已提交
7237 7238
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7239

T
Tink_Y 已提交
7240 7241
          else:
              align_corners = True
7242

T
Tink_Y 已提交
7243 7244
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7245

T
Tink_Y 已提交
7246 7247
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7248 7249


7250
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7251
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7252

R
ruri 已提交
7253
    Parameters:
7254 7255
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7256
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
7257
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7258
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7259
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
R
ruri 已提交
7260 7261 7262
             Default: None. 
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
	actual_shape(Variable): An optional input to specify output shape
7263 7264
                                dynamically. If provided, image resize
                                according to this given shape rather than
7265
                                :attr:`out_shape` and :attr:`scale` specifying
7266 7267
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7268 7269 7270 7271 7272
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7273
                                errors would be occurred in graph constructing stage.
7274
                                Default: None
7275
        align_corners(bool): ${align_corners_comment}
7276 7277 7278 7279
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
7280 7281

    Returns:
R
ruri 已提交
7282
	Variable: 4-D tensor(NCHW or NHWC).
7283 7284 7285

    Examples:
        .. code-block:: python
R
ruri 已提交
7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7318

R
ruri 已提交
7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7334

R
ruri 已提交
7335 7336
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7337

R
ruri 已提交
7338 7339 7340 7341 7342 7343
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
    		print(output.shape)

		# [2L, 3L, 12L, 12L]
7344 7345 7346



7347 7348
    """

7349 7350 7351 7352 7353 7354 7355 7356 7357 7358
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
7359 7360 7361 7362


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
R
ruri 已提交
7363
    This op resizes a batch of images. The short edge of input images will be
7364 7365
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7366 7367
    constant.

R
ruri 已提交
7368 7369
    Parameters:
        input (Variable): 4-D tensor(NCHW), The input tensor of image resize layer.
7370
        out_short_len(int): The length of output images' short edge.
7371
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7372

7373
    Returns:
R
ruri 已提交
7374
        Variable: 4-D tensor(NCHW).
R
ruri 已提交
7375 7376 7377 7378

    Examples:
        .. code-block:: python

7379
            import paddle.fluid as fluid
R
ruri 已提交
7380
            input = fluid.data(name="input", shape=[None,3,6,9], dtype="float32")
R
ruri 已提交
7381
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7382 7383 7384 7385 7386 7387 7388 7389 7390 7391
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7392 7393 7394
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7395 7396 7397
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7398
def gather(input, index, overwrite=True):
W
whs 已提交
7399
    """
Q
qiaolongfei 已提交
7400 7401
    **Gather Layer**

7402
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7403 7404 7405 7406
    of X indexed by `index` and concatenate them together.

    .. math::

7407
        Out = X[Index]
W
whs 已提交
7408 7409 7410 7411 7412 7413 7414


    .. code-block:: text


                Given:

7415 7416
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
Y
Yibing Liu 已提交
7427 7428 7429 7430 7431
        input (Variable): The source input tensor with rank>=1. Supported data type is 
            int32, int64, float32, float64 and uint8 (only for CPU), 
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
7432 7433 7434 7435 7436
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7437 7438 7439 7440 7441

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7442

W
whs 已提交
7443 7444
        .. code-block:: python

7445
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7446 7447
            x = fluid.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7448 7449 7450 7451
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7452
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7453 7454 7455 7456
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7457 7458
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7459 7460 7461
    return out


7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
7514 7515 7516
        input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
                          Its dtype should be int32, int64.
7517
        name (str|None): A name for this layer(optional). If set None, the
7518
                         layer will be named automatically.
7519 7520 7521 7522 7523 7524 7525 7526 7527

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
7528 7529
            x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.data(name='index', shape=[2, 2], dtype='int32')
7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


7548
def scatter(input, index, updates, name=None, overwrite=True):
7549 7550 7551
    """
    **Scatter Layer**

7552
    Output is obtained by updating the input on selected indices based on updates.
7553

7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577
    .. code-block:: python
        import numpy as np
                
        #input:
        input = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as input
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False

        # calculation:
        if not overwrite:
            for i in range(len(index)):
                input[index[i]] = np.zeros((2))

        for i in range(len(index)):
            if (overwrite):
                input[index[i]] = updates[i]
            else:
                input[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]
7578 7579

    Args:
7580 7581
        input (Variable): The input N-D Tensor with rank>=1. Data type can be float32.
        index (Variable): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
T
tianshuo78520a 已提交
7582
        updates (Variable): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
7583 7584
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
        overwrite (bool): The mode that updating the output when there are same indices.
7585 7586
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
7587
	    Default value is True.
7588 7589

    Returns:
7590
        Variable(Tensor|LoDTensor): The output is a Tensor with the same shape as input.
7591 7592 7593 7594 7595

    Examples:

        .. code-block:: python

7596
            import numpy as np
7597 7598
            import paddle.fluid as fluid

7599 7600 7601
            input = fluid.layers.data(name='data', shape=[3, 2], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[4], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[4, 2], dtype='float32', append_batch_size=False)
7602

7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616
            output = fluid.layers.scatter(input, index, updates, overwrite=False)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            in_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            update_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'data':in_data, "index":index_data, "update":update_data}, fetch_list=[output])
            print(res)
            # [array([[3., 3.],
            #   [6., 6.],
            #   [1., 1.]], dtype=float32)]
7617 7618 7619
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7620
    out = helper.create_variable_for_type_inference(dtype)
7621 7622 7623 7624 7625
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7626
        attrs={'overwrite': overwrite},
7627 7628 7629 7630
        outputs={"Out": out})
    return out


7631 7632 7633 7634 7635
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
7636 7637 7638
    or slice in a Variable. 

    :attr:`ref` is a Tensor with rank :math:`R` 
7639 7640 7641 7642
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
7643

7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
S
ShenLiang 已提交
7675
        ref (Variable): The ref input. Its dtype should be float32, float64.
7676 7677
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
7678 7679 7680
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:].
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7681 7682

    Returns:
7683
        output (Variable): The output is a tensor with the same shape and dtype as ref.
7684 7685 7686 7687 7688 7689 7690

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7691 7692 7693
            ref = fluid.data(name='ref', shape=[3, 5, 9, 10], dtype='float32')
            index = fluid.data(name='index', shape=[3, 2], dtype='int32')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
7694 7695 7696 7697 7698 7699 7700

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
7701
    dtype = helper.input_dtype(input_param_name='ref')
7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
S
ShenLiang 已提交
7732
        updates (Variable): The updated value of scatter_nd op. Its dtype should be float32, float64.
7733 7734
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
7735
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7736 7737 7738 7739 7740 7741 7742 7743 7744 7745

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7746 7747
            index = fluid.data(name='index', shape=[3, 2], dtype='int64')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
7748 7749 7750 7751 7752 7753 7754
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Y
yuyang18 已提交
7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7768

7769
    Examples:
Q
qingqing01 已提交
7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782
        .. code-block:: python

            import paddle.fluid as fluid
            img = fluid.data("img", [None, 3, 256, 256])
            # cropped_img is [-1, 3, 224, 224]
            cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

            # cropped_img2 shape: [-1, 2, 224, 224]
            # cropped_img2 = fluid.layers.random_crop(img, shape=[2, 224, 224])

            # cropped_img3 shape: [-1, 3, 128, 224]
            # cropped_img3 = fluid.layers.random_crop(img, shape=[128, 224])

Y
yuyang18 已提交
7783
    """
F
stash  
fengjiayi 已提交
7784
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7785
    dtype = x.dtype
X
Xin Pan 已提交
7786
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7787
    if seed is None:
7788
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7789
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7790
    if isinstance(seed, int):
F
fengjiayi 已提交
7791 7792 7793 7794 7795
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7796 7797 7798 7799
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7800
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7801 7802
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7803 7804
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7805
    return out
W
whs 已提交
7806 7807


7808
def log(x, name=None):
W
wanghaoshuang 已提交
7809 7810 7811 7812 7813
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7814
        Out = \\ln(x)
W
wanghaoshuang 已提交
7815 7816

    Args:
W
Wilber 已提交
7817 7818 7819
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
W
wanghaoshuang 已提交
7820 7821

    Returns:
W
Wilber 已提交
7822
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
W
wanghaoshuang 已提交
7823 7824 7825 7826 7827

    Examples:

        .. code-block:: python

7828
            import paddle.fluid as fluid
W
Wilber 已提交
7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[1], dtype="float32")
            res = fluid.layers.log(x)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1], [2]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
W
wanghaoshuang 已提交
7842
    """
7843
    if in_dygraph_mode():
7844
        return core.ops.log(x)
7845

7846
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
7847
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7848
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7849
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7850
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7851 7852 7853
    return out


Z
zhupengyang 已提交
7854
@templatedoc()
7855
def relu(x, name=None):
W
wanghaoshuang 已提交
7856
    """
Z
zhupengyang 已提交
7857
    ${comment}
W
wanghaoshuang 已提交
7858 7859

    Args:
Z
zhupengyang 已提交
7860 7861 7862 7863
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
7864 7865

    Returns:
Z
zhupengyang 已提交
7866
        Variable: ${out_comment}
W
wanghaoshuang 已提交
7867 7868 7869 7870 7871

    Examples:

        .. code-block:: python

7872
            import paddle.fluid as fluid
Z
zhupengyang 已提交
7873 7874 7875 7876 7877 7878 7879 7880 7881
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
                #  [1.  2.6]]
"""
7882
    if in_dygraph_mode():
7883
        return core.ops.relu(x)
7884

7885
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
7886
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7887
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7888
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7889 7890
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7891
    return out
7892 7893


C
chengduo 已提交
7894 7895
def selu(x, scale=None, alpha=None, name=None):
    """
7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909
    Selu Operator.

    The equation is:
    
    .. math::
        selu= \\lambda*
        \\begin{cases}
            x                      &\\quad \\text{ if } x>0 \n
            \\alpha * e^x - \\alpha  &\\quad \\text{ if } x<=0
        \\end{cases}
    

    The input `X` can carry the LoD (Level of Details) information,
    or not. And the output shares the LoD information with input `X`.
C
chengduo 已提交
7910 7911

    Args:
7912 7913
        x (Variable): The input N-D Tensor.
        scale(float, optional): lambda in selu activation function,
C
chengduo 已提交
7914 7915 7916
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
7917
        alpha(float, optional): alpha in selu activation function,
C
chengduo 已提交
7918 7919 7920
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
7921 7922
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

C
chengduo 已提交
7923 7924

    Returns:
7925
        Variable(Tensor|LoDTensor): The output Tensor or LoDTensor with the same shape and LoD information as input.
C
chengduo 已提交
7926 7927 7928 7929

    Examples:

        .. code-block:: python
7930 7931
             
            import paddle.fluid as fluid
7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.selu(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.      , 1.050701],[2.101402, 3.152103]], dtype=float32)]
C
chengduo 已提交
7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7959 7960 7961
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7962 7963 7964 7965
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7966
    .. math::
7967

H
haowang101779990 已提交
7968
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7969

7970
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7971 7972 7973
    is then calculated from it.


L
Liufang Sang 已提交
7974 7975
    Parameters:
        input (Variable): A n-D Tensor of prediction results for semantic labels with type int32 or int64.
7976
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7977
                           Its shape should be the same as input.
L
Liufang Sang 已提交
7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989
        num_classes (int32): The possible number of labels.

    Returns: 
	Three Variables.

        - mean_iou(Variable) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \
			    Data type is float32.
        - out_wrong(Variable) : A 1-D Tensor with shape [num_classes]. Data type is int32. \
			     The wrong numbers of each class.
        - out_correct(Variable): A 1-D  Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class.
 
