framework.py 230.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
H
huzhiqiang 已提交
19
from collections.abc import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26
import copy
27
from types import MethodType, FunctionType
28

Y
Yu Yang 已提交
29
import numpy as np
30
import subprocess
S
sneaxiy 已提交
31
import multiprocessing
32
import sys
33
import logging
M
minqiyang 已提交
34
from .. import compat as cpt
35
from .proto import framework_pb2
36 37

from . import core
38
from . import unique_name
39 40
import paddle.version as fluid_version
import warnings
41
import functools
42
from .variable_index import _getitem_impl_, _setitem_impl_
43
from paddle import _C_ops
Y
Yu Yang 已提交
44

45
__all__ = [
46 47 48 49
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
50
    'name_scope',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
L
lujun 已提交
55
    'in_dygraph_mode',
56
    'is_compiled_with_cinn',
C
chengduo 已提交
57
    'is_compiled_with_cuda',
58
    'is_compiled_with_rocm',
59
    'is_compiled_with_xpu',
60
    'is_compiled_with_npu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
74
_dygraph_tracer_ = None
75
_global_expected_place_ = None
76
_current_device = None
77
global_prog_seed = 0
78
_current_pipeline_stage = None
79
_global_flags_ = core.globals()
J
Jiabin Yang 已提交
80
core._disable_eager_mode()
81 82 83


@signature_safe_contextmanager
J
Jiabin Yang 已提交
84 85
def _test_eager_guard():
    core._enable_eager_mode()
86
    _C_ops.switch_to_eager_ops()
87
    try:
J
Jiabin Yang 已提交
88
        yield
89
    finally:
J
Jiabin Yang 已提交
90
        core._disable_eager_mode()
91
        _C_ops.switch_to_core_ops()
92 93


94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
201
def in_dygraph_mode():
L
lujun 已提交
202
    """
203

204 205 206 207 208 209 210
    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .
L
lujun 已提交
211 212

    Returns:
213
        bool: Whether paddle runs in dynamic graph mode.
L
lujun 已提交
214 215 216 217

    Examples:
        .. code-block:: python

218 219 220 221 222 223 224 225
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
L
lujun 已提交
226 227

    """
L
lujun 已提交
228
    return _dygraph_tracer_ is not None
229 230


J
Jiabin Yang 已提交
231 232 233 234
def _in_eager_mode():
    return core._in_eager_mode() and in_dygraph_mode()


235 236 237
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
238
        ), "We don't support %s in imperative mode" % func.__name__
239 240 241 242 243 244 245 246
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
247 248 249 250 251 252 253 254 255
        ), "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode." % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _static_only_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
256
        ), "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode." % func.__name__
257 258 259 260 261
        return func(*args, **kwargs)

    return __impl__


262 263 264 265 266
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


267 268 269 270 271 272
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
273
# same base class.
274 275 276
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
277 278 279 280 281
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
            % (func.__name__, func.__name__))
282 283 284 285

    return __impl__


T
tangwei12 已提交
286 287
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
                DeprecationWarning)
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


305 306
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
307
static_only = wrap_decorator(_static_only_)
308
fake_interface_only = wrap_decorator(_fake_interface_only_)
309 310


L
lujun 已提交
311 312
def _dygraph_tracer():
    return _dygraph_tracer_
313

W
Wu Yi 已提交
314

315 316 317 318
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
319
def _current_expected_place():
320 321 322
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
323 324 325 326 327 328 329 330 331 332 333
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CUDAPlace(0)
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
334 335 336 337 338 339 340 341 342 343 344 345
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.XPUPlace(0)
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
361
    if _in_eager_mode():
362
        return core.eager._set_expected_place(place)
J
Jiabin Yang 已提交
363
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
364 365


L
Leo Chen 已提交
366 367 368 369
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
    """	
    convert VarBase tp numpy	
T
tangwei12 已提交
370

L
Leo Chen 已提交
371 372 373 374 375 376 377 378 379 380 381 382
    Args:	
        var_base(VarBase) : the VarBase to convert	
    Returns (np.ndarray): the np.ndarray contain the value of VarBase	
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
383
def _cpu_num():
384
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
385 386 387 388 389 390 391 392
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
393
        os.environ['CPU_NUM'] = str(1)
394
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
395 396 397 398 399 400 401 402 403 404
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
405 406


407 408 409 410 411 412 413 414 415
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_xpu_device_count())
    return device_ids


416 417 418 419 420 421 422 423 424
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_npu_device_count())
    return device_ids


425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
    
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

    Returns: None 

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
495 496 497 498
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

499
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
500 501 502 503

    Examples:
        .. code-block:: python

504
            import paddle
505
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
506 507 508 509
    """
    return core.is_compiled_with_cuda()


510 511 512 513 514 515 516 517 518 519
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
520
            support_gpu = paddle.device.is_compiled_with_rocm()
521 522 523 524
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
525
def cuda_places(device_ids=None):
L
lujun 已提交
526
    """
527 528 529 530
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
531
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
532 533

    If :code:`device_ids` is None, environment variable of
534
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
535
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
536
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
537
    If :code:`FLAGS_selected_gpus` is not set, all visible
538
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
539 540

    If :code:`device_ids` is not None, it should be the device
541
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
542
    the returned list would be 
C
Chen Weihang 已提交
543
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
544

545
    Parameters:
546
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
547 548

    Returns:
C
Chen Weihang 已提交
549
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
550 551 552 553

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
554 555
            import paddle
            import paddle.static as static
T
tangwei12 已提交
556

557 558
            # required: gpu
            
C
Chen Weihang 已提交
559 560 561
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
562 563

    """
S
sneaxiy 已提交
564 565 566
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
567
        device_ids = _cuda_ids()
S
sneaxiy 已提交
568 569 570 571 572
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


573 574 575 576
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
577 578 579 580 581 582 583 584 585 586 587
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
        the returned list would be 
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
588 589 590 591 592 593 594
    
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
595

596 597
            # required: xpu

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
    assert core.is_compiled_with_xpu(), \
        "Not compiled with XPU"
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
    
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be 
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
            
            paddle.enable_static()
            npu_places = static.npu_places()
    """
    assert core.is_compiled_with_npu(), \
        "Not compiled with NPU"
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
654
def cpu_places(device_count=None):
L
lujun 已提交
655
    """
C
Chen Weihang 已提交
656
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
657

S
add doc  
sneaxiy 已提交
658 659
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
660 661
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
662 663
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
664

665 666
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
667 668

    Returns:
C
Chen Weihang 已提交
669
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
670 671 672 673

    Examples:
        .. code-block:: python

C
Chen Weihang 已提交
674 675
            import paddle
            import paddle.static as static
T
tangwei12 已提交
676

C
Chen Weihang 已提交
677 678 679
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
680 681
    """

S
sneaxiy 已提交
682 683 684 685 686 687
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
688
    """
689
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
690 691 692

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
693 694 695 696
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
697

698 699
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
700 701

    Returns:
702
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
703 704 705 706

    Examples:
        .. code-block:: python

707
            import paddle.fluid as fluid
L
lujun 已提交
708 709 710 711 712
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
713 714 715
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
716 717
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
718 719


720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
746
@signature_safe_contextmanager
747 748
def name_scope(prefix=None):
    """
749 750
    :api_attr: Static Graph

751
    Generate hierarchical name prefix for the operators in Static Graph.
752

T
Tao Luo 已提交
753 754 755
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
756
        Don't use it in dygraph, since it will cause memory leak.
757 758

    Args:
T
Tao Luo 已提交
759
        prefix(str, optional): prefix. Default is none.
760 761 762

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
763

764 765 766
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
767
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
768
             b = a + 1
769
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
770
                c = b * 1
771
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
772
                d = c / 1
773 774 775
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
776 777 778
                g = f - 1

          # Op are created in the default main program.  
779
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
795 796
    """
    # TODO(panyx0718): Only [0-9a-z].
797
    # in dygraph we don't need namescope since it will cause mem leak
L
Leo Chen 已提交
798 799 800
    if in_dygraph_mode():
        yield
    else:
T
tianshuo78520a 已提交
801
        assert prefix, "namescope prefix can not be empty."
802 803
        global _name_scope
        _name_scope = _name_scope.child(prefix)
804 805 806 807
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
808 809 810 811 812 813 814 815 816 817 818 819


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
820 821 822
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
823 824 825 826


def grad_var_name(var_name):
    """
827 828
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
829 830 831
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
832

833
def convert_np_dtype_to_dtype_(np_dtype):
834 835
    """
    Convert the data type in numpy to the data type in Paddle
836

837
    Args:
838
        np_dtype(np.dtype): the data type in numpy.
839

840 841
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
842 843

    """
844 845
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
846
        return core.VarDesc.VarType.FP32
847
    elif dtype == np.float64:
848
        return core.VarDesc.VarType.FP64
849
    elif dtype == np.float16:
850
        return core.VarDesc.VarType.FP16
851
    elif dtype == np.int32:
852
        return core.VarDesc.VarType.INT32
853
    elif dtype == np.int16:
854
        return core.VarDesc.VarType.INT16
855
    elif dtype == np.int64:
856
        return core.VarDesc.VarType.INT64
857
    elif dtype == np.bool:
858
        return core.VarDesc.VarType.BOOL
859
    elif dtype == np.uint16:
860 861 862
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
863 864
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
865 866
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
867 868 869 870
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
871
    else:
M
minqiyang 已提交
872
        raise ValueError("Not supported numpy dtype %s" % dtype)
873 874 875


def dtype_is_floating(dtype):
876 877 878
    """
    Check the data type is floating or not.
    Args:
879
        dtype(np.dtype|core.VarDesc.VarType): data type.
880 881 882 883 884
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
885
    if not isinstance(dtype, core.VarDesc.VarType):
886 887
        dtype = convert_np_dtype_to_dtype_(dtype)

888 889 890 891
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
892 893


Y
Yang Yang(Tony) 已提交
894
def _debug_string_(proto, throw_on_error=True):
895 896 897 898 899 900 901 902 903 904 905
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
906
    error_fields = list()
Y
Yang Yang(Tony) 已提交
907
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
908 909
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
910 911 912
    return proto.__str__()


913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
def _varbase_creator(type=core.VarDesc.VarType.LOD_TENSOR,
                     name=None,
                     shape=None,
                     dtype=None,
                     persistable=None,
                     **kwargs):
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

    return core.VarBase(dtype if dtype else core.VarDesc.VarType.FP32,
                        list(shape) if shape else [], name, type
                        if type else core.VarDesc.VarType.LOD_TENSOR, True
                        if persistable else False)


class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, core.VarBase)
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
            return issubclass(t, ParamBase)
        else:
            return issubclass(t, Parameter)


@six.add_metaclass(VariableMetaClass)
X
Xin Pan 已提交
950
class Variable(object):
951
    """
J
Jiabin Yang 已提交
952
    **Notes**:
953
        **The constructor of Variable should not be invoked directly.**
J
Jiabin Yang 已提交
954

955 956
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

J
Jiabin Yang 已提交
957 958 959
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
960
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
961 962
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
963