   
W
whs 已提交
7990 7991 7992
    Examples:

        .. code-block:: python
7993

B
Bai Yifan 已提交
7994
            import paddle.fluid as fluid
L
Liufang Sang 已提交
7995
            iou_shape = [None, 32, 32]
7996
            num_classes = 5
L
Liufang Sang 已提交
7997 7998 7999
            predict = fluid.data(name='predict', shape=iou_shape, dtype='int64')
            label = fluid.data(name='label', shape=iou_shape, dtype='int64')
            mean_iou, out_wrong, out_correct = fluid.layers.mean_iou(predict, label,
8000
                                                          num_classes)
W
whs 已提交
8001 8002 8003
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8004 8005 8006
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8007 8008
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8009 8010
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8011
        outputs={
W
whs 已提交
8012 8013 8014
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8015 8016 8017
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8018 8019 8020 8021 8022 8023


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

S
SunGaofeng 已提交
8024 8025
    **Warning:** THIS OP IS DEPRECATED. It will be removed in the future version.
    Instructions for updating: Use :ref:`api_fluid_layers_crop_tensor` instead.
8026

8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

S
SunGaofeng 已提交
8055 8056 8057 8058 8059 8060
    Parameters:
        x (Variable): Tensor, data type can be float32 or float64.
        shape (Variable|list/tuple of integers): The output shape is specified
            by `shape`, which can be a Tensor or a list/tuple of integers.
            If it is a Tensor, it's rank must be the same as `x` , only 
            it's shape will be used, and the value of it will be ignored. This way
8061
            is suitable for the case that the output shape may be changed each
S
SunGaofeng 已提交
8062
            iteration. If it is a list/tuple of integers, it's length must be the same
8063
            as the rank of `x`
S
SunGaofeng 已提交
8064 8065 8066
        offsets (Variable|list/tuple of integers|None): Specifies the cropping
            offsets at each dimension. It can be a Tensor or a list/tuple
            of integers. If it is a Tensor, it's rank must be the same as `x`.
8067
            This way is suitable for the case that the offsets may be changed
S
SunGaofeng 已提交
8068 8069 8070 8071 8072
            each iteration. If it is a list/tuple of integers, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each dimension.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name` . Usually name is no need to set and 
            None by default. 
8073 8074

    Returns:
S
SunGaofeng 已提交
8075 8076 8077 8078
        The cropped Tensor, which has the same rank and data type with `x`

    Return Type:
        Variable
8079 8080 8081 8082 8083 8084 8085 8086

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8087
            import paddle.fluid as fluid
S
SunGaofeng 已提交
8088 8089
            x = fluid.data(name="x", shape=[3, 3, 5], dtype="float32")
            y = fluid.data(name="y", shape=[2, 2, 3], dtype="float32")
8090 8091 8092
            crop = fluid.layers.crop(x, shape=y)

            # or
S
SunGaofeng 已提交
8093 8094
            z = fluid.data(name="z", shape=[3, 3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 2, 3])
8095 8096 8097 8098 8099

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8100
            isinstance(shape, Variable)):
8101 8102 8103 8104 8105
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8106
    out = helper.create_variable_for_type_inference(x.dtype)
8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8124 8125


8126 8127 8128 8129 8130 8131
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

8132 8133
        * Case 1 (input is a 2-D Tensor):
            Input:
8134
                X.shape = [3, 5]
8135 8136 8137 8138 8139 8140 8141
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
8142 8143 8144
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
8155
                shape = [2, 2, -1]
8156 8157
                offsets = [0, 0, 1]
            Output:
8158 8159 8160 8161 8162
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]
8163 8164

    Parameters:
8165
        x (Variable): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
8166 8167
        shape (list|tuple|Variable): The output shape is specified
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
T
tianshuo78520a 已提交
8168
            the same as the dimension size of `x`. If a Variable, it should be a 1-D Tensor.
8169
            When it is a list, each element can be an integer or a Tensor of shape: [1].
8170 8171
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
8172 8173
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
T
tianshuo78520a 已提交
8174
            must be the same as the dimension size of `x`. If a Variable, it should be a 1-D
8175 8176 8177 8178 8179
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
        name(str, optional): The default value is None. Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
8180 8181

    Returns:
8182
        Variable: The cropped Tensor has same data type with `x`.
8183 8184

    Raises:
8185 8186 8187 8188 8189 8190
        TypeError: If the data type of `x` is not in: float32, float64, int32, int64.
        TypeError: If `shape` is not a list, tuple or Variable.
        TypeError: If the data type of `shape` is not int32.
        TypeError: If `offsets` is not None and not a list, tuple or Variable.
        TypeError: If the data type of `offsets` is not int32.
        ValueError: If the element in `offsets` is less than zero.
8191 8192 8193 8194 8195 8196

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
8197
            x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32")
8198 8199
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

8200 8201
            # shape is a 1-D Tensor
            crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32")
8202 8203 8204 8205
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
8206
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, -1, 3], offsets=[0, 1, 0])
8207 8208
            # crop1.shape = [-1, 2, 3]

8209 8210 8211 8212 8213
            # or shape is a list in which each element is a constant or Variable
            y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
            # crop2.shape = [3, -1, 4]
8214

8215 8216
            # offsets is a 1-D Tensor
            crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32")
8217 8218 8219
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

8220 8221
            # offsets is a list in which each element is a constant or Variable
            offsets_var =  fluid.data(name="dim1", shape=[1], dtype="int32")
8222 8223 8224 8225 8226
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())
8227 8228
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'crop_tensor')
8229 8230 8231
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')
8232 8233 8234 8235 8236 8237 8238 8239

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263
    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

8264 8265 8266
    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
8267
        attrs['offsets'] = [-1] * len(x.shape)
L
Leo Chen 已提交
8268
    elif utils._contain_var(offsets):
8269
        new_offsets_tensor = []
8270
        offsets_attr = []
8271 8272 8273 8274
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
8275
                offsets_attr.append(-1)
8276
            else:
8277
                _attr_offsets_check(dim)
8278 8279 8280
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
8281
                offsets_attr.append(dim)
8282
        ipts['OffsetsTensor'] = new_offsets_tensor
8283
        attrs['offsets'] = offsets_attr
8284
    else:
8285 8286
        for offset in offsets:
            _attr_offsets_check(offset)
8287 8288 8289 8290 8291
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
L
Leo Chen 已提交
8292
    elif utils._contain_var(shape):
8293 8294
        new_shape_tensor = []
        shape_attr = []
8295
        for dim_size in shape:
8296 8297 8298
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
8299
                shape_attr.append(0)
8300
            else:
8301
                _attr_shape_check(dim_size)
8302 8303 8304 8305 8306 8307 8308 8309
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
8310 8311
        for dim_size in shape:
            _attr_shape_check(dim_size)
8312 8313 8314 8315 8316 8317 8318 8319 8320 8321
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8322 8323 8324 8325 8326 8327 8328 8329
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
8330 8331 8332 8333 8334 8335
        theta (Variable) - A Tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Variable | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
W
whs 已提交
8336 8337

    Returns:
8338
        Variable: A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`. 
W
whs 已提交
8339 8340 8341 8342 8343 8344 8345

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8346

S
SunGaofeng 已提交
8347
            import paddle.fluid as fluid
8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
            import numpy as np
            place = fluid.CPUPlace()
            theta = fluid.data(name="x", shape=[None, 2, 3], dtype="float32")
            out_shape = fluid.data(name="y", shape=[4], dtype="int32")
            grid_0 = fluid.layers.affine_grid(theta, out_shape)
            grid_1 = fluid.layers.affine_grid(theta, [5, 3, 28, 28])
            batch_size=2
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output= exe.run(feed={"x": np.random.rand(batch_size,2,3).astype("float32"),
                                  "y": np.array([5, 3, 28, 28]).astype("int32")},
                                  fetch_list=[grid_0.name, grid_1.name])
            print(output[0])
            print(output[1])
W
whs 已提交
8362 8363 8364 8365
    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8366
            isinstance(out_shape, Variable)):
W
whs 已提交
8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8388 8389 8390 8391 8392 8393 8394
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
T
tianshuo78520a 已提交
8395
    Pad 2-d images according to 'paddings' and 'mode'.
W
whs 已提交
8396 8397 8398
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

L
Liufang Sang 已提交
8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416
    Parameters:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32.
        paddings (Variable | List[int32]): The padding size. If padding is a List, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Otherwise, it is a 1-D Tensor with shape [4]. Data type is int32.
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

T
tianshuo78520a 已提交
8417
    Returns: a 4-D Tensor padded according to paddings and mode and data type is same as input.
L
Liufang Sang 已提交
8418 8419 8420 8421 8422

    Return Type: Variable


    Examples:
T
Tink_Y 已提交
8423
        .. code-block:: text
W
whs 已提交
8424

T
Tink_Y 已提交
8425
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8426

T
Tink_Y 已提交
8427 8428
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8429

T
Tink_Y 已提交
8430
	      Case 0:
M
minqiyang 已提交
8431

T
Tink_Y 已提交
8432 8433 8434
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8435

T
Tink_Y 已提交
8436 8437 8438
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8439

T
Tink_Y 已提交
8440
	      Case 1:
M
minqiyang 已提交
8441

T
Tink_Y 已提交
8442 8443
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8444

T
Tink_Y 已提交
8445 8446 8447
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8448

T
Tink_Y 已提交
8449
	      Case 2:
M
minqiyang 已提交
8450

T
Tink_Y 已提交
8451 8452
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8453

T
Tink_Y 已提交
8454 8455 8456
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8457

L
Liufang Sang 已提交
8458
    Code Examples:
W
whs 已提交
8459 8460
        .. code-block:: python

B
Bai Yifan 已提交
8461
          import paddle.fluid as fluid
L
Liufang Sang 已提交
8462
          data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
8463 8464 8465
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8466
    """
8467 8468 8469 8470 8471 8472 8473

    if in_dygraph_mode():
        _paddings = paddings.numpy().tolist() if isinstance(
            paddings, Variable) else paddings
        return core.ops.pad2d(input, 'mode', mode, 'pad_value', pad_value,
                              'data_format', data_format, 'paddings', _paddings)

8474 8475 8476 8477 8478 8479 8480 8481
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}
    inputs = {'X': [input]}
    if isinstance(paddings, Variable):
        inputs['Paddings'] = [paddings]
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8482
    helper = LayerHelper('pad2d', **locals())
8483 8484 8485 8486

    assert mode in ['reflect', 'edge', 'constant'
                    ], "mode should be one of constant, reflect, edge."

W
whs 已提交
8487
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8488
    out = helper.create_variable_for_type_inference(dtype)
8489

W
whs 已提交
8490
    helper.append_op(
8491
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8492 8493 8494 8495

    return out


8496 8497 8498 8499 8500 8501 8502
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
8503 8504
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8505
    Returns:
8506
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8507 8508 8509 8510 8511

    Examples:

        .. code-block:: python

8512
            import paddle.fluid as fluid
8513 8514 8515 8516 8517 8518 8519 8520 8521
            import numpy as np
         
            input_elu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_elu)
                y = fluid.layers.elu(x, alpha=0.2)
                print(y.numpy())
                # [[-0.12642411  6.        ]
                # [ 1.          15.6       ]]
8522 8523
    """
    helper = LayerHelper('elu', **locals())
8524
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
X
Xin Pan 已提交
8525
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
Z
zhupengyang 已提交
8538

8539 8540
    Args:
        x(${x_type}): ${x_comment}
Z
zhupengyang 已提交
8541 8542 8543 8544
        threshold(float, optional): ${threshold_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
8545 8546 8547

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8548 8549 8550 8551 8552

    Examples:

        .. code-block:: python

8553
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8554 8555 8556 8557 8558 8559 8560 8561
            import numpy as np
            in1 = np.array([[-1,0],[2.5,7.8]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu6(x=x1, threshold=6.0)
                print(out1.numpy())
                # [[0.  0. ]
                #  [2.5 6. ]]
8562 8563
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8564
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
8576 8577 8578 8579
    This is Pow Activation Operator.

    :math:`out = x^{factor}`

8580
    Args:
8581 8582 8583
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        factor(float32|Variable, optional): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.  The exponential factor of Pow. Default 1.0.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
8584 8585

    Returns:
8586
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``.
Z
ZhenWang 已提交
8587 8588 8589 8590 8591

    Examples:

        .. code-block:: python

8592
            import paddle.fluid as fluid
8593

8594
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
8595 8596 8597

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)
8598
            # y_1 is x^{2.0}
8599 8600 8601 8602

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
8603
            # y_2 is x^{3.0}
8604 8605
    """
    helper = LayerHelper('pow', **locals())
8606 8607 8608 8609 8610 8611 8612 8613
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
8614
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8615
    helper.append_op(
8616
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8617 8618 8619 8620
    return out


@templatedoc()
8621
def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
8622 8623 8624 8625 8626 8627 8628 8629 8630 8631
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
8632
        output(${out_type}): ${out_comment}. 
Z
ZhenWang 已提交
8633 8634 8635 8636 8637

    Examples:

        .. code-block:: python

8638
            import paddle.fluid as fluid
8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653
            import numpy as np
            data = fluid.data(name="input", shape=[-1, 3])
            result = fluid.layers.stanh(data,scale_a=0.67, scale_b=1.72)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.random(size=(3, 3)).astype('float32')
            output= exe.run(feed={"input": x},
                         fetch_list=[result])
            print(output)

            #[array([[0.626466  , 0.89842904, 0.7501062 ],
            #       [0.25147712, 0.7484996 , 0.22902708],
            #       [0.62705994, 0.23110689, 0.56902856]], dtype=float32)]

8654 8655
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8656
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
8670 8671 8672 8673 8674 8675 8676
    Parameters:
        x (${x_type}): ${x_comment}
        slope (float, optional): ${slope_comment}
        offset (float, optional): ${offset_comment}
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`
8677 8678

    Returns:
8679
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8680 8681 8682 8683 8684

    Examples:

        .. code-block:: python

8685
            import paddle.fluid as fluid
8686 8687
            data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
            result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
8688 8689
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8690
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
8703 8704 8705 8706 8707 8708 8709
    Elementwise swish activation function. See `Searching for Activation Functions <https://arxiv.org/abs/1710.05941>`_ for more details.
    
    Equation:

    .. math::
        out = \\frac{x}{1 + e^{- beta * x}}
    
8710
    Args:
8711 8712 8713 8714 8715
        x(Variable): Tensor or LoDTensor, dtype: float32 or float64, the input of swish activation.
        
        beta(float): Constant beta of swish operator, default 1.0.
        