964
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
965
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
966

T
tianshuo78520a 已提交
967
    Most of a Variable's member variables can be set to be None. It mean
968
    it is not available or will be specified later.
969

970
    Examples:
971 972
        In Static Graph Mode:

973 974
        .. code-block:: python

975
            import paddle.fluid as fluid
976
            cur_program = fluid.Program()
977 978 979 980
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
981

J
Jiabin Yang 已提交
982
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
983 984 985 986 987 988 989 990 991

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

992 993
    """

Y
Yu Yang 已提交
994 995
    def __init__(self,
                 block,
Y
Yu Yang 已提交
996
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
997 998 999 1000
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
1001
                 capacity=None,
Q
QI JUN 已提交
1002
                 persistable=None,
F
fengjiayi 已提交
1003
                 error_clip=None,
Y
Yu Yang 已提交
1004
                 stop_gradient=False,
F
fengjiayi 已提交
1005
                 is_data=False,
H
Huihuang Zheng 已提交
1006
                 need_check_feed=False,
H
hong 已提交
1007
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
1008
                 **kwargs):
Y
Yu Yang 已提交
1009 1010
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1011
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1012

Y
Yu Yang 已提交
1013
        if dtype is not None:
1014
            if not isinstance(dtype, core.VarDesc.VarType):
1015
                dtype = convert_np_dtype_to_dtype_(dtype)
1016

S
Steffy-zxf 已提交
1017 1018 1019 1020
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

H
hong 已提交
1021 1022
        self.belong_to_optimizer = belong_to_optimizer

1023 1024 1025 1026 1027
        self.error_clip = error_clip

        is_new_var = False
        name = cpt.to_text(name)
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
1028

1029 1030 1031
        if self.desc is None:
            self.desc = self.block.desc.var(cpt.to_bytes(name))
            is_new_var = True
1032

1033 1034 1035
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
L
Leo Chen 已提交
1036 1037
            raise ValueError("Variable '{0}' has been created before. The "
                             "previous type is {1}, the new type is {2}. They"
1038 1039
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))
1040

1041
        if shape is not None:
1042
            if is_new_var:
1043 1044 1045 1046 1047 1048
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1049 1050
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1051 1052 1053 1054 1055 1056 1057
                        "matched.".format(self.name, old_shape, shape))
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
L
Leo Chen 已提交
1058 1059
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous data type is {1}, the new "
1060 1061 1062 1063 1064 1065 1066 1067 1068
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
L
Leo Chen 已提交
1069 1070
                    raise ValueError("Variable '{0}' has been created before. "
                                     "The previous lod_level is {1}, the new "
1071 1072 1073 1074 1075 1076 1077 1078 1079
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1080 1081
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1082 1083
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))
1084

1085 1086
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1087

1088 1089 1090 1091 1092 1093 1094
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1095

1096 1097
        self.block.vars[name] = self
        self.op = None
1098
        self.stop_gradient = stop_gradient
1099
        self.is_data = is_data
Y
Yu Yang 已提交
1100

1101 1102 1103
    def detach(self):
        """
        Returns a new Variable, detached from the current graph.
1104 1105
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1106

1107
        Returns:
J
Jiabin Yang 已提交
1108
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
1109 1110 1111 1112

        Examples:
            .. code-block:: python

1113
                import paddle
1114

1115 1116 1117 1118
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1119

1120 1121
                # create a detached Variable
                y = x.detach()
1122
        """
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

        assert self.type == core.VarDesc.VarType.SELECTED_ROWS or \
            self.type == core.VarDesc.VarType.LOD_TENSOR, \
            "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=True)

        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]})
        return output
1138

1139
    @fake_interface_only
1140
    def numpy(self):
1141
        """
J
Jiabin Yang 已提交
1142
        **Notes**:
T
tianshuo78520a 已提交
1143
            **This API is ONLY available in Dygraph mode**
1144

J
Jiabin Yang 已提交
1145
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1146 1147 1148 1149 1150

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1151
            ndarray: dtype is same as current Variable
1152 1153 1154 1155 1156 1157

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1158
                from paddle.fluid.dygraph import Linear
1159 1160 1161 1162
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1163
                    linear = Linear(32, 64)
1164
                    data = to_variable(data)
1165
                    x = linear(data)
1166 1167 1168
                    print(x.numpy())

        """
1169
        pass
1170

1171
    @fake_interface_only
1172
    def backward(self, retain_graph=False):
1173
        """
J
Jiabin Yang 已提交
1174
        **Notes**:
T
tianshuo78520a 已提交
1175
            **This API is ONLY available in Dygraph mode**
1176

1177
        Run backward of current Graph which starts from current Tensor.
1178

J
Jiabin Yang 已提交
1179
        Args:
1180 1181 1182 1183
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1184

J
Jiabin Yang 已提交
1185 1186
        Returns:
            NoneType: None
1187 1188 1189 1190 1191

        Examples:
            .. code-block:: python

                import numpy as np
1192 1193
                import paddle
                paddle.disable_static()
1194 1195

                x = np.ones([2, 2], np.float32)
1196 1197 1198 1199 1200 1201 1202
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1203 1204
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1205
                loss.backward()
1206 1207

        """
1208
        pass
1209

1210
    @fake_interface_only
1211
    def gradient(self):
1212
        """
J
Jiabin Yang 已提交
1213
        **Notes**:
T
tianshuo78520a 已提交
1214
            **This API is ONLY available in Dygraph mode**
1215 1216 1217

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1218
        Returns:
1219
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1220 1221 1222 1223 1224 1225 1226

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1227
                # example1: return ndarray
1228 1229 1230 1231 1232 1233 1234 1235 1236
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1237
                    loss2.backward()
1238 1239
                    print(loss2.gradient())

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1253
        """
1254
        pass
1255

1256
    @fake_interface_only
1257
    def clear_gradient(self):
1258
        """
J
Jiabin Yang 已提交
1259
        **Notes**:
T
tianshuo78520a 已提交
1260
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1261 1262

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1263

J
Jiabin Yang 已提交
1264
        Clear  (set to ``0`` ) the Gradient of Current Variable
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1283
                    loss2.backward()
1284 1285 1286 1287 1288
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1289
        pass
X
Xin Pan 已提交
1290

1291 1292 1293 1294
    @fake_interface_only
    def register_hook(self, hook):
        pass

1295
    def __str__(self):
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1312 1313
                import paddle
                import paddle.static as static
1314

1315 1316 1317
                paddle.enable_static()

                cur_program = static.Program()
1318 1319 1320 1321 1322 1323
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1324 1325
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1326
        if self.type == core.VarDesc.VarType.SELECTED_ROWS or self.type == core.VarDesc.VarType.LOD_TENSOR:
1327 1328
            dtype_str = str(self.dtype).split('.')[1]
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".\
T
tangwei12 已提交
1329 1330
                format(name=self.name, type=type_str, shape=self.shape,
                       dtype=dtype_str, stop_gradient=self.stop_gradient)
1331
        else:
1332 1333
            var_str = "{name} : {type})".\
                format(name=self.name, type=type_str)
1334

1335
        if self.is_parameter:
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1346
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
1347
        dist_context = get_default_distributed_context()
1348 1349
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1350
            var_str += ", {name} = {value}".format(
1351
                name="dist_attr", value=dist_tensor)
1352

1353
        return var_str
Y
Yang Yang(Tony) 已提交
1354

F
update  
fengjiayi 已提交
1355
    def to_string(self, throw_on_error, with_details=False):
1356 1357 1358
        """
        Get debug string.

J
Jiabin Yang 已提交
1359 1360 1361 1362 1363
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1364

1365 1366
        Returns:
            str: The debug string.
1367 1368 1369 1370 1371

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1372
                import paddle
1373

1374
                paddle.enable_static()
1375 1376 1377 1378 1379
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1380
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1381
                print("=============with detail===============")
1382
                print(new_variable.to_string(True, True))
1383
        """
F
update  
fengjiayi 已提交
1384 1385
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1386
        protostr = self.desc.serialize_to_string()
1387
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1388 1389
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1390
            additional_attr = ("error_clip", )
F
update  
fengjiayi 已提交
1391
            for attr_name in additional_attr:
1392 1393 1394
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1395
        return res_str
1396 1397 1398

    __repr__ = __str__

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
        
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1426
    @property
1427
    def stop_gradient(self):
J
Jiabin Yang 已提交
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1443 1444
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1445 1446 1447
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1448 1449
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1450 1451 1452 1453
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1454
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1455 1456
                assert (out1.gradient() == 0).all()
        """
1457
        return self.desc.stop_gradient()
1458

1459 1460
    @stop_gradient.setter
    def stop_gradient(self, s):
1461
        self.desc.set_stop_gradient(s)
1462

1463 1464
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1486
        return self.desc.persistable()
1487

Y
Yu Yang 已提交
1488 1489
    @persistable.setter
    def persistable(self, p):
1490
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1491

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1517 1518
    @property
    def name(self):
J
Jiabin Yang 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1535
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1536

1537 1538 1539 1540 1541 1542
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1543 1544
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1557 1558
    @name.setter
    def name(self, new_name):
1559
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1560

Y
Yu Yang 已提交
1561 1562
    @property
    def shape(self):
J
Jiabin Yang 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1580
        # convert to tuple, make it as same as numpy API.
1581
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1582 1583

    @property
F
fengjiayi 已提交
1584
    def dtype(self):
J
Jiabin Yang 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1601
        return self.desc.dtype()
Y
Yu Yang 已提交
1602 1603 1604

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1626 1627 1628
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")

1629
        return self.desc.lod_level()
Y
Yu Yang 已提交
1630

Y
Yu Yang 已提交
1631 1632
    @property
    def type(self):
J
Jiabin Yang 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1649
        return self.desc.type()
Y
Yu Yang 已提交
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
    @property
    def T(self):
        """
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
            stop_gradient=False)
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': perm})
        return out

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
        Variable. It remains in the current graph, that is, the cloned Variable 
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
            Variable: The cloned Variable.

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
            stop_gradient=self.stop_gradient)

        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]})
        return output

W
Wu Yi 已提交
1734
    def _set_error_clip(self, error_clip):
1735 1736 1737 1738 1739 1740 1741 1742 1743
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1744 1745
        self.error_clip = error_clip

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
    def _set_info(self, key, value):
        """
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

        Returns: 
            None
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

        Returns: 
            object
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
1786
            raise ValueError("slice step can not be zero")
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1862
    def _cloneVar(self, copy=False):
1863 1864
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1865 1866
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1867 1868 1869 1870
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1871
        new_var = self._cloneVar()
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1882
        new_var = self._cloneVar()
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1893
                return self._cloneVar(True)
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1912
                return self._cloneVar(True)
1913
            index = int(item)
1914
            if (index > 0 and index >= self.shape[axis]) \
1915 1916 1917 1918 1919 1920 1921
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
1922
        return _getitem_impl_(self, item)
1923

1924
    def __setitem__(self, item, value):
1925
        return _setitem_impl_(self, item, value)
1926

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
    def get_value(self, scope=None):
        """
        Get the value of variable in given scope. 

        Args:
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            Tensor: the value in given scope.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
        # The 'framework' is a low-level module, and 'executor' 
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
        Set the value to the tensor in given scope. 

        Args:
            value(Tensor/ndarray) : The value to be set.
            scope(Scope, optional) : If `scope` is None, it will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static 
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        '''

        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".
                format(type(value)))

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
            raise ValueError("Can not find Variable '{}' in the Scope.".format(
                self.name))

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
                    "{} expected a shape {}, but the received shape is {}.".
                    format(self.name, list(t.shape()), list(value_shape)))

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2073 2074 2075 2076
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2077 2078 2079 2080 2081 2082 2083
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
    def size(self):
        """
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
            Variable: the number of elements for current Variable

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
            dtype=core.VarDesc.VarType.INT64)

        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]})
        return output

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
    def _set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
            bool: True if has this attribute.
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

    def _get_attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            int|str|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Variable.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        from paddle.distributed.auto_parallel.interface import ProcessMesh
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.desc.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    @property
    def shard_mask(self):
        """
        Get shard_mask belonging to this Variable.
        """
        mask_attr_name = 'mask' + core.kAutoParallelSuffix()
        return self.desc.attr(mask_attr_name)

    @property
    def offload_device(self):
        """
        Get the offload device of this Variable.
        """
        offload_attr_name = 'offload_device' + core.kAutoParallelSuffix()
        return self.desc.attr(offload_attr_name)

Y
Yu Yang 已提交
2193

F
fengjiayi 已提交
2194 2195 2196
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2197

2198 2199
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2200 2201 2202 2203
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2204
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
2205 2206 2207 2208 2209
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
2210 2211 2212 2213
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
2223
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2224 2225 2226 2227 2228 2229
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2230 2231 2232 2233 2234 2235 2236 2237
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2238 2239
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2240 2241
        return self.op_proto_map[type]

2242 2243
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2244
        custom_op_names = []
2245 2246 2247
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2248 2249 2250
                custom_op_names.append(proto.type)

        return custom_op_names
2251

2252 2253 2254 2255
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2256
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2257
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2258 2259
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
            core.op_proto_and_checker_maker.kOpDeviceAttrName()
2260 2261
        }

F
fengjiayi 已提交
2262

X
Xin Pan 已提交
2263
class Operator(object):
2264
    """
2265 2266 2267 2268 2269 2270 2271
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2272
        type(str): The type of operator. Default None.
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2293
        Block.append_op or Block._prepend_op instead.
2294 2295 2296 2297

    Examples:
        .. code-block:: python

2298
            import paddle.fluid as fluid
2299
            cur_program = fluid.Program()
2300 2301 2302 2303 2304
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2305
    """
2306
    OP_WITHOUT_KERNEL_SET = {
2307 2308
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
2309
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
2310 2311
        'gen_bkcl_id', 'c_gen_bkcl_id', 'gen_nccl_id', 'c_gen_nccl_id',
        'c_comm_init', 'c_sync_calc_stream', 'c_sync_comm_stream',
W
WangXi 已提交
2312
        'queue_generator', 'dequeue', 'enqueue', 'heter_listen_and_serv',
B
Baibaifan 已提交
2313 2314
        'c_wait_comm', 'c_wait_compute', 'c_gen_hccl_id', 'c_comm_init_hccl',
        'copy_cross_scope'
2315
    }
2316

Y
Yu Yang 已提交
2317 2318
    def __init__(self,
                 block,
Y
Yu Yang 已提交
2319
                 desc,
Y
Yu Yang 已提交
2320 2321 2322
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
2323
                 attrs=None):
L
lujun 已提交
2324
        if in_dygraph_mode():
2325 2326
            if type is None:
                raise ValueError(
2327
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
2328
            self._type = type
M
minqiyang 已提交
2329
            self.attrs = attrs if attrs else {}
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
2344
                )] = self.block.program._op_role
2345 2346 2347

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
2348 2349
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
2350 2351 2352 2353 2354

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2355 2356 2357 2358 2359
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2360 2361 2362
                return
            if type is None:
                raise ValueError(
2363
                    "`type` to initialized an Operator can not be None.")
2364 2365
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2366 2367 2368 2369 2370 2371 2372
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
                        '  File "{}", line {}, in {}'.format(frame[0], frame[1],
                                                             frame[2]))
                    op_attrs[callstack_var_name].append('    {}'.format(frame[
                        3]))
2373 2374 2375 2376 2377 2378 2379

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
                    warnings.warn("The Op(%s) is not support to set device." %
                                  type)
                if 'force_cpu' in op_attrs:
                    if (type is 'less_than' and op_attrs['force_cpu'] != None
                        ) or op_attrs['force_cpu'] != False:
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
                            "used at the same time." % type)
2397 2398 2399 2400 2401
            if _current_pipeline_stage is not None:
                pipeline_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix(
                )
                self._update_desc_attr(pipeline_attr_name,
                                       _current_pipeline_stage)
2402

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
2416
                        if not isinstance(in_args, (list, tuple)):
2417 2418 2419 2420 2421 2422
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
2423
                        for index, arg in enumerate(in_args):
2424 2425 2426 2427
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
2428
                            elif isinstance(arg, (Variable, core.VarBase)):
2429
                                in_arg_names.append(cpt.to_text(arg.name))
2430
                            else:
2431 2432 2433 2434
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2435 2436
                                    "but received : %s" %
                                    (in_proto.name, type, arg))
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
2461 2462 2463 2464
                        if isinstance(arg, six.string_types):
                            out_arg_names.append(arg)
                        else:
                            out_arg_names.append(cpt.to_text(arg.name))
2465
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
2466
                        if not in_dygraph_mode():
2467 2468 2469 2470
                            if isinstance(arg, six.string_types):
                                block.var(arg).op = self
                            else:
                                arg.op = self
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2489
    def _has_kernel(self, op_type):
2490 2491
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2492
    def to_string(self, throw_on_error):
2493
        """
2494 2495
        Get debug string.

2496
        Args:
2497 2498
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
2499

2500 2501
        Returns:
            str: The debug string.
2502 2503

        """
2504
        protostr = self.desc.serialize_to_string()
2505
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
2506 2507
        return _debug_string_(proto, throw_on_error)

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2540
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
            type(skip_op_callstack))
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

            attr_type = self.desc.attr_type(name)
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
                    name=name, type=attr_type, value=self._block_attr_id(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
                    name=name,
                    type=attr_type,
                    value=self._blocks_attr_ids(name))
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            a = "{name} = {value}".format(
                name=name, type=attr_type, value=self.desc.attr(name))
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

2593
        from paddle.distributed.auto_parallel.dist_context import get_default_distributed_context
2594
        dist_context = get_default_distributed_context()
2595 2596
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
2597
            attrs_str += ", {name} = {value}".format(
2598
                name="dist_attr", value=dist_op)
2599

2600 2601
        if outputs_str != "{}":
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
T
tangwei12 已提交
2602 2603
                format(outputs=outputs_str, op_type=self.type,
                       inputs=inputs_str, attrs=attrs_str)
2604 2605 2606 2607 2608
        else:
            op_str = "{op_type}(inputs={inputs}, {attrs})".\
                format(op_type=self.type, inputs=inputs_str, attrs=attrs_str)
        return op_str

Y
Yang Yang(Tony) 已提交
2609
    def __str__(self):
2610
        return self._to_readable_code()
2611 2612 2613

    __repr__ = __str__

F
fengjiayi 已提交
2614 2615
    @property
    def type(self):
2616
        return self.desc.type()
F
fengjiayi 已提交
2617 2618

    def input(self, name):
2619
        r"""
2620
        Get the input arguments according to the input parameter name.
2621

2622 2623
        Args:
            name(str): The input parameter name.
2624

2625 2626 2627
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
2628
        """
F
fengjiayi 已提交
2629 2630
        return self.desc.input(name)

W
Wu Yi 已提交
2631
    def _rename_input(self, old_name, new_name):
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
2642
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
2643

W
Wu Yi 已提交
2644
    def _rename_output(self, old_name, new_name):
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
2655
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
2656

F
fengjiayi 已提交
2657 2658 2659 2660
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
2661 2662 2663 2664 2665 2666 2667 2668
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
2669
    def output(self, name):
2670
        r"""
2671
        Get output arguments by the output parameter name.
2672

2673 2674
        Args:
            name(str): The output parameter name.
2675

2676 2677 2678
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
2679
        """
F
fengjiayi 已提交
2680 2681 2682 2683 2684 2685
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

2686 2687 2688 2689 2690 2691 2692 2693
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
2694
    def has_attr(self, name):
2695
        """
2696 2697
        Whether this Operator has the attribute with name or not.

2698
        Args:
2699
            name(str): the attribute name.
2700

2701 2702
        Returns:
            bool: True if has this attribute.
2703 2704

        """
F
fengjiayi 已提交
2705 2706 2707
        return self.desc.has_attr(name)

    def attr_type(self, name):
2708
        """
2709
        Get the type of attribute by attribute's name.
2710

2711 2712
        Args:
            name(str): the attribute name.
2713

2714 2715
        Returns:
            core.AttrType: the attribute type.
2716
        """
F
fengjiayi 已提交
2717 2718
        return self.desc.attr_type(name)

W
Wu Yi 已提交
2719
    def _set_attr(self, name, val):
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
2730 2731
        self._update_desc_attr(name, val)

2732 2733 2734
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2746 2747
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2748 2749
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2750
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2751 2752 2753 2754
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2755
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2756

F
fengjiayi 已提交
2757 2758 2759 2760 2761
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2762
        """
2763 2764
        Get the attribute by name.