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
8716 8717

    Returns:
8718 8719

        Variable: Output of the swish activation, Tensor or LoDTensor, with the same dtype and shape with the input x.
Z
ZhenWang 已提交
8720 8721 8722 8723

    Examples:

        .. code-block:: python
8724 8725 8726 8727 8728 8729
            
            # declarative mode
            import numpy as np
            from paddle import fluid
            
            x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
Z
ZhenWang 已提交
8730
            y = fluid.layers.swish(x, beta=2.0)
8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767
            
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            start = fluid.default_startup_program()
            main = fluid.default_main_program()
            
            data = np.random.randn(2, 3).astype("float32")
            exe.run(start)
            y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
            
            data
            # array([[-1.1239197 ,  1.3391294 ,  0.03921051],
            #        [ 1.1970421 ,  0.02440812,  1.2055548 ]], dtype=float32)
            y_np
            # array([[-0.2756806 ,  1.0610548 ,  0.01998957],
            #        [ 0.9193261 ,  0.01235299,  0.9276883 ]], dtype=float32)


        .. code-block:: python

            # imperative mode
            import numpy as np
            from paddle import fluid
            import paddle.fluid.dygraph as dg
            
            data = np.random.randn(2, 3).astype("float32")
            place = fluid.CPUPlace()
            with dg.guard(place) as g:
                x = dg.to_variable(data)
                y = fluid.layers.swish(x)
                y_np = y.numpy()
            data
            # array([[-0.0816701 ,  1.1603649 , -0.88325626],
            #        [ 0.7522361 ,  1.0978601 ,  0.12987892]], dtype=float32)
            y_np
            # array([[-0.03916847,  0.8835007 , -0.25835553],
            #        [ 0.51126915,  0.82324016,  0.06915068]], dtype=float32)
8768 8769
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8770
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8771 8772 8773 8774 8775 8776 8777 8778
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8779 8780 8781 8782
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8783 8784
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8785

J
jerrywgz 已提交
8786 8787 8788 8789 8790 8791 8792 8793
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8794
    Args:
W
wangguanzhong 已提交
8795 8796
        x (Variable): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing. 
J
jerrywgz 已提交
8797
        param_attr(ParamAttr|None): The parameter attribute for the learnable
W
wangguanzhong 已提交
8798 8799 8800 8801 8802
          weight (alpha), it can be create by ParamAttr. None by default.
          For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
        name(str|None): For detailed information, please refer 
          to :ref:`api_guide_Name`. Usually name is no need to set and 
          None by default. 
J
jerrywgz 已提交
8803 8804

    Returns:
W
wangguanzhong 已提交
8805 8806 8807 8808
        Variable:

        output(Variable): The tensor or LoDTensor with the same shape as input.
        The data type is float32.
J
jerrywgz 已提交
8809 8810 8811 8812 8813

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8814 8815
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
8816
            x = fluid.data(name="x", shape=[None,5,10,10], dtype="float32")
J
jerrywgz 已提交
8817
            mode = 'channel'
J
jerrywgz 已提交
8818 8819 8820
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8821 8822 8823 8824 8825 8826 8827 8828
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
8829
        alpha_shape = [1, x.shape[1], x.shape[2], x.shape[3]]
J
jerrywgz 已提交
8830 8831
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8832
        attr=helper.param_attr,
J
jerrywgz 已提交
8833 8834 8835
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
8836
        default_initializer=Constant(0.25))
X
Xin Pan 已提交
8837
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8838 8839 8840 8841 8842 8843 8844 8845 8846
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8847 8848 8849 8850 8851 8852 8853 8854
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
8855 8856
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8857
    Returns:
8858
        ${out_type}: ${out_comment}
8859 8860 8861

    Examples:

8862
    .. code-block:: python
8863

8864
            import paddle.fluid as fluid
8865 8866 8867 8868 8869 8870 8871 8872 8873
            import numpy as np
            
            input_brelu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_brelu)
                y = fluid.layers.brelu(x, t_min=1.0, t_max=10.0)
                print(y.numpy())
                #[[ 1.  6.]
                #[ 1. 10.]] 
8874 8875
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8876
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
W
Wilber 已提交
8893 8894
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

8895
    Returns:
8896
        output(${out_type}): ${out_comment}
8897 8898 8899 8900 8901

    Examples:

        .. code-block:: python

8902
            import paddle.fluid as fluid
W
Wilber 已提交
8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[2], dtype="float32")
            res = fluid.layers.leaky_relu(x, alpha=0.1)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[-1, 2], [3, -4]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[-0.1, 2], [3, -0.4]]
8916
    """
8917
    if in_dygraph_mode():
8918
        return core.ops.leaky_relu(x, 'alpha', alpha)
8919

8920 8921
    inputs = {'X': [x]}
    attrs = {'alpha': alpha}
8922
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8923
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8924
    helper.append_op(
8925
        type='leaky_relu', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8926 8927 8928 8929 8930
    return out


def soft_relu(x, threshold=40.0, name=None):
    """
8931 8932 8933 8934
    SoftRelu Activation Operator.

    $out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$

8935
    Args:
8936 8937 8938 8939
        x(Variable): Input of soft_relu operator. Data type can be float32, float64.
        threshold(float, optional): The threshold value of soft_relu, default value being 40.0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

8940
    Returns:
8941
        Variable(Tensor|LoDTensor)): Output of soft_relu operator, shape and LoD same as input.
8942 8943 8944

    Examples:

8945 8946 8947
        .. code-block:: python 
 
            import paddle.fluid as fluid
8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.soft_relu(inputs, threshold=20.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.6931472, 1.3132616], [2.126928 , 3.0485873]], dtype=float32)]
8960 8961
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8962
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8963 8964 8965 8966 8967 8968 8969 8970
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8971 8972
def flatten(x, axis=1, name=None):
    """
8973 8974 8975
    **Flatten op**

    Flatten the input tensor into a 2D matrix.
M
minqiyang 已提交
8976

H
haowang101779990 已提交
8977
    For Example:
M
minqiyang 已提交
8978

H
haowang101779990 已提交
8979
    .. code-block:: text
8980

H
haowang101779990 已提交
8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9002 9003

    Args:
9004 9005
        x (Variable): A tensor of rank >= axis. A tensor with type float32,
                      float64, int8, int32, int64.
9006 9007
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9008
                    The value for axis must be in the range [0, R], where R
9009 9010 9011
                    is the rank of the input tensor. Default: 1.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
9012 9013

    Returns:
H
haowang101779990 已提交
9014 9015 9016
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9017
                  inner dimension of the output. A Tensor with type same as input x.
9018 9019 9020

    Raises:
        ValueError: If x is not a variable.
9021
        ValueError: If axis is not in range [0, rank(x)].
9022 9023 9024 9025 9026

    Examples:

        .. code-block:: python

9027
            import paddle.fluid as fluid
B
Bai Yifan 已提交
9028
            x = fluid.data(name="x", shape=[4, 4, 3], dtype="float32")
9029
            # x shape is [4, 4, 3]
9030
            out = fluid.layers.flatten(x=x, axis=2)
9031
            # out shape is [16, 3]
9032 9033 9034 9035 9036 9037 9038 9039 9040
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9041 9042
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9043
    helper.append_op(
9044
        type='flatten2',
9045
        inputs={"X": x},
9046 9047
        outputs={'Out': out,
                 'XShape': x_shape},
9048 9049
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9050 9051 9052


def stack(x, axis=0):
S
sneaxiy 已提交
9053
    """
9054

9055
    This OP stacks all the inputs :code:`x` along axis.
C
chengduozh 已提交
9056

C
chengduozh 已提交
9057 9058 9059
    .. code-block:: text

        Case 1:
9060

C
chengduozh 已提交
9061
          Input:
9062
            x[0].shape = [1, 2]
C
chengduozh 已提交
9063
            x[0].data = [ [1.0 , 2.0 ] ]
9064
            x[1].shape = [1, 2]
C
chengduozh 已提交
9065
            x[1].data = [ [3.0 , 4.0 ] ]
9066
            x[2].shape = [1, 2]
C
chengduozh 已提交
9067 9068 9069 9070 9071 9072
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
9073
            Out.dims = [3, 1, 2]
C
chengduozh 已提交
9074 9075 9076
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
9077

C
chengduozh 已提交
9078 9079

        Case 2:
9080 9081 9082 9083


          Input:
            x[0].shape = [1, 2]
C
chengduozh 已提交
9084
            x[0].data = [ [1.0 , 2.0 ] ]
9085
            x[1].shape = [1, 2]
C
chengduozh 已提交
9086
            x[1].data = [ [3.0 , 4.0 ] ]
9087
            x[2].shape = [1, 2]
C
chengduozh 已提交
9088
            x[2].data = [ [5.0 , 6.0 ] ]
9089

C
chengduozh 已提交
9090 9091 9092 9093 9094

          Attrs:
            axis = 1 or axis = -2

          Output:
9095
            Out.shape = [1, 3, 2]
C
chengduozh 已提交
9096 9097 9098
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
9099

C
chengduozh 已提交
9100

S
sneaxiy 已提交
9101
    Args:
9102 9103 9104 9105 9106 9107 9108 9109 9110
        x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
                                     If :code:`x` is a :code:`list`, the shapes of all these Tensors
                                     must be the same. Supposing input is N dims
                                     Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
                                     Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
                                     Support data types: float32, float64, int32, int64.
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
                              R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
                              The default value of axis is 0.
9111

S
sneaxiy 已提交
9112
    Returns:
9113
        Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.
9114

9115 9116 9117
    Examples:
        .. code-block:: python

9118
            import paddle.fluid as fluid
9119
            import paddle.fluid.layers as layers
9120 9121 9122 9123 9124 9125 9126 9127 9128 9129
            # set batch size=None
            x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32')
            x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32')
            # stack Tensor list
            data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2]

            data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]

            # stack single Tensor
            data = layers.stack(x1)  # stack according to axis 0, data.shape=[1, None, 1, 2]
9130

S
sneaxiy 已提交
9131 9132
    """

X
Xin Pan 已提交
9133 9134 9135 9136 9137
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]
X
Xin Pan 已提交
9138
    out = helper.create_variable_for_type_inference(x[0].dtype)
9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156
    if not in_dygraph_mode() and \
            x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': True})
    else:
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis})
9157

X
Xin Pan 已提交
9158
    return out
D
dzhwinter 已提交
9159 9160


J
Jiawei Wang 已提交
9161
@templatedoc(op_type="filter_by_instag")
Y
yaoxuefeng 已提交
9162
def filter_by_instag(ins, ins_tag, filter_tag, is_lod, out_val_if_empty=0):
J
Jiawei Wang 已提交
9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.
Y
yaoxuefeng 已提交
9199 9200
        out_val_if_empty(Int64): If the output after filter is empty, this value
                        will be set to Output tensor.
J
Jiawei Wang 已提交
9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
Y
yaoxuefeng 已提交
9228 9229
        attrs={'is_lod': is_lod,
               'out_val_if_empty': out_val_if_empty})
J
Jiawei Wang 已提交
9230 9231 9232 9233

    return [out, loss_weight]


D
dzhwinter 已提交
9234 9235 9236 9237
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

9238
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.
M
minqiyang 已提交
9239

D
dzhwinter 已提交
9240 9241 9242
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9243
    raised.
D
dzhwinter 已提交
9244 9245

    Args:
9246
        x (Variable): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
D
dzhwinter 已提交
9247 9248
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9249

D
dzhwinter 已提交
9250
    Returns:
9251 9252 9253 9254
        list(Variable): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).
M
minqiyang 已提交
9255

9256 9257 9258 9259
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
9260 9261
            x = fluid.layers.data(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = fluid.layers.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]
D
dzhwinter 已提交
9262

9263
    """
D
dzhwinter 已提交
9264 9265 9266 9267 9268 9269 9270 9271
    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9272
    for _ in range(num):
X
Xin Pan 已提交
9273
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9274 9275 9276 9277 9278 9279 9280 9281

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9282 9283 9284


def expand(x, expand_times, name=None):
9285 9286 9287 9288
    """
    This operation tiles ``x`` multiple times according to the parameter ``expand_times``.
    The times number for each dimension of ``x`` is set by the parameter ``expand_times``.
    The rank of ``x`` should be less than or equal to 6. Please note that size of ``expand_times`` must be the same
W
whs 已提交
9289 9290 9291 9292 9293 9294
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9295

W
whs 已提交
9296 9297 9298 9299
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9300

W
whs 已提交
9301
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9302

W
whs 已提交
9303
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9304

W
whs 已提交
9305 9306 9307 9308
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9309

W
whs 已提交
9310
    Args:
9311 9312 9313 9314 9315
        x (Variable): A ``Tensor`` or ``LoDTensor`` with dimension in [1, 6]. The data type is ``bool``, ``float32``, ``float64`` or ``int32`` .
        expand_times (list|tuple|Variable): The data type is ``int32`` . If ``expand_times`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``expand_times`` is an Variable, it should be an 1-D Tensor.
                Expand times number for each dimension of ``x`` .
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
W
whs 已提交
9316 9317

    Returns:
9318
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. After expanding, size of each dimension of output is equal to the size of the corresponding dimension of ``x`` multiplying the corresponding value given by ``expand_times`` .
W
whs 已提交
9319

9320 9321 9322
    Raises:
        TypeError: The type of ``expand_times`` must be list, tuple or Variable.
        ValueError: The elements of ``expand_times`` cannot be negative.
W
whs 已提交
9323 9324 9325

    Examples:
        .. code-block:: python
L
liym27 已提交
9326

W
wangchaochaohu 已提交
9327
            import paddle.fluid as fluid
L
liym27 已提交
9328 9329 9330 9331

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])
9332
            # the shape of expanded_1 is [2, 6, 2].
L
liym27 已提交
9333 9334 9335 9336 9337

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
9338
            # the shape of expanded_2 is [48, 56].
W
whs 已提交
9339
    """
9340 9341
    if in_dygraph_mode():
        if isinstance(expand_times, (list, tuple)):
L
Leo Chen 已提交
9342
            if utils._contain_var(expand_times):
9343 9344 9345 9346 9347 9348 9349 9350
                raise TypeError(
                    "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

9351
        return core.ops.expand(x, 'expand_times', expand_times)
9352

9353 9354
    inputs = {"X": [x]}
    attrs = {}
9355 9356
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
9357
    check_type(expand_times, 'expand_times', (list, tuple, Variable), 'expand')
W
wangchaochaohu 已提交
9358 9359 9360
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True:
        raise ValueError(
            "expand op bool date type must set the stop_gradient to be False")
L
liym27 已提交
9361

W
whs 已提交
9362
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
9363 9364 9365 9366 9367 9368 9369 9370 9371

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
T
tianshuo78520a 已提交
9372
                    "Each element given in expand_times must not be negative.")
L
liym27 已提交
9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
9387

L
Leo Chen 已提交
9388 9389 9390 9391 9392 9393 9394 9395
    if isinstance(expand_times, Variable):
        expand_times.stop_gradient = True
        inputs['ExpandTimes'] = expand_times
    elif isinstance(expand_times, (list, tuple)):
        attrs['expand_times'] = get_attr_expand_times(expand_times)
        if utils._contain_var(expand_times):
            inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                expand_times)
9396

L
liym27 已提交
9397 9398
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9399
    helper.append_op(
9400
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9401
    return out
S
sneaxiy 已提交
9402 9403


9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473
def expand_as(x, target_tensor, name=None):
    """
    expand_as operator tiles to the input by given expand tensor. You should set expand tensor
    for each dimension by providing tensor 'target_tensor'. The rank of X
    should be in [1, 6]. Please note that size of 'target_tensor' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:

                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]

        target_tensor's shape:  [2, 6, 2] 

        Output(Out) is a 3-D tensor with shape [2, 6, 2]:

                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
                

    Args:
        x (Variable): A Tensor with dtype float64, float32, int32.
        A tensor with rank in [1, 6].
        target_tensor (Variable): A Tensor with dtype float64, float32, int32.
        target_tensor for expanding to Input(X). Only use target_tensor'shape.