2765
        Args:
2766
            name(str): the attribute name.
2767

2768 2769
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2770 2771
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2772
        return self.desc.attr(name)
Y
Yu Yang 已提交
2773

W
Wu Yi 已提交
2774
    def _block_attr_id(self, name):
2775
        """
G
gongweibao 已提交
2776
        Get the block attribute's id by name.
2777

2778 2779
        Args:
            name(str): the attribute name.
2780

2781 2782
        Returns:
            int: the block index.
2783
        """
W
Wu Yi 已提交
2784
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2785

W
Wu Yi 已提交
2786
    def _block_attr(self, name):
G
gongweibao 已提交
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2797
        id = self._block_attr_id(name)
G
gongweibao 已提交
2798 2799 2800
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2801
    def _blocks_attr(self, name):
G
gongweibao 已提交
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2812
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2813 2814 2815 2816 2817
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2818
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2829
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2830

J
JiayiFeng 已提交
2831
    def all_attrs(self):
F
fengjiayi 已提交
2832
        """
2833 2834 2835
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2836
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2837 2838 2839 2840
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2841 2842
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2843
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2844 2845 2846
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2847
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2848 2849 2850 2851
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2852 2853
        return attr_map

2854 2855 2856
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
2857 2858 2859 2860

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

2861 2862 2863
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
2864 2865 2866 2867 2868 2869 2870 2871

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
2872 2873
            return False

2874 2875 2876 2877 2878 2879
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
    @property
    def process_mesh(self):
        """
        Get the process mesh belonging to this Operator.
        """
        from paddle.distributed.auto_parallel.interface import _g_process_mesh_map
        mesh_attr_name = 'mesh_id' + core.kAutoParallelSuffix()
        mesh_id = self.attr(mesh_attr_name)
        return _g_process_mesh_map[mesh_id]

    def dims_mapping(self, name):
        """
        Get the dims_mapping for the op's var named `name`.
        """
        dims_mapping_attr_name = name + core.kAutoParallelSuffix()
        return self.attr(dims_mapping_attr_name)

    @property
    def pipeline_stage(self):
        """
        Get pipeline stage of the Operator.
        """
        pipeline_stage_attr_name = 'pipeline_stage' + core.kAutoParallelSuffix()
        return self.desc.attr(pipeline_stage_attr_name)

Y
Yu Yang 已提交
2905

Y
Yu Yang 已提交
2906
class Block(object):
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2921
        use `Program._create_block()` to create a block.
2922 2923 2924 2925

    Examples:
        .. code-block:: python

2926 2927 2928
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2929 2930 2931 2932 2933 2934 2935 2936 2937
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2938
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2939
        self.desc = program.desc.block(idx)
2940
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2941
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2942
        self.program = program
2943
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2944

2945
    def __str__(self):
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
2980
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
            type(skip_op_callstack))
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
                op._to_readable_code(skip_op_callstack))
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
2992

F
fengjiayi 已提交
2993 2994
    def to_string(self, throw_on_error, with_details=False):
        """
2995 2996
        Get debug string.

F
fengjiayi 已提交
2997 2998
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2999
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3000
            with_details(bool): more details about variables and parameters
3001 3002
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3003

3004 3005
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3006 3007 3008 3009
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
3010
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3011 3012
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
3013
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3014
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
3015
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
3016
            for op in self.ops:
F
fengjiayi 已提交
3017 3018
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
3019 3020 3021
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3022 3023
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3024 3025
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3026 3027 3028

    __repr__ = __str__

Y
Yu Yang 已提交
3029 3030
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3031
        return self.desc.parent
Y
Yu Yang 已提交
3032

Y
Yu Yang 已提交
3033 3034 3035 3036
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3037
    def _set_forward_block_idx(self, idx):
3038 3039 3040 3041 3042 3043 3044 3045 3046
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3047
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3048

3049 3050 3051 3052 3053 3054 3055 3056
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3057 3058
    @property
    def idx(self):
Y
Yu Yang 已提交
3059
        return self.desc.id
Y
Yu Yang 已提交
3060

Q
Qiao Longfei 已提交
3061
    def var(self, name):
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3075
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
3076 3077 3078
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
3079 3080
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3081
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3082
        return v
Q
Qiao Longfei 已提交
3083

X
Xin Pan 已提交
3084
    def _find_var_recursive(self, name):
3085 3086 3087 3088 3089 3090 3091
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3092
            Variable: the Variable with the giving name. Or None if not found.
3093
        """
Y
Yu Yang 已提交
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3118
        return None
Y
Yu Yang 已提交
3119

X
Xin Pan 已提交
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3139

Q
Qiao Longfei 已提交
3140
    def all_parameters(self):
3141
        return list(self.iter_parameters())
3142

3143
    def iter_parameters(self):
M
minqiyang 已提交
3144
        return (item[1] for item in six.iteritems(self.vars)
3145
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
3146

Y
Yu Yang 已提交
3147
    def create_var(self, *args, **kwargs):
L
Leo Chen 已提交
3148 3149 3150
        if in_dygraph_mode():
            var = _varbase_creator(*args, **kwargs)
        else:
3151 3152 3153
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3154
        return var
Y
Yu Yang 已提交
3155

Q
Qiao Longfei 已提交
3156 3157 3158
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3159
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3160 3161
        """
        Rename variable in vars and ops' inputs and outputs
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3174
        """
M
minqiyang 已提交
3175 3176
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
3177

T
typhoonzero 已提交
3178
        if not self.has_var(name):
3179
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3180 3181
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3182
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3183 3184 3185 3186 3187 3188
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3189
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3190 3191 3192 3193
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3194
        orig_var_type = v.type
M
minqiyang 已提交
3195
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
3196
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
3197
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
3198
        if var_type == "Parameter":
L
Leo Chen 已提交
3199 3200
            if in_dygraph_mode():
                var = ParamBase(
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
            else:
L
Leo Chen 已提交
3211 3212
                var = Parameter(
                    self,
3213 3214 3215 3216 3217 3218 3219 3220 3221
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip)
T
typhoonzero 已提交
3222
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
3223 3224
            var = Variable(
                self,
T
typhoonzero 已提交
3225
                type=orig_var_type,
T
wip  
typhoonzero 已提交
3226 3227 3228 3229
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
3230
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3231 3232 3233
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3234
        self._sync_with_cpp()
3235
        return var
T
typhoonzero 已提交
3236

3237 3238 3239
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
M
minqiyang 已提交
3240
        self.desc._remove_var(cpt.to_bytes(name))
3241 3242
        del self.vars[name]

Y
Yu Yang 已提交
3243 3244
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3245
        param = None
L
Leo Chen 已提交
3246
        if in_dygraph_mode():
3247
            param = ParamBase(*args, **kwargs)
L
Leo Chen 已提交
3248 3249
        else:
            param = Parameter(global_block, *args, **kwargs)
3250

3251
        if 'initializer' in kwargs:
3252 3253 3254 3255 3256

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3257
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3258
                        # are treated as initialization ops that cause error.
3259
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3260 3261 3262 3263 3264
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
                                "c_broadcast", "c_sync_comm_stream",
                                "coalesce_tensor"
                        ]:
3265
                            continue
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
3277
                # TODO already inited, do nothing, should log a warning
3278 3279 3280
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3281
        return param
Y
Yu Yang 已提交
3282

Y
Yu Yang 已提交
3283
    def append_op(self, *args, **kwargs):
3284 3285 3286 3287 3288 3289
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
3290
        if in_dygraph_mode():
3291
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3292
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3293
            type = kwargs.get("type", None)
3294 3295 3296
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
3297
                type=type,
M
minqiyang 已提交
3298 3299
                inputs=None,
                outputs=None,
3300
                attrs=attrs)
3301

M
minqiyang 已提交
3302 3303 3304
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3305
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3306 3307

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3308
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3309 3310
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
Z
zyfncg 已提交
3311 3312
                                       kwargs.get("stop_gradient", False),
                                       inplace_map)
M
minqiyang 已提交
3313
        else:
3314 3315
            from paddle.fluid.dygraph.base import param_guard

3316
            op_desc = self.desc.append_op()
3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None))
3330

M
minqiyang 已提交
3331
            self.ops.append(op)
M
minqiyang 已提交
3332

3333 3334
        return op

W
Wu Yi 已提交
3335
    def _insert_op(self, index, *args, **kwargs):
3336 3337 3338 3339 3340 3341 3342 3343 3344
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
3345
        self._sync_with_cpp()
F
fangshuixun007 已提交
3346
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
3347

3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
        Insert an Operator according to the giving arguments, 
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
3365 3366 3367 3368 3369 3370 3371 3372 3373
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
3374 3375
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
3376
        self.desc._remove_op(index, index + 1)
3377 3378
        del self.ops[index]

W
Wu Yi 已提交
3379
    def _slice_ops(self, start, end):
3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
3390
        return self.ops[start:end]
Y
Yancey1989 已提交
3391

W
Wu Yi 已提交
3392
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
3393
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3394 3395
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
3396
            op = Operator(
J
Jiabin Yang 已提交
3397
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
3398

J
Jiabin Yang 已提交
3399
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
3400
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
3401 3402
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
3403
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
3404
        else:
3405 3406 3407 3408 3409 3410 3411 3412
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
3413
            self.ops.insert(0, op)
3414

Y
Yu Yang 已提交
3415 3416
        return op

W
Wu Yi 已提交
3417
    def _sync_with_cpp(self):
3418
        """
3419 3420
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
3421
        """
Q
Qiao Longfei 已提交
3422 3423 3424
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient)
                else:
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient)
Q
Qiao Longfei 已提交
3442

3443
        # sync variables removed from c++ end
3444
        for var in list(self.vars.keys()):
M
minqiyang 已提交
3445
            if not self.desc.find_var(cpt.to_bytes(var)):
3446 3447
                self.vars.pop(var)

Q
Qiao Longfei 已提交
3448
        # sync operators from cpp
3449 3450 3451 3452
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
3469 3470 3471 3472 3473

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
3474
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
3475 3476 3477 3478 3479 3480 3481

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
3495 3496 3497 3498
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
3499
    def _copy_param_info_from(self, other):
3500
        """
3501 3502
        Copy the information of parameters from the other block.

3503
        Args:
3504 3505 3506 3507 3508
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
3509 3510 3511 3512 3513

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
3514 3515
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
3516
        for p in other.iter_parameters():
3517 3518 3519
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
3520 3521
                # if the Parameter is pruned, v may be None
                continue
3522
            assert isinstance(v, Variable)
3523
            new_p = None
L
Leo Chen 已提交
3524 3525
            if in_dygraph_mode():
                new_p = ParamBase(
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
            else:
L
Leo Chen 已提交
3537 3538
                new_p = Parameter(
                    block=self,
3539 3540 3541
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
3542 3543
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR else None,
3544 3545 3546 3547 3548 3549
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name)
3550 3551
            self.vars[new_p.name] = new_p

3552
    def _clone_variable(self, var, force_persistable=True):
3553 3554
        """
        Clone a variable into current block.
3555

3556 3557
        Args:
            var: the variable to be cloned.
3558 3559 3560
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
3561 3562

        Returns:
3563
            Variable: the new  variable cloned from 'var' in current block.
3564 3565
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
3566 3567 3568 3569 3570
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
3571 3572
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
3573
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
3574 3575 3576 3577 3578 3579
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
3580
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3581 3582
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3583 3584 3585 3586 3587 3588 3589
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
3590
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
3591 3592
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
3593
        return ret_var
3594

Y
Yu Yang 已提交
3595

3596 3597 3598 3599 3600 3601
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
# of some old Python Variables(all old Python Operators) may have 
# been destructed.
3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
def _apply_pass(main_program,
                startup_program,
                pass_name,
                pass_attrs={},
                pass_attr_types={}):
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
    attrs = core.apply_pass(tmp_main_program, tmp_startup_program, pass_name,
                            pass_attrs, pass_attr_types)
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

3713
    def remove_input_by_id(self, node_id):
3714 3715 3716 3717 3718 3719
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3720
        self.node.remove_input(node_id)
3721

3722
    def remove_input(self, node):
3723 3724 3725 3726
        """
        Remove a node from inputs.

        Args:
3727
            node(IrNode): the node being removed.
3728
        """
3729
        self.node.remove_input(node.node)
3730

3731
    def append_input(self, node):
3732 3733 3734 3735
        """
        Append a node in inputs.