    Returns:
        Variable: A Tensor with dtype float64, float32, int32. 
        After expanding, size of each dimension of Output(Out) is equal to the size 
        of the corresponding dimension of target_tensor multiplying the corresponding
        value given by target_tensor.


    Examples:
        .. code-block:: python
          
        import paddle.fluid as fluid
        import numpy as np

        data = fluid.layers.data(name="data", shape=[-1,10], dtype='float64')
        target_tensor = fluid.layers.data(
          name="target_tensor", shape=[-1,20], dtype='float64')
        result = fluid.layers.expand_as(x=data, target_tensor=target_tensor) 
        use_cuda = False
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        x = np.random.rand(3,10)
        y = np.random.rand(3,20)
        output= exe.run(feed={"data":x,"target_tensor":y},fetch_list=[result.name])
        print(output[0].shape)
        #(3,20)

    """

    helper = LayerHelper('expand_as', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    inputs = {'X': x, 'target_tensor': target_tensor}
    helper.append_op(type='expand_as', inputs=inputs, outputs={'Out': out})
    return out


G
fix  
gongweibao 已提交
9474 9475 9476
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9477
@templatedoc()
G
fix  
gongweibao 已提交
9478 9479 9480 9481 9482 9483 9484 9485 9486
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
9487 9488 9489 9490 9491 9492
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.

    .. code-block:: text

        *Case 1:
G
fix  
gongweibao 已提交
9493

9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]

            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0, 
            input_dim_idx = 0,
            result.shape[0] = input.shape[0], 
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
            
       *Case 2:
           
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
         
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1, 
           input_dim_idx = 1,
           result.shape[1] = input.shape[1], 
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
G
fix  
gongweibao 已提交
9520
    Args:
9521 9522 9523 9524 9525 9526 9527 9528
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0. 
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
G
fix  
gongweibao 已提交
9529
    Returns:
9530
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
G
fix  
gongweibao 已提交
9531

9532 9533 9534
    Examples:
        .. code-block:: python

9535
            import paddle.fluid as fluid
9536 9537 9538 9539
            
            # example 1: 
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
9540

9541 9542 9543 9544
            # example 2: 
            out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]

            
G
fix  
gongweibao 已提交
9545 9546 9547
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9548
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9565 9566


G
gongweibao 已提交
9567
@templatedoc()
X
Xin Pan 已提交
9568
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9569
    """
9570
    Generate a random tensor whose data is drawn from a Gaussian distribution.
G
fix  
gongweibao 已提交
9571 9572

    Args:
9573 9574 9575 9576 9577 9578 9579 9580 9581
        shape (Tuple[int] | List[int]): Shape of the generated random tensor.
        
        mean (float): Mean of the random tensor, defaults to 0.0.
            
        std (float): Standard deviation of the random tensor, defaults to 1.0.
        
        seed (int): ${seed_comment}
        
        dtype(np.dtype | core.VarDesc.VarType | str): Output data type, float32 or float64.
G
fix  
gongweibao 已提交
9582 9583

    Returns:
9584
        Variable: Random tensor whose data is drawn from a Gaussian distribution, dtype: flaot32 or float64 as specified.
G
fix  
gongweibao 已提交
9585

9586
    Examples:
9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601
       .. code-block:: python
       
           # declarative mode 
           import numpy as np
           from paddle import fluid
   
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
   
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
   
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
9602

9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
    
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
               x_np = x.numpy()       
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
9621 9622 9623
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9624
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9625 9626 9627 9628 9629 9630 9631 9632 9633 9634
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9635
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9636 9637 9638 9639 9640
        })

    return out


G
gongweibao 已提交
9641
@templatedoc()
G
fix  
gongweibao 已提交
9642
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9643
    """
R
ruri 已提交
9644
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
9645

R
ruri 已提交
9646 9647 9648 9649 9650
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time. 
G
fix  
gongweibao 已提交
9651
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9652 9653

    Returns:
R
ruri 已提交
9654
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
9655

9656 9657 9658
    Examples:
        .. code-block:: python

9659
            import paddle.fluid as fluid
R
ruri 已提交
9660
            x = fluid.data(
9661 9662
                name="X",
                shape=[13, 11],
R
ruri 已提交
9663
                dtype='float32')
9664

Y
Yibing Liu 已提交
9665
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9666 9667 9668
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9669
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9681
@templatedoc()
G
fix  
gongweibao 已提交
9682 9683 9684 9685 9686 9687 9688 9689 9690
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9691
    ${comment}
G
fix  
gongweibao 已提交
9692 9693

    Args:
G
gongweibao 已提交
9694 9695
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
Y
Yibing Liu 已提交
9696 9697 9698 9699 9700 9701
        input_dim_idx (int): ${input_dim_idx_comment}
        output_dim_idx (int): ${output_dim_idx_comment}
        mean (float): ${mean_comment}
        std (float): ${std_comment}
        seed (int): ${seed_comment}
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data, float32 or float_64.
G
fix  
gongweibao 已提交
9702 9703

    Returns:
G
gongweibao 已提交
9704
        out (Variable): ${out_comment}
9705 9706 9707 9708

    Examples:
        .. code-block:: python

9709
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9710
            input = fluid.data(name="input", shape=[13, 11], dtype='float32')
9711

Y
Yibing Liu 已提交
9712
            out = fluid.layers.gaussian_random_batch_size_like(
9713
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9714 9715 9716
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9717
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9736
@templatedoc()
X
Xin Pan 已提交
9737
def sum(x):
G
fix  
gongweibao 已提交
9738
    """
G
gongweibao 已提交
9739
    ${comment}
9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769
    
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]
G
fix  
gongweibao 已提交
9770 9771

    Args:
9772
        x (Variable|list(Variable)): ${x_comment}
G
fix  
gongweibao 已提交
9773 9774

    Returns:
9775
        Variable: ${out_comment}
9776 9777 9778 9779

    Examples:
        .. code-block:: python

9780
            import paddle.fluid as fluid
9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = fluid.layers.sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
G
fix  
gongweibao 已提交
9803 9804 9805
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9806 9807
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9808 9809 9810 9811
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9812
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9813 9814 9815 9816

    return out


G
gongweibao 已提交
9817
@templatedoc()
G
fix  
gongweibao 已提交
9818 9819
def slice(input, axes, starts, ends):
    """
9820
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
9821
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
9822 9823 9824 9825 9826 9827 9828
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
9829
    For slicing to the end of a dimension with unknown size, it is recommended
9830
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
9831 9832 9833
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9834

9835 9836 9837 9838 9839 9840 9841 9842
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
9843

9844 9845 9846 9847 9848
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
9849
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
9850
            Then:
9851
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
G
fix  
gongweibao 已提交
9852
    Args:
9853 9854 9855 9856 9857 9858 9859 9860 9861
        input (Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
G
fix  
gongweibao 已提交
9862 9863

    Returns:
9864 9865 9866 9867 9868
        Variable:  A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
G
fix  
gongweibao 已提交
9869

9870 9871 9872
    Examples:
        .. code-block:: python

9873
            import paddle.fluid as fluid
9874

9875 9876
            input = fluid.data(
                name="input", shape=[4, 5, 6], dtype='float32')
9877

9878 9879 9880 9881 9882 9883
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
9884
            # sliced_1 is input[0:3, 0:2, 2:4].
9885 9886 9887 9888 9889

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
9890
            # sliced_2 is input[0:3, 0:2, 2:4].
G
fix  
gongweibao 已提交
9891
    """
9892 9893 9894
    if in_dygraph_mode():
        infer_flags = list(1 for i in range(len(axes)))
        if isinstance(starts, (list, tuple)):
L
Leo Chen 已提交
9895
            if utils._contain_var(starts):
9896 9897 9898 9899 9900 9901 9902 9903 9904
                raise TypeError(
                    "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        if isinstance(ends, (list, tuple)):
L
Leo Chen 已提交
9905
            if utils._contain_var(ends):
9906 9907 9908 9909 9910 9911 9912 9913
                raise TypeError(
                    "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

9914 9915
        return core.ops.slice(input, 'axes', axes, 'starts', starts, 'ends',
                              ends, 'infer_flags', infer_flags)
9916

9917 9918 9919 9920 9921 9922 9923
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
9924
    helper = LayerHelper('slice', **locals())
9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

9943 9944 9945 9946 9947 9948 9949
    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
L
Leo Chen 已提交
9950
        if utils._contain_var(starts):
9951 9952 9953 9954 9955 9956 9957
            inputs['StartsTensorList'] = get_new_list_tensor(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
L
Leo Chen 已提交
9958 9959
        else:
            attrs['starts'] = starts
9960 9961 9962 9963 9964 9965 9966 9967

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
L
Leo Chen 已提交
9968
        if utils._contain_var(ends):
9969 9970 9971 9972 9973 9974 9975
            inputs['EndsTensorList'] = get_new_list_tensor(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
L
Leo Chen 已提交
9976 9977 9978
        else:
            attrs['ends'] = ends

9979 9980
    # infer_flags
    attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
9981 9982
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9983
    helper.append_op(
9984
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
9985 9986 9987 9988

    return out


W
wangchaochaohu 已提交
9989 9990 9991
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
W
wangchaochaohu 已提交
9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:
W
wangchaochaohu 已提交
10005 10006 10007 10008 10009 10010 10011 10012 10013

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
W
wangchaochaohu 已提交
10014
                strides = [1, 1]
W
wangchaochaohu 已提交
10015
            Then:
10016
                result = [ [5, 6, 7], ]
W
wangchaochaohu 已提交
10017 10018 10019 10020 10021
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10022
                starts = [0, 1]
W
wangchaochaohu 已提交
10023 10024 10025 10026 10027 10028 10029 10030 10031
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10032
                starts = [0, 1]
10033 10034
                ends = [-1, 1000]
                strides = [1, 3]
W
wangchaochaohu 已提交
10035
            Then:
10036 10037
                result = [ [2], ]
    Args:
W
wangchaochaohu 已提交
10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049
        input (Variable): An N-D ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Variable): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Variable, it should be an 1-D Tensor .
                It represents slice step of corresponding axis in ``axes``.
10050 10051

    Returns:
W
wangchaochaohu 已提交
10052 10053 10054 10055 10056 10057
        Variable:  A ``Tensor`` or ``LoDTensor`` with the same dimension as ``input``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
        TypeError: The type of ``strides`` must be list, tuple or Variable.
10058

W
wangchaochaohu 已提交
10059 10060 10061 10062 10063
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

W
wangchaochaohu 已提交
10064
            input = fluid.data(
W
wangchaochaohu 已提交
10065 10066
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10067 10068 10069 10070 10071
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
W
wangchaochaohu 已提交
10072 10073 10074 10075 10076
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is input[:, 0:3:1, 0:2:1, 2:4:1].

10077 10078 10079 10080

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
W
wangchaochaohu 已提交
10081 10082
            sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is input[:, 0:3:1, 0:2:1, 2:4:2].
W
wangchaochaohu 已提交
10083
    """
10084 10085 10086 10087 10088 10089 10090 10091 10092 10093
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")
    if not isinstance(strides, (list, tuple, Variable)):
        raise ValueError(
            "Input strides must be an Variable, python list or tuple.")