        Args:
3736
            node(IrNode): the node being appended.
3737
        """
3738
        self.node.append_input(node.node)
3739 3740 3741 3742 3743 3744 3745 3746

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

3747
    def remove_output_by_id(self, node_id):
3748 3749 3750 3751 3752 3753
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
3754
        self.node.remove_output(node_id)
3755

3756
    def remove_output(self, node):
3757 3758 3759 3760
        """
        Remove a node from outputs.

        Args:
3761
            node(IrNode): the node being removed.
3762
        """
3763
        self.node.remove_output(node.node)
3764

3765
    def append_output(self, node):
3766 3767 3768 3769
        """
        Append a node in outputs.

        Args:
3770
            node(IrNode): the node being appended.
3771
        """
3772
        self.node.append_output(node.node)
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3820
            "The node variable description can not be None."
3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3831
            "The node variable description can not be None."
3832 3833
        return self.node.var().persistable()

3834 3835 3836 3837 3838 3839 3840 3841
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3842
            "The node variable description can not be None."
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3853
            "The node variable description can not be None."
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
T
tianshuo78520a 已提交
3864
            "The node variable description can not be None."
3865 3866
        return self.node.var().shape()

3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3914
            "The node operator description can not be None."
3915 3916
        self.node.op()._rename_input(old_input_name, new_input_name)

3917 3918 3919 3920 3921 3922 3923 3924 3925
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3926
            "The node operator description can not be None."
3927 3928
        self.node.op()._rename_output(old_output_name, new_output_name)

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3940
            "The node operator description can not be None."
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3954
            "The node operator description can not be None."
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3965
            "The node operator description can not be None."
3966 3967
        return self.node.op().set_type(new_type)

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
3983
            "The node operator description can not be None."
3984 3985 3986 3987
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3988
                all(isinstance(v, Block) for v in val):
3989 3990
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3991
                isinstance(val, core.ProgramDesc):
3992 3993 3994 3995
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3996 3997 3998 3999 4000 4001 4002 4003
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4004
            "The node operator description can not be None."
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
T
tianshuo78520a 已提交
4015
            "The node operator description can not be None."
4016 4017
        return self.node.op().output_arg_names()

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4039 4040
class IrGraph(object):
    """
4041
    Python IrGraph. Beneath it is a core.Graph, which is used for
4042
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4043 4044
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4045 4046 4047 4048
    """

    def __init__(self, graph, for_test=False):
        """
4049 4050
        Construct an IrGraph using core.Graph.

4051 4052 4053 4054 4055 4056 4057 4058 4059
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

4060 4061 4062 4063
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4064 4065 4066
        Warns:
            The method only clones the graph structure, not its attributes.

4067 4068 4069
        Returns:
            IrGraph: A new and duplicated graph.
        """
4070
        g = self.graph.clone()
4071 4072
        return IrGraph(g, self._for_test)

4073
    def is_test(self):
4074 4075 4076
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4077 4078
        return self._for_test

W
WangZhen 已提交
4079
    def all_nodes(self):
4080 4081 4082
        """
        Return all nodes included in the graph as a set.
        """
4083
        return {IrNode(node) for node in self.graph.nodes()}
4084

4085
    def all_var_nodes(self):
4086 4087 4088
        """
        Return all variable nodes included in the graph as a set.
        """
4089
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4090

4091
    def all_persistable_nodes(self):
4092 4093 4094
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4095 4096 4097 4098 4099
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
4100
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4101

4102
    def all_op_nodes(self):
4103 4104 4105
        """
        Return all operator nodes included in the graph as a set.
        """
4106
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4107

4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
            IrGraph(
                self.graph.get_sub_graph(i), for_test=for_test)
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4125
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4137
            IrVarNode: the created persistable variable node.
4138
        """
4139 4140 4141 4142 4143
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4144
        return IrVarNode(self.graph.create_var_node(var_desc))
4145 4146

    def create_var_node(self, name, var_type, shape, var_dtype):
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4158
            IrVarNode: the created variable node.
4159 4160
        """

4161 4162 4163 4164
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4165
        return IrVarNode(self.graph.create_var_node(var_desc))
4166

4167 4168 4169 4170 4171 4172
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4173
    def create_var_node_from_desc(self, var_desc):
4174 4175 4176 4177 4178 4179 4180 4181
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4182
            IrVarNode: the created variable node.
4183
        """
4184
        return IrVarNode(self.graph.create_var_node(var_desc))
4185 4186

    def create_op_node(self, op_type, attrs, inputs, outputs):
4187 4188 4189 4190 4191 4192 4193
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4194
            outputs(dict): the outputs of the operator node.
4195 4196

        Returns:
4197
            IrOpNode: the created operator node.
4198
        """
4199 4200
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4201
        for attr, value in six.iteritems(attrs):
4202
            self._update_desc_attr(op_desc, attr, value)
4203
        for input_name, var_nodes in six.iteritems(inputs):
4204 4205 4206 4207
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
4208
        for output_name, var_nodes in six.iteritems(outputs):
4209 4210 4211 4212
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
4213
        return IrOpNode(self.graph.create_op_node(op_desc))
4214 4215

    def create_op_node_from_desc(self, op_desc):
4216 4217 4218 4219 4220 4221 4222
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4223
            IrOpNode: the created operator node.
4224
        """
4225
        return IrOpNode(self.graph.create_op_node(op_desc))
4226 4227

    def update_input_link(self, old_input_node, new_input_node, op_node):
4228 4229 4230 4231
        """
        Update the input's link of a operator node.

        Args:
4232 4233 4234
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4235
        """
4236
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
T
tangwei12 已提交
4237
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4238
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4239 4240 4241 4242
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4243
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4244

4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
T
tangwei12 已提交
4255
            self.graph.nodes() and op_node.node in self.graph.nodes(), \
4256
            'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4257 4258 4259 4260 4261 4262
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

4263
    def link_to(self, node_in, node_out):
4264 4265 4266 4267
        """
        Connect two nodes.

        Args:
4268 4269
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
4270
        """
4271 4272 4273 4274
        assert node_in.node in self.graph.nodes(), (
            'node_in(%s) must be in the graph nodes.' % node_in.node.name())
        assert node_out.node in self.graph.nodes(), (
            'node_out(%s) must be in the graph nodes.' % node_out.node.name())
4275 4276
        node_in.append_output(node_out)
        node_out.append_input(node_in)
4277 4278

    def safe_remove_nodes(self, remove_nodes):
4279 4280 4281 4282 4283 4284 4285
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
4286
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
4287 4288 4289 4290
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
4291 4292
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
4293

Z
Zhen Wang 已提交
4294 4295 4296 4297 4298 4299 4300 4301
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4302
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
4303 4304 4305 4306
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
4307
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
4308 4309 4310
                        ]
                    else:
                        var_nodes[each_var_name].append(
4311 4312
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
4313 4314
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
4315
    def has_circle(self):
4316 4317 4318 4319 4320 4321
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
4322 4323 4324
        return core.has_circle(self.graph)

    def graph_num(self):
4325 4326 4327 4328 4329 4330
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
4331 4332 4333
        return core.graph_num(self.graph)

    def topology_sort(self):
4334 4335 4336
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
4337
        Notes: the `graph` can not contain a circle.
4338 4339

        Returns:
Z
Zhen Wang 已提交
4340
            list(IrNode): nodes in topology order.
4341
        """
4342
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
4343
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
4344 4345

    def build_adjacency_list(self):
4346 4347 4348 4349
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
4350
            dict{IrNode: set(IrNode)}: the adjacency list.
4351
        """
4352 4353 4354 4355 4356
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
4357

4358 4359 4360 4361 4362 4363 4364 4365
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
4366
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
4367 4368 4369 4370 4371
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

4372 4373
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
T
tangwei12 已提交
4374 4375 4376
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True)
4377 4378 4379 4380 4381
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

4382
        remove_ctr_vars = set()
4383
        if remove_ctr_var:
4384
            for node in self.all_var_nodes():
4385 4386 4387
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
4388 4389
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

4390 4391
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
4392 4393 4394 4395 4396 4397
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
4398 4399 4400 4401
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
4402 4403
        if not os.path.exists(save_path):
            os.makedirs(save_path)
4404 4405 4406 4407 4408 4409 4410
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
4411 4412 4413
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
4414
        WARN: When the graph includes backward operator nodes, the
4415 4416 4417 4418 4419 4420
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
4421
        convert_pass = core.get_pass('graph_to_program_pass')
4422 4423
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
4424 4425 4426 4427
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

4428 4429 4430 4431 4432 4433 4434 4435
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
4436 4437
        assert target_node is not None, (
            "Cannot find the target node (%s)in the giving set." % node_name)
4438 4439
        return target_node

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
4456
class Program(object):
D
dzhwinter 已提交
4457
    """
4458
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
4459
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
4460
    it will contain nested block.
4461

J
Jiabin Yang 已提交
4462 4463 4464
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
4465

J
Jiabin Yang 已提交
4466
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
4467
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
4468 4469 4470 4471 4472 4473 4474
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
4475
    **Notes**:
4476 4477 4478
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
4479 4480

    Returns:
J
Jiabin Yang 已提交
4481
        Program: An empty Program.
D
dzhwinter 已提交
4482 4483

    Examples:
4484 4485
        .. code-block:: python

4486 4487 4488 4489
            import paddle
            import paddle.static as static

            paddle.enable_static()
4490

4491 4492 4493 4494 4495
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
4496
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
4497 4498 4499

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
4500 4501 4502

    """

4503 4504
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
4505 4506
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
4507 4508
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
4509
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
4510
        self.__op_role_var = []
T
tangwei12 已提交
4511

4512 4513
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
4514
        self._is_distributed = False
4515
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
4516
        self._is_chief = False
4517 4518 4519
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
4520
        self._endpoints = []
4521 4522 4523
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
4524
        self._trainers_endpoints = []
4525
        # the distributed lookup table names
T
tangwei12 已提交
4526
        self._distributed_lookup_table = None
4527 4528 4529

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
4530 4531
        self._use_lamb = False

4532 4533 4534
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
4535

4536 4537 4538
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
4539
        self._program_config = None
4540

H
hutuxian 已提交
4541 4542 4543
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

4544 4545 4546
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

4547 4548 4549
        # appending gradients times
        self._appending_grad_times = 0

4550 4551 4552 4553
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
            "__auto_checkpoint_program__")

4554 4555
        # compiled program, i.e. Graph
        self._graph = None
4556 4557
        # to tag whether is startup_program
        self._is_start_up_program_ = False
4558

4559
    def _find_var_class_kwargs(self, new_desc):
4560 4561 4562 4563 4564 4565 4566 4567
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
                    'shape': get_var_desc_attr_or_none(new_var_desc, "shape", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'dtype': get_var_desc_attr_or_none(new_var_desc, "dtype", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.SELECTED_ROWS,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
                    'lod_level':
                    get_var_desc_attr_or_none(new_var_desc, "lod_level", [
                        core.VarDesc.VarType.LOD_TENSOR,
                        core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                    ]),
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
                    'error_clip': old_var.error_clip
                    if old_var is not None else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None else False,
                    'is_data': old_var.is_data
                    if old_var is not None else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None else False,
                }

                if isinstance(old_var, Parameter):
                    kwargs.update({
                        'trainable': old_var.trainable,
                        'optimize_attr': old_var.optimize_attr,
                        'regularizer': old_var.regularizer,
                        'do_model_average': old_var.do_model_average,
                        'need_clip': old_var.need_clip,
                        'is_distributed': old_var.is_distributed,
                        'is_parameter': old_var.is_parameter,
                    })
                    block_new_vars.append({
                        'class': Parameter,
                        'kwargs': copy.deepcopy(kwargs),
                    })
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
                    block_new_vars.append({
                        'class': Variable,
                        'kwargs': copy.deepcopy(kwargs),
                    })

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
4637
        assert block_num == self.desc.num_blocks()
4638 4639

        # clear old blocks and desc
4640 4641 4642 4643 4644 4645 4646 4647 4648
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
4649

4650
        del desc
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

4680 4681
                import paddle
                import paddle.static as static
4682

4683 4684 4685
                paddle.enable_static()

                prog = static.default_main_program()
4686 4687 4688 4689 4690
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
4691
                prog1 = static.default_main_program()
4692 4693 4694 4695 4696 4697 4698 4699
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
4700
    @property
4701
    def _op_role(self):
Y
yuyang18 已提交
4702 4703 4704 4705 4706 4707 4708 4709
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
4710
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
4711 4712 4713 4714
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
4715 4716
        return self._current_role

4717 4718
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
4719 4720 4721
        self._current_role = role

    @property
4722
    def _op_role_var(self):
Y
yuyang18 已提交
4723
        """
4724
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
4725

4726
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
4727 4728 4729

        Notes: This is a very low-level API. Users should not use it directly.
        """
4730
        return self.__op_role_var
Y
yuyang18 已提交
4731

4732
    @signature_safe_contextmanager
4733 4734 4735 4736 4737
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
4738 4739 4740 4741
        try:
            yield
        finally:
            self._current_role = tmp_role
4742

S
rename  
sneaxiy 已提交
4743
    @signature_safe_contextmanager
W
Wu Yi 已提交
4744
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
4745 4746 4747 4748 4749 4750 4751
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
4752
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
4753 4754 4755

        Examples:

4756
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
4757
            >>> p, g = backward(...)
W
Wu Yi 已提交
4758
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
4759 4760
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
4761
        tmp_role = self._current_role
4762
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
4763

Y
yuyang18 已提交
4764 4765
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
4766
        self.__op_role_var = [
4767 4768 4769
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
4770 4771 4772 4773 4774
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
4775

S
rename  
sneaxiy 已提交
4776
    @signature_safe_contextmanager
X
Xin Pan 已提交
4777
    def _lr_schedule_guard(self, is_with_opt=False):
4778 4779 4780 4781 4782 4783 4784
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
4785 4786 4787 4788
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
4789 4790 4791

        Examples:

4792
            >>> import paddle.fluid as fluid
4793 4794 4795 4796
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
4797 4798

        tmp_role = self._current_role
4799
        tmp_var = self.__op_role_var
4800

4801 4802
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
4803 4804
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
4805
        # TODO(typhoonzero): how to set target learning rate var
4806
        self.__op_role_var = []
4807 4808 4809 4810 4811
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
4812

4813
    def __str__(self):
Y
yuyang18 已提交
4814 4815 4816 4817 4818 4819 4820 4821 4822
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

4843 4844
            import paddle
            import paddle.static as static
4845

4846 4847 4848
            paddle.enable_static()

            cur_program = static.Program()
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
4860
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
4861 4862 4863 4864
            type(skip_op_callstack))
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
4865
            program_str += '\n'
4866
        return program_str
Y
Yang Yang(Tony) 已提交
4867

F
fengjiayi 已提交
4868 4869 4870
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
4871

J
Jiabin Yang 已提交
4872 4873 4874
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
4875

J
Jiabin Yang 已提交
4876
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
4877

H
haowang101779990 已提交
4878
        Returns:
J
Jiabin Yang 已提交
4879
            str: The debug string describe current Program.
Y
yuyang18 已提交
4880 4881

        Raises:
J
Jiabin Yang 已提交
4882
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
4883

4884 4885 4886
        Examples:
            .. code-block:: python

4887 4888 4889 4890
                import paddle
                import paddle.static as static

                paddle.enable_static()
4891

4892 4893 4894
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
4895
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
4896
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
4897
                print("program string without detail: {}".format(prog_string))
4898
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
4899
        """
4900 4901 4902 4903 4904 4905 4906 4907 4908
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
            type(throw_on_error))
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
            type(with_details))

F
fengjiayi 已提交
4909 4910 4911 4912 4913 4914
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
4915 4916
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
4917 4918
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
4919

W
Wu Yi 已提交
4920
    def _get_desc(self):
Y
yuyang18 已提交
4921 4922 4923 4924 4925 4926 4927
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
4928 4929
        return self.desc

X
version  
Xin Pan 已提交
4930 4931 4932
    def _version(self):
        return self.desc._version()

4933
    def clone(self, for_test=False):
Y
yuyang18 已提交
4934
        """
4935 4936 4937 4938
        .. note:::
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` . 
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` . 
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
4939

4940
        Create a new Program with forward content of original one when ``for_test=True``.
4941
        Create a new Program as same as the original one when ``for_test=False``.
4942

4943
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
4944 4945 4946
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
4947

4948 4949
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
4950 4951
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
4952
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
4953

J
Jiabin Yang 已提交
4954
        For Example:
4955
          ::
L
Luo Tao 已提交
4956

4957 4958 4959 4960 4961 4962
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
4963
            pred = static.nn.fc(x=img, size=10, actvation='relu')
4964
            loss = paddle.mean(pred)
4965
            # Here we use clone before Momentum
4966 4967
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
4968
            optimizer.minimize(loss)
4969

J
Jiabin Yang 已提交
4970
        Args:
4971

4972 4973
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
4974

J
Jiabin Yang 已提交
4975
        Returns:
4976
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
4977

Y
yuyang18 已提交
4978 4979 4980

        Examples:

4981 4982 4983 4984 4985 4986 4987
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
            .. code-block:: python

                import six

                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5004
            1. To clone a test program, the sample code is:
5005 5006 5007
                .. code-block:: python

                    import six
5008 5009 5010 5011 5012 5013
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5026 5027
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5028 5029 5030

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5031 5032 5033
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5034
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5035 5036
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5037
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5038 5039
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5040
                            test_program = train_program.clone(for_test=True)
5041
                    print_prog(test_program)
J
Jiabin Yang 已提交
5042 5043 5044 5045

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5046
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5047 5048 5049 5050
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5051 5052 5053
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5054 5055 5056
                            sgd.minimize(avg_loss)


5057
            2. The clone method can be avoid if you create program for training and program for testing individually.
5058 5059 5060
                .. code-block:: python

                    import six
5061 5062 5063 5064 5065 5066
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5078

5079
                    def network():
5080
                        img = static.data(name='image', shape=[None, 784])
5081
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5082 5083
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5084
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5085 5086
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5087 5088
                        return avg_loss

5089 5090 5091 5092 5093
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5094
                            avg_loss = network()
5095
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5096
                            sgd.minimize(avg_loss)
5097
                    # the test startup program is not used.
5098 5099
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5100 5101
                            avg_loss = network()
                    print_prog(test_program_2)
5102

5103
            The two code snippets above will generate and print same programs.
5104
        """
5105

T
tangwei12 已提交
5106
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5107 5108 5109
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5110
        pruned_origin_block_id_map = None
5111
        if for_test:
5112 5113 5114 5115 5116 5117 5118 5119 5120
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
                self.desc)
            forward_prog.blocks = [
                Block(forward_prog, i)
                for i in six.moves.range(forward_prog.desc.num_blocks())
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5121
        else:
5122
            p = Program()
G
gongweibao 已提交
5123 5124
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5125
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
5126 5127 5128
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
5129 5130

            p._current_role = self._current_role
5131
            p.__op_role_var = self.__op_role_var
5132
            p._appending_grad_times = self._appending_grad_times
5133 5134
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5135

T
tangwei12 已提交
5136
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5137
            # its desc.
W
Wu Yi 已提交
5138
            p._sync_with_cpp()
5139

W
Wu Yi 已提交
5140
        p._copy_param_info_from(self)
5141
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5142
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5143
        return p
5144

5145
    def _prune(self, targets):
Y
yuyang18 已提交
5146 5147 5148 5149 5150 5151 5152 5153
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5154
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5155 5156 5157 5158
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5159
        """
5160
        return self._prune_with_input([], targets)
5161 5162

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5163
        """
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5174
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5175 5176 5177 5178 5179 5180
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5181
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5182 5183 5184
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5185 5186
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5187 5188
        if not isinstance(targets, list):
            targets = [targets]
5189 5190 5191

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
5192 5193 5194
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
                    "str, but received %s." % type(var))
5195

5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5212 5213 5214 5215
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5216 5217 5218
                    name = t.name
                elif isinstance(t, six.string_types):
                    name = str(t)
5219
                else:
5220 5221 5222
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
                        "Variable or Operator, but received %s." % type(t))
5223 5224 5225 5226 5227 5228

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
5229 5230 5231
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
5232

5233 5234 5235 5236 5237 5238 5239 5240 5241
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
5242
                        # Skip optimize op except for optimize op in targets,
5243 5244 5245 5246 5247
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
5248

5249
                if target_op is not None:
5250 5251 5252
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
5253

5254
        res = Program()
5255 5256 5257
        res.desc, pruned_origin_block_id_map = core.prune(self.desc,
                                                          set(feeded_var_names),
                                                          targets_idx)
M
minqiyang 已提交
5258 5259 5260
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5261
        res._sync_with_cpp()
5262 5263 5264 5265 5266

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

5267 5268
        return res

X
Xin Pan 已提交
5269
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
5270
        """
F
fengjiayi 已提交
5271 5272 5273 5274 5275
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

5276
        3. change the :code:`is_test`
Y
yuyang18 已提交
5277 5278 5279
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

5280
        Args:
X
Xin Pan 已提交
5281 5282
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
5283

Y
yuyang18 已提交
5284 5285 5286 5287 5288 5289
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
5290
        res = Program()
5291
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
5292 5293 5294 5295

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
5296
        if prune_read_op:
5297 5298 5299 5300 5301 5302 5303 5304 5305
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
5306
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
5307 5308

        # change all `is_test` attributes to True
M
minqiyang 已提交
5309
        for i in six.moves.range(res.desc.num_blocks()):
5310
            block = res.desc.block(i)
M
minqiyang 已提交
5311
            for j in six.moves.range(block.op_size()):
5312 5313
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
5314
                    op._set_attr('is_test', True)
5315 5316 5317
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
M
minqiyang 已提交
5318 5319 5320
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
5321
        res._sync_with_cpp()
5322 5323
        return res