W
wangchaochaohu 已提交
10094 10095
    helper = LayerHelper('strided_slice', **locals())

10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115
    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
W
wangchaochaohu 已提交
10116 10117 10118
            'axes': axes,
            'starts': starts,
            'ends': ends,
10119 10120 10121 10122 10123 10124 10125 10126 10127 10128
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
L
Leo Chen 已提交
10129
            if utils._contain_var(starts):
10130 10131 10132 10133 10134 10135 10136
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
L
Leo Chen 已提交
10137 10138
            else:
                attrs['starts'] = starts
10139 10140 10141 10142 10143 10144 10145

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
L
Leo Chen 已提交
10146
            if utils._contain_var(ends):
10147 10148 10149 10150 10151 10152 10153
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
L
Leo Chen 已提交
10154 10155 10156
            else:
                attrs['ends'] = ends

10157 10158 10159 10160 10161 10162
        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
L
Leo Chen 已提交
10163
            if utils._contain_var(strides):
10164 10165 10166 10167 10168 10169 10170
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
L
Leo Chen 已提交
10171 10172
            else:
                attrs['strides'] = strides
10173 10174 10175 10176 10177
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
W
wangchaochaohu 已提交
10178 10179 10180 10181

    return out


G
fix  
gongweibao 已提交
10182 10183
def shape(input):
    """
C
chengduozh 已提交
10184 10185
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10186
    Get the shape of the input.
G
fix  
gongweibao 已提交
10187 10188

    Args:
10189
        input (Variable): The input N-D Tensor. Datatype can be float32, float64, int32, int64.
G
fix  
gongweibao 已提交
10190 10191

    Returns:
10192
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
10193

10194 10195 10196
    Examples:
        .. code-block:: python

10197
            import paddle.fluid as fluid
10198
            import numpy as np
10199

10200 10201 10202 10203 10204 10205 10206 10207 10208 10209
            inputs = fluid.layers.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
10210 10211 10212
    """

    helper = LayerHelper('shape', **locals())
10213
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10214
    helper.append_op(
G
fix  
gongweibao 已提交
10215
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10216 10217

    return out
G
merge  
gongweibao 已提交
10218 10219


Z
zhoukunsheng 已提交
10220 10221
def rank(input):
    """
10222
    The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10223 10224

    Args:
10225
        input (Variable): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
Z
zhoukunsheng 已提交
10226 10227

    Returns:
10228
        Variable, the output data type is int32.: The 0-D tensor with the dimensions of the input variable.
Z
zhoukunsheng 已提交
10229 10230 10231 10232

    Examples:
        .. code-block:: python

10233 10234
            import paddle.fluid as fluid

10235 10236
            input = fluid.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # rank=(3,)
Z
zhoukunsheng 已提交
10237 10238 10239 10240 10241 10242 10243 10244
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10274 10275 10276 10277
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
10278

S
sneaxiy 已提交
10279 10280
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
10281 10282 10283 10284
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
10285

S
sneaxiy 已提交
10286 10287
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10288 10289
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
10290
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10291 10292 10293
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10294

S
sneaxiy 已提交
10295 10296 10297 10298 10299 10300 10301 10302 10303 10304
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


S
sneaxiy 已提交
10305
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10306
    """
10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)
S
sneaxiy 已提交
10320 10321

    Args:
10322
        x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
10323
        scale(float|Variable): The scale factor of the input, it should be a float number or a Variable with shape [1] and data type as float32.
10324 10325 10326 10327
        bias(float): The bias to be put on the input.
        bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` 
S
sneaxiy 已提交
10328 10329

    Returns:
10330
        Variable(Tensor|LoDTensor): Output tensor of scale operator, with shape and data type same as input.
10331 10332 10333 10334 10335

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
10336 10337 10338 10339 10340 10341 10342 10343 10344
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
            output = fluid.layers.scale(inputs, scale = 2.0, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
10345

10346 10347
            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]
10348 10349 10350 10351 10352 10353 10354 10355

        .. code-block:: python

            # scale with parameter scale as Variable
            import paddle.fluid as fluid
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
10356
            scale = fluid.layers.data(name="scale", shape=[1], dtype='float32',
10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368
                                      append_batch_size=False)
            output = fluid.layers.scale(inputs, scale = scale, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
            scale_np = np.array([2.]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img, 'scale':scale_np}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]

S
sneaxiy 已提交
10369
    """
10370 10371 10372 10373 10374 10375 10376 10377

    if in_dygraph_mode():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
        out = core.ops.scale(x, 'scale',
                             float(_scale), 'bias',
                             float(bias), 'bias_after_scale', bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out)

10378
    inputs = {'X': [x]}
10379 10380 10381 10382 10383
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
10384
        inputs['ScaleTensor'] = [scale]
10385 10386
    else:
        attrs['scale'] = float(scale)
10387 10388 10389 10390 10391 10392 10393
    helper = LayerHelper('scale', **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

S
sneaxiy 已提交
10394
    helper.append_op(
10395
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
sneaxiy 已提交
10396
    return helper.append_activation(out)
S
sneaxiy 已提交
10397 10398


X
Xin Pan 已提交
10399
def elementwise_add(x, y, axis=-1, act=None, name=None):
10400 10401 10402 10403 10404 10405 10406 10407 10408 10409
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10410 10411
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10412 10413
            }

10414 10415
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10416
        z = fluid.layers.elementwise_add(x, y)
10417
        # z = x + y
10418 10419 10420 10421 10422 10423

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10424
        print(z_value) # [3., 8., 6.]
10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10438 10439
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10440
        z = fluid.layers.elementwise_add(x, y, axis=1)
10441
        # z = x + y
10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10463 10464
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10465
        z = fluid.layers.elementwise_add(x, y, axis=3)
10466
        # z = x + y
10467 10468 10469 10470 10471 10472 10473 10474 10475

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10476 10477 10478 10479
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_add')

S
sneaxiy 已提交
10480 10481 10482
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10483
def elementwise_div(x, y, axis=-1, act=None, name=None):
10484 10485 10486 10487 10488 10489 10490 10491 10492 10493
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10494 10495
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10496 10497
            }

10498 10499
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10500
        z = fluid.layers.elementwise_div(x, y)
10501
        # z = x / y
10502 10503 10504 10505 10506 10507

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10508
        print(z_value) # [2., 0.6, 2.]
10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10522 10523
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10524
        z = fluid.layers.elementwise_div(x, y, axis=1)
10525
        # z = x / y
10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10547 10548
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10549
        z = fluid.layers.elementwise_div(x, y, axis=3)
10550
        # z = x / y
10551 10552 10553 10554 10555 10556 10557 10558 10559

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10560 10561 10562 10563
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div')

S
sneaxiy 已提交
10564 10565 10566
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10567
def elementwise_sub(x, y, axis=-1, act=None, name=None):
10568 10569 10570 10571 10572 10573 10574 10575 10576 10577
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10578 10579
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10580 10581
            }

10582 10583
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10584
        z = fluid.layers.elementwise_sub(x, y)
10585
        # z = x - y
10586 10587 10588 10589 10590 10591

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10592
        print(z_value) # [1., -2., 2.]
10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10606 10607
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10608
        z = fluid.layers.elementwise_sub(x, y, axis=1)
10609
        # z = x - y
10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10631 10632
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10633
        z = fluid.layers.elementwise_sub(x, y, axis=3)
10634
        # z = x - y
10635 10636 10637 10638 10639 10640 10641 10642 10643

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10644 10645 10646 10647
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub')

S
sneaxiy 已提交
10648 10649 10650
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10651
def elementwise_mul(x, y, axis=-1, act=None, name=None):
10652 10653 10654 10655 10656 10657 10658 10659 10660 10661
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10662 10663
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10664 10665
            }

10666 10667
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10668
        z = fluid.layers.elementwise_mul(x, y)
10669
        # z = x * y
10670 10671 10672 10673 10674 10675

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10676
        print(z_value) # [2., 15., 8.]
10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10690 10691
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10692
        z = fluid.layers.elementwise_mul(x, y, axis=1)
10693
        # z = x * y
10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10715 10716
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10717
        z = fluid.layers.elementwise_mul(x, y, axis=3)
10718
        # z = x * y
10719 10720 10721 10722 10723 10724 10725 10726 10727

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]
 
    """
10728 10729 10730 10731
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul')

S
sneaxiy 已提交
10732 10733 10734
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
10735
def elementwise_max(x, y, axis=-1, act=None, name=None):
10736 10737 10738 10739 10740 10741 10742 10743 10744 10745
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10746 10747
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10748 10749
            }

10750 10751
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 5, 4]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10773 10774
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]]

    """
10786 10787 10788 10789
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_max')

S
sneaxiy 已提交
10790 10791 10792
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
10793
def elementwise_min(x, y, axis=-1, act=None, name=None):
10794 10795 10796 10797 10798 10799 10800 10801 10802 10803
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10804 10805
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10806 10807
            }

10808 10809
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10810
        z = fluid.layers.elementwise_min(x, y)
10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 2]

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10830 10831
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10832
        z = fluid.layers.elementwise_min(x, y, axis=1)
10833 10834 10835 10836 10837 10838 10839 10840 10841

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]]
    """
10842 10843 10844
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_min')
10845

S
sneaxiy 已提交
10846 10847 10848
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
10849
def elementwise_pow(x, y, axis=-1, act=None, name=None):
10850 10851 10852 10853 10854 10855 10856 10857 10858 10859
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10860 10861
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10862 10863
            }

10864 10865
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10866 10867 10868 10869 10870 10871 10872 10873 10874
        z = fluid.layers.elementwise_pow(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 243, 16]
    """
10875 10876 10877
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_pow')
S
sneaxiy 已提交
10878 10879 10880
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


10881
def elementwise_mod(x, y, axis=-1, act=None, name=None):
10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 6, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_mod(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 3]
    """
10907 10908 10909 10910
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mod')

10911 10912 10913 10914
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 7, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_floordiv(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3, 2, 1]
    """
10940 10941 10942 10943
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_floordiv')

10944 10945 10946
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
10947
for func in [
10948 10949 10950 10951
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
10952 10953
        elementwise_max,
        elementwise_pow,
10954
        elementwise_min,
10955 10956
        elementwise_mod,
        elementwise_floordiv,
10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "axis (int32, optional): If X.dimension != Y.dimension, \
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
            "act (string, optional): Activation applied to the output. \
            Default is None. Details: :ref:`api_guide_activations_en` ",
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ],
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)

10974
for func in []:
S
sneaxiy 已提交
10975 10976 10977 10978
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10979 10980
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10981
        ])
10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11019 11020


11021
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11022 11023
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11024 11025
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11026 11027 11028

    if out is None:
        if name is None:
X
Xin Pan 已提交
11029
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11045
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11046
    """
W
Wilber 已提交
11047 11048 11049 11050 11051 11052 11053 11054
    logical_and Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \land Y
M
minqiyang 已提交
11055 11056 11057 11058

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11059 11060
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11061 11062

    Returns:
W
Wilber 已提交
11063
        ${out_type}: ${out_comment}
11064 11065 11066 11067

    Examples:
        .. code-block:: python

11068
            import paddle.fluid as fluid
W
Wilber 已提交
11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_and(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_and(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, False], [False, False]]
M
minqiyang 已提交
11087 11088 11089 11090 11091 11092 11093
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11094
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11095
    """
W
Wilber 已提交
11096 11097 11098 11099 11100 11101 11102 11103
    logical_or Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \lor Y
M
minqiyang 已提交
11104 11105 11106 11107

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11108 11109
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11110 11111

    Returns:
W
Wilber 已提交
11112
        ${out_type}: ${out_comment}
11113 11114 11115 11116

    Examples:
        .. code-block:: python

11117
            import paddle.fluid as fluid
W
Wilber 已提交
11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_or(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_or(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, True], [False, True]]
M
minqiyang 已提交
11136 11137 11138 11139 11140 11141 11142
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11143
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11144
    """
W
Wilber 已提交
11145 11146 11147 11148 11149 11150 11151 11152
    logical_xor Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = (X \lor Y) \land \lnot (X \land Y)
M
minqiyang 已提交
11153 11154 11155 11156

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11157 11158
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11159 11160

    Returns:
W
Wilber 已提交
11161
        ${out_type}: ${out_comment}
11162 11163 11164 11165

    Examples:
        .. code-block:: python

11166
            import paddle.fluid as fluid
W
Wilber 已提交
11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_xor(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_xor(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[False, True], [False, True]]
M
minqiyang 已提交
11185 11186 11187 11188 11189 11190 11191
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11192
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11193
    """
W
Wilber 已提交
11194 11195 11196 11197 11198 11199 11200 11201
    logical_not Operator

    It operates element-wise on X, and returns the Out. X and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = \lnot X
M
minqiyang 已提交
11202 11203 11204

    Args:
        x(${x_type}): ${x_comment}
W
Wilber 已提交
11205 11206
        out(LoDTensor/Tensor): The LoDTensor/Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11207 11208

    Returns:
W
Wilber 已提交
11209
        ${out_type}: ${out_comment}
11210 11211 11212 11213

    Examples:
        .. code-block:: python

11214
            import paddle.fluid as fluid
W
Wilber 已提交
11215 11216 11217 11218 11219
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            res = fluid.layers.logical_not(x)
T
tianshuo78520a 已提交
11220
            # The comment lists another avaliable method.
W
Wilber 已提交
11221 11222 11223 11224 11225 11226 11227 11228 11229 11230
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_not(x, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[False, True]]
M
minqiyang 已提交
11231 11232 11233 11234
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11235 11236 11237 11238 11239 11240 11241 11242 11243


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
11244 11245 11246 11247 11248
        min(float): ${min_comment}
        max(float): ${max_comment}
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
11249 11250

    Returns:
S
SunGaofeng 已提交
11251 11252 11253 11254
        ${out_comment}

    Return Type:
        ${out_type}
11255 11256 11257 11258

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11259
            import paddle.fluid as fluid
S
SunGaofeng 已提交
11260
            input = fluid.data(
11261 11262
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11263 11264 11265 11266 11267
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11268 11269
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11270 11271 11272

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
W
wangguanzhong 已提交
11292 11293 11294
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
11295 11296

    Returns:
W
wangguanzhong 已提交
11297 11298
        Variable:

11299
        out(${out_type}): ${out_comment}
11300

W
wangguanzhong 已提交
11301

11302 11303 11304
    Examples:
        .. code-block:: python

11305
            import paddle.fluid as fluid
11306 11307
            input = fluid.data(
                name='data', shape=[None, 1], dtype='float32')
11308
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11309 11310 11311 11312 11313
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11314 11315
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11316 11317 11318

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11319 11320 11321 11322 11323 11324 11325 11326

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11340 11341 11342 11343

    Examples:
        .. code-block:: python

11344
            import paddle.fluid as fluid
11345 11346 11347
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11348
    """
11349
    if in_dygraph_mode():
11350
        return core.ops.mean(x)
X
Xin Pan 已提交
11351 11352

    helper = LayerHelper("mean", **locals())
11353
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
X
Xin Pan 已提交
11354
    if name is None:
X
Xin Pan 已提交
11355
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11356 11357 11358 11359 11360 11361 11362 11363 11364 11365
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11377 11378 11379 11380

    Examples:
        .. code-block:: python

11381
            import paddle.fluid as fluid
11382 11383 11384 11385 11386
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11399 11400
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
11401 11402 11403 11404 11405 11406 11407 11408
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
11409 11410

    Args:
L
liu zhengxi 已提交
11411 11412 11413 11414 11415
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. 
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1. 
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
X
Xin Pan 已提交
11416 11417

    Returns:
L
liu zhengxi 已提交
11418
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
11419 11420

    Examples:
L
liu zhengxi 已提交
11421
        ..  code-block:: python
11422 11423 11424 11425 11426 11427 11428 11429 11430
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11431
    """
11432
    if in_dygraph_mode():
11433 11434
        return core.ops.mul(x, y, 'x_num_col_dims', x_num_col_dims,
                            'y_num_col_dims', y_num_col_dims)
X
Xin Pan 已提交
11435

11436 11437
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
11438
    helper = LayerHelper("mul", **locals())
11439 11440
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
X
Xin Pan 已提交
11441
    if name is None:
X
Xin Pan 已提交
11442
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11443 11444 11445 11446 11447
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
11448 11449
        type="mul", inputs={"X": x,
                            "Y": y}, attrs=attrs, outputs={"Out": out})
X
Xin Pan 已提交
11450 11451 11452 11453
    return out


@templatedoc()
11454
def maxout(x, groups, name=None, axis=1):
X
Xin Pan 已提交
11455 11456 11457 11458 11459
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
11460 11461
        groups(int): ${groups_comment}
        axis(int, optional): ${axis_comment}
W
wangguanzhong 已提交
11462 11463 11464
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
X
Xin Pan 已提交
11465 11466

    Returns:
11467
        Variable: ${out_comment}
J
jerrywgz 已提交
11468

11469 11470
    Raises:
        ValueError: If `axis` is not 1, -1 or 3.
11471
        ValueError: If the number of input channels can not be divisible by `groups`.
W
wangguanzhong 已提交
11472

J
jerrywgz 已提交
11473 11474 11475
    Examples:
        .. code-block:: python

11476
            import paddle.fluid as fluid
11477
            input = fluid.data(
J
jerrywgz 已提交
11478
                name='data', 
11479
                shape=[None, 256, 32, 32], 
J
jerrywgz 已提交
11480 11481
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11482 11483
    """
    helper = LayerHelper("maxout", **locals())
11484 11485 11486 11487 11488 11489
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3
X
Xin Pan 已提交
11490 11491

    if name is None:
X
Xin Pan 已提交
11492
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11493 11494 11495 11496 11497 11498 11499
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
11500 11501
        attrs={"groups": groups,
               "axis": axis},
X
Xin Pan 已提交
11502 11503
        outputs={"Out": out})
    return out
11504 11505


J
JiabinYang 已提交
11506
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11507
    """
J
JiabinYang 已提交
11508
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11509

11510 11511 11512
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
        theinput LoDtensor where values from the height and width dimensions are moved to the channel \
        dimension.
J
JiabinYang 已提交
11513
    The attr blocksize indicates the input block size.
11514

T
tianshuo78520a 已提交
11515
    space_to_depth will reorganize the elements of input with shape[batch, channel, height, width] \
11516 11517
        according to blocksize to construct output with shape \
        [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
11518

J
JiabinYang 已提交
11519 11520 11521 11522 11523
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize

11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540
    This OP is useful for resizing the activations between convolutions \
        (but keeping all data)

    .. code-block:: text

        Given the input x with the shape [1, 1, 4, 4]:
        x.data = [[[[1,   2,  5,  6],
                    [3,   4,  7,  8],
                    [9,  10, 13, 14],
                    [11, 12, 15, 16]]]]
        blocksize = 2

        then get the output with the shape [1, 4, 2, 2]:
        out.data = [[[[1,   2],  [3,  4]],
                     [[5,   6],  [7,  8]],
                     [[9,  10], [11, 12]],
                     [[13, 14], [15, 16]]]]
J
JiabinYang 已提交
11541

J
JiabinYang 已提交
11542
    Args:
11543 11544 11545 11546 11547 11548
        x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel, height, width]
        blocksize (int): The blocksize to select the element on each feature map should be > 2
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.
J
JiabinYang 已提交
11549

11550 11551 11552 11553
    Returns: The output, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]

    Return Type: Variable
J
JiabinYang 已提交
11554 11555

    Raises:
11556
        TypeError: blocksize type must be int64.
J
JiabinYang 已提交
11557 11558 11559

    Examples:
        .. code-block:: python
11560
    
11561 11562
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11563

11564 11565
            data = fluid.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
11566
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11567
                x=data, blocksize=2)
11568

11569
            exe = fluid.Executor(fluid.CPUPlace())
11570
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
11571 11572 11573 11574 11575 11576 11577

            print(data_np)
            #array([[[[ 0.,  1.], [ 2.,  3.]],
            #        [[ 4.,  5.], [ 6.,  7.]],
            #        [[ 8.,  9.], [10., 11.]],
            #        [[12., 13.], [14., 15.]]]], dtype=float32)

11578
            out_main = exe.run(fluid.default_main_program(),
11579 11580 11581 11582 11583 11584 11585 11586
                        feed={'data': data_np},
                        fetch_list=[space_to_depthed])

            print(out_main)
            #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
            #         [[ 8.]], [[12.]], [[ 9.]], [[13.]],
            #         [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
            #         [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
11587

J
JiabinYang 已提交
11588 11589
    """

J
JiabinYang 已提交
11590
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11591

J
JiabinYang 已提交
11592 11593
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11594 11595

    if name is None:
J
JiabinYang 已提交
11596 11597
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
11598 11599 11600 11601 11602
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
11603
        type="space_to_depth",
J
JiabinYang 已提交
11604
        inputs={"X": x},
J
JiabinYang 已提交
11605
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11606
        outputs={"Out": out})
J
JiabinYang 已提交
11607 11608
    return out

J
JiabinYang 已提交
11609

11610 11611 11612 11613 11614 11615
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11616 11617 11618 11619 11620
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11621

11622 11623 11624
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
L
LielinJiang 已提交
11625
            is applied in the second dimension.The data type is float32 or float64.
11626 11627
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
L
LielinJiang 已提交
11628
            the input.The data type is float32 or float64.
11629 11630
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
L
LielinJiang 已提交
11631
            The data type is float32 or float64.
11632 11633 11634 11635 11636
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore 
            data_layout.
L
LielinJiang 已提交
11637 11638
        name (str, default None): The name of this layer. For more information,
            please refer to :ref:`api_guide_Name` .
11639
        act (str, default None): Activation to be applied to the output of this layer.
11640 11641

    Returns:
L
LielinJiang 已提交
11642
        Variable: A tensor which has the same shape, data layout and data type with x.
B
Bai Yifan 已提交
11643 11644 11645

    Examples:
        .. code-block:: python
L
LielinJiang 已提交
11646 11647

            import numpy as np
B
Bai Yifan 已提交
11648
            import paddle.fluid as fluid
L
LielinJiang 已提交
11649 11650 11651 11652 11653 11654 11655 11656 11657 11658

            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
                                    default_initializer=fluid.initializer.Constant(2.0))
            input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
                                    default_initializer=fluid.initializer.Constant(0.5))
B
Bai Yifan 已提交
11659
            out = fluid.layers.affine_channel(data,scale=input_scale,
L
LielinJiang 已提交
11660 11661 11662 11663 11664 11665 11666 11667 11668 11669
                                    bias=input_bias)

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_array] = exe.run(test_program,
                                  fetch_list=out,
                                  feed={'data': np.ones([1,1,2,2]).astype('float32')})
            # out_array is [[[[2.5, 2.5],
            #                [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
B
Bai Yifan 已提交
11670

11671 11672 11673 11674
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
11675
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11687
    return helper.append_activation(out)
11688 11689


B
barrierye 已提交
11690
def similarity_focus(input, axis, indexes, name=None):
11691
    """
B
barrierye 已提交
11692
    SimilarityFocus Operator
B
barrierye 已提交
11693 11694

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11695

11696 11697 11698
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11699
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11700 11701 11702 11703 11704 11705 11706
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11707
       each index.
B
barrierye 已提交
11708 11709 11710 11711
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
11761
    Args:
11762
        input(Variable): The input tensor variable(default float). It should
Y
Yibing Liu 已提交
11763 11764
            be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is 
            float32 or float64.
B
barrierye 已提交
11765
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
11766
            1, 2 or 3.
B
barrierye 已提交
11767
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
11768 11769

    Returns:
H
haowang101779990 已提交
11770 11771
        Variable: A tensor variable with the same shape and same type \
                  as the input.
11772

B
barrierye 已提交
11773 11774
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
11775

11776
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
11777
            data = fluid.data(
Y
Yibing Liu 已提交
11778 11779
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
11792 11793 11794 11795 11796
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
11797 11798 11799 11800 11801 11802 11803
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
11804 11805


M
minqiyang 已提交
11806 11807
def hash(input, hash_size, num_hash=1, name=None):
    """
Z
zhupengyang 已提交
11808
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
11809 11810
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
11811 11812

    Args:
Z
zhupengyang 已提交
11813 11814 11815 11816 11817 11818
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
11819 11820

    Returns:
Z
zhupengyang 已提交
11821
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
11822 11823

    Examples:
Z
zhupengyang 已提交
11824
        .. code-block:: python
H
haowang101779990 已提交
11825

11826
            import paddle.fluid as fluid
Z
zhupengyang 已提交
11827
            import numpy as np
11828

Z
zhupengyang 已提交
11829
            place = fluid.core.CPUPlace()
11830

Z
zhupengyang 已提交
11831 11832
            x = fluid.data(name="x", shape=[1], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res",input=x, hash_size=1000, num_hash=4)
11833

Z
zhupengyang 已提交
11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
            x_i = fluid.core.LoDTensor()
            x_i.set(in1,place)
            x_i.set_recursive_sequence_lengths([[0,2]])
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
11851 11852
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
11853 11854
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
11855 11856 11857 11858 11859 11860 11861
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
11862 11863


D
dengkaipeng 已提交
11864
@templatedoc()
11865 11866
def grid_sampler(x, grid, name=None):
    """
11867
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
11868
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
11869 11870
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
11871 11872
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
K
Kaipeng Deng 已提交
11873 11874
    interpolation value of 4 nearest corner points. The output tensor 
    shape will be [N, C, H, W].
11875

H
haowang101779990 已提交
11876
    .. code-block:: text
11877

H
haowang101779990 已提交
11878 11879
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
11880

K
Kaipeng Deng 已提交
11881 11882 11883 11884
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
11885

H
haowang101779990 已提交
11886 11887 11888
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
11889

H
haowang101779990 已提交
11890 11891 11892 11893 11894 11895 11896 11897 11898
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
11899

H
haowang101779990 已提交
11900 11901 11902 11903
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
11904

H
haowang101779990 已提交
11905 11906 11907 11908
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
11909

H
haowang101779990 已提交
11910 11911 11912 11913
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
11914

H
haowang101779990 已提交
11915 11916
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
11917 11918

    Args:
K
Kaipeng Deng 已提交
11919 11920 11921 11922 11923 11924 11925 11926 11927
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
11928 11929

    Returns:
H
haowang101779990 已提交
11930
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
11931 11932
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
11933

H
haowang101779990 已提交
11934 11935 11936 11937
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
11938 11939
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
11940 11941
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
11942 11943
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
11944
            out = fluid.layers.grid_sampler(x=x, grid=grid)
11945

D
dengkaipeng 已提交
11946 11947 11948 11949 11950 11951 11952 11953 11954
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

11955
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
11956 11957
    ipts = {'X': x, 'Grid': grid}

11958
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
11959 11960 11961
    return out


G
gmcather 已提交
11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
Y
Yibing Liu 已提交
11975
        input (Variable|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
11976
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
11977 11978 11979 11980 11981 11982 11983
                                by the previous operator. Data type float32.
        label (Variable|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size. 
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
11984 11985 11986 11987 11988 11989 11990