5324
    def _remove_training_info(self, clip_extra=True):
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()

        for i in six.moves.range(res.desc.num_blocks()):
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
            if not clip_extra:
                continue
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
                for name in remove_input_list:
                    op.remove_input(name)

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
                for name in remove_output_list:
                    op.remove_output(name)

                remove_attr_list = []
                op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
                )
                quant = bool(op.attr(op_quant_name)
                             ) if op_quant_name in op.attr_names() else False
                quant_attrs = [
                    op_quant_name, "quantization_type", "skip_quant",
                    "activation_bits", "bit_length", "quantize_weight_bits",
                    "weight_quant_scale"
                ]
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        if attr_proto.extra:
                            remove_attr_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
5414 5415
        return res

5416 5417
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
5418
        """
5419 5420 5421
        .. note::
            1. All information about parameters will be lost after serialization; 
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5422

5423 5424
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
5425

J
Jiabin Yang 已提交
5426
        Args:
Y
yuyang18 已提交
5427

J
Jiabin Yang 已提交
5428
            binary_str_type (str): the binary prootbuf string.
5429

J
Jiabin Yang 已提交
5430 5431
        Returns:
            Program: A deserialized Program.
5432 5433 5434 5435

        Examples:
            .. code-block:: python

5436 5437 5438 5439
                import paddle
                import paddle.static as static

                paddle.enable_static()
5440

5441 5442 5443 5444
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
5445

5446
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
5447

5448
                    z = paddle.matmul(x=x, y=y)
5449

5450 5451
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
5452

5453
                    print(static.default_main_program())
5454
                    print(prog_restored)
Y
yuyang18 已提交
5455
        """
5456 5457
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
5458
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
5459
        p._sync_with_cpp()
5460
        return p
Y
Yu Yang 已提交
5461

5462
    @staticmethod
5463
    def _construct_from_desc(desc):
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
5479 5480
    @property
    def random_seed(self):
Y
yuyang18 已提交
5481
        """
J
Jiabin Yang 已提交
5482
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
5483 5484
        the random seed from random device.

5485 5486
        .. note:: 
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
5487 5488 5489

        Returns:
            int64: Random seed in current Program
5490

5491 5492 5493 5494

        Examples:
            .. code-block:: python

5495 5496 5497
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
5498

5499 5500 5501
                paddle.enable_static()

                prog = static.default_main_program()
5502
                random_seed = prog.random_seed
5503
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
5504 5505 5506
                print(random_seed)
                ## 0
                ## the default random seed is 0
5507

5508
                # Here we need to set random seed before we use paddle.nn.functional.dropout
5509
                prog.random_seed = 1
5510
                z_var = F.dropout(x_var, 0.7)
5511

5512
                print(prog.random_seed)
5513 5514
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
5515
        """
D
dzhwinter 已提交
5516 5517
        return self._seed

Q
qiaolongfei 已提交
5518 5519
    @property
    def num_blocks(self):
Y
yuyang18 已提交
5520
        """
5521 5522
        The number of :ref:`api_guide_Block_en`  in this Program.

5523 5524
        .. note:: 
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
5525 5526 5527

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
5528

5529 5530 5531 5532

        Examples:
            .. code-block:: python

5533 5534 5535 5536
                import paddle
                import paddle.static as static

                paddle.enable_static()
5537

5538
                prog = static.default_main_program()
5539 5540
                num_blocks = prog.num_blocks
                print(num_blocks)
5541

5542 5543
                # print result:
                # 1
Y
yuyang18 已提交
5544
        """
Q
qiaolongfei 已提交
5545 5546
        return self.desc.num_blocks()

D
dzhwinter 已提交
5547 5548 5549
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
5550 5551 5552
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
                % type(seed))
D
dzhwinter 已提交
5553 5554
        self._seed = seed

Y
Yu Yang 已提交
5555
    def __repr__(self):
5556
        return self.__str__()
5557

Y
Yu Yang 已提交
5558
    def global_block(self):
Y
yuyang18 已提交
5559
        """
5560 5561
        .. note::
            This API has no effect in Dygraph mode.
5562 5563 5564

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
5565 5566
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
5567

5568 5569 5570 5571

        Examples:
            .. code-block:: python

5572 5573 5574 5575
                import paddle
                import paddle.static as static

                paddle.enable_static()
5576

5577
                prog = static.default_main_program()
5578 5579
                gb_block = prog.global_block()
                print(gb_block)
5580

Y
yuyang18 已提交
5581
        """
Y
Yu Yang 已提交
5582 5583
        return self.blocks[0]

Q
Qiao Longfei 已提交
5584
    def block(self, index):
Y
yuyang18 已提交
5585
        """
5586 5587
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
5588

5589 5590
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
5591 5592
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
5593

J
Jiabin Yang 已提交
5594 5595
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
5596 5597 5598 5599

        Examples:
            .. code-block:: python

5600 5601 5602 5603
                import paddle
                import paddle.static as static

                paddle.enable_static()
5604

5605
                prog = static.default_main_program()
5606 5607
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
5608
        """
Q
Qiao Longfei 已提交
5609 5610
        return self.blocks[index]

Y
Yu Yang 已提交
5611
    def current_block(self):
Y
yuyang18 已提交
5612
        """
5613 5614
        .. note::
            This API has no effect in Dygraph mode.
5615

J
Jiabin Yang 已提交
5616 5617
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
5618

J
Jiabin Yang 已提交
5619 5620
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
5621

5622 5623 5624
        Examples:
            .. code-block:: python

5625 5626 5627 5628
                import paddle
                import paddle.static as static

                paddle.enable_static()
5629

5630
                prog = static.default_main_program()
5631 5632
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
5633
        """
Y
Yu Yang 已提交
5634 5635
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
5636
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
5637 5638 5639 5640 5641
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
5642

Y
yuyang18 已提交
5643 5644 5645 5646 5647
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
5648
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
5649 5650 5651
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
5652 5653 5654 5655
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
5656
    def _rollback(self):
Y
yuyang18 已提交
5657 5658 5659 5660 5661
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
5662 5663
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
5664
    def _sync_with_cpp(self):
Y
yuyang18 已提交
5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
5675 5676 5677
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
5678
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
5679

W
Wu Yi 已提交
5680
    def _copy_param_info_from(self, other):
5681
        """
5682
        Copy the information of parameters from other program.
D
dzhwinter 已提交
5683

Y
yuyang18 已提交
5684 5685 5686
        Notes: This is a very low level API. Users should not invoke it
        directly.

5687 5688 5689 5690 5691 5692 5693
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5694 5695 5696
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5697

W
Wu Yi 已提交
5698
        self.global_block()._copy_param_info_from(other.global_block())
5699

5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
5711 5712 5713
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
5714 5715
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
5716
        self._parameters_on_pservers = other._parameters_on_pservers
5717
        self._endpoints = other._endpoints
5718
        self._ps_endpoint = other._ps_endpoint
5719 5720
        self._distributed_lookup_table = other._distributed_lookup_table

5721
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
5722 5723
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
5724

Y
yuyang18 已提交
5725 5726 5727
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
5728 5729
        Args:
            other(Program): Other program
5730 5731 5732 5733
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is 
            cloned from block 0 in other, etc. Default is None, which means default mapped, 
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
5734 5735 5736 5737 5738

        Returns:
            None
        """
        if not isinstance(other, Program):
5739 5740 5741
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
                % type(other))
F
fengjiayi 已提交
5742

5743 5744 5745 5746 5747
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
                i: i
                for i in six.moves.range(self.desc.num_blocks())
            }
5748 5749 5750

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
5751 5752
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
5753
            for var in list(block.vars.values()):
5754 5755 5756 5757 5758 5759 5760
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
5761

5762
    def list_vars(self):
Y
yuyang18 已提交
5763
        """
5764
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
5765

J
Jiabin Yang 已提交
5766
        Returns:
5767
            iterable Tensors: The Generator will yield every Tensor in this program.
5768 5769 5770 5771

        Examples:
            .. code-block:: python

5772 5773
                import paddle
                import paddle.static as static
5774

5775 5776 5777 5778 5779
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
5780 5781
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
5782

5783 5784
                # var img : paddle.VarType.LOD_TENSOR.shape(-1, 1, 28, 28).astype(VarType.FP32)
                # var label : paddle.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)
Y
yuyang18 已提交
5785
        """
5786
        for each_block in self.blocks:
5787
            for each_var in list(each_block.vars.values()):
5788 5789
                yield each_var

5790 5791 5792 5793 5794 5795 5796 5797 5798 5799
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

5800 5801 5802 5803
                import paddle
                import paddle.static as static

                paddle.enable_static()
5804

5805 5806
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
5807
                hidden = static.nn.fc(x=data, size=10)
5808 5809
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
5810 5811 5812 5813 5814 5815 5816

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
5817 5818
                # persist trainable param fc_0.w_0 : paddle.VarType.LOD_TENSOR.shape(13, 10).astype(VarType.FP32)
                # persist trainable param fc_0.b_0 : paddle.VarType.LOD_TENSOR.shape(10,).astype(VarType.FP32)
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
            mode(str, optional): Source of the obtained parameters and buffers. 
                    'opt' :  The return value only contains the variable in the optimizer. 
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.  
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file. 
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".
                format(type(scope)))

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
            raise TypeError("Type of `mode` should be string, but received {}.".
                            format(type(mode)))

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".
                    format(mode))

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".
                    format(var.name))
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
        Set parameters and persistable buffers in state_dict to program. 
        An exception will throw if shape or dtype of the parameters is not match.
        
        .. note::
            This function MUST called after run start_up_program

        Args:
            state_dict(dict): the dict store parameters and persistable buffers. 
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope 
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
        
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
                    type(state_dict)))

        vars_dict = {var.name: var for var in self.list_vars()}
        condition = True if 'StructuredToParameterName@@' in state_dict else False
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
                except TypeError as err:
                    warnings.warn(
                        ("Skip loading for '{}'. ".format(name) + str(err)))
            else:
                warnings.warn((
                    "Skip loading for '{0}'. Because '{0}' not in the program.".
                    format(name)))

Y
Yu Yang 已提交
5996

5997
@six.add_metaclass(ParameterMetaClass)
Y
Yu Yang 已提交
5998
class Parameter(Variable):
5999
    """
6000
    Parameter is derived from Variable. A parameter is a persistable
6001
    Variable, and will be updated by optimizers after each iteration.
6002
    The training of a neural network is essentially the updating of
6003 6004
    its parameters.