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

11991
          import paddle.fluid as fluid
11992 11993
          label = fluid.data(name='label', shape=[None, 1], dtype='float32')
          prob = fluid.data(name='prob', shape=[None, 1], dtype='float32')
G
gmcather 已提交
11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
G
Guo Sheng 已提交
12015 12016
    This operator performs weighted sum of input feature at each position
    (position in the sequence) and the corresponding position encoding.
G
gmcather 已提交
12017

G
Guo Sheng 已提交
12018 12019
    For more details of position encoding, please refer to `Attention Is All You 
    Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12020

G
Guo Sheng 已提交
12021
    The formula is as follows:
G
gmcather 已提交
12022 12023

    .. math::
H
haowang101779990 已提交
12024 12025 12026
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12027 12028

    Where:
G
Guo Sheng 已提交
12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045
      - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`.
      - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos`

    Args:
        input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a
            Tensor, the shape should be `[N, M, P]`, where `N` stands for
            batch size, `M` for sequence length, `P` for the size of feature
            dimension. If it is a LoDTensor, the shape should be `[N, P]`,
            where `N` stands for the total sequence lengths in this mini-batch,
            `P` for the size of feature. The data type should be float32 or float64.
        alpha(float): Indicate the weight coefficient for `input` when performing
            weighted sum.
        beta(float): Indicate the weight coefficient for position encoding when
            performing weighted sum.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
G
gmcather 已提交
12046 12047

    Returns:
G
Guo Sheng 已提交
12048
        Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`.
G
gmcather 已提交
12049 12050 12051 12052

    Examples:
        .. code-block:: python

12053 12054
          import paddle.fluid as fluid

G
Guo Sheng 已提交
12055
          tensor = fluid.data(
12056
              name='tensor',
G
Guo Sheng 已提交
12057 12058
              shape=[None, 64, 512],
              dtype='float32')
12059 12060
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12061

G
gmcather 已提交
12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12078 12079 12080 12081 12082 12083 12084 12085 12086 12087


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Y
Yibing Liu 已提交
12088
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12089

Q
Qiao Longfei 已提交
12090
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12091 12092 12093
    For example:

    .. math::
H
haowang101779990 已提交
12094
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12095

Q
Qiao Longfei 已提交
12096
    In this formula:
12097 12098
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
12099
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
12100
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12101 12102 12103
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
Y
Yibing Liu 已提交
12104 12105 12106 12107
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type 
            is float32 or float64.
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type 
            should be same as **x**.
Q
Qiao Longfei 已提交
12108
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
12109 12110 12111 12112 12113 12114 12115 12116 12117
        act (str|None): Activation to be applied to the output of this layer. Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr|None): To specify the bias parameter attribute. 
            Default: None, which means the default bias parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
12118
    Returns:
Y
Yibing Liu 已提交
12119
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
12120 12121 12122 12123

    Examples:
        .. code-block:: python

12124
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12125 12126
          layer1 = fluid.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.data("t2", shape=[-1, 4], dtype="float32")
Y
Yibing Liu 已提交
12127
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12128 12129
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12130
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12131 12132 12133 12134

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12135
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12153 12154 12155 12156 12157


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

        Ouput is LoDTensor:
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
12174 12175

    Args:
12176 12177 12178
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
12179 12180

    Returns:
12181
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
12182 12183 12184 12185 12186 12187 12188 12189

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12190 12191 12192 12193 12194 12195 12196 12197 12198 12199
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12200 12201


S
shippingwang 已提交
12202
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12203
    """
S
shippingwang 已提交
12204 12205 12206 12207 12208 12209
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12210
    
S
shippingwang 已提交
12211
    .. code-block:: text
12212

S
shippingwang 已提交
12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12241
    Args: 
S
shippingwang 已提交
12242
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
T
tianshuo78520a 已提交
12243
        group(int): Indicating the counts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12244 12245

    Returns:
S
shippingwang 已提交
12246 12247
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12248 12249

    Raises:
S
shippingwang 已提交
12250
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12251 12252 12253

    Examples:
        .. code-block:: python
12254

12255
            import paddle.fluid as fluid
R
ruri 已提交
12256
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
S
shippingwang 已提交
12257
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12258 12259 12260
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12261
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12262 12263 12264 12265 12266 12267 12268 12269 12270

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12271
    return out
S
Add  
shippingwang 已提交
12272 12273


12274
@templatedoc()
D
dengkaipeng 已提交
12275
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12276 12277 12278 12279 12280 12281 12282 12283
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12284
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
12285 12286 12287
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
12288 12289 12290

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
K
Kaipeng Deng 已提交
12291
        same shape and same data type as the input.
12292 12293 12294 12295 12296 12297 12298

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12299
            import paddle.fluid as fluid
K
Kaipeng Deng 已提交
12300
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
D
dengkaipeng 已提交
12301
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12314 12315
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12316 12317 12318
    return out


S
sneaxiy 已提交
12319
class PyFuncRegistry(object):
S
sneaxiy 已提交
12320 12321 12322
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12323
        if func is None or not callable(func):
S
sneaxiy 已提交
12324 12325 12326
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12327
        # find named args using reflection
S
sneaxiy 已提交
12328 12329 12330 12331 12332 12333 12334
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12335 12336 12337
        '''
        Why record self here?

M
minqiyang 已提交
12338 12339
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12340
           to find the registered function corresponding
M
minqiyang 已提交
12341
           to :code:`idx`.
S
sneaxiy 已提交
12342

M
minqiyang 已提交
12343 12344
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12345
           whose reference count is 1 would cause
M
minqiyang 已提交
12346
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12347 12348
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12349
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12364 12365 12366 12367 12368 12369 12370 12371 12372
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12373

S
sneaxiy 已提交
12374 12375
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12376 12377

        ret = []
S
sneaxiy 已提交
12378 12379 12380
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12381 12382
                continue

S
sneaxiy 已提交
12383 12384
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12385

S
sneaxiy 已提交
12386 12387 12388
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12389

S
sneaxiy 已提交
12390
        return tuple(ret)
S
sneaxiy 已提交
12391 12392


S
sneaxiy 已提交
12393 12394 12395
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
12396 12397 12398 12399 12400 12401 12402
    This OP is used to register customized Python OP to Paddle Fluid. The design 
    principe of py_func is that LodTensor and numpy array can be converted to each
    other easily. So you can use Python and numpy API to register a python OP.

    The forward  function of the registered OP is ``func`` and the backward function 
    of that is  ``backward_func``. Paddle will call ``func`` at forward runtime and 
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None). 
12403
    ``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is 
12404
    the output of ``func``, whose type can be either LoDTensor or numpy array.
12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420

    The input of the backward function ``backward_func`` is ``x``, ``out`` and 
    the gradient of ``out``. If some variables of ``out`` have no gradient, the 
    relevant input variable of ``backward_func`` is None. If some variables of 
    ``x`` do not have a gradient, the user should return None in ``backward_func``.

    The data type and shape of ``out`` should also be set correctly before this 
    API is called, and the data type and shape of the gradient of ``out`` and 
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
            is running, the forward output ``out`` will be calculated according to this 
12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431
            function and the forward input ``x``. In ``func`` , it's suggested that we 
            actively convert LoDTensor into a numpy array, so that we can use Python and
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
        x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``. 
            It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or 
            Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
            or list[Variale].
        out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``, 
            it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
            or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``, 
            you must create ``out`` in advance.
12432 12433 12434 12435 12436
        backward_func (callable, optional): The backward function of the registered OP. 
            Its default value is None, which means there is no reverse calculation. If 
            it is not None, ``backward_func`` is called to calculate the gradient of 
            ``x`` when the network is at backward runtime.
        skip_vars_in_backward_input (Variable, optional): It's used to limit the input 
12437 12438 12439 12440 12441
            variable list of ``backward_func``, and it can be Variable|tuple(Variale)|list[Variale]. 
            It must belong to either ``x`` or ``out``. The default  value is None, which means 
            that no variables need to be removed from ``x`` and ``out``. If it is not None, 
            these variables will not be the input of ``backward_func``. This parameter is only 
            useful when ``backward_func`` is not None.
12442 12443
    
    Returns: 
12444
        Variable|tuple(Variale)|list[Variale]: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
12445 12446

    Examples:
12447
        .. code-block:: python
12448 12449
	    
            # example 1:
12450 12451 12452
            import paddle.fluid as fluid
            import six

12453 12454
            # Creates a forward function, LodTensor can be input directly without
            # being converted into numpy array.
12455 12456 12457
            def tanh(x):
                return np.tanh(x)

12458 12459 12460
            # Skip x in backward function and return the gradient of x
            # LodTensor must be actively converted to numpy array, otherwise, 
            # operations such as +/- can't be used.
12461 12462
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
12463 12464
            
            # Creates a forward function for debugging running networks(print value)
12465 12466
            def debug_func(x):
                print(x)
12467 12468 12469 12470
            
            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                    name=name, dtype=dtype, shape=shape)
12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483

            def simple_net(img, label):
                hidden = img
                for idx in six.moves.range(4):
                    hidden = fluid.layers.fc(hidden, size=200)
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

                    # User-defined forward and backward 
                    hidden = fluid.layers.py_func(func=tanh, x=hidden,
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

12484
                    # User-defined debug functions that print out the input LodTensor
12485 12486 12487 12488 12489
                    fluid.layers.py_func(func=debug_func, x=hidden, out=None)

                prediction = fluid.layers.fc(hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                return fluid.layers.mean(loss)
12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546

            # example 2: 
            # This example shows how to turn LoDTensor into numpy array and 
            # use numpy API to register an Python OP
            import paddle.fluid as fluid
            import numpy as np

            def element_wise_add(x, y): 
                # LodTensor must be actively converted to numpy array, otherwise, 
                # numpy.shape can't be used.
                x = np.array(x)    
                y = np.array(y)

                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")

                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]

                return result

            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                            name=name, dtype=dtype, shape=shape)

            def py_func_demo():
                start_program = fluid.default_startup_program()
                main_program = fluid.default_main_program()

                # Input of the forward function
                x = fluid.data(name='x', shape=[2,3], dtype='int32')
                y = fluid.data(name='y', shape=[2,3], dtype='int32')
                
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])

                # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
                fluid.layers.py_func(func=element_wise_add, x=[x,y], out=output)

                exe=fluid.Executor(fluid.CPUPlace())
                exe.run(start_program)

                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                out = exe.run(main_program, 
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))

            py_func_demo()

            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
S
sneaxiy 已提交
12547
    """
S
sneaxiy 已提交
12548
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12549 12550 12551
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12552
        x = [x]
12553 12554 12555
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
12556
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12557

S
sneaxiy 已提交
12558 12559 12560
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12561
        out_list = [out]
12562 12563
    elif isinstance(out, tuple):
        out_list = list(out)
12564 12565 12566
    elif isinstance(out, list):
        out_list = out
    else:
S
sneaxiy 已提交
12567 12568
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12569

S
sneaxiy 已提交
12570 12571
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12572
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12573 12574

    for each_out in out_list:
S
sneaxiy 已提交
12575 12576
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12577 12578
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12579

S
sneaxiy 已提交
12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12595 12596 12597 12598

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12599 12600
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12601 12602 12603
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12604
        })
S
sneaxiy 已提交
12605
    return out
S
sneaxiy 已提交
12606 12607 12608


# For debug usage
S
sneaxiy 已提交
12609 12610 12611 12612
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

S
SunGaofeng 已提交
12624
    Parameters:
12625
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12626
        rois (Variable): LoDTensor, ROIs (Regions of Interest) to pool over.It should be
S
SunGaofeng 已提交
12627 12628 12629
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
S
SunGaofeng 已提交
12630 12631
                         right coordinates. The data type is the same as `input`
        output_channels (int): ${output_channels_comment}
12632
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
S
SunGaofeng 已提交
12633 12634 12635 12636 12637
        pooled_height (int): ${pooled_height_comment} Default: 1
        pooled_width (int): ${pooled_width_comment} Default: 1
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
12638 12639

    Returns:
S
SunGaofeng 已提交
12640 12641 12642 12643
        ${out_comment}.

    Return Type:
        Variable
12644 12645 12646 12647

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12648
            import paddle.fluid as fluid
S
SunGaofeng 已提交
12649 12650
            x = fluid.data(name='x', shape=[100, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
S
SunGaofeng 已提交
12651
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12677 12678 12679 12680 12681 12682 12683 12684


@templatedoc()
def prroi_pool(input,
               rois,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
12685
               batch_roi_nums=None,
12686 12687
               name=None):
    """
12688
    The precise roi pooling implementation for paddle. Reference: https://arxiv.org/pdf/1807.11590.pdf
12689 12690

    Args:
12691
        input (Variable):The input of precise roi pooliing.The shape of input tensor is
12692 12693 12694
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
12695 12696 12697 12698 12699
                        a 2-D LoDTensor or Tensor of shape (num_rois, 4), the lod level
                        is 1 when it is LoDTensor. The LoD include the rois's batch index
                        information. If rois is Tensor, its batch index information should
                        be provided by batch_index.
                        Given as [[x1, y1, x2, y2], ...], (x1, y1) is
12700 12701 12702 12703 12704 12705
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
12706
        batch_roi_nums (Variable): The number of roi for each image in batch. It 
T
tianshuo78520a 已提交
12707
                         should be 1-D Tensor, with shape [N] and dtype int64, 
12708 12709
                         where N is the batch size. Default: None. Be note: The lod of input should be
                         empty when batch_roi_nums has values;
12710 12711 12712
        name (str, default None): The name of this operation.

    Returns:
12713
        Variable(Tensor):The shape of the returned Tensor is (N, C, pooled_height, pooled_width), with value type float32,float16. N, C denote batch_size and channels of input respectively.
12714 12715 12716 12717

    Examples:
        .. code-block:: python

12718
            ## prroi_pool without batch_roi_num
12719
            import paddle.fluid as fluid
12720 12721
            x = fluid.data(name='x', shape=[None, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
12722
            pool_out = fluid.layers.prroi_pool(x, rois, 1.0, 7, 7)
12723 12724 12725 12726 12727 12728 12729 12730 12731
            
            ## prroi_pool with batch_roi_num
            batchsize=4
            x2 = fluid.data(name='x2', shape=[batchsize, 490, 28, 28], dtype='float32')
            rois2 = fluid.data(name='rois2', shape=[batchsize, 4], dtype='float32')
            batch_rois_num = fluid.data(name='rois_nums', shape=[batchsize], dtype='int64')
            pool_out2 = fluid.layers.prroi_pool(x2, rois2, 1.0, 7, 7, batch_roi_nums=batch_rois_num)


12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
12743 12744 12745
    inputs_op = {'X': input, 'ROIs': rois}
    if batch_roi_nums is not None:
        inputs_op['BatchRoINums'] = batch_roi_nums
12746 12747
    helper.append_op(
        type='prroi_pool',
12748
        inputs=inputs_op,
12749 12750 12751 12752 12753 12754 12755
        outputs={'Out': out},
        attrs={
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12756

M
minqiyang 已提交
12757

R
ruri 已提交
12758 12759 12760
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
12761
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
12762 12763 12764 12765 12766 12767 12768
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
12769
    Parameters:
R
ruri 已提交
12770

R
ruri 已提交
12771 12772
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
12773 12774

    Returns:
12775
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
12776 12777 12778 12779 12780 12781 12782

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

R
ruri 已提交
12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,9,4,4])
	    output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,9,4,4).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
 	    # print(output.shape)
	    # (2L, 1L, 12L, 12L)
R
ruri 已提交
12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


12818 12819 12820 12821 12822
def fsp_matrix(x, y):
    """

    **FSP matrix op**

12823
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

12835 12836 12837
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
12838
                      The y_channel can be different with the x_channel of Input(X)
12839 12840
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
12841 12842 12843 12844

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
12845 12846
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
12847 12848 12849 12850 12851

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
12852
            import paddle.fluid as fluid
B
Bai Yifan 已提交
12853
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
12854 12855 12856 12857
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
12858 12859 12860 12861 12862 12863 12864 12865
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
12866 12867 12868 12869


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
12870

H
heqiaozhi 已提交
12871
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
12872

Z
zhoushiyu 已提交
12873
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
12874

Z
zhoushiyu 已提交
12875 12876
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
12877
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
12878 12879
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
12880

Z
zhoushiyu 已提交
12881 12882 12883 12884 12885 12886 12887
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
12888

H
heqiaozhi 已提交
12889
    Returns:
H
fix doc  
heqiaozhi 已提交
12890

Z
zhoushiyu 已提交
12891 12892
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
12893

H
heqiaozhi 已提交
12894
    Examples:
H
fix doc  
heqiaozhi 已提交
12895

H
heqiaozhi 已提交
12896
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
12897

12898
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
12899 12900
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
12901 12902 12903 12904 12905 12906 12907 12908
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
12909

H
heqiaozhi 已提交
12910 12911 12912 12913 12914 12915 12916 12917 12918
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
12919
    return out
Z
zhoukunsheng 已提交
12920 12921 12922 12923 12924 12925 12926


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
12927
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
12928 12929

    Returns:
12930
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate. 
Z
zhoukunsheng 已提交
12931 12932 12933 12934

    Examples:
        .. code-block:: python

12935
             import paddle.fluid as fluid
12936 12937 12938
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
12939
             # condition is a tensor [True, False, True]
12940 12941 12942
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
12943 12944

             # condition is a tensor [[True, False], [False, True]]
12945 12946 12947
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
12948 12949

             # condition is a tensor [False, False, False]
12950 12951 12952 12953
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
12954
    """
12955
    helper = LayerHelper("where_index", **locals())
Z
zhoukunsheng 已提交
12956 12957 12958 12959 12960

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
12961 12962 12963
        type='where_index',
        inputs={'Condition': condition},
        outputs={'Out': [out]})
Z
zhoukunsheng 已提交
12964
    return out
Z
zhoukunsheng 已提交
12965 12966 12967 12968


def sign(x):
    """
12969
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
12970 12971

    Args:
12972 12973
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
12974 12975

    Returns:
12976
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
12977 12978 12979 12980

    Examples:
        .. code-block:: python

12981 12982 12983
          import paddle.fluid as fluid
          import numpy as np

12984 12985
          # [1.0, 0.0, -1.0]
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32')) 
Z
zhoukunsheng 已提交
12986 12987 12988
    """

    helper = LayerHelper("sign", **locals())
12989 12990 12991 12992
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
12993 12994 12995 12996 12997
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12998 12999


Z
zhoukunsheng 已提交
13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13039 13040
def unique_with_counts(x, dtype='int32'):
    """
T
tianshuo78520a 已提交
13041
    This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \
13042
    and an index tensor pointing to this unique tensor. 
13043

13044
    **NOTICE**: This op support the variable type of Tensor only.
13045 13046

    Args:
13047 13048
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Defalut value is int32.
13049

13050 13051 13052 13053
    Returns: 
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
T
tianshuo78520a 已提交
13054
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\
13055
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
13056 13057 13058 13059 13060 13061 13062 13063 13064

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
13065
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13108
                    modulated=True,
13109 13110
                    name=None):
    """
13111
    **Deformable Convolution op**
13112 13113 13114

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13115 13116 13117
   
    
    Deformable Convolution v2: 
13118 13119 13120 13121
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13122 13123

    Deformable Convolution v1:
13124
    
13125 13126 13127 13128 13129
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
13130
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
13131
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
13156 13157
        input (Variable): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
13158
        offset (Variable): The input coordinate offset of deformable convolution layer.
13159
            A Tensor with type float32, float64.
13160 13161 13162
        Mask (Variable, Optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
13163 13164
        num_filters(int): The number of filter. It is as same as the output
            image channel.
13165
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
T
tianshuo78520a 已提交
13185
            The total batch size should be devisable by this value or smaller
13186 13187 13188
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
13189
        param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
13190 13191 13192 13193 13194
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
13195
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
13196 13197 13198 13199
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13200 13201
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13202 13203
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
13204 13205
    Returns:
        Variable: The tensor variable storing the deformable convolution \
13206
                  result. A Tensor with type float32, float64.
13207 13208 13209 13210 13211 13212
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13213 13214
          #deformable conv v2:
         
13215
          import paddle.fluid as fluid
13216 13217
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13218 13219 13220
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          mask = fluid.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13221
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13222
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=True)
13223 13224 13225 13226

          #deformable conv v1:

          import paddle.fluid as fluid
13227 13228
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13229 13230
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13231
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
13232
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=False)
13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13310 13311 13312

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13313 13314 13315 13316 13317


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

S
SunGaofeng 已提交
13318
    This op returns a col buffer of sliding local blocks of input x, also known
13319
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
13320
    all element will be rearranged as a column. While the convolution filter sliding over
13321 13322
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
13323
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


S
SunGaofeng 已提交
13341 13342 13343
    Parameters:
        x(Varaible):              4-D Tensor, input tensor of format [N, C, H, W], 
                                  data type can be float32 or float64
13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
13356
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
13357
                                  [dilation_h, dilation_w], or an integer dilation treated as
13358
                                  [dilation, dilation]. For default, it will be [1, 1].
S
SunGaofeng 已提交
13359 13360 13361
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
13362 13363 13364

    
    Returns:
S
SunGaofeng 已提交
13365
        The tensor variable corresponding to the sliding local blocks. 
T
tianshuo78520a 已提交
13366
        The output shape is [N, Cout, Lout] as decriabled above. 
S
SunGaofeng 已提交
13367 13368 13369 13370 13371 13372
        Cout is the  total number of values within each block, 
        and Lout is the total number of such blocks. 
        The data type of output is the same as the input :math:`x`

    Return Type:
        Variable
13373 13374 13375 13376 13377 13378

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
S
SunGaofeng 已提交
13379
            x = fluid.data(name = 'data', shape = [100, 3, 224, 224], dtype = 'float32')
13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
13450 13451 13452 13453 13454 13455 13456
    Deformable ROI Pooling Layer
  
    Performs deformable region-of-interest pooling on inputs. As described
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after 
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
  
    The operation has three steps:
C
cjt222 已提交
13457
    
13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
  
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
     
    3. Sample several points in each bin to get average values as output.
  
  
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where 
                          N is number of ROIs, C is number of channels, which indicate the offset distance 
                          in the x and y directions, H is pooled height, and W is pooled width. 
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels 
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
13484
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
13485 13486 13487 13488 13489 13490 13491
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
13492
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
13493 13494 13495 13496
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
13497 13498 13499 13500

    Examples:
      .. code-block:: python

13501 13502
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=True)
13525 13526
  
        # position_sensitive=False
13527
        import paddle.fluid as fluid
C
chengjuntao 已提交
13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13587 13588 13589 13590


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
13591
    This operator recomputes the `input` indices according to the offset of the
13592 13593 13594 13595 13596
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
13597
        
13598 13599
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
13600

13601 13602
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
13603 13604

    Examples:
13605
    ::
13606
    
13607
        Input:
13608 13609
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
13610 13611 13612
          index_num = 20
          nshards = 2
          ignore_value = -1
13613
        
13614
        if shard_id == 0, we get:
13615 13616 13617
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
13618
        if shard_id == 1, we get:
13619 13620 13621 13622
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
13623
        - **input** (Variable): Input indices, last dimension must be 1.
T
tianshuo78520a 已提交
13624
        - **index_num** (scalar): An integer defining the range of the index.
13625 13626
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
T
tianshuo78520a 已提交
13627
        - **ignore_value** (scalar): An integer value out of sharded index range
13628 13629

    Returns:
13630
        Variable: The sharded index of input.
13631 13632 13633 13634 13635

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
13636 13637
            batch_size = 32
            label = fluid.data(name="label", shape=[batch_size, 1], dtype="int64")
13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13662 13663 13664 13665 13666


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
13667 13668 13669
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
13670

13671
    The formula is as follows:
H
huangjun12 已提交
13672

13673
    .. math::
H
huangjun12 已提交
13674

13675
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
13676

13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` 
        
    Returns:
        Variable: The output tensor with the same shape and data type as input.
    
    
    Examples:
    
    .. code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
    
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
13722 13723


G
Guo Sheng 已提交
13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798
def gather_tree(ids, parents):
    """
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:                
                gather_tree(ids, parents)  
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Variable): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
        Variable: A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            ids = fluid.layers.data(name='ids',
                                    shape=[5, 2, 2],
                                    dtype='int64',
                                    append_batch_size=False)
            parents = fluid.layers.data(name='parents',
                                        shape=[5, 2, 2],
                                        dtype='int64',
                                        append_batch_size=False)
            final_sequences = fluid.layers.gather_tree(ids, parents)
    """
    helper = LayerHelper('gather_tree', **locals())
    out = helper.create_variable_for_type_inference(dtype=ids.dtype)

    helper.append_op(
        type="gather_tree",
        inputs={"Ids": ids,
                "Parents": parents},
        outputs={"Out": out})

    return out


13799 13800 13801
@templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
    """
13802 13803
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max).
13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814

    Examples:
    ::
    
        Input:
          shape = [1, 2]
        
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
13815 13816
        shape (list|tuple|Variable): The shape of the output Tensor,  if the shape is a list or tuple, 
                                     its elements can be an integer
13817 13818
                                     or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. 
                                     If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be int32 or int64.
13819
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
13820
                                                  Default: float32.
13821 13822
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
13823 13824 13825 13826 13827
        seed (int, optional): Random seed used for generating samples. 0 means use a
            seed generated by the system. Note that if seed is not 0, this
            operator will always generate the same random numbers every time.
            Default 0.

13828 13829
    Returns: 
        Variable: A Tensor of the specified shape filled with uniform_random values.
13830

13831
    Raises:
T
tianshuo78520a 已提交
13832
        TypeError: The shape type should be list or tuple or variable.
13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
13846 13847
            dim_2 = fluid.layers.fill_constant([1],"int32",5)
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
13848 13849

            # example 3:
13850
            # attr shape is a Variable, the data type must be int64 or int32.
13851
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
13852
            result_3 = fluid.layers.uniform_random(var_shape)
13853 13854 13855 13856
            var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
            result_4 = fluid.layers.uniform_random(var_shape_int32)
             

13857 13858

    """
13859
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
13860 13861
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
13862
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
13863

13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885
    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
T
tianshuo78520a 已提交
13886
                    "Each dimension size given in shape must not be negative "
13887 13888 13889 13890 13891
                    "except one unknown dimension.")
        return attrs_shape

    helper = LayerHelper("uniform_random", **locals())
    inputs = dict()
13892
    attrs = {'seed': seed, 'min': min, 'max': max}
13893
    if in_dygraph_mode():
H
hong 已提交
13894
        attrs['shape'] = shape
13895 13896 13897 13898 13899 13900 13901 13902
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
13903
            if utils._contain_var(shape):
13904 13905 13906 13907 13908 13909 13910 13911
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})

    return helper.append_activation(out)