6005
    Relative to a general Variable, a Parameter has several its own
6006 6007
    member variables:

6008 6009 6010 6011 6012 6013 6014 6015 6016 6017
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6018 6019
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6020 6021
    """

6022 6023 6024 6025 6026 6027
    def __init__(self,
                 block,
                 shape,
                 dtype,
                 type=core.VarDesc.VarType.LOD_TENSOR,
                 **kwargs):
6028 6029 6030 6031 6032
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6033
        if len(shape) == 0:
6034 6035
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
6036 6037 6038

        for each in shape:
            if each < 0:
6039 6040 6041
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
6042 6043

        Variable.__init__(
6044 6045 6046 6047 6048 6049 6050
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs)
Y
Yu Yang 已提交
6051 6052 6053 6054
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6055 6056
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6057
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6058

6059 6060
        self.need_clip = kwargs.get('need_clip', True)

6061 6062
        self.is_distributed = False

6063 6064
        self.is_parameter = True

F
fengjiayi 已提交
6065
    def __str__(self):
6066
        return self._to_readable_code()
F
fengjiayi 已提交
6067

F
update  
fengjiayi 已提交
6068 6069 6070
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6071

F
update  
fengjiayi 已提交
6072 6073 6074 6075 6076 6077 6078 6079
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6080 6081 6082 6083 6084 6085 6086 6087 6088
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6089 6090 6091 6092 6093 6094
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
6095
                               "do_model_average", "need_clip")
F
update  
fengjiayi 已提交
6096
            for attr_name in additional_attr:
6097 6098
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
6099 6100
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6101 6102 6103 6104
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6105

6106 6107
class ParamBase(core.VarBase):
    """
6108 6109 6110
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode). 
    A ParamBase is a persistable Tensor, and will be updated by optimizers 
    after each iteration.
6111 6112 6113
    The training of a neural network is essentially the updating of
    its ParamBase.

6114
    Relative to a general Tensor, a ParamBase has several its own
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6127 6128
        need_clip (bool): Whether the parameter gradient need to be cliped 
            in optimizer. Default is True.
6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        if len(shape) == 0:
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

        super(ParamBase, self).__init__(dtype
                                        if dtype else core.VarDesc.VarType.FP32,
                                        list(shape) if shape else [], name,
                                        core.VarDesc.VarType.LOD_TENSOR, True)

6159 6160
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6161 6162 6163 6164 6165 6166 6167

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6168 6169
        self.need_clip = kwargs.get('need_clip', True)

6170
        self.is_distributed = kwargs.get('is_distributed', False)
6171
        # self.block = default_main_program().global_block()
6172

6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
                type(trainable))

6186
    def __str__(self):
6187
        """
6188
        Convert a ParamBase object to a readable string.
6189

6190
        Returns(str): A readable string.
6191 6192 6193 6194

        Examples:
            .. code-block:: python

6195
                import paddle
6196 6197 6198 6199 6200 6201 6202
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
6203
        """
6204 6205
        return "Parameter containing:\n{tensor}".format(
            tensor=super(ParamBase, self).__str__())
6206

6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
6218

6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

6237 6238 6239 6240 6241 6242
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
        return new_param

6243 6244 6245
    __repr__ = __str__


Y
Yu Yang 已提交
6246
# program is a global instance.
Y
Yu Yang 已提交
6247 6248
_main_program_ = Program()
_startup_program_ = Program()
6249
_startup_program_._is_start_up_program_ = True
6250

6251

6252
def default_startup_program():
Y
Yu Yang 已提交
6253
    """
Y
yuyang18 已提交
6254 6255
    Get default/global startup program.

6256 6257
    The :code:`paddle.nn` function will append the initialization operators into startup program.
    The :code:`startup_program` will initialize the parameters by the OPs. 
T
tangwei12 已提交
6258

6259 6260
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
6261

6262 6263
    Returns:
        Program: current default startup program.
6264

6265
    Returns type: 
6266 6267 6268 6269

    Examples:
        .. code-block:: python

6270
            import paddle
6271

6272
            paddle.enable_static()
6273 6274 6275 6276
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
6277
    """
Y
Yu Yang 已提交
6278
    return _startup_program_
6279

6280

6281
def default_main_program():
Y
Yu Yang 已提交
6282
    """
6283
    This API can be used to get ``default main program`` which store the 
6284
    descriptions of Ops and tensors.
T
tangwei12 已提交
6285

6286
    For example ``z = paddle.add(x, y)`` will create a new ``add`` 
6287
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` . 
Y
yuyang18 已提交
6288

6289 6290
    The ``default main program`` is the default value for ``Program`` parameter in 
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
6291
    :code:`default_main_program` when the program is not specified.
6292

6293
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
6294

Y
Yu Yang 已提交
6295
    Returns:
6296
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
6297 6298 6299 6300

    Examples:
        ..  code-block:: python

6301
            import paddle
6302

6303
            paddle.enable_static()
6304
            # Sample Network:
6305 6306 6307
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
6308

6309 6310 6311
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
6312
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
6313
    """
Y
Yu Yang 已提交
6314
    return _main_program_
Y
Yu Yang 已提交
6315 6316 6317 6318 6319


def switch_main_program(program):
    """
    Switch the main program to a new program.
6320

Y
Yu Yang 已提交
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
6335
    Switch the startup program to a new program
Y
Yu Yang 已提交
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
6348
@signature_safe_contextmanager
Y
Yu Yang 已提交
6349 6350
def program_guard(main_program, startup_program=None):
    """
6351 6352
    :api_attr: Static Graph

6353 6354 6355
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
6356

G
guofei 已提交
6357
    Args:
6358 6359
        main_program(Program): New main program inside ``with`` statement.
        startup_program(Program, optional): New startup program inside ``with`` 
G
guofei 已提交
6360 6361 6362 6363
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
6364
    Examples:
6365
       .. code-block:: python
T
tangwei12 已提交
6366

6367
          import paddle
Y
yuyang18 已提交
6368

6369 6370 6371 6372 6373
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
6374
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
6375 6376 6377

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
6378

Y
Yu Yang 已提交
6379
    Examples:
6380
       .. code-block:: python
Y
yuyang18 已提交
6381

6382
          import paddle
6383

6384 6385 6386 6387 6388
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
6389

Y
Yu Yang 已提交
6390
    """
6391
    from .data_feeder import check_type
6392 6393
    check_type(main_program, 'main_program', Program,
               'paddle.static.program_guard')
Y
Yu Yang 已提交
6394 6395
    main_program = switch_main_program(main_program)
    if startup_program is not None:
6396
        check_type(startup_program, 'startup_program', Program,
6397
                   'paddle.static.program_guard')
6398 6399
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
6400
        startup_program = switch_startup_program(startup_program)
6401 6402 6403 6404 6405 6406
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
6407 6408


W
Wu Yi 已提交
6409
def _get_var(name, program=None):
X
xuwei06 已提交
6410
    """
Y
yuyang18 已提交
6411
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
6412

X
xuwei06 已提交
6413 6414 6415
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
6416
        If None, default_global_program() will be used.
X
xuwei06 已提交
6417 6418 6419 6420 6421 6422 6423

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
6424
    assert isinstance(program, Program)
X
xuwei06 已提交
6425 6426

    return program.global_block().var(name)
6427 6428


S
rename  
sneaxiy 已提交
6429
@signature_safe_contextmanager
L
lujun 已提交
6430 6431
def _dygraph_guard(tracer):
    global _dygraph_tracer_
6432
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
6433
    _dygraph_tracer_ = tracer
6434
    core._switch_tracer(tracer)
M
minqiyang 已提交
6435

6436 6437 6438
    try:
        yield
    finally:
6439 6440
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
6441 6442


S
rename  
sneaxiy 已提交
6443
@signature_safe_contextmanager
L
lujun 已提交
6444
def _dygraph_place_guard(place):
6445 6446 6447
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
6448 6449
    if _in_eager_mode():
        core.eager._set_expected_place(place)
6450 6451
    _set_dygraph_tracer_expected_place(place)

6452 6453 6454
    try:
        yield
    finally:
6455
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
6456 6457 6458
        if _in_eager_mode():
            core.eager._set_expected_place(_global_expected_place_)
        _set_dygraph_tracer_expected_place(_global_expected_place_)
6459 6460


6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
    **Notes**:
        **The API only supports static mode.**

    A context manager that specifies the device on which the OP will be placed.

    Args:
6477 6478
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs. 
6479 6480 6481 6482 6483 6484 6485 6486 6487
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
        .. code-block:: python

Z
Zhang Ting 已提交
6488
            import paddle
6489

Z
Zhang Ting 已提交
6490 6491 6492
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
6493
            if support_gpu:
Z
Zhang Ting 已提交
6494
                place = paddle.CUDAPlace(0)
6495 6496

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
6497 6498 6499
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
6500

Z
Zhang Ting 已提交
6501
            with paddle.static.device_guard("cpu"):
6502
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
6503 6504
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
6505
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
6506
                out = paddle.reshape(data1, shape=shape)
6507

Z
Zhang Ting 已提交
6508 6509
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
6510 6511 6512
            result = exe.run(fetch_list=[out])
    """

6513 6514 6515 6516 6517
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
6518
    if device not in ['cpu', 'gpu', 'npu', '', None]:
6519
        raise ValueError(
6520
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
6521
            "when there is no need to specify device. But received %s" % device)
6522 6523
    if index:
        device = ":".join([device, index])
6524
    pre_device = switch_device(device)
6525 6526 6527 6528
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
6529 6530 6531 6532 6533


def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
6534
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6535 6536 6537 6538 6539 6540 6541

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

6542 6543
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
6544 6545 6546 6547
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
6548 6549
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
6550 6551 6552 6553 6554 6555 6556 6557
        else:
            raise ValueError(
                "Flag %s cannot set its value through this function." % (key))


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
6558
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

6569
            import paddle
G
guofei 已提交
6570 6571

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
6572
            res = paddle.get_flags(flags)
G
guofei 已提交
6573 6574 6575 6576 6577 6578
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
6579 6580
            if (_global_flags().is_public(key)):
                value = _global_flags()[key]
G
guofei 已提交
6581 6582 6583 6584 6585 6586 6587
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
                    'Flag %s cannot get its value through this function.' %
                    (key))
    elif isinstance(flags, str):
6588 6589
        if (_global_flags().is_public(flags)):
            value = _global_flags()[flags]
G
guofei 已提交
6590 6591 6592 6593 6594 6595 6596 6597
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
                'Flag %s cannot get its value through this function.' % (flags))
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
6598 6599 6600 6601 6602 6603 6604


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
    if isinstance(place, (core.Place, core.XPUPlace, core.CPUPlace,
6605
                          core.CUDAPinnedPlace, core.CUDAPlace, core.NPUPlace)):
6606 6607 6608 6609 6610 6611 6612 6613 6614
        return place

    if not isinstance(place, str):
        raise ValueError(
            "place only support string which is 'Place' and so on.")

    place = place.lower()
    if (place == "cpu"):
        return core.CPUPlace()
6615

6616 6617 6618
    if (place == "device"):
        return core.Place()

6619
    # GPU
6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with CUDA".format(avaliable_gpu_place))
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
6635 6636

    # XPU
6637 6638 6639 6640 6641 6642 6643 6644 6645 6646
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with XPU".format(avaliable_xpu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
                "The device should not be {}, since PaddlePaddle is " \
                "not compiled with NPU".format(avaliable_npu_place))
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

6660
    raise ValueError(
6661 6662
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace and NPUPlace, but received {}.".
        format(place))
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret