nn.py 553.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
17 18
from __future__ import print_function

P
peizhilin 已提交
19
import os
S
sneaxiy 已提交
20
import inspect
21 22 23 24 25 26
import warnings

import numpy as np
import six

import paddle
Y
Yu Yang 已提交
27
from ..layer_helper import LayerHelper
28
from ..initializer import Normal, Constant, NumpyArrayInitializer
29
from ..framework import Variable, OpProtoHolder, in_dygraph_mode, dygraph_only, _dygraph_tracer, default_main_program
30
from .. import dygraph_utils
Y
yangyaming 已提交
31
from ..param_attr import ParamAttr
S
sneaxiy 已提交
32
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
33
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
34
from . import utils
F
fengjiayi 已提交
35
from .. import unique_name
36
from functools import reduce
37
from .. import core
38
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
39
import paddle
Y
Yu Yang 已提交
40 41

__all__ = [
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'chunk_eval',
    'conv2d',
    'conv3d',
    'softmax',
    'pool2d',
    'pool3d',
53 54
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
55
    'batch_norm',
K
Kaipeng Deng 已提交
56
    'inplace_abn',
L
lvmengsi 已提交
57
    'instance_norm',
H
heqiaozhi 已提交
58
    'data_norm',
X
Xin Pan 已提交
59 60 61 62 63 64 65
    'conv2d_transpose',
    'conv3d_transpose',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
66 67
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
68 69 70 71 72 73 74 75 76 77 78
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'transpose',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
79
    'group_norm',
D
dengkaipeng 已提交
80
    'spectral_norm',
X
Xin Pan 已提交
81 82 83 84 85 86 87
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
88
    'lod_append',
X
Xin Pan 已提交
89 90 91 92 93
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
94
    'roi_align',
X
Xin Pan 已提交
95 96 97 98
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
99
    'resize_trilinear',
100
    'resize_nearest',
X
Xin Pan 已提交
101
    'gather',
102
    'gather_nd',
X
Xin Pan 已提交
103
    'scatter',
104 105
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
106 107 108
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
109
    'selu',
X
Xin Pan 已提交
110 111
    'log',
    'crop',
112
    'crop_tensor',
X
Xin Pan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'stack',
    'pad2d',
    'unstack',
Z
zhoukunsheng 已提交
127
    'unique',
128
    'unique_with_counts',
X
Xin Pan 已提交
129
    'expand',
130
    'expand_as',
X
Xin Pan 已提交
131 132 133 134 135 136 137 138
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
139 140
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
141 142 143 144 145 146
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
147
    'strided_slice',
X
Xin Pan 已提交
148
    'shape',
Z
zhoukunsheng 已提交
149
    'rank',
Z
zhoukunsheng 已提交
150
    'size',
X
Xin Pan 已提交
151 152 153 154 155 156 157 158 159
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'maxout',
J
JiabinYang 已提交
160
    'space_to_depth',
W
whs 已提交
161
    'affine_grid',
162
    'affine_channel',
B
barrierye 已提交
163
    'similarity_focus',
M
minqiyang 已提交
164
    'hash',
D
dengkaipeng 已提交
165
    'grid_sampler',
G
gmcather 已提交
166 167
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
168
    'bilinear_tensor_product',
C
chengduo 已提交
169 170
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
S
shippingwang 已提交
171
    'shuffle_channel',
172
    'temporal_shift',
S
sneaxiy 已提交
173
    'py_func',
174
    'psroi_pool',
175
    'prroi_pool',
R
ruri 已提交
176
    'pixel_shuffle',
177
    'fsp_matrix',
H
heqiaozhi 已提交
178
    'continuous_value_model',
Z
zhoukunsheng 已提交
179
    'where',
Z
zhoukunsheng 已提交
180
    'sign',
181
    'deformable_conv',
182
    'unfold',
C
cjt222 已提交
183
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
184
    'filter_by_instag',
185
    'shard_index',
H
huangjun12 已提交
186
    'hard_swish',
G
Guo Sheng 已提交
187
    'gather_tree',
188
    'uniform_random',
Y
Yu Yang 已提交
189 190 191
]


192 193 194 195 196 197 198 199
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
200
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
201

202 203
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)
204 205


Y
Yu Yang 已提交
206 207 208 209 210 211
def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
212
       name=None):
Y
Yu Yang 已提交
213
    """
214
    **Fully Connected Layer**
Y
Yu Yang 已提交
215

216 217 218
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
219
    which represents a fully connected weight matrix from each input unit to
220 221 222 223
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
224
    is not None, a bias variable will be created and added to the output.
225
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
226

227
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
228

229 230 231 232
    .. math::

        Out = Act({XW + b})

233
    When the input is a list of Tensor(or LoDTensor):
234 235 236

    .. math::

237
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
238 239 240

    In the above equation:

241 242 243
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
244
    * :math:`b`: The bias parameter created by this layer (if needed).
245
    * :math:`Act`: The activation function.
246
    * :math:`Out`: The output Tensor.
247 248 249

    .. code-block:: text

250 251 252 253 254 255 256 257 258 259 260 261 262 263
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
264 265 266 267 268 269 270 271 272 273 274 275 276
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
277
    Args:
278 279 280
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
281
        size(int): The number of output units in this layer, which also means the feature size of output
282 283
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
284
            two dimensions. If this happens, the multidimensional tensor will first be flattened
285 286
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
287
            dimensions will be flatten to form the first dimension of the final matrix (height of
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
303 304

    Raises:
305
        ValueError: If dimensions of the input Tensor is less than 2.
306 307 308 309

    Examples:
        .. code-block:: python

310
          import paddle.fluid as fluid
311
          # when input is single tensor
312
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
313
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
314 315

          # when input are multiple tensors
316 317
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
318
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
319
    """
C
caoying03 已提交
320
    helper = LayerHelper("fc", **locals())
321
    check_type(input, 'input', (list, tuple, Variable), 'fc')
322 323
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
324
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
325
    dtype = helper.input_dtype()
326
    check_dtype(dtype, 'input', ['float16', 'float32', 'float64'], 'fc')
Y
Yu Yang 已提交
327
    mul_results = []
328 329
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
330 331
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
332 333 334
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
335

Y
Yu Yang 已提交
336
        w = helper.create_parameter(
337
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
338
        tmp = helper.create_variable_for_type_inference(dtype)
339
        helper.append_op(
340 341 342
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
343
            outputs={"Out": tmp},
M
mozga-intel 已提交
344 345
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
346 347 348 349
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
350
    else:
X
Xin Pan 已提交
351
        pre_bias = helper.create_variable_for_type_inference(dtype)
352
        helper.append_op(
353 354 355
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
356
            attrs={"use_mkldnn": False})
357 358 359 360
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
361 362


363 364 365
def embedding(input,
              size,
              is_sparse=False,
366
              is_distributed=False,
367 368 369
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
370
    """
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , 
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
        
        Case 2:
409

410 411 412 413 414 415 416 417 418 419 420 421 422 423
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
424 425

    Args:
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
449
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
450 451 452
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
453

454
    Returns:
455
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
456

457 458
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
459

B
bdzhuxiaoning 已提交
460
          import paddle.fluid as fluid
461 462 463
          import numpy as np
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
464
          # example 1
465 466 467 468 469 470 471 472 473 474
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')   
Y
Yu Yang 已提交
475 476 477
    """

    helper = LayerHelper('embedding', **locals())
478 479
    check_variable_and_dtype(input, 'input', ['int64'],
                             'fluid.layers.embedding')
480 481
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fluid.layers.embedding')
482
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
483 484
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
485 486
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
487
    tmp = helper.create_variable_for_type_inference(dtype)
488 489
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
490 491 492 493 494
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
495 496 497
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
498
            'remote_prefetch': remote_prefetch,
499 500
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
501 502 503
    return tmp


504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
def _pull_sparse(input,
                 size,
                 table_id,
                 accessor_class,
                 name="embedding",
                 ctr_label_name="",
                 padding_id=0,
                 dtype='float32',
                 scale_sparse_grad=True):
    """
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
        'is_distributed': True
    }
    # this is only for compatible with embedding op
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True)
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs,
                'W': w},
        outputs={'Out': outs},
        attrs=attrs)
    if len(outs) == 1:
        return outs[0]
    return outs


def _pull_sparse_v2(input,
                    size,
                    table_id,
                    accessor_class,
                    name="embedding",
                    ctr_label_name="",
                    padding_id=0,
                    dtype='float32',
                    scale_sparse_grad=True):
    """
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
        'is_distributed': True
    }
    # this is only for compatible with embedding op
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True)
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs,
                'W': w},
        outputs={'Out': outs},
        attrs=attrs)
    if len(outs) == 1:
        return outs[0]
    return outs


H
hutuxian 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
694
@templatedoc()
695
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
696 697 698 699 700 701
    """
    Linear Chain CRF.

    ${comment}

    Args:
702
        input(${emission_type}): ${emission_comment} 
Y
yuyang18 已提交
703
        label(${label_type}): ${label_comment}
704
        Length(${length_type}): ${length_comment}
705
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
706 707

    Returns:
D
dzhwinter 已提交
708 709
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
710
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
711

J
JesseyXujin 已提交
712 713 714
    Examples:
        .. code-block:: python

715 716 717 718 719 720 721
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
722 723
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
746 747 748
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
749 750 751 752 753 754
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
755
                     name='crfw',
756 757 758 759 760 761
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
762

763 764 765
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
766
            ll=np.array([[3],[3],[4],[2]])
767 768 769
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
770 771 772 773 774
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

775 776 777
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
778
            
Y
yuyang18 已提交
779
    """
Y
Yu Yang 已提交
780
    helper = LayerHelper('linear_chain_crf', **locals())
781
    size = input.shape[2] if length else input.shape[1]
Y
Yu Yang 已提交
782 783 784 785
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
786 787 788 789 790 791 792 793
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
794 795 796 797 798 799
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
800
        this_inputs['Length'] = [length]
Y
Yu Yang 已提交
801 802
    helper.append_op(
        type='linear_chain_crf',
803
        inputs=this_inputs,
Y
Yu Yang 已提交
804 805 806 807 808 809 810 811 812 813
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
814
@templatedoc()
815
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
816 817
    """
    ${comment}
Y
yi.wu 已提交
818

W
wopeizl 已提交
819 820
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
821

Y
Yibing Liu 已提交
822 823 824
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Y
yuyang18 已提交
825

Y
Yibing Liu 已提交
826
        label(${label_type}, optional): ${label_comment}
827
        
Y
Yibing Liu 已提交
828
        length(${length_type}, optional): ${length_comment}
829

W
wopeizl 已提交
830 831
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
832

W
wopeizl 已提交
833 834
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
835

836
           import paddle.fluid as fluid
837 838 839

           # LoDTensor-based example
           num_labels = 10
Y
Yibing Liu 已提交
840 841
           feature = fluid.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = fluid.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
842 843 844
           emission = fluid.layers.fc(input=feature, size=num_labels)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, 
Y
Yibing Liu 已提交
845
                     param_attr=fluid.ParamAttr(name="crfw"))
846
           crf_decode = fluid.layers.crf_decoding(input=emission, 
Y
Yibing Liu 已提交
847
                     param_attr=fluid.ParamAttr(name="crfw"))
848 849 850

           # Common tensor example
           num_labels, max_len = 10, 20
Y
Yibing Liu 已提交
851 852 853
           feature = fluid.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = fluid.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = fluid.data(name='length', shape=[-1, 1], dtype='int64')
854 855 856 857 858 859 860
           emission = fluid.layers.fc(input=feature, size=num_labels,
                                      num_flatten_dims=2)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, length=length, 
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
           crf_decode = fluid.layers.crf_decoding(input=emission, length=length,
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
861 862 863 864 865
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
866 867 868
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
W
wopeizl 已提交
869 870
    helper.append_op(
        type='crf_decoding',
871
        inputs=inputs,
W
wopeizl 已提交
872
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
873

W
wopeizl 已提交
874
    return viterbi_path
Y
Yu Yang 已提交
875 876


Y
yi.wu 已提交
877
@templatedoc()
F
fengjiayi 已提交
878
def cos_sim(X, Y):
Y
Yu Yang 已提交
879
    """
Y
yi.wu 已提交
880 881 882
    ${comment}

    Args:
883 884
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
885

Y
yi.wu 已提交
886
    Returns:
L
lvmengsi 已提交
887
        A Variable holding LoDTensor representing the output of cosine(X, Y).
L
lvmengsi 已提交
888 889 890 891

    Examples:
        .. code-block:: python

892
            import paddle.fluid as fluid
L
lvmengsi 已提交
893 894
            x = fluid.data(name='x', shape=[3, 7], dtype='float32')
            y = fluid.data(name='y', shape=[1, 7], dtype='float32')
L
lvmengsi 已提交
895
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
896
    """
F
fengjiayi 已提交
897
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
898 899 900
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
901 902 903 904 905 906 907 908 909 910
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
911 912 913 914 915
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
916
            dropout_implementation="downgrade_in_infer"):
917 918 919 920 921
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
922
    training. The dropout operator randomly sets (according to the given dropout
923 924 925
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
926 927
    dropout op can be removed from the program to make the program more efficient.

928
    Args:
L
lvmengsi 已提交
929
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
930
        dropout_prob (float): Probability of setting units to zero.
931 932 933 934
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
935
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
936 937
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
938 939
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
940
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
941 942

                                           - train: out = input * mask
C
ceci3 已提交
943
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
944 945 946

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
947
                                        2. upscale_in_train, upscale the outcome at training time
948

H
haowang101779990 已提交
949 950
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
951

H
haowang101779990 已提交
952 953
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
954

M
minqiyang 已提交
955

956
    Returns:
L
lvmengsi 已提交
957
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
958 959

    Examples:
960

961 962
        .. code-block:: python

963
            import paddle.fluid as fluid
L
lvmengsi 已提交
964
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
965
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
966 967
    """

968 969 970 971 972 973 974 975 976 977 978 979 980
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

    if in_dygraph_mode():
981 982 983 984 985 986 987 988 989 990
        if (seed is None or
                seed == 0) and default_main_program().random_seed != 0:
            seed = default_main_program().random_seed
        seed = seed if seed is not None else 0
        _is_test = not _dygraph_tracer()._train_mode
        out, mask = core.ops.dropout(x, 'dropout_prob', dropout_prob, 'is_test',
                                     _is_test, 'fix_seed', seed is not None,
                                     'seed', seed, 'dropout_implementation',
                                     dropout_implementation)
        return out
991

F
fengjiayi 已提交
992
    helper = LayerHelper('dropout', **locals())
993 994
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'dropout')
995

X
Xin Pan 已提交
996 997
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
998
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
999

1000
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
1001

1002 1003 1004 1005 1006
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1007
        attrs=attrs)
1008 1009 1010
    return out


Y
yi.wu 已提交
1011
@templatedoc()
Y
Yu Yang 已提交
1012 1013 1014 1015
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1016 1017
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1018
    """
G
Guo Sheng 已提交
1019 1020
    This operator computes the precision, recall and F1-score for chunk detection.
    It is often used in sequence tagging tasks, such as Named Entity Recognition(NER).
Y
yi.wu 已提交
1021

M
minqiyang 已提交
1022
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1023
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1024

G
Guo Sheng 已提交
1025 1026
    This operator supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example for the usage of these tagging schemes:
Y
yi.wu 已提交
1027 1028

    .. code-block:: python
1029

Y
yi.wu 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
G
Guo Sheng 已提交
1040
    and LOC(location), and we can see that the labels have the form `<tag type>-<chunk type>` .
Y
yi.wu 已提交
1041

G
Guo Sheng 已提交
1042 1043 1044
    Since the implementation of this operator actually uses label ids rather than
    label strings, to make it work, there should be a way to map label ids to
    tag types and chunk types. This operator uses the following way to do mapping:
Y
yi.wu 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1055

Y
yi.wu 已提交
1056 1057 1058 1059 1060 1061
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

G
Guo Sheng 已提交
1062 1063
    Accordingly, in the above NER example, if the tagging scheme is IOB and chunk
    types are ORG, PER and LOC, then the label ids would be as follows:
Y
yi.wu 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

G
Guo Sheng 已提交
1075 1076
    With which we can map each label id to the corresponding tag type and chunk
    type correctly.
Y
yi.wu 已提交
1077

Y
yi.wu 已提交
1078
    Args:
G
Guo Sheng 已提交
1079 1080 1081 1082 1083 1084
        input (Variable): A Tensor or LoDTensor, representing the predicted labels
            from the network. When it is a Tensor, its shape would be `[N, M, 1]`,
            where `N` stands for batch size, `M` for sequence length; When it is
            a LoDTensor, its shape would be `[N, 1]` where `N` stands for the total
            sequence lengths in this mini-batch. The data type should be int64.
        label (Variable): A Tensor or LoDTensor representing the ground-truth labels.
T
tianshuo78520a 已提交
1085
            It should have the same shape, lod and data type as ``input`` .
G
Guo Sheng 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094
        chunk_scheme (str): Indicate the tagging schemes used here. The value must
            be IOB, IOE, IOBES or plain.
        num_chunk_types (int): The number of chunk types.
        excluded_chunk_types (list, optional): Indicate the chunk types shouldn't
            be taken into account. It should be a list of chunk type ids(integer).
            Default None.
        seq_length(Variable, optional): A 1D Tensor containing the length of each
            sequence when ``input`` and ``label`` are Tensor. It needn't be
            provided if ``input`` and ``label`` are LoDTensor. Default None.
F
fengjiayi 已提交
1095

Y
yi.wu 已提交
1096
    Returns:
G
Guo Sheng 已提交
1097 1098 1099 1100
        tuple: A tuple including precision, recall, F1-score, chunk number detected, \
            chunk number in ground-truth, chunk number correctly detected. Each \
            is a Tensor with shape `[1]`. The data type of precision, recall and \
            F1-score all is float32, and the others' data type all is int64.
1101

Y
yi.wu 已提交
1102 1103 1104
    Examples:
        .. code-block:: python

1105 1106 1107 1108
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
G
Guo Sheng 已提交
1109 1110 1111
            sequence = fluid.data(
                name='id', shape=[-1, 1], lod_level=1, dtype='int64')
            embedding = fluid.embedding(
1112 1113 1114 1115
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1116
            crf = fluid.layers.linear_chain_crf(
1117
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1118
            crf_decode = fluid.layers.crf_decoding(
1119
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1120 1121 1122 1123 1124
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1125
    """
F
fengjiayi 已提交
1126
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1127 1128

    # prepare output
X
Xin Pan 已提交
1129 1130 1131 1132 1133 1134 1135
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1136

1137 1138 1139 1140 1141
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1142 1143
    helper.append_op(
        type="chunk_eval",
1144
        inputs=this_input,
Y
Yu Yang 已提交
1145 1146 1147
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1148 1149 1150 1151
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1152 1153 1154
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1155 1156
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1157
        })
1158 1159
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1160 1161


1162
def softmax(input, use_cudnn=False, name=None, axis=-1):
Y
Yu Yang 已提交
1163
    """
1164
    This operator implements the softmax layer. The calculation process is as follows:
1165

1166
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1167
    
1168 1169 1170 1171 1172 1173 1174
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1175

1176 1177
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2 
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1178

1179 1180 1181 1182 1183
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1184

1185
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1186

1187
    .. math::
1188

1189
        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
1190

1191
    Example:
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]] 

Q
qiaolongfei 已提交
1238
    Args:
1239 1240
        input (Variable): The input variable. A multi-dimension ``Tensor`` with type float32 or float64.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
T
tianshuo78520a 已提交
1241
            library is installed. To improve numerical stability, set use_cudnn to \
1242 1243
            False by default.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1244
            will be named automatically. Default: None.
1245
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1246
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
1247
            input variable. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1248 1249

    Returns:
1250
        Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1251 1252 1253 1254 1255

    Examples:

        .. code-block:: python

1256 1257
            import paddle.fluid as fluid
            import numpy as np
Q
qiaolongfei 已提交
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267
            data = fluid.data(name="input", shape=[-1, 3],dtype="float32")
            result = fluid.layers.softmax(data,axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 3).astype("float32")
            output= exe.run(feed={"input": x},
                             fetch_list=[result[0]])
            print(output)
Q
qiaolongfei 已提交
1268
    """
1269 1270

    if in_dygraph_mode():
1271 1272 1273 1274
        return core.ops.softmax(input, 'axis', axis, 'use_cudnn', use_cudnn)

    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}
1275

1276
    helper = LayerHelper('softmax', **locals())
1277 1278
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'softmax')
1279

1280
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1281
    softmax_out = helper.create_variable_for_type_inference(dtype)
1282 1283 1284 1285
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
1286
        attrs=attrs)
1287 1288 1289
    return softmax_out


Y
Yu Yang 已提交
1290 1291 1292
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1293 1294
           stride=1,
           padding=0,
1295
           dilation=1,
Y
Yu Yang 已提交
1296 1297 1298
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1299
           use_cudnn=True,
1300
           act=None,
L
liym27 已提交
1301 1302
           name=None,
           data_format="NCHW"):
Y
Yu Yang 已提交
1303
    """
C
chengduoZH 已提交
1304
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1305
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1306
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1307
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1308 1309 1310 1311 1312 1313
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1314
    for more details.
1315 1316 1317
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1318

1319
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1320

C
chengduoZH 已提交
1321 1322
    .. math::

C
refine  
chengduoZH 已提交
1323
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1324

T
tensor-tang 已提交
1325
    Where:
C
chengduoZH 已提交
1326

L
liym27 已提交
1327
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1328 1329 1330 1331
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1332
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1333 1334 1335

    Example:

1336 1337
        - Input:

W
weixing02 已提交
1338
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1339

W
weixing02 已提交
1340
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1341

1342
        - Output:
T
tensor-tang 已提交
1343

W
weixing02 已提交
1344
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1345

C
chengduoZH 已提交
1346
        Where
1347 1348

        .. math::
C
chengduoZH 已提交
1349

W
weixing02 已提交
1350 1351
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1352 1353

    Args:
L
lvmengsi 已提交
1354 1355
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type 
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1356
        num_filters(int): The number of filter. It is as same as the output
1357
            image channel.
1358 1359
        filter_size (int|tuple): The filter size. If filter_size 
            is a tuple, it must contain two integers, (filter_size_height, 
L
lvmengsi 已提交
1360 1361 1362 1363 1364 1365
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
        stride (int|tuple): The stride size. It means the stride in convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1366
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1367 1368
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
L
lvmengsi 已提交
1369 1370 1371
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1372 1373 1374
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1375 1376 1377 1378
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a tuple, it must contain two integers, (dilation_height, 
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1379 1380 1381 1382
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1383 1384 1385 1386 1387
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1388
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1389 1390 1391 1392 1393
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1394 1395
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1396 1397
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
L
lvmengsi 已提交
1398 1399 1400
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1401 1402
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1403 1404
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1405 1406

    Returns:
L
lvmengsi 已提交
1407 1408 1409 1410
        A Variable holding Tensor representing the conv2d, whose data type is the 
        same with input. If act is None, the tensor variable storing the convolution 
        result, and if act is not None, the tensor variable storing convolution 
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1425 1426 1427
    Examples:
        .. code-block:: python

1428
          import paddle.fluid as fluid
L
lvmengsi 已提交
1429
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
1430
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1431 1432
    """

1433 1434
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'conv2d')
1435
    num_channels = input.shape[1]
L
liym27 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NHWC")
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduo 已提交
1451
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1452

1453
    l_type = 'conv2d'
X
xzl 已提交
1454 1455
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1456
        l_type = 'depthwise_conv2d'
1457 1458 1459 1460

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1461 1462 1463 1464
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1465
            raise ValueError(
1466 1467 1468
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
                ", the groups is {}".format(num_channels, input.shape, groups))
M
minqiyang 已提交
1469
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1470

C
chengduoZH 已提交
1471 1472
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1473
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1474

L
liym27 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1498 1499 1500
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1515
            padding = [0, 0]
L
liym27 已提交
1516 1517
        elif padding == "SAME":
            padding_algorithm = "SAME"
1518
            padding = [0, 0]
L
liym27 已提交
1519 1520

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1521

M
minqiyang 已提交
1522
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1523 1524

    def _get_default_param_initializer():
C
chengduo 已提交
1525 1526
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1527 1528 1529 1530 1531 1532 1533 1534
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1535
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1536 1537

    helper.append_op(
1538
        type=l_type,
Y
Yu Yang 已提交
1539 1540 1541 1542 1543
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1544 1545 1546
        attrs={
            'strides': stride,
            'paddings': padding,
1547
            'dilations': dilation,
C
chengduoZH 已提交
1548
            'groups': groups,
1549
            'use_cudnn': use_cudnn,
1550
            'use_mkldnn': False,
L
liym27 已提交
1551 1552 1553
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1554
        })
Y
Yu Yang 已提交
1555

1556 1557 1558 1559
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1560 1561 1562 1563

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
L
liym27 已提交
1575 1576
           name=None,
           data_format="NCDHW"):
C
chengduoZH 已提交
1577 1578 1579
    """
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
L
liym27 已提交
1580
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
1581 1582 1583 1584 1585
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

L
liym27 已提交
1595
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
1596
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1597 1598 1599
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1600
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
L
lvmengsi 已提交
1622 1623
        input (Variable): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
            type of input is float16 or float32 or float64.
1624
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
1625
            image channel.
1626 1627 1628 1629
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height, 
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
L
lvmengsi 已提交
1630 1631 1632 1633
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a 
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
T
tianshuo78520a 已提交
1634
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
L
liym27 已提交
1635 1636 1637 1638 1639 1640 1641 1642
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1643 1644 1645 1646
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
chengduoZH 已提交
1647 1648 1649 1650 1651
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1662 1663
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1664 1665
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
L
lvmengsi 已提交
1666 1667 1668
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1669 1670 1671 1672
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1673 1674

    Returns:
L
lvmengsi 已提交
1675 1676 1677 1678
        A Variable holding Tensor representing the conv3d, whose data type is 
        the same with input. If act is None, the tensor variable storing the 
        convolution result, and if act is not None, the tensor variable storing 
        convolution and non-linearity activation result.
C
chengduoZH 已提交
1679

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1693 1694 1695
    Examples:
        .. code-block:: python

1696
          import paddle.fluid as fluid
L
lvmengsi 已提交
1697
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
1698
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1699 1700 1701
    """

    l_type = 'conv3d'
C
chengduo 已提交
1702
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1703 1704 1705
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

L
liym27 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NDHWC")
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduoZH 已提交
1721 1722 1723 1724 1725

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1726 1727 1728 1729
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)." %
                (str(num_channels), str(groups)))
M
minqiyang 已提交
1730
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1731 1732 1733 1734 1735

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

L
liym27 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
1758 1759
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1760 1761
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
1762 1763
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1778
            padding = [0, 0, 0]
L
liym27 已提交
1779 1780
        elif padding == "SAME":
            padding_algorithm = "SAME"
1781
            padding = [0, 0, 0]
L
liym27 已提交
1782 1783

    padding = _update_padding(padding, data_format)
C
chengduoZH 已提交
1784 1785 1786 1787 1788

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1789 1790 1791
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1792 1793 1794 1795 1796 1797 1798 1799
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1800
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
L
liym27 已提交
1815 1816 1817
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1818 1819
        })

1820 1821 1822 1823
    if data_format == 'NCDHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
C
chengduoZH 已提交
1824 1825 1826 1827

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1828
@templatedoc()
Y
Yu Yang 已提交
1829
def pool2d(input,
C
chengduoZH 已提交
1830 1831
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1832 1833
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1834
           global_pooling=False,
C
chengduoZH 已提交
1835
           use_cudnn=True,
1836
           ceil_mode=False,
1837
           name=None,
1838 1839
           exclusive=True,
           data_format="NCHW"):
Y
Yu Yang 已提交
1840
    """
F
fengjiayi 已提交
1841
    ${comment}
1842 1843

    Args:
K
Kaipeng Deng 已提交
1844 1845 1846 1847 1848
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1849
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1850 1851
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1852
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1853 1854 1855
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1856 1857 1858 1859 1860 1861 1862
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1863
            Otherwise, the pool padding size will be a square of an int.
1864 1865 1866
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1867 1868 1869
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1870
        exclusive (bool): Whether to exclude padding points in average pooling
1871 1872 1873 1874
                          mode, default is `true`.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1875

1876
    Returns:
K
Kaipeng Deng 已提交
1877
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1878 1879

    Raises:
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1892 1893 1894 1895 1896

    Examples:

        .. code-block:: python

1897
          import paddle.fluid as fluid
1898

K
Kaipeng Deng 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1942 1943 1944
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1945
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
1946
            str(pool_type))
C
chengduoZH 已提交
1947

C
chengduoZH 已提交
1948 1949
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1950 1951 1952 1953
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received pool_size: %s." % str(pool_size))

    if not isinstance(use_cudnn, bool):
1954 1955
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s." % str(use_cudnn))
1956 1957 1958 1959 1960

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
C
chengduoZH 已提交
1961

C
chengduoZH 已提交
1962 1963 1964
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1987

1988 1989
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2004
            pool_padding = [0, 0]
2005 2006 2007 2008 2009 2010
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2011
            pool_padding = [0, 0]
2012 2013 2014 2015 2016

    pool_padding = update_padding(pool_padding, data_format)

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2017
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2018
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2019 2020

    helper.append_op(
2021
        type=op_type,
2022 2023 2024 2025 2026 2027 2028 2029
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
2030
            "padding_algorithm": padding_algorithm,
2031 2032
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2033 2034
            "use_mkldnn": False,
            "exclusive": exclusive,
2035
            "data_format": data_format,
2036 2037 2038 2039 2040
        })

    return pool_out


D
dengkaipeng 已提交
2041
@templatedoc()
2042 2043 2044 2045 2046 2047 2048 2049
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2050
           name=None,
2051 2052
           exclusive=True,
           data_format="NCDHW"):
2053
    """
2054
    ${comment}
2055 2056

    Args:
K
Kaipeng Deng 已提交
2057 2058
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of
2059 2060 2061
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
2062
                          of the feature.
D
dengkaipeng 已提交
2063 2064 2065 2066 2067
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
2079 2080 2081
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
2082 2083 2084
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2085
        exclusive (bool): Whether to exclude padding points in average pooling
2086 2087 2088 2089
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
2090

2091
    Returns:
K
Kaipeng Deng 已提交
2092
        Variable: The output tensor of pooling result. The data type is same as input tensor.
D
dengkaipeng 已提交
2093

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    Raises:
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

D
dengkaipeng 已提交
2107 2108 2109 2110
    Examples:

        .. code-block:: python

2111
          import paddle.fluid as fluid
2112

K
Kaipeng Deng 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
          data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')

          # max pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
2161 2162 2163
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
2164
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
2165
            str(pool_type))
C
chengduoZH 已提交
2166

C
chengduoZH 已提交
2167 2168
    if global_pooling is False and pool_size == -1:
        raise ValueError(
2169 2170 2171 2172 2173
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received Attr(pool_size): %s." %
            str(pool_size))

    if not isinstance(use_cudnn, bool):
2174 2175
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s. " % str(use_cudnn))
2176 2177 2178 2179 2180

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s" % str(data_format))
C
chengduoZH 已提交
2181

2182 2183
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2184

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
2207 2208
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2209 2210 2211

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
2212 2213
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2228
            pool_padding = [0, 0, 0]
2229 2230 2231 2232 2233 2234
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2235
            pool_padding = [0, 0, 0]
2236 2237 2238 2239 2240

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2241
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2242
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2243 2244

    helper.append_op(
2245
        type=op_type,
Y
Yu Yang 已提交
2246 2247 2248 2249 2250 2251 2252
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2253
            "paddings": pool_padding,
2254
            "padding_algorithm": padding_algorithm,
2255
            "use_cudnn": use_cudnn,
2256
            "ceil_mode": ceil_mode,
2257 2258
            "use_mkldnn": False,
            "exclusive": exclusive,
2259
            "data_format": data_format,
Y
Yu Yang 已提交
2260 2261 2262 2263 2264
        })

    return pool_out


2265 2266 2267 2268 2269 2270 2271
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2272
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2273 2274 2275 2276
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
K
Kaipeng Deng 已提交
2277
    is same as Parameter(pool_size). The output tensor shape will be [N, C, pool_size[0], pool_size[1]]
2278

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2292 2293

    Args:
K
Kaipeng Deng 已提交
2294 2295 2296 2297 2298
        input (Variable): The input tensor of pooling operator, which is a 4-D tensor
                          with shape [N, C, H, W].  The format of input tensor is NCHW,
                          where N is batch size, C is the number of channels, H is the
                          height of the feature, and W is the width of the feature.
                          The data type is float32 or float64.
2299 2300 2301
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2302
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2303 2304 2305 2306
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2307 2308

    Returns:
K
Kaipeng Deng 已提交
2309 2310
        Variable: The output tensor of adaptive pooling result. The data type is same 
                  as input tensor.
2311 2312 2313 2314 2315 2316 2317 2318 2319

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2320
          # average adaptive pool2d
M
minqiyang 已提交
2321
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2322
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
M
minqiyang 已提交
2323
          # of input data into m * n grids averagely and performs poolings in each
2324 2325
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2326
          #
2327 2328 2329 2330 2331 2332 2333 2334
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2335
          import paddle.fluid as fluid
K
Kaipeng Deng 已提交
2336
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2337
          pool_out = fluid.layers.adaptive_pool2d(
2338 2339
                            input=data,
                            pool_size=[3, 3],
2340
                            pool_type='avg')
K
Kaipeng Deng 已提交
2341 2342 2343

          # max adaptive pool2d
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2344
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
K
Kaipeng Deng 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
          # of input data into m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle.fluid as fluid
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool2d(
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max')
2363
    """
2364 2365 2366 2367 2368 2369
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'adaptive_pool2d')
    check_type(pool_type, 'pool_type', str, 'adaptive_pool2d')
    check_type(pool_size, 'pool_size', (int, list, tuple), 'adaptive_pool2d')
    check_type(require_index, 'require_index', bool, 'adaptive_pool2d')
2370 2371 2372 2373 2374 2375 2376 2377 2378
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2379
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2405
    return (pool_out, mask) if require_index else pool_out
2406 2407 2408 2409 2410 2411 2412 2413 2414


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2415
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2416 2417 2418 2419
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
K
Kaipeng Deng 已提交
2420 2421
    dimensions of output(Out) is same as Parameter(pool_size). The output tensor shape
    will be [N, C, pool_size[0], pool_size[1], pool_size[2]]
2422

2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2440 2441

    Args:
K
Kaipeng Deng 已提交
2442 2443 2444
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with 
                          shape [N, C, D, H, W]. The format of input tensor is NCDHW, where
                          N is batch size, C is the number of channels, D is the depth of the feature,
D
dengkaipeng 已提交
2445
                          H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
2446
                          The data type is float32 or float64.
2447
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2448
            it must contain three integers, (Depth, Height, Width).
2449
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2450
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2451 2452 2453 2454
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2455 2456

    Returns:
K
Kaipeng Deng 已提交
2457
        Variable: The output tensor of adaptive pooling result. The data type is same as input tensor.
2458 2459 2460 2461 2462 2463 2464 2465 2466

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2467
          # average adaptive pool3d
2468
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2469
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
M
minqiyang 已提交
2470
          # of input data into l * m * n grids averagely and performs poolings in each
2471 2472
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2473
          #
2474 2475 2476 2477 2478 2479 2480 2481 2482
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2483
          #                 output[:, :, i, j, k] =
2484 2485
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2486 2487 2488

          import paddle.fluid as fluid

K
Kaipeng Deng 已提交
2489 2490
          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
2491
          pool_out = fluid.layers.adaptive_pool3d(
2492
                            input=data,
D
dengkaipeng 已提交
2493
                            pool_size=[3, 3, 3],
2494
                            pool_type='avg')
K
Kaipeng Deng 已提交
2495 2496 2497

          # max adaptive pool3d
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2498
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
K
Kaipeng Deng 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
          # of input data into l * m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] =
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #

          import paddle.fluid as fluid

          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
                            input=data,
                            pool_size=[3, 3, 3],
                            pool_type='max')
2524
    """
2525 2526 2527 2528 2529 2530
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'adaptive_pool3d')
    check_type(pool_type, 'pool_type', str, 'adaptive_pool3d')
    check_type(pool_size, 'pool_size', (int, list, tuple), 'adaptive_pool3d')
    check_type(require_index, 'require_index', bool, 'adaptive_pool3d')
2531 2532 2533 2534 2535 2536 2537 2538 2539
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2540
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2566
    return (pool_out, mask) if require_index else pool_out
2567 2568


Y
Yu Yang 已提交
2569 2570 2571 2572 2573 2574 2575
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2576
               data_layout='NCHW',
Y
Yang Yang 已提交
2577
               in_place=False,
2578 2579
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2580
               moving_variance_name=None,
2581
               do_model_average_for_mean_and_var=True,
2582
               use_global_stats=False):
Y
Yu Yang 已提交
2583
    """
Q
qiaolongfei 已提交
2584 2585
    **Batch Normalization Layer**

L
lvmengsi 已提交
2586
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
2587
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2588

Q
qiaolongfei 已提交
2589
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2590

Q
qiaolongfei 已提交
2591 2592
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2593 2594 2595
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2608

L
lvmengsi 已提交
2609 2610 2611
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum) 

2612

L
lvmengsi 已提交
2613
    moving_mean is global mean and moving_var is global variance.
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
2627 2628 2629
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.
2630
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
2631

2632
    Args:
2633
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
L
lvmengsi 已提交
2634
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
2635
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2636 2637
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
2638 2639 2640
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
2641 2642 2643 2644 2645
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2646 2647
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
2648 2649 2650
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
2651 2652
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
2653 2654 2655
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
2656
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
K
Kaipeng Deng 已提交
2657 2658 2659
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
2660
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
L
lvmengsi 已提交
2661 2662 2663
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
2664 2665
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
L
lvmengsi 已提交
2666
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
2667 2668
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
2669 2670
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
2671 2672 2673 2674 2675
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2676
    Returns:
L
lvmengsi 已提交
2677 2678
        A Variable holding Tensor which is the result after applying batch normalization on the input, 
        has same shape and data type with input. 
Q
qiaolongfei 已提交
2679 2680 2681 2682 2683

    Examples:

        .. code-block:: python

2684
            import paddle.fluid as fluid
L
lvmengsi 已提交
2685
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
Q
qiaolongfei 已提交
2686 2687
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714

        .. code-block:: python

            # batch_norm with momentum as Variable
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            def get_decay_momentum(momentum_init, decay_steps, decay_rate):
                global_step = lr_scheduler._decay_step_counter()
                momentum = fluid.layers.create_global_var(
		    shape=[1],
		    value=float(momentum_init),
		    dtype='float32',
		    # set persistable for save checkpoints and resume
		    persistable=True,
		    name="momentum")
                div_res = global_step / decay_steps
                decayed_momentum = momentum_init * (decay_rate**div_res)
                fluid.layers.assign(decayed_momentum, momentum)

                return momentum

            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            momentum = get_decay_momentum(0.9, 1e5, 0.9)
            hidden2 = fluid.layers.batch_norm(input=hidden1, momentum=momentum)

Y
Yu Yang 已提交
2715
    """
C
chengduo 已提交
2716
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2717 2718
    helper = LayerHelper('batch_norm', **locals())

2719 2720
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'batch_norm')
2721
    dtype = helper.input_dtype()
2722 2723 2724 2725 2726 2727 2728

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

W
Wu Yi 已提交
2729 2730 2731 2732
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
2751
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2752

2753 2754
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2755 2756 2757
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2758
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2759
        shape=param_shape,
W
Wu Yi 已提交
2760
        dtype=dtype)
2761 2762 2763 2764 2765 2766
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2767
            trainable=False,
W
wanghaoshuang 已提交
2768
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2769
        shape=param_shape,
W
Wu Yi 已提交
2770
        dtype=dtype)
2771
    variance.stop_gradient = True
Y
Yu Yang 已提交
2772 2773 2774 2775 2776 2777

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2778 2779 2780 2781
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2782

2783 2784 2785 2786 2787
    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

K
Kaipeng Deng 已提交
2788 2789
    batch_norm_out = input if in_place else \
            helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2790

2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

Y
Yu Yang 已提交
2821
    helper.append_op(
2822
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
Y
Yu Yang 已提交
2823 2824 2825 2826

    return helper.append_activation(batch_norm_out)


K
Kaipeng Deng 已提交
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
def inplace_abn(input,
                act=None,
                is_test=False,
                momentum=0.9,
                epsilon=1e-05,
                param_attr=None,
                bias_attr=None,
                data_layout='NCHW',
                name=None,
                moving_mean_name=None,
                moving_variance_name=None,
                do_model_average_for_mean_and_var=True,
                use_global_stats=False,
                act_alpha=1.0):
    """
    **In-place Activation Batch Normalization Layer**
    
    This layer calculates batch normalization and activation with in-place memory.
    For batch normalization calculations, see `fluid.layers.batch_norm`.
    For in-place activation batch normalization, see `In-Place Activated BatchNorm for 
    Memory-Optimized Training of DNNs <https://arxiv.org/abs/1712.02616>`_

    `inplace_abn` only support activation type as `None`, `identity`, `leaky_relu`,
    `elu` currently.
    `inplace_abn` only support data type as `float32`, `float64` currently.

    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.

    Args:
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
            is float16 or float32 or float64.
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of inplace_abn. If it is set to None or one attribute of ParamAttr, inplace_abn 
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of inplace_abn.
             If it is set to None or one attribute of ParamAttr, inplace_abn 
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, inplace_abn will save global mean with a random name, otherwise, inplace_abn 
            will save global mean with the string.
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
            If it is set to None, inplace_abn, will save global variance with a random name, otherwise, inplace_abn 
            will save global variance with the string.
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
        act_alpha(float, Default 1.0): when activation is in ['elu', 'identity', 'leaky_relu'],
            inplace activative batch normalization will be used, and alpha parameter for activation
            can be given by this parameter.
    Returns:
        A Variable holding Tensor which is the result after applying batch normalization and activation on the input, 
        has same shape and data type with input. 

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.inplace_abn(input=hidden1)
            hidden3 = fluid.layers.inplace_abn(input=hidden2, act='leaky_relu', act_alpha=0.2)

    """
    assert act in [None, 'identity', 'leaky_relu', 'elu'], \
        "inplace_abn only support act as None, 'identity', " \
        "'leaky_relu', 'elu' currently"
    assert bias_attr is not False, "bias_attr should not be False in inplace_abn."
    helper = LayerHelper('inplace_abn', **locals())

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'inplace_abn')
    dtype = helper.input_dtype()

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)

    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
        shape=param_shape,
        dtype=dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
        shape=param_shape,
        dtype=dtype)
    variance.stop_gradient = True

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

    batch_norm_out = input

    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats,
        "activation": act,
        "alpha": act_alpha,
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

    helper.append_op(
        type="inplace_abn", inputs=inputs, outputs=outputs, attrs=attrs)

    return batch_norm_out


L
lvmengsi 已提交
3030 3031 3032 3033 3034 3035 3036 3037
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

L
lvmengsi 已提交
3038
    Can be used as a normalizer function for convolution or fully_connected operations.
L
lvmengsi 已提交
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
L
lvmengsi 已提交
3052
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
3053
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
L
lvmengsi 已提交
3054
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
3055 3056 3057 3058
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

L
lvmengsi 已提交
3059 3060
    Note:
        `H` means height of feature map, `W` means width of feature map.
L
lvmengsi 已提交
3061 3062

    Args:
L
lvmengsi 已提交
3063 3064
        input(variable): The rank of input variable can be 2, 3, 4, 5. 
            The data type is float32 or float64.
L
lvmengsi 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
L
lvmengsi 已提交
3081 3082
        A Variable holding Tensor which is the result after applying instance normalization on the input, 
        has same shape and data type with input. 
L
lvmengsi 已提交
3083 3084 3085 3086 3087 3088

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
L
lvmengsi 已提交
3089
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
L
lvmengsi 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
3153
              do_model_average_for_mean_and_var=True,
H
hutuxian 已提交
3154 3155 3156
              slot_dim=-1,
              sync_stats=False,
              summary_decay_rate=0.9999999):
H
heqiaozhi 已提交
3157 3158 3159
    """
    **Data Normalization Layer**

3160
    This op can be used as a normalizer function for conv2d and fully_connected operations.
H
heqiaozhi 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
3184 3185 3186 3187
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
H
heqiaozhi 已提交
3188 3189 3190 3191 3192
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3193 3194
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
3195 3196 3197 3198 3199 3200 3201
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we 
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot 
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate 
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
H
hutuxian 已提交
3202 3203 3204
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
H
heqiaozhi 已提交
3205 3206 3207 3208 3209 3210 3211

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3212 3213
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3214

3215
            hidden1 = fluid.data(name="hidden1", shape=[64, 200])
3216
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
H
hutuxian 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        attrs={
            "epsilon": epsilon,
            "slot_dim": slot_dim,
            "sync_stats": sync_stats,
            "summary_decay_rate": summary_decay_rate
        })
H
heqiaozhi 已提交
3293 3294 3295 3296

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3297
@templatedoc()
G
guosheng 已提交
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
3308 3309 3310 3311
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
3312 3313 3314

    The formula is as follows:

Y
yuyang18 已提交
3315
    ..  math::
G
guosheng 已提交
3316

3317
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
3318

3319
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
3320

3321
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
3322

3323 3324 3325 3326 3327
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3328

G
guosheng 已提交
3329
    Args:
3330 3331 3332 3333 3334 3335
        input(Variable): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
3336
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
3337 3338 3339 3340
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
3341 3342
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3343
            a default :code:`ParamAttr` would be added as scale. The
3344 3345
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
3346 3347
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3348
            a default :code:`ParamAttr` would be added as bias. The
3349
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
3350
        act(str, optional): Activation to be applied to the output of layer normalization.
3351 3352
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
3353 3354

    Returns:
3355
        Variable: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
3356 3357 3358

    Examples:

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            x = fluid.data(name='x', shape=[-1, 32, 32], dtype='float32')
            hidden1 = fluid.layers.layer_norm(input=x, begin_norm_axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            np_x = np.random.random(size=(8, 3, 32, 32)).astype('float32')
            output = exe.run(feed={"x": np_x}, fetch_list = [hidden1])
            print(output)
G
guosheng 已提交
3371
    """
L
lujun 已提交
3372
    assert in_dygraph_mode(
3373
    ) is not True, "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
3374 3375 3376 3377 3378 3379 3380 3381
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
3382
        assert param_attr is not False, "param_attr should not be False when using scale."
G
guosheng 已提交
3383 3384 3385 3386 3387 3388
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
3389 3390
    else:
        if param_attr:
T
tianshuo78520a 已提交
3391
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
3392
    if shift:
3393
        assert bias_attr is not False, "bias_attr should not be False when using shift."
G
guosheng 已提交
3394 3395 3396
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias
3397 3398
    else:
        if bias_attr:
T
tianshuo78520a 已提交
3399
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
3400 3401

    # create output
X
Xin Pan 已提交
3402 3403 3404 3405 3406
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3434
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3435

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
    Parameters:
        input(Variable): 4-D Tensor, the data type is float32 or float64.
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
T
tianshuo78520a 已提交
3450
        act(str, optional): Activation to be applied to the output of group normalization.
3451 3452 3453 3454
        data_layout(str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
3455 3456
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .
D
Dun 已提交
3457 3458

    Returns:
3459 3460 3461 3462
        Variable: A 4-D Tensor has same data type and data format with `input`.

    Raises:
        ValueError: If `data_layout` is neither 'NCHW' nor 'NHWC'.
3463 3464 3465 3466 3467 3468
        ValueError: If `groups` is greater than the number of input channels.
        ValueError: If `groups` is less than 1.
        ShapeError: If the param_attr(Scale) is not 1-D Tensor.
        ShapeError: If the param_attr(Scale)'s first dimension size is not equal to the input channels.
        ShapeError: If the bias_attr(Bias) is not 1-D Tensor.
        ShapeError: If the bias_attr(Bias)'s first dimension size is not equal to the input channels.
D
Dun 已提交
3469 3470

    Examples:
3471
       .. code-block:: python
D
Dun 已提交
3472

3473 3474 3475
            import paddle.fluid as fluid
            data = fluid.data(name='data', shape=[None, 8, 32, 32], dtype='float32')
            x = fluid.layers.group_norm(input=data, groups=4)
D
Dun 已提交
3476 3477 3478 3479 3480 3481 3482
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3483 3484 3485 3486 3487 3488
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3502 3503
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3514 3515 3516 3517 3518
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3519 3520 3521 3522 3523

    return helper.append_activation(group_norm_out)


@templatedoc()
3524
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3525 3526 3527
    """
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
3528
    This operation calculates the spectral normalization value of weight parameters of
3529
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
3530 3531
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
3532

D
dengkaipeng 已提交
3533 3534 3535
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3536
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3537 3538

    Step 2:
T
tianshuo78520a 已提交
3539
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
3540 3541
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
3542 3543 3544 3545 3546 3547 3548 3549

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3550
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3551 3552 3553 3554

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3555

D
dengkaipeng 已提交
3556
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3557 3558
                

D
dengkaipeng 已提交
3559 3560 3561 3562
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3563 3564 3565
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
3566 3567 3568
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
3569 3570

    Returns:
D
dengkaipeng 已提交
3571
        Variable: A tensor variable of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
3572
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
3573 3574

    Examples:
K
Kaipeng Deng 已提交
3575
       .. code-block:: python
D
dengkaipeng 已提交
3576

K
Kaipeng Deng 已提交
3577 3578
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
3579
            weight = fluid.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
3580
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3581 3582
    """
    helper = LayerHelper('spectral_norm', **locals())
3583 3584 3585 3586 3587
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                             'spectral_norm')
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
3588
    dtype = weight.dtype
D
dengkaipeng 已提交
3589 3590 3591

    # create intput and parameters
    inputs = {'Weight': weight}
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3610 3611

    # create output
3612
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3613 3614

    helper.append_op(
3615
        type="spectral_norm",
D
Dun 已提交
3616
        inputs=inputs,
3617 3618 3619 3620 3621 3622
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3623

3624
    return out
D
Dun 已提交
3625 3626


Y
Yu Yang 已提交
3627 3628 3629 3630
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3631 3632 3633
                     padding=0,
                     stride=1,
                     dilation=1,
3634
                     groups=None,
C
caoying03 已提交
3635
                     param_attr=None,
3636
                     bias_attr=None,
C
chengduoZH 已提交
3637
                     use_cudnn=True,
3638
                     act=None,
3639 3640
                     name=None,
                     data_format='NCHW'):
Y
Yu Yang 已提交
3641
    """
3642 3643
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3644
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
3645 3646 3647
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3648
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3649
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3650 3651 3652
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3653 3654 3655 3656 3657

    For each input :math:`X`, the equation is:

    .. math::

3658
        Out = \sigma (W \\ast X + b)
3659

3660
    Where:
3661

3662 3663
    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
3664
    * :math:`\\ast`: Convolution operation.
3665
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3666
    * :math:`\\sigma`: Activation function.
3667
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3668

3669 3670 3671 3672
    Example:

        - Input:

3673
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3674

3675
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3676 3677 3678

        - Output:

3679
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3680 3681

        Where
Y
Yu Yang 已提交
3682

3683 3684
        .. math::

3685 3686
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3687
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
3688 3689
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

L
lvmengsi 已提交
3690
    Note:
L
lvmengsi 已提交
3691 3692 3693 3694
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
L
lvmengsi 已提交
3695 3696 3697 3698
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3699 3700

    Args:
3701 3702
        input(Variable): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
                         its data type is float32 or float64.
3703 3704
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3705
        output_size(int|tuple, optional): The output image size. If output size is a
3706
            tuple, it must contain two integers, (image_height, image_width). None if use
3707
            filter_size, padding, and stride to calculate output_size.
L
lvmengsi 已提交
3708 3709 3710
            If output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and filter_size 
            should not be None at the same time.
3711
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
3712 3713
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
L
lvmengsi 已提交
3714 3715 3716 3717 3718 3719 3720
            use output size to calculate filter_size. Default: None. filter_size and 
            output_size should not be None at the same time.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
3721 3722 3723 3724 3725 3726 3727 3728 3729
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in three forms:
             `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
            when `data_format` is `'NCHW'`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NHWC'`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3730 3731 3732 3733 3734 3735 3736
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). 
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
            use output size to calculate filter_size. Default: None.
3737
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
3738 3739 3740 3741
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3742
            Default: groups = 1.
3743
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3744 3745 3746
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3747
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
C
chengduo 已提交
3748 3749 3750 3751
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3752
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3753
            library is installed. Default: True.
3754
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3755
            Default: None.
L
lvmengsi 已提交
3756 3757 3758
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3759 3760 3761 3762
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3763 3764

    Returns:
L
lvmengsi 已提交
3765 3766 3767 3768 3769 3770
        A Variable holding Tensor representing the conv2d_transpose, whose 
        data type is the same with input and shape is (num_batches, channels, out_h, 
        out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor variable 
        storing the transposed convolution result, and if act is not None, the 
        tensor variable storing transposed convolution and non-linearity activation 
        result.
3771 3772

    Raises:
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3784 3785 3786 3787

    Examples:
       .. code-block:: python

3788
          import paddle.fluid as fluid
L
lvmengsi 已提交
3789
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
3790
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3791
    """
C
chengduo 已提交
3792
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3793 3794 3795 3796
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received "
            + data_format + " but only NCHW or NHWC supported.")
3797

3798
    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
3799 3800 3801 3802 3803 3804
    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3805 3806 3807
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3808 3809
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3810

C
chengduoZH 已提交
3811 3812
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3813

3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

Y
Yu Yang 已提交
3857 3858 3859 3860 3861
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3862

3863 3864
        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
G
guosheng 已提交
3865

3866 3867 3868 3869
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3870
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3871 3872 3873
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3874

3875 3876 3877
    if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
        padding = [padding[0], padding[2]]

3878 3879
    if output_size is None:
        output_size = []
3880
    elif isinstance(output_size, (list, tuple, int)):
3881 3882
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
3883
        raise ValueError("output_size should be int, list[int] or tuple[int]")
3884
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3885
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3886

Y
Yu Yang 已提交
3887 3888 3889
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3890
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3891
    helper.append_op(
3892
        type=op_type,
Y
Yu Yang 已提交
3893 3894
        inputs={'Input': [input],
                'Filter': [img_filter]},
3895
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3896
        attrs={
3897
            'output_size': output_size,
3898 3899
            'strides': stride,
            'paddings': padding,
3900
            'padding_algorithm': padding_algorithm,
3901 3902
            'dilations': dilation,
            'groups': groups,
3903 3904
            'use_cudnn': use_cudnn,
            'data_format': data_format
Y
Yu Yang 已提交
3905 3906
        })

3907 3908 3909 3910
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
3911 3912
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3913 3914


3915
def conv3d_transpose(input,
Y
Yu Yang 已提交
3916 3917 3918
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3919 3920 3921
                     padding=0,
                     stride=1,
                     dilation=1,
3922
                     groups=None,
C
caoying03 已提交
3923
                     param_attr=None,
3924
                     bias_attr=None,
C
chengduoZH 已提交
3925
                     use_cudnn=True,
3926
                     act=None,
3927 3928
                     name=None,
                     data_format='NCDHW'):
Y
Yu Yang 已提交
3929
    """
3930
    The convolution3D transpose layer calculates the output based on the input,
3931
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3932
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
3933 3934 3935 3936
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3937
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3938 3939 3940
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3941 3942 3943 3944 3945

    For each input :math:`X`, the equation is:

    .. math::

3946
        Out = \sigma (W \\ast X + b)
3947 3948 3949

    In the above equation:

3950 3951
    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
3952
    * :math:`\\ast`: Convolution operation.
3953
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3954 3955
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3956

3957 3958 3959 3960
    Example:

        - Input:

3961
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3962

3963
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3964 3965 3966

        - Output:

3967
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3968 3969

        Where
Y
Yu Yang 已提交
3970

3971 3972
        .. math::

L
lvmengsi 已提交
3973 3974 3975 3976 3977 3978
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Y
Yu Yang 已提交
3979

L
lvmengsi 已提交
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

    Args:
        input(Variable): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
            of input is float32 or float64.
3995 3996
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3997
        output_size(int|tuple, optional): The output image size. If output size is a
L
lvmengsi 已提交
3998 3999 4000 4001
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are 
            specified at the same time, They should follow the formula above. Default: None. 
            Output_size and filter_size should not be None at the same time.
4002
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
L
lvmengsi 已提交
4003
            it must contain three integers, (filter_size_depth, filter_size_height,
4004 4005
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
L
lvmengsi 已提交
4006 4007 4008 4009
            calculate filter_size. Default: None. filter_size and output_size should not be 
            None at the same time.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
4010 4011 4012 4013 4014 4015 4016 4017
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
4018 4019 4020 4021 4022 4023 4024 4025
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, 
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
4026
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
4027 4028 4029 4030 4031
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
4032
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
4033 4034 4035
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
4036
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
C
chengduo 已提交
4037 4038 4039 4040
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4041
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
4042
            library is installed. Default: True
4043
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
4044
            Default: None.
L
lvmengsi 已提交
4045 4046 4047
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
4048 4049 4050 4051
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
4052 4053

    Returns:
L
lvmengsi 已提交
4054 4055 4056 4057 4058
        A Variable holding Tensor representing the conv3d_transpose, whose data 
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.
4059 4060

    Raises:
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
4072 4073 4074 4075

    Examples:
       .. code-block:: python

4076
          import paddle.fluid as fluid
L
lvmengsi 已提交
4077
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
4078
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4079
    """
C
chengduo 已提交
4080
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4081 4082 4083 4084
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
            + data_format + " but only NCDHW or NDHWC supported.")
4085 4086
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4087
    if not isinstance(input, Variable):
4088
        raise TypeError("Input of conv3d_transpose must be Variable")
4089 4090
    input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
        -1]
Y
Yu Yang 已提交
4091

4092 4093
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4094

C
chengduoZH 已提交
4095 4096 4097
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
4112 4113 4114 4115 4116 4117 4118 4119
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
4120

4121 4122
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
4123

4124 4125 4126 4127 4128 4129 4130
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0], padding[0], padding[1], padding[1], padding[2],
                padding[2]
            ]
        return padding
G
Guo Sheng 已提交
4131

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]
G
Guo Sheng 已提交
4145

4146
    padding = _update_padding(padding, data_format)
Y
yangyaming 已提交
4147

4148 4149 4150 4151
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
4152
            output_size = [output_size, output_size, output_size]
Y
yangyaming 已提交
4153

4154 4155 4156
        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
Y
yangyaming 已提交
4157

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
                         padding[5] - 1) // dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
yangyaming 已提交
4168

4169 4170
    if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
        padding = [padding[0], padding[2], padding[4]]
Y
yangyaming 已提交
4171

4172 4173 4174 4175 4176 4177 4178
    if output_size is None:
        output_size = []
    elif isinstance(output_size, (list, tuple, int)):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
        raise ValueError("output_size should be int, list[int] or tuple[int]")

4179 4180 4181 4182
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters // groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
4183

4184 4185 4186 4187
    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'
Y
yangyaming 已提交
4188

4189
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
yangyaming 已提交
4190
    helper.append_op(
4191 4192 4193 4194 4195
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
4196
            'output_size': output_size,
4197 4198 4199 4200 4201 4202 4203 4204
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        })
Y
yangyaming 已提交
4205

4206 4207 4208 4209 4210 4211
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
    out = helper.append_activation(pre_act)
    return out
G
guosheng 已提交
4212 4213


C
caoying03 已提交
4214
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4215
    """
Y
yangyaming 已提交
4216
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4217 4218

    Args:
4219 4220 4221
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4222 4223
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4224 4225
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4226
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4227
            output Tensor. The result tensor will have one fewer dimension
4228 4229 4230 4231
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
4232 4233

    Returns:
4234 4235
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
4236

4237 4238 4239
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
4240 4241 4242
    Examples:
        .. code-block:: python

4243
            import paddle.fluid as fluid
G
guosheng 已提交
4244 4245 4246
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4247
            # Each example is followed by the corresponding output tensor.
4248
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
4249 4250 4251 4252
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4253

4254
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4255 4256
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4257
            # Each example is followed by the corresponding output tensor.
4258
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4259 4260
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4261

G
guosheng 已提交
4262
    """
4263 4264
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4265 4266 4267 4268 4269 4270

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        return core.ops.reduce_sum(input, 'dim', dim, 'keep_dim', keep_dim,
                                   'reduce_all', reduce_all)
4271
    attrs = {
4272
        'dim': dim if dim != None and dim != [] else [0],
4273
        'keep_dim': keep_dim,
4274
        'reduce_all': True if dim == None or dim == [] else False
4275
    }
4276 4277
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_sum')
4278
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4279
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4280 4281 4282 4283
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
4284
        attrs=attrs)
G
guosheng 已提交
4285
    return out
G
guosheng 已提交
4286 4287


C
caoying03 已提交
4288
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4289
    """
Y
Yibing Liu 已提交
4290
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4291 4292

    Args:
4293 4294 4295
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
4296 4297
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4298
            must be in the range :math:`[-rank(input), rank(input))`. If
4299
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4300
            :math:`rank(input) + dim[i]`.
4301
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4302
            output Tensor. The result tensor will have one fewer dimension
4303 4304 4305 4306 4307
            than the :attr:`input` unless :attr:`keep_dim` is true, default 
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
G
guosheng 已提交
4308
    Returns:
4309 4310 4311 4312 4313 4314
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
4315 4316 4317
    Examples:
        .. code-block:: python

4318
            import paddle.fluid as fluid
G
guosheng 已提交
4319 4320 4321
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4322
            # Each example is followed by the corresponding output tensor.
4323
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
4324 4325 4326
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4327
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4328

4329
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4330 4331
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4332
            # Each example is followed by the corresponding output tensor.
4333
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4334 4335
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4336
    """
4337 4338 4339

    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4340 4341 4342 4343 4344 4345

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        return core.ops.reduce_mean(input, 'dim', dim, 'keep_dim', keep_dim,
                                    'reduce_all', reduce_all)
4346
    attrs = {
4347
        'dim': dim if dim != None and dim != [] else [0],
4348
        'keep_dim': keep_dim,
4349
        'reduce_all': True if dim == None or dim == [] else False
4350
    }
4351 4352
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_mean')
4353
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4354
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4355 4356 4357 4358
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
4359
        attrs=attrs)
G
guosheng 已提交
4360
    return out
4361 4362


C
caoying03 已提交
4363
def reduce_max(input, dim=None, keep_dim=False, name=None):
4364
    """
Y
yangyaming 已提交
4365
    Computes the maximum of tensor elements over the given dimension.
4366 4367

    Args:
4368 4369 4370
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4371 4372 4373
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4374
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4375
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4376
            output Tensor. The result tensor will have one fewer dimension
4377 4378 4379 4380
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4381 4382

    Returns:
4383 4384
        Variable: Tensor, results of maximum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4385

4386 4387 4388
    Examples:
        .. code-block:: python

4389
            import paddle.fluid as fluid
4390 4391 4392
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4393
            # Each example is followed by the corresponding output tensor.
4394
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4395 4396 4397 4398
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4399

4400
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4401 4402
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4403
            # Each example is followed by the corresponding output tensor.
4404
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4405 4406
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4407 4408
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4409
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4410 4411
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4412 4413 4414 4415 4416
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4417
            'dim': dim if dim != None and dim != [] else [0],
4418
            'keep_dim': keep_dim,
4419
            'reduce_all': True if dim == None or dim == [] else False
4420 4421 4422 4423
        })
    return out


C
caoying03 已提交
4424
def reduce_min(input, dim=None, keep_dim=False, name=None):
4425
    """
Y
yangyaming 已提交
4426
    Computes the minimum of tensor elements over the given dimension.
4427 4428

    Args:
4429 4430 4431
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4432 4433 4434
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4435
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4436
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4437
            output Tensor. The result tensor will have one fewer dimension
4438 4439 4440 4441
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4442 4443

    Returns:
4444 4445
        Variable: Tensor, result of minimum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4446

4447 4448 4449
    Examples:
        .. code-block:: python

4450
            import paddle.fluid as fluid
4451 4452 4453
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4454
            # Each example is followed by the corresponding output tensor.
4455
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4456 4457 4458 4459
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4460

4461
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4462 4463
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4464
            # Each example is followed by the corresponding output tensor.
4465
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4466 4467
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4468 4469
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4470
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4471 4472
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4473 4474 4475 4476 4477
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4478
            'dim': dim if dim != None and dim != [] else [0],
4479
            'keep_dim': keep_dim,
4480
            'reduce_all': True if dim == None or dim == [] else False
4481 4482
        })
    return out
G
guosheng 已提交
4483 4484


4485 4486 4487 4488 4489
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
4490 4491 4492
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the product is performed. If
T
tianshuo78520a 已提交
4493
            :attr:`None`, multiply all elements of :attr:`input` and return a
4494
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4495 4496
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4497
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
4498
            output Tensor. The result tensor will have one fewer dimension
4499 4500 4501 4502
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4503 4504

    Returns:
4505 4506 4507
        Variable: Tensor, result of product on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
4508 4509 4510
    Examples:
        .. code-block:: python

4511
            import paddle.fluid as fluid
4512 4513 4514
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4515
            # Each example is followed by the corresponding output tensor.
4516
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4517 4518 4519
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4520
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4521
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4522

4523
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4524 4525
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4526
            # Each example is followed by the corresponding output tensor.
4527
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4528 4529
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4530 4531
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4532
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4533 4534
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4535 4536 4537 4538 4539
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4540
            'dim': dim if dim != None and dim != [] else [0],
4541
            'keep_dim': keep_dim,
4542
            'reduce_all': True if dim == None or dim == [] else False
4543 4544 4545 4546
        })
    return out


Z
zhoukunsheng 已提交
4547 4548
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
4549
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4550 4551

    Args:
4552 4553
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
4554 4555 4556
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4557
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4558 4559
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4560
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4561
        name(str|None): A name for this layer(optional). If set None, the layer
4562
                       will be named automatically. The default value is None. 
Z
zhoukunsheng 已提交
4563

4564 4565
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
4566 4567 4568

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4569
        
4570
            import paddle.fluid as fluid
4571 4572 4573
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4574 4575 4576
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4577 4578 4579 4580 4581 4582
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
4583 4584
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4585
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
4586
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4598
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4599
            'keep_dim': keep_dim,
4600
            'reduce_all': True if dim == None or dim == [] else False
Z
zhoukunsheng 已提交
4601 4602 4603 4604 4605 4606
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
4607
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4608 4609

    Args:
4610 4611 4612
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
4613 4614
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4615
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4616 4617
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4618
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4619 4620
        name(str|None): A name for this layer(optional). If set None, the layer

4621 4622
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
4623 4624 4625

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4626

4627
            import paddle.fluid as fluid
4628 4629 4630
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4631 4632 4633
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
4634 4635 4636 4637 4638 4639
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
4640 4641
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4642
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
4643
                                     keep_dim=True)  # [[True], [False]]
4644
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4656
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4657
            'keep_dim': keep_dim,
4658
            'reduce_all': True if dim == None or dim == [] else False
4659 4660 4661 4662
        })
    return out


C
caoying03 已提交
4663
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4664
    """
4665
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
4666 4667

    Args:
4668
        input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
4669
        num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
4670 4671
            then the integer indicates the number of equal sized sub-Tensors
            that the Tensor will be divided into. If :attr:`num_or_sections`
4672 4673 4674 4675 4676
            is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
        dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
            dimension to split along is :math:`rank(input) + dim`. Default is -1.
4677
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
4678 4679

    Returns:
4680
        list(Variable): The list of segmented Tensor variables.
G
guosheng 已提交
4681

4682 4683 4684 4685
    Raises:
        TypeError: num_or_sections is not int, list or tuple.
        TypeError: dim is not int or Variable.

4686
    Example:
G
guosheng 已提交
4687 4688
        .. code-block:: python

4689 4690
            import paddle.fluid as fluid

4691 4692
            # input is a variable which shape is [3, 9, 5]
            input = fluid.data(
4693 4694
                 name="input", shape=[3, 9, 5], dtype="float32")

4695 4696 4697 4698
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # x0.shape [3, 3, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 3, 5]
4699

4700 4701 4702 4703 4704 4705 4706 4707 4708
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]
G
guosheng 已提交
4709
    """
4710
    if in_dygraph_mode():
4711 4712 4713
        num = None
        attrs = ()

S
songyouwei 已提交
4714 4715 4716 4717 4718 4719
        if isinstance(dim, Variable):
            dim = dim.numpy()
            assert dim.shape == (1,
                                 ), "dim of type Variable should have shape [1]"
            dim = dim[0]
        dim = (len(input.shape) + dim) if dim < 0 else dim
4720
        attrs += ('axis', dim)
4721 4722 4723

        if isinstance(num_or_sections, int):
            num = num_or_sections
4724
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
4725
        elif isinstance(num_or_sections, (list, tuple)):
4726
            num = len(num_or_sections)
L
Leo Chen 已提交
4727
            if utils._contain_var(num_or_sections):
4728
                raise TypeError(
L
Leo Chen 已提交
4729 4730 4731 4732
                    "The type of 'num_or_sections' in split must be int or list[int] or tuple[int] in Dygraph mode, but "
                    "received %s, which contains Variable." %
                    (type(num_or_sections)))
            else:
4733
                attrs += ('sections', list(num_or_sections))
4734 4735 4736 4737
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
                "received %s." % (type(num_or_sections)))
4738
        return core.ops.split(input, num, *attrs)
L
Leo Chen 已提交
4739

4740 4741 4742 4743 4744 4745 4746 4747 4748
    if not isinstance(num_or_sections, (int, list, tuple)):
        raise TypeError(
            "The type of 'num_or_sections' in split must be int, list or "
            "tuple, but received %s." % (type(num_or_sections)))
    if not isinstance(dim, (int, Variable)):
        raise TypeError(
            "The type of 'dim' in split must be int or Variable, but "
            "received %s." % (type(dim)))

G
guosheng 已提交
4749 4750
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
4782 4783
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
4784 4785 4786 4787 4788
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
G
guosheng 已提交
4789 4790
        num = num_or_sections
    else:
4791 4792 4793
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
4794
        num = len(num_or_sections)
4795 4796 4797
        attrs['sections'] = list(
            map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections))
L
Leo Chen 已提交
4798
        if utils._contain_var(num_or_sections):
4799 4800 4801
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

G
guosheng 已提交
4802
    outs = [
X
Xin Pan 已提交
4803
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4804 4805 4806
        for i in range(num)
    ]
    helper.append_op(
4807
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
G
guosheng 已提交
4808
    return outs
C
caoying03 已提交
4809 4810 4811 4812


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
R
ruri 已提交
4813
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
4814 4815
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4816
    .. math::
4817 4818

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4819 4820 4821 4822 4823

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
R
ruri 已提交
4824
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
4825
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4826 4827
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4828
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
4829
            the default value is 1e-12.
R
ruri 已提交
4830 4831
	name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
C
caoying03 已提交
4832
    Returns:
R
ruri 已提交
4833
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
4834 4835

    Examples:
4836

C
caoying03 已提交
4837
        .. code-block:: python
R
ruri 已提交
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
	    
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,3])
	    output = fluid.layers.l2_normalize(x=input,axis=0)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3).astype("float32")
	    print(input_data)
C
caoying03 已提交
4850

R
ruri 已提交
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874
	    # [[0.5171216  0.12704141 0.56018186]
	    # [0.93251234 0.5382788  0.81709313]]
	
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data)

	    # [array([[0.48496857, 0.22970329, 0.56545246],
	    # [0.8745316 , 0.9732607 , 0.82478094]], dtype=float32)]

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.l2_normalize(x=input, axis=-1)
    		print(output.numpy())
	    	
		# [[0.66907585 0.16437206 0.7247892 ]
		# [0.6899054  0.3982376  0.6045142 ]]
		
C
caoying03 已提交
4875 4876
    """

F
fengjiayi 已提交
4877 4878
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4879 4880
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4881 4882
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4883
    helper.append_op(
4884 4885 4886 4887
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4888
        attrs={
4889 4890
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4891 4892
        })
    return out
4893 4894


S
sneaxiy 已提交
4895
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4896
    """
Y
ying 已提交
4897 4898 4899 4900
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4901

C
chengduoZH 已提交
4902
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4903
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4904

4905 4906 4907 4908 4909
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4910
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4911

C
chengduoZH 已提交
4912
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4913
      performs in the following way.
G
guosheng 已提交
4914

4915
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4916
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4917
        last two dimensions and a batched matrix multiply supporting broadcast
4918
        applies on the two tensors.
G
guosheng 已提交
4919

Y
ying 已提交
4920 4921
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4922
    removed after matrix multiplication.
G
guosheng 已提交
4923 4924 4925

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4926 4927 4928
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4929
        alpha (float): The scale of output. Default 1.0.
4930
        name(str|None): A name for this layer(optional). If set None, the layer
4931
            will be named automatically.
G
guosheng 已提交
4932 4933

    Returns:
石晓伟 已提交
4934
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
4935

G
guosheng 已提交
4936 4937 4938
    Examples:
        .. code-block:: python

4939
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4940
            # x: [B, ..., M, K], y: [B, ..., K, N]
4941
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4942

4943
            # x: [B, M, K], y: [B, K, N]
4944
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4945

4946
            # x: [B, M, K], y: [K, N]
4947
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4948

4949
            # x: [M, K], y: [K, N]
4950
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4951 4952

            # x: [B, M, K], y: [K]
4953
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
4954

4955
            # x: [K], y: [K]
4956
            # fluid.layers.matmul(x, y)  # out: [1]
4957

Y
ying 已提交
4958
            # x: [M], y: [N]
4959 4960
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

4961
            import paddle.fluid as fluid
4962 4963 4964
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
4965
    """
4966
    return paddle.matmul(x, y, transpose_x, transpose_y, alpha, name)
4967 4968


4969
def topk(input, k, name=None):
Q
qingqing01 已提交
4970
    """
4971
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
4972 4973
    for the last dimension.

4974 4975
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
4976 4977 4978 4979

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4980 4981
    .. code-block:: text

4982 4983 4984 4985 4986
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
4987 4988 4989 4990
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

4991
          Output:
F
fengjiayi 已提交
4992
            The first output:
4993 4994
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
4995 4996 4997 4998
                      [10, 25],
                      [6, 10]]

            The second output:
4999 5000
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
5001 5002 5003
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5004
    Args:
5005 5006 5007 5008
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
5009 5010

    Returns:
5011 5012
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
5013

F
fengjiayi 已提交
5014
    Raises:
5015
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
5016 5017 5018 5019

    Examples:
        .. code-block:: python

5020
            import paddle.fluid as fluid
5021
            import paddle.fluid.layers as layers
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
5035
    """
5036
    if in_dygraph_mode():
5037 5038 5039 5040 5041
        _k = k.numpy().item(0) if isinstance(k, Variable) else k
        out, indices = core.ops.top_k(input, 'k', _k)
        out.stop_gradient = True
        indices.stop_gradient = True
        return out, indices
5042

5043 5044
    inputs = {"X": [input]}
    attrs = {}
S
songyouwei 已提交
5045 5046 5047 5048 5049
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}

5050 5051 5052 5053
    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

Q
qingqing01 已提交
5054 5055
    helper.append_op(
        type="top_k",
W
whs 已提交
5056
        inputs=inputs,
Q
qingqing01 已提交
5057 5058
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5059
        attrs=attrs)
Q
qingqing01 已提交
5060 5061 5062 5063 5064
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5065 5066 5067 5068 5069
def ctc_greedy_decoder(input,
                       blank,
                       input_length=None,
                       padding_value=0,
                       name=None):
5070
    """
S
SunGaofeng 已提交
5071
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
5072

S
SunGaofeng 已提交
5073
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
5074 5075 5076
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5077

S
SunGaofeng 已提交
5078 5079 5080 5081
    This op is implemented in two modes: lod and padding, either of them can be used.
    The input can be either LoDTensor or Tensor, corresponding to lod and padding 
    mode respectively.

5082 5083 5084 5085 5086
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
5087
        (1) for lod mode:
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5099
        input.lod = [[4, 4]]
M
minqiyang 已提交
5100

W
whs 已提交
5101
        Computation:
5102

W
whs 已提交
5103 5104 5105 5106 5107 5108
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5109 5110 5111 5112 5113

        output.data = [[2],
                       [1],
                       [3]]

5114
        output.lod = [[2, 1]]
5115

S
SunGaofeng 已提交
5116
        (2) for padding mode:
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
        step2: Change the argmax result to use padding mode, then argmax result is 
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
5143
    Parameters:
5144

S
SunGaofeng 已提交
5145 5146
        input(Variable): the probabilities of variable-length sequences. When in lod mode, 
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1] 
Y
ying 已提交
5147
                         where Lp is the sum of all input sequences' length and
5148 5149
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
5150
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
5151
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
5152
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
5153
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
5154 5155
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
5156
        padding_value(int): padding value.
S
SunGaofeng 已提交
5157 5158 5159
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name` 
5160 5161

    Returns:
S
SunGaofeng 已提交
5162 5163 5164 5165 5166
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

T
tianshuo78520a 已提交
5167
        For padding mode, returns a tuple of (output, output_length), which was described as below: 
S
SunGaofeng 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

5179 5180 5181 5182

    Examples:
        .. code-block:: python

5183
            # for lod mode
S
SunGaofeng 已提交
5184
            import paddle.fluid as fluid
S
SunGaofeng 已提交
5185
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
5186
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
5187 5188

            # for padding mode
S
SunGaofeng 已提交
5189 5190
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
5191 5192 5193
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
5194
    """
5195
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5196
    _, topk_indices = topk(input, k=1)
5197 5198

    # ctc align op
X
Xin Pan 已提交
5199
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len
5225 5226


Y
fix ci.  
ying 已提交
5227
def transpose(x, perm, name=None):
Y
ying 已提交
5228
    """
5229
    Permute the data dimensions of `input` according to `perm`.
Y
ying 已提交
5230 5231 5232 5233 5234

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5235
        x (Variable): The input Tensor. It is a N-D Tensor of data types float32, float64, int32.
T
tianshuo78520a 已提交
5236
        perm (list): Permute the input according to the data of perm.
5237
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5238 5239

    Returns:
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
        Variable: A transposed n-D Tensor, with data type being float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]
Y
ying 已提交
5264 5265

    Examples:
5266

Y
ying 已提交
5267 5268
        .. code-block:: python

5269
            # use append_batch_size=False to avoid prepending extra
5270
            # batch size in shape
5271
            import paddle.fluid as fluid
5272
            x = fluid.layers.data(name='x', shape=[2, 3, 4],
5273
                            dtype='float32', append_batch_size=False)
5274
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
5275 5276
            print x_transposed.shape
            #(3L, 2L, 4L)
Y
ying 已提交
5277

5278
    """
5279
    if in_dygraph_mode():
5280 5281
        out, _ = core.ops.transpose2(x, 'axis', perm)
        return out
5282

5283 5284 5285
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
5286
    check_type(perm, 'perm', list, 'transpose')
5287

Y
fix ci.  
ying 已提交
5288
    if len(perm) != len(x.shape):
Y
ying 已提交
5289
        raise ValueError(
5290 5291 5292 5293
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
Y
ying 已提交
5294 5295 5296
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
5297 5298 5299
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5300 5301

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5302 5303
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5304
    helper.append_op(
5305
        type='transpose2',
Y
fix ci.  
ying 已提交
5306
        inputs={'X': [x]},
5307 5308
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5309 5310
        attrs={'axis': perm})
    return out
5311 5312


5313 5314 5315 5316 5317 5318 5319
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5320
    """
5321
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
5322 5323 5324
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
5325 5326
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5327 5328 5329

    .. math::

L
Liufang Sang 已提交
5330 5331 5332 5333
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
5334

L
Liufang Sang 已提交
5335
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
5336

L
Liufang Sang 已提交
5337 5338
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
5339

L
Liufang Sang 已提交
5340 5341 5342
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
5343

L
Liufang Sang 已提交
5344 5345
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
5346

L
Liufang Sang 已提交
5347 5348 5349 5350 5351 5352 5353
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding. 
            Default is 0.
5354

L
Liufang Sang 已提交
5355 5356 5357 5358
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
5359
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
    
    Returns: 
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \ 
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5398 5399 5400
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5413
            output.dims = {8, 8}
5414

5415
            output.lod = [[4, 4]]
5416

T
Tink_Y 已提交
5417
    Examples:
5418 5419 5420

        .. code-block:: python

B
Bai Yifan 已提交
5421
            import paddle.fluid as fluid
L
Liufang Sang 已提交
5422
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
5423
                                     dtype='float32')
5424
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
5425 5426
                input=data, stride=[1, 1], filter_size=[2, 2])

5427 5428

    """
L
lujun 已提交
5429
    assert not in_dygraph_mode(), (
5430
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5441
    inputs = {"X": input}
5442
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
5443 5444 5445 5446 5447
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5448
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5449
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5450
    helper.append_op(
5451
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5452
    return out
5453 5454


Y
yuyang18 已提交
5455
@templatedoc()
5456
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5457 5458
    """
    ${comment}
5459 5460

    Args:
Y
yuyang18 已提交
5461
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5462 5463
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5464 5465 5466 5467 5468
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5469
        ${out_comment}.
5470 5471

    Examples:
D
Double_V 已提交
5472
        >>>  # for LodTensor inputs
Y
yuyang18 已提交
5473
        >>> import paddle.fluid as fluid
D
Double_V 已提交
5474
        >>> x = fluid.data(name='x', shape=[9, 16],
Y
yuyang18 已提交
5475 5476
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
D
Double_V 已提交
5477 5478 5479
        >>> # for Tensor inputs
        >>> x = fluid.data(name='x', shape=[9, 4, 16], dtype='float32')
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5480 5481 5482 5483 5484 5485
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5486
    out = helper.create_variable_for_type_inference(dtype)
5487 5488 5489 5490 5491
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5492
    return helper.append_activation(out)
5493 5494


Y
yuyang18 已提交
5495
@templatedoc()
5496 5497
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5498

5499
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
5500

5501
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
5502

5503
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
5504

5505
    For Example:
L
lujun 已提交
5506

5507
            .. code-block:: text
L
lujun 已提交
5508

5509
                Given:
L
lujun 已提交
5510

5511 5512 5513 5514
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
5515

5516
                index = [[3],[0],[1],[2]]
L
lujun 已提交
5517

5518 5519 5520 5521
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
5522 5523


5524 5525 5526
    Args:
       inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
       index (Variable): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
L
lujun 已提交
5527

5528
    Returns:
5529
        Variable(Tensor): Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
5530 5531

    Examples:
5532

X
xuezhong 已提交
5533 5534
        .. code-block:: python

5535
            import paddle.fluid as fluid
5536
            import numpy as np
5537

5538 5539 5540 5541
            x1 = fluid.data(name='x1', shape=[None, 2], dtype='float32')
            x2 = fluid.data(name='x2', shape=[None, 2], dtype='float32')
            index = fluid.data(name='index', shape=[None, 1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
X
xuezhong 已提交
5542

5543 5544 5545 5546 5547 5548 5549 5550 5551
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
            index = np.array([[1], [0]]).astype(np.int32)

            res = exe.run(fluid.default_main_program(), feed={'x1':img1, 'x2':img2, 'index':index}, fetch_list=[out])
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
5552

5553 5554 5555 5556 5557 5558 5559 5560
    """
    helper = LayerHelper('multiplex', **locals())

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5561
    helper.append_op(
5562 5563 5564 5565 5566
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
X
xuezhong 已提交
5567 5568


5569 5570
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5571 5572
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5573
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
5574
    and then sums all the losses. So the shape of output Variable is
5575
    [batch_size, 1].
5576

5577 5578
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5579
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5580
            A LoDTensor or Tensor with type float32.
5581
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5582
            L1 loss op with same shape as :attr:`x`.
5583
            A LoDTensor or Tensor with type float32.
5584
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5585 5586
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5587
            by this tensor element by element.
5588
            A Tensor with type float32.
5589
        outside_weight (Variable|None): A tensor with rank at least 2. This
5590 5591
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5592
            element by element.
5593
            A Tensor with type float32.
5594
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5595 5596
           scalar with default value 1.0.

5597
    Returns:
5598
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
5599 5600 5601 5602

    Examples:
        .. code-block:: python

5603
            import paddle.fluid as fluid
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
            import numpy as np
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
        
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

5621
    """
5622

5623
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5624 5625
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
5636
        attrs={'sigma': sigma if sigma is not None else 1.0})
5637
    return loss
5638 5639


5640
def one_hot(input, depth, allow_out_of_range=False):
5641
    """
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.], 
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than depth.  
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
5696 5697

    Args:
5698 5699 5700 5701 5702
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input 
            is word id, depth is generally the dictionary size.
5703
        allow_out_of_range(bool): A bool value indicating whether the input
5704 5705 5706 5707
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
5708 5709

    Returns:
5710
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
5711 5712

    Examples:
C
caoying03 已提交
5713
        .. code-block:: python
5714

5715
            import paddle.fluid as fluid
5716 5717 5718
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
5719
    """
5720
    if in_dygraph_mode():
S
songyouwei 已提交
5721 5722 5723 5724 5725
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
                1, ), "depth of type Variable should have shape [1]"
            depth = depth[0]
5726 5727 5728 5729
        out = core.ops.one_hot(input, 'depth', depth, 'allow_out_of_range',
                               allow_out_of_range)
        out.stop_gradient = True
        return out
5730

5731
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5732
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5733

5734 5735
    if not isinstance(depth, Variable):
        # user attribute
5736
        inputs = {'X': input}
Y
Yi Liu 已提交
5737
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
5738
    else:
5739 5740 5741
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
5742 5743
    helper.append_op(
        type="one_hot",
5744 5745
        inputs=inputs,
        attrs=attrs,
5746 5747
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
5748
    return one_hot_out
Y
Yu Yang 已提交
5749 5750


Y
Yu Yang 已提交
5751
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5752
    """
Y
Yibing Liu 已提交
5753 5754 5755
    Create an auto-increase variable. which will be automatically increased 
    by 1 in every iteration. By default, the first return of this counter is 1, 
    and the step size is 1.
Y
Yu Yang 已提交
5756 5757

    Args:
Y
Yibing Liu 已提交
5758 5759 5760
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
5761

5762
    Returns:
Y
Yibing Liu 已提交
5763
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
5764 5765 5766 5767

    Examples:
        .. code-block:: python

5768
           import paddle.fluid as fluid
Y
yi.wu 已提交
5769
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
5770
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
5771 5772
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5773 5774
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5775
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
5776 5777 5778 5779 5780
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
        belong_to_optimizer=True)
Y
Yu Yang 已提交
5781 5782 5783
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5784
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5785
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5786 5787
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5788
            outputs={'Out': [counter]},
5789
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5790 5791 5792
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5793 5794


5795
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5796
    """
5797
    This operator changes the shape of ``x`` without changing its data.
C
caoying03 已提交
5798

5799 5800 5801 5802
    The target shape can be given by ``shape`` or ``actual_shape``.
    When ``shape`` and ``actual_shape`` are set at the same time,
    ``actual_shape`` has a higher priority than ``shape``
    but at this time ``shape`` can only be an integer list or tuple, and ``shape`` still should be set correctly to
T
tianshuo78520a 已提交
5803
    guarantee shape inference in compile-time.
C
caoying03 已提交
5804

5805
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5806

5807 5808 5809 5810
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5811
    2. 0 means the actual dimension value is going to be copied from the
T
tianshuo78520a 已提交
5812
    corresponding dimension of x. The index of 0s in shape can not exceed
5813
    the dimension of x.
5814 5815

    Here are some examples to explain it.
C
caoying03 已提交
5816 5817

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5818
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5819
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5820

5821
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5822 5823
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5824 5825
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5826
    dimensions.
C
caoying03 已提交
5827

5828
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5829 5830 5831 5832
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5833

5834 5835
    **Note**:
        The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape.
5836

C
caoying03 已提交
5837
    Args:
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Variable): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Variable, it should be an 1-D Tensor .
        actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape
                                according to this given shape rather than ``shape`` specifying shape.
                                That is to say ``actual_shape`` has a higher priority
                                than ``shape(list|tuple)`` but not ``shape(Variable)``. \
                                This argument ``actual_shape`` will be removed in a future version. \
                                Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``.
        act (str, optional): The non-linear activation to be applied to the reshaped input. Default None.
        inplace(bool, optional): If ``inplace`` is True, the input and output of ``layers.reshape``
                       are the same variable. Otherwise, the input and output of
                       ``layers.reshape`` are different variable. Default False. Note that if ``x``
                       is more than one OPs' input, ``inplace`` must be False.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .
C
caoying03 已提交
5855

5856
    Returns:
5857
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable.
C
caoying03 已提交
5858

X
Xin Pan 已提交
5859
    Raises:
5860 5861 5862 5863
        TypeError: If actual_shape is neither Variable nor None.
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.
X
Xin Pan 已提交
5864

C
caoying03 已提交
5865 5866
    Examples:
        .. code-block:: python
G
guosheng 已提交
5867

5868
            import paddle.fluid as fluid
5869 5870 5871

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
5872 5873
            data_1 = fluid.data(
              name='data_1', shape=[2, 4, 6], dtype='float32')
5874
            reshaped_1 = fluid.layers.reshape(
5875 5876
              x=data_1, shape=[-1, 0, 3, 2], inplace=True)
            # the shape of reshaped_1 is [2,4,3,2].
5877 5878 5879 5880 5881 5882

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
5883
            # the shape of reshaped_2 is [5,10].
M
mapingshuo 已提交
5884 5885 5886 5887 5888 5889

            # example 3:
            data_3 = fluid.data(
              name="data_3", shape=[2,4,6], dtype='float32')
            reshaped_3 = fluid.layers.reshape(x=data_3, shape=[6,8])
            # the shape of reshaped_3 is [6,8].
C
caoying03 已提交
5890
    """
5891
    if in_dygraph_mode():
L
Leo Chen 已提交
5892
        #TODO(zhiqiu): enable inplace in dygraph mode.
5893 5894 5895 5896 5897 5898
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        attrs = {}
        if isinstance(shape, (list, tuple)):
L
Leo Chen 已提交
5899
            if utils._contain_var(shape):
5900 5901 5902 5903 5904 5905 5906 5907 5908
                raise TypeError(
                    "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['shape'] = shape
        else:
            raise TypeError(
                "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

5909
        out, _ = core.ops.reshape2(x, 'shape', shape)
5910
        return dygraph_utils._append_activation_in_dygraph(out, act)
5911

5912 5913
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'reshape')
5914 5915
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')
5916

5917
    helper = LayerHelper("reshape2", **locals())
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
5942 5943
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1." % dim_idx)
5944 5945 5946
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
5947 5948 5949 5950
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
5951 5952
                else:
                    assert dim_size > 0, (
5953
                        "Each dimension value of 'shape' in reshape must not "
T
tianshuo78520a 已提交
5954
                        "be negative except one unknown dimension. "
5955 5956
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
5957 5958
        return attrs_shape

5959 5960 5961 5962 5963 5964 5965 5966 5967
    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
5968
        if utils._contain_var(shape):
5969 5970 5971 5972 5973 5974 5975
            inputs['ShapeTensor'] = get_new_shape_tensor(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5976
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5977
    helper.append_op(
5978
        type="reshape2",
X
Xin Pan 已提交
5979
        inputs=inputs,
5980
        attrs=attrs,
5981 5982
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5983

D
dzhwinter 已提交
5984
    return helper.append_activation(out)
5985

5986

5987
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5988
    """
5989 5990 5991
    This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
    remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
    to one will be deleted.
M
minqiyang 已提交
5992

H
haowang101779990 已提交
5993

5994
    .. code-block:: text 
H
haowang101779990 已提交
5995

5996
        Case1:
H
haowang101779990 已提交
5997

5998
          Input:
H
haowang101779990 已提交
5999 6000
            X.shape = (1, 3, 1, 5)
            axes = [0]
6001
          Output:
H
haowang101779990 已提交
6002 6003
            Out.shape = (3, 1, 5)

6004
        Case2:
H
haowang101779990 已提交
6005

6006
          Input:
H
haowang101779990 已提交
6007 6008
            X.shape = (1, 3, 1, 5)
            axes = []
6009
          Output:
H
haowang101779990 已提交
6010
            Out.shape = (3, 5)
M
minqiyang 已提交
6011

6012 6013 6014 6015 6016 6017 6018 6019
        Case3:

          Input:
            X.shape = [1,3,1,5]
            axes = [-2]
          Output:
            Out.shape = [1,3,5]

Y
Yibing Liu 已提交
6020
    Args:
6021 6022 6023 6024 6025
        input (Variable): The input Tensor. Support data type: float32, float64, int8, int32, int64.
                          axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
                          Axes range is :math:`[-rank(input), rank(input))`.
                          If axes is negative, :math:`axes=axes+rank(input)`.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Y
Yibing Liu 已提交
6026 6027

    Returns:
6028
        Variable: Output squeezed Tensor. Data type is same as input Tensor.
Y
Yibing Liu 已提交
6029 6030 6031 6032

    Examples:
        .. code-block:: python

6033
            import paddle.fluid as fluid
6034
            import paddle.fluid.layers as layers
6035 6036 6037 6038
            # set batch size=None
            x = fluid.data(name='x', shape=[None, 5, 1, 10])
            y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10]

Y
Yibing Liu 已提交
6039 6040
    """
    helper = LayerHelper("squeeze", **locals())
6041 6042 6043
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int8', 'int32', 'int64'],
                             'squeeze')
6044
    check_type(axes, 'axes', list, 'squeeze')
X
Xin Pan 已提交
6045 6046
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6047
    helper.append_op(
6048
        type="squeeze2",
6049
        inputs={"X": input},
Y
Yibing Liu 已提交
6050
        attrs={"axes": axes},
6051 6052
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6053

6054 6055 6056
    return out


6057
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6058
    """
6059
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
6060 6061
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6062

M
minqiyang 已提交
6063
    For example:
H
haowang101779990 已提交
6064 6065 6066

    .. code-block:: text

M
minqiyang 已提交
6067
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6068
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6069

Y
Yibing Liu 已提交
6070
    Args:
6071
        input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
6072
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
6073
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6074 6075

    Returns:
6076
        Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.
Y
Yibing Liu 已提交
6077 6078 6079 6080

    Examples:
        .. code-block:: python

6081 6082 6083
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
6084

Y
Yibing Liu 已提交
6085
    """
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112
    if not isinstance(axes, (int, list, tuple, Variable)):
        raise TypeError(
            "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
            "received %s." % (type(axes)))
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    def _to_Variable_list(one_list):
        Variable_list = []
        for ele in one_list:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                Variable_list.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                Variable_list.append(temp_out)
        return Variable_list

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
6113
        if utils._contain_var(axes):
6114 6115 6116 6117
            inputs["AxesTensorList"] = _to_Variable_list(axes)
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
6118 6119
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6120
    helper.append_op(
6121
        type="unsqueeze2",
6122 6123
        inputs=inputs,
        attrs=attrs,
6124 6125
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6126

6127 6128
    return out

6129

Y
yangyaming 已提交
6130
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6131
    """
Y
Yibing Liu 已提交
6132
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6133 6134 6135 6136
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
6137
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6138 6139 6140 6141 6142 6143

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6144
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6145 6146 6147
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6148
            target_lod: [4, 2]
Y
yangyaming 已提交
6149 6150

            then we get a 1-level LoDTensor:
6151
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6152 6153 6154 6155 6156 6157
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6158
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6159 6160 6161 6162
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6163
                y.data = [[2, 4]]
Y
yangyaming 已提交
6164 6165 6166
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6167
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6168 6169 6170 6171 6172 6173
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6174
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6175 6176 6177 6178
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6179
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6180 6181 6182 6183
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6184
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6185 6186 6187 6188
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
6189
        x (Variable): Input variable which could be a Tensor or LoDTensor.
6190
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6191
                           from :attr:`y`.
Y
yangyaming 已提交
6192
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6193
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6194 6195

    Returns:
Y
Yibing Liu 已提交
6196
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6197 6198

    Raises:
Y
Yibing Liu 已提交
6199
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6200 6201 6202 6203

    Examples:
        .. code-block:: python

6204
            import paddle.fluid as fluid
6205 6206 6207
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
6208
    """
6209 6210
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'lod_reset')
Y
yangyaming 已提交
6211
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6212
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6213
    if y is not None:
6214 6215 6216 6217 6218
        if y.lod_level > 0:
            check_variable_and_dtype(
                y, 'y', ['float32', 'float64', 'int32', 'int64'], 'lod_reset')
        else:
            check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'lod_reset')
Y
yangyaming 已提交
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
6255
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
6256 6257 6258 6259 6260 6261

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
6262

6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
6273 6274 6275
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

6276 6277
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6278 6279 6280 6281 6282 6283 6284 6285

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
6286
    helper.append_op(
6287
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
6288
    return out
D
dragonwarrior 已提交
6289 6290


6291 6292
def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None,
        data_format='NCHW'):
D
dragonwarrior 已提交
6293
    """
6294 6295 6296
    This operator implements the Local Response Normalization Layer.
    This layer performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
D
dragonwarrior 已提交
6297 6298 6299 6300 6301

    The formula is as follows:

    .. math::

6302
        Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6303 6304 6305

    In the above equation:

6306 6307 6308 6309
    - :math:`n` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.
D
dragonwarrior 已提交
6310 6311 6312


    Args:
6313 6314 6315
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W] or [N, H, W, C], 
            where N is the batch size, C is the input channel, H is Height, W is weight. The data 
            type is float32. The rank of this tensor must be 4, otherwise it will raise ValueError.
6316 6317 6318 6319
        n (int, optional): The number of channels to sum over. Default: 5
        k (float, optional): An offset, positive. Default: 1.0
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
6320 6321
        name (str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` 
6322 6323 6324 6325 6326
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        
D
dragonwarrior 已提交
6327
    Returns:
6328 6329
        Variable: A tensor variable storing the transformation result with the same shape and data type as input.

D
dragonwarrior 已提交
6330 6331 6332

    Examples:

6333 6334 6335 6336 6337 6338 6339 6340
    .. code-block:: python

        import paddle.fluid as fluid
        data = fluid.data(
            name="data", shape=[None, 3, 112, 112], dtype="float32")
        lrn = fluid.layers.lrn(input=data)
        print(lrn.shape)  # [-1, 3, 112, 112]
        print(lrn.dtype)  # float32
D
dragonwarrior 已提交
6341 6342 6343 6344 6345 6346 6347 6348
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
6349
            "Input's dimension size of Op(lrn) must be 4, but received %d." %
D
dragonwarrior 已提交
6350
            (dims))
6351 6352 6353 6354
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(lrn) got wrong value: received " +
            data_format + " but only NCHW or NHWC supported.")
D
dragonwarrior 已提交
6355

X
Xin Pan 已提交
6356 6357 6358
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6359 6360 6361 6362 6363 6364 6365
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
6366 6367 6368 6369 6370 6371 6372
        attrs={
            "n": n,
            "k": k,
            "alpha": alpha,
            "beta": beta,
            "data_format": data_format
        })
D
dragonwarrior 已提交
6373 6374

    return lrn_out
G
guosheng 已提交
6375 6376 6377 6378


def pad(x, paddings, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6379 6380
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
6381

S
SunGaofeng 已提交
6382 6383 6384 6385
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:
            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
6404
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
6405
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
6406 6407
                         width before and after each dimension in turn.
                         The length of :attr:`paddings` must be equal to 
G
guosheng 已提交
6408 6409
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6410 6411 6412
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
6413 6414

    Returns:
S
SunGaofeng 已提交
6415 6416 6417 6418
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
6419 6420 6421

    Examples:
        .. code-block:: python
G
guosheng 已提交
6422

6423
            # x is a rank 2 tensor variable
S
SunGaofeng 已提交
6424
            import paddle.fluid as fluid
6425 6426
            x = fluid.data(name='data', shape=[300, 300], dtype='float32')
            out = fluid.layers.pad(x=x, paddings=[0, 1, 1, 2], pad_value=0.)
G
guosheng 已提交
6427 6428 6429
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6430
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6431 6432 6433 6434 6435 6436 6437
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6438 6439


C
chengduo 已提交
6440 6441
def pad_constant_like(x, y, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6442
    Pad :attr:`y` with :attr:`pad_value`, the number of values padded to
C
chengduo 已提交
6443
    the edges of each axis is specified by the difference of the shape
S
SunGaofeng 已提交
6444 6445
    of :attr:`x` and :attr:`y` . ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    specify padding widths for each axis. The input should be a k-D tensor(k > 0 and k < 7).
C
chengduo 已提交
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
6464

C
chengduo 已提交
6465 6466 6467 6468 6469
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
6470

C
chengduo 已提交
6471
            Y.shape = (1, 3, 1, 3)
6472 6473 6474

        And
            pad_value = 0.
C
chengduo 已提交
6475

T
Tink_Y 已提交
6476 6477
        Return:
            Out = [[[[35, 36, 37],
6478
                     [ 0,  0,  0]],
T
Tink_Y 已提交
6479
                    [[38, 39, 40],
6480
                     [ 0,  0,  0]],
T
Tink_Y 已提交
6481
                    [[41, 42, 43],
6482 6483 6484 6485 6486 6487 6488 6489 6490 6491
                     [ 0,  0,  0]]],
                   [[[ 0,  0,  0], 
                     [ 0,  0,  0]],
                    [[ 0,  0,  0], 
                     [ 0,  0,  0]],
                    [[ 0,  0,  0], 
                     [ 0,  0,  0]]]]

            Out.shape = [2, 3, 2, 3]

C
chengduo 已提交
6492 6493

    Args:
T
tianshuo78520a 已提交
6494
        x (Variable): Tensor, its shape specifies the shape of output.
S
SunGaofeng 已提交
6495 6496
        y (Variable): Tensor, its rank is the same with :attr:`x`, and for each dimension :math:`i` , 
                      :math:`y\_shape[i] <= x\_shape[i]` . The data type can be float32 or float64.
C
chengduo 已提交
6497
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6498 6499 6500
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
C
chengduo 已提交
6501 6502

    Returns:
S
SunGaofeng 已提交
6503 6504 6505 6506
        The padded tensor, with the same shape as :attr:`x` and the same data type as :attr:`y`

    Return Type:
        Variable
C
chengduo 已提交
6507 6508 6509 6510 6511 6512

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6513
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6514 6515
            x = fluid.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
6516 6517 6518 6519 6520
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6521
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6522 6523 6524 6525 6526 6527 6528 6529 6530
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6531 6532 6533 6534 6535 6536
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
D
DuYao 已提交
6537 6538
    Label smoothing is a mechanism to regularize the classifier layer and is called 
    label-smoothing regularization (LSR). 
6539

6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

D
DuYao 已提交
6557
    Parameters:
6558
        label(Variable): The input variable containing the label data. The
D
DuYao 已提交
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573
                        label data should use one-hot representation. It's 
                        a multidimensional tensor with a shape of 
                        :math:`[N_1, ..., Depth]`, where Depth is class number.
        prior_dist(Variable, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is 
                        0.1.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set
                        as 'float32', 'float64'. The default value is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user 
                        to set this property. For more information, please refer to 
                        :ref:`api_guide_Name`.
6574 6575 6576 6577 6578 6579

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
6580
            
6581
            import paddle.fluid as fluid
6582
            import paddle.fluid.layers as layers
6583 6584 6585 6586 6587 6588 6589 6590

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
6591 6592

    if in_dygraph_mode():
6593 6594
        return core.ops.label_smooth(label, prior_dist, 'epsilon',
                                     float(epsilon))
6595

6596 6597
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6598
    smooth_label = helper.create_variable_for_type_inference(dtype)
6599 6600 6601 6602 6603 6604 6605
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6606 6607


W
wopeizl 已提交
6608 6609 6610
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
    This operator implements the roi_pooling layer. 
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
    
    The operator has three steps:
    
        1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height;
        2. Finding the largest value in each section;
        3. Copying these max values to the output buffer.
    
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
    
W
wopeizl 已提交
6622
    Args:
6623 6624 6625 6626 6627 6628
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64.
        rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
        pooled_height (int, optional): The pooled output height, data type is int32. Default: 1
        pooled_width (int, optional): The pooled output height, data type is int32. Default: 1
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
    
W
wopeizl 已提交
6629
    Returns:
6630 6631 6632
        Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width].
    
    
W
wopeizl 已提交
6633
    Examples:
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
    
    ..  code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
    
        input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE)
        roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place)
    
        x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE)
        rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE)
    
        pool_out = fluid.layers.roi_pool(
6652 6653
                input=x,
                rois=rois,
6654 6655
                pooled_height=1,
                pooled_width=1,
6656
                spatial_scale=1.0)
6657 6658 6659 6660 6661
    
        exe = fluid.Executor(place)
        out, = exe.run(feed={'input':input_data ,'roi':roi_data}, fetch_list=[pool_out.name])
        print(out)   #array([[[[11.]]], [[[16.]]]], dtype=float32)
        print(np.array(out).shape)  # (2, 1, 1, 1)
W
wopeizl 已提交
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6679 6680


J
jerrywgz 已提交
6681 6682 6683 6684 6685 6686
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6687 6688
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6689 6690 6691 6692 6693
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
6694
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
W
wangguanzhong 已提交
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
            a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The 
            data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], 
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
            right coordinates. 
        pooled_height (int32, optional): ${pooled_height_comment} Default: 1
        pooled_width (int32, optional): ${pooled_width_comment} Default: 1
        spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
6706 6707

    Returns:
W
wangguanzhong 已提交
6708 6709 6710 6711 6712
        Variable:

        Output: ${out_comment}.


J
jerrywgz 已提交
6713 6714 6715
    Examples:
        .. code-block:: python

6716
            import paddle.fluid as fluid
6717 6718 6719 6720
            x = fluid.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
            rois = fluid.data(
                name='rois', shape=[None, 4], dtype='float32')
6721 6722 6723
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6724 6725 6726 6727
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
6728 6729 6730
    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'roi_align')
    check_variable_and_dtype(rois, 'rois', ['float32', 'float64'], 'roi_align')
J
jerrywgz 已提交
6731 6732
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6733
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


S
SunGaofeng 已提交
6748
def dice_loss(input, label, epsilon=0.00001, name=None):
W
whs 已提交
6749
    """
S
SunGaofeng 已提交
6750 6751 6752 6753
    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:
W
whs 已提交
6754 6755 6756 6757 6758 6759 6760 6761

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


S
SunGaofeng 已提交
6762 6763 6764 6765 6766 6767
    Parameters:
        input (Variable): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
                          the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
                          The data type can be float32 or float64.
        label (Variable): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`. 
                          where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
W
whs 已提交
6768 6769 6770
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
S
SunGaofeng 已提交
6771 6772 6773
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
6774 6775

    Returns:
S
SunGaofeng 已提交
6776 6777 6778
        The dice loss with shape [1], data type is the same as `input` .
    Return Type:
        Varaible
W
whs 已提交
6779

S
SunGaofeng 已提交
6780
    Example:
6781 6782
        .. code-block:: python

S
SunGaofeng 已提交
6783
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6784 6785 6786
            x = fluid.data(name='data', shape = [3, 224, 224, 1], dtype='float32')
            label = fluid.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
            predictions = fluid.layers.sigmoid(x)
S
SunGaofeng 已提交
6787
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
6788 6789
    """
    label = one_hot(label, depth=input.shape[-1])
6790
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6791 6792 6793 6794 6795 6796
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6797 6798


6799 6800 6801 6802
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6803
                 resample='BILINEAR',
6804 6805
                 actual_shape=None,
                 align_corners=True,
6806 6807
                 align_mode=1,
                 data_format='NCHW'):
6808
    """
R
ruri 已提交
6809
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
6810

6811 6812 6813
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
T
tianshuo78520a 已提交
6814
    and the resizing only applies on the three dimensions(depth, height and width).
6815

6816
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
6817 6818
    future and only use :attr:`out_shape` instead.

6819
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6820

6821
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6822

K
Kaipeng Deng 已提交
6823 6824
        'TRILINEAR' : Trilinear interpolation

6825
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6826

6827
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
T
tianshuo78520a 已提交
6828
    in both the 3rd dimension(in height direction) and the 4th dimension(in width 
6829 6830 6831 6832 6833 6834 6835 6836
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
6837 6838 6839 6840 6841
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tianshuo78520a 已提交
6842
    Align_corners and align_mode are optional parameters,the calculation method 
6843 6844 6845 6846
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6847
    .. code-block:: text
6848

T
Tink_Y 已提交
6849
        For scale:
6850
          
T
Tink_Y 已提交
6851
            if align_corners = True && out_size > 1 :
6852

T
Tink_Y 已提交
6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6864

T
Tink_Y 已提交
6865 6866
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6867

T
Tink_Y 已提交
6868 6869
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6870

T
Tink_Y 已提交
6871 6872
          else:
              align_corners = True
6873

T
Tink_Y 已提交
6874 6875
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6876

T
Tink_Y 已提交
6877 6878
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6879

T
Tink_Y 已提交
6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6890

T
Tink_Y 已提交
6891 6892 6893 6894
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6895

T
Tink_Y 已提交
6896 6897
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6898

K
Kaipeng Deng 已提交
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
6921 6922 6923 6924 6925 6926
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
6927 6928 6929
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

6930 6931


R
ruri 已提交
6932
    Parameters:
6933 6934
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
6935
        out_shape(list|tuple|Variable|None): Output shape of image resize
6936 6937 6938 6939
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
6940 6941 6942
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
6943
             Default: None.
6944 6945
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
6946 6947
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
6948 6949 6950
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6951
                                :attr:`out_shape` and :attr:`scale` specifying
6952 6953
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6954 6955 6956 6957 6958
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
6959
                                errors would be occurred in graph constructing stage.
6960
                                Default: None
6961 6962 6963 6964
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6965
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6966
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
6967
                            src_idx = scale*dst_index.
6968 6969 6970 6971 6972
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored 
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
6973 6974

    Returns:
6975 6976
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
6977

6978 6979 6980
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
6981 6982 6983 6984
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
6985
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
6986 6987
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
6988
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
6989
        TypeError: align_corners should be a bool value
6990
        ValueError: align_mode can only be '0' or '1'
6991
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
6992

6993 6994
    Examples:
        .. code-block:: python
R
ruri 已提交
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.image_resize(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.image_resize(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7027

R
ruri 已提交
7028 7029 7030 7031 7032 7033
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7034

R
ruri 已提交
7035 7036 7037 7038 7039 7040 7041 7042
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7043

R
ruri 已提交
7044 7045
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7046

R
ruri 已提交
7047 7048 7049 7050
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.image_resize(input=input, out_shape=[12,12])
    		print(output.shape)
7051

R
ruri 已提交
7052
		# [2L, 3L, 12L, 12L]
7053

7054
    """
7055 7056
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
7057
        'TRILINEAR': 'trilinear',
7058 7059
        'NEAREST': 'nearest',
    }
7060 7061
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
7062 7063
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
7064
    resample_type = resample_methods[resample]
7065

K
Kaipeng Deng 已提交
7066 7067 7068 7069 7070
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

7071 7072 7073 7074 7075
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7076
    if out_shape is None and scale is None:
7077
        raise ValueError("One of out_shape and scale must not be None.")
7078
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7079
    dtype = helper.input_dtype()
7080

7081 7082 7083 7084 7085 7086 7087 7088 7089
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

7090 7091 7092
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7093 7094 7095 7096 7097
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

7098
    inputs = {"X": input}
D
dengkaipeng 已提交
7099
    attrs = {
7100 7101 7102
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
7103 7104
        "interp_method": resample_type,
        "align_corners": align_corners,
7105 7106
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
7107 7108
    }

7109
    if out_shape is not None:
7110
        if isinstance(out_shape, Variable):
7111
            out_shape.stop_gradient = True
7112
            inputs['OutSize'] = out_shape
7113 7114
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7115 7116
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
7145 7146 7147 7148
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
7149 7150 7151 7152 7153 7154 7155
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
7156 7157 7158 7159
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
7160 7161 7162 7163 7164 7165 7166 7167 7168
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
7169

7170
    else:
7171 7172 7173
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
7174
        elif isinstance(scale, float) or isinstance(scale, int):
7175
            if scale <= 0:
7176
                raise ValueError("Attr(scale) should be greater than zero.")
7177
            attrs['scale'] = float(scale)
7178 7179 7180
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")
7181

7182
    if isinstance(actual_shape, Variable):
7183 7184 7185 7186 7187
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
7188 7189 7190 7191
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7192
    out = helper.create_variable_for_type_inference(dtype)
7193
    helper.append_op(
7194
        type='{}_interp'.format(resample_type),
7195
        inputs=inputs,
7196
        outputs={"Out": out},
D
dengkaipeng 已提交
7197
        attrs=attrs)
7198
    return out
F
stash  
fengjiayi 已提交
7199 7200


7201
@templatedoc(op_type="bilinear_interp")
7202 7203 7204 7205
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7206 7207
                    actual_shape=None,
                    align_corners=True,
7208 7209
                    align_mode=1,
                    data_format='NCHW'):
7210
    """
R
ruri 已提交
7211
    This op resizes the input by performing bilinear interpolation based on given
7212
    output shape which specified by actual_shape, out_shape and scale
7213 7214
    in priority order.

7215 7216 7217
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

7218 7219 7220 7221
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7222 7223
    again in the other direction.

7224
    For details of bilinear interpolation, please refer to Wikipedia:
7225
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7226

T
tianshuo78520a 已提交
7227
    Align_corners and align_mode are optional parameters,the calculation 
7228 7229 7230 7231
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7232
    .. code-block:: text
7233

T
Tink_Y 已提交
7234
        For scale:
7235
          
T
Tink_Y 已提交
7236
            if align_corners = True && out_size > 1 :
7237

T
Tink_Y 已提交
7238 7239 7240 7241
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
7242
              scale_factor = float(in_size/out_size)
7243

T
Tink_Y 已提交
7244 7245 7246 7247 7248 7249 7250 7251 7252 7253
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7254

T
Tink_Y 已提交
7255
          else:
T
tink2123 已提交
7256

T
Tink_Y 已提交
7257 7258 7259 7260
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7261

R
ruri 已提交
7262 7263
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
7264
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
7265
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
7266
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
7267 7268
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
7269
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7270
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7271
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7272
             Default: None.
7273 7274 7275
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7276
                                :attr:`out_shape` and :attr:`scale` specifying
7277 7278
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7279 7280 7281 7282 7283
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7284
                                errors would be occurred in graph constructing stage.
7285
                                Default: None
7286 7287
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7288 7289 7290 7291
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
7292
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
7293 7294

    Returns:
R
ruri 已提交
7295 7296
	Variable: 4-D tensor(NCHW or NHWC).
    
7297 7298
    Examples:
        .. code-block:: python
R
ruri 已提交
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7331

R
ruri 已提交
7332 7333 7334 7335 7336 7337
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7338

R
ruri 已提交
7339 7340 7341 7342 7343 7344 7345 7346
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7347

R
ruri 已提交
7348 7349
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7350

R
ruri 已提交
7351 7352 7353 7354
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
    		print(output.shape)
7355

R
ruri 已提交
7356
		# [2L, 3L, 12L, 12L]
7357

7358 7359
    """

7360
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
7361
                        align_corners, align_mode, data_format)
7362 7363


K
Kaipeng Deng 已提交
7364 7365 7366 7367 7368 7369 7370
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
7371 7372
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
7373
    """
R
ruri 已提交
7374
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
7375 7376 7377
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

7378 7379 7380
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
7381 7382 7383 7384 7385 7386 7387 7388
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

T
tianshuo78520a 已提交
7389
    Align_corners and align_mode are optional parameters,the calculation 
K
Kaipeng Deng 已提交
7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
7409

K
Kaipeng Deng 已提交
7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
7428
    Parameters:
7429 7430
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7431
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
7432
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
7433 7434 7435
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
R
ruri 已提交
7436
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
7437 7438 7439 7440 7441 7442
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7443 7444 7445 7446 7447
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7448
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
7449 7450 7451
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7452 7453 7454 7455
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
7456 7457

    Returns:
R
ruri 已提交
7458
        Variable: A 5-D Tensor(NCDHW or NDHWC) 
K
Kaipeng Deng 已提交
7459 7460 7461

    Examples:
        .. code-block:: python
R
ruri 已提交
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,8,10])

	    #1
	    output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])

	    #3
	    #x = np.array([3,12,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
7494

R
ruri 已提交
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12, 12)
	    #2
	    # (2, 3, 12, 2, 4)
	    #3
	    # (2, 3, 3, 12, 12)
	    #4
	    # (2, 3, 3, 4, 5)

	    #imperative mode
	    import paddle.fluid.dygraph as dg
7513

R
ruri 已提交
7514 7515 7516 7517
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
    		print(output.shape)
7518

R
ruri 已提交
7519
		# [2L, 3L, 12L, 12L, 12L]
7520 7521 7522



K
Kaipeng Deng 已提交
7523 7524 7525
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
7526
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
7527 7528


7529
@templatedoc(op_type="nearest_interp")
7530 7531 7532 7533
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7534
                   actual_shape=None,
7535 7536
                   align_corners=True,
                   data_format='NCHW'):
7537
    """
R
ruri 已提交
7538
    This op resizes the input by performing nearest neighbor interpolation in both the
7539 7540
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
7541

7542 7543 7544
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

7545 7546
    Example:

T
Tink_Y 已提交
7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
7559
          
T
Tink_Y 已提交
7560 7561
          if:
              align_corners = False
7562

T
Tink_Y 已提交
7563 7564
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7565

T
Tink_Y 已提交
7566 7567
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7568

T
Tink_Y 已提交
7569 7570
          else:
              align_corners = True
7571

T
Tink_Y 已提交
7572 7573
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7574

T
Tink_Y 已提交
7575 7576
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7577 7578


7579
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7580
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7581

R
ruri 已提交
7582
    Parameters:
7583 7584
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7585
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
7586
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7587
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7588
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
R
ruri 已提交
7589 7590 7591
             Default: None. 
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
	actual_shape(Variable): An optional input to specify output shape
7592 7593
                                dynamically. If provided, image resize
                                according to this given shape rather than
7594
                                :attr:`out_shape` and :attr:`scale` specifying
7595 7596
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7597 7598 7599 7600 7601
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7602
                                errors would be occurred in graph constructing stage.
7603
                                Default: None
7604
        align_corners(bool): ${align_corners_comment}
7605 7606 7607 7608
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
7609 7610

    Returns:
R
ruri 已提交
7611
	Variable: 4-D tensor(NCHW or NHWC).
7612 7613 7614

    Examples:
        .. code-block:: python
R
ruri 已提交
7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7647

R
ruri 已提交
7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7663

R
ruri 已提交
7664 7665
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7666

R
ruri 已提交
7667 7668 7669 7670 7671 7672
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
    		print(output.shape)

		# [2L, 3L, 12L, 12L]
7673 7674 7675



7676 7677
    """

7678 7679 7680 7681 7682 7683 7684 7685 7686 7687
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
7688 7689 7690 7691


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
R
ruri 已提交
7692
    This op resizes a batch of images. The short edge of input images will be
7693 7694
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7695 7696
    constant.

R
ruri 已提交
7697 7698
    Parameters:
        input (Variable): 4-D tensor(NCHW), The input tensor of image resize layer.
7699
        out_short_len(int): The length of output images' short edge.
7700
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7701

7702
    Returns:
R
ruri 已提交
7703
        Variable: 4-D tensor(NCHW).
R
ruri 已提交
7704 7705 7706 7707

    Examples:
        .. code-block:: python

7708
            import paddle.fluid as fluid
R
ruri 已提交
7709
            input = fluid.data(name="input", shape=[None,3,6,9], dtype="float32")
R
ruri 已提交
7710
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7711 7712 7713 7714 7715 7716 7717 7718 7719 7720
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7721 7722 7723
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7724 7725 7726
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7727
def gather(input, index, overwrite=True):
W
whs 已提交
7728
    """
Q
qiaolongfei 已提交
7729 7730
    **Gather Layer**

7731
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7732 7733 7734 7735
    of X indexed by `index` and concatenate them together.

    .. math::

7736
        Out = X[Index]
W
whs 已提交
7737 7738 7739 7740 7741 7742 7743


    .. code-block:: text


                Given:

7744 7745
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7746 7747 7748 7749 7750 7751 7752 7753 7754 7755
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
Y
Yibing Liu 已提交
7756 7757 7758 7759 7760
        input (Variable): The source input tensor with rank>=1. Supported data type is 
            int32, int64, float32, float64 and uint8 (only for CPU), 
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
7761 7762 7763 7764 7765
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7766 7767 7768 7769 7770

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7771

W
whs 已提交
7772 7773
        .. code-block:: python

7774
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7775 7776
            x = fluid.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7777 7778 7779 7780
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7781
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7782 7783 7784 7785
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7786 7787
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7788 7789 7790
    return out


7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
7843 7844 7845
        input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
                          Its dtype should be int32, int64.
7846
        name (str|None): A name for this layer(optional). If set None, the
7847
                         layer will be named automatically.
7848 7849 7850 7851 7852 7853 7854 7855 7856

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
7857 7858
            x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.data(name='index', shape=[2, 2], dtype='int32')
7859 7860 7861 7862 7863
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
7864
    output = helper.create_variable_for_type_inference(dtype)
7865 7866 7867 7868 7869 7870 7871 7872
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


7873
def scatter(input, index, updates, name=None, overwrite=True):
7874 7875 7876
    """
    **Scatter Layer**

7877
    Output is obtained by updating the input on selected indices based on updates.
7878

7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902
    .. code-block:: python
        import numpy as np
                
        #input:
        input = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as input
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False

        # calculation:
        if not overwrite:
            for i in range(len(index)):
                input[index[i]] = np.zeros((2))

        for i in range(len(index)):
            if (overwrite):
                input[index[i]] = updates[i]
            else:
                input[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]
7903 7904

    Args:
7905 7906
        input (Variable): The input N-D Tensor with rank>=1. Data type can be float32.
        index (Variable): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
T
tianshuo78520a 已提交
7907
        updates (Variable): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
7908 7909
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
        overwrite (bool): The mode that updating the output when there are same indices.
7910 7911
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
7912
	    Default value is True.
7913 7914

    Returns:
7915
        Variable(Tensor|LoDTensor): The output is a Tensor with the same shape as input.
7916 7917 7918 7919 7920

    Examples:

        .. code-block:: python

7921
            import numpy as np
7922 7923
            import paddle.fluid as fluid

7924 7925 7926
            input = fluid.layers.data(name='data', shape=[3, 2], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[4], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[4, 2], dtype='float32', append_batch_size=False)
7927

7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941
            output = fluid.layers.scatter(input, index, updates, overwrite=False)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            in_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            update_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'data':in_data, "index":index_data, "update":update_data}, fetch_list=[output])
            print(res)
            # [array([[3., 3.],
            #   [6., 6.],
            #   [1., 1.]], dtype=float32)]
7942 7943 7944
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7945
    out = helper.create_variable_for_type_inference(dtype)
7946 7947 7948 7949 7950
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7951
        attrs={'overwrite': overwrite},
7952 7953 7954 7955
        outputs={"Out": out})
    return out


7956 7957 7958 7959 7960
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
7961 7962 7963
    or slice in a Variable. 

    :attr:`ref` is a Tensor with rank :math:`R` 
7964 7965 7966 7967
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
7968

7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
S
ShenLiang 已提交
8000
        ref (Variable): The ref input. Its dtype should be float32, float64.
8001 8002
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
8003 8004 8005
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:].
        name (str|None): The output variable name. If set None, the layer will be named automatically.
8006 8007

    Returns:
8008
        output (Variable): The output is a tensor with the same shape and dtype as ref.
8009 8010 8011 8012 8013 8014 8015

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

8016 8017 8018
            ref = fluid.data(name='ref', shape=[3, 5, 9, 10], dtype='float32')
            index = fluid.data(name='index', shape=[3, 2], dtype='int32')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
8019 8020 8021 8022 8023 8024 8025

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
8026
    dtype = helper.input_dtype(input_param_name='ref')
8027
    output = helper.create_variable_for_type_inference(dtype)
8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
S
ShenLiang 已提交
8053
        updates (Variable): The updated value of scatter_nd op. Its dtype should be float32, float64.
8054 8055
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
8056
        name (str|None): The output variable name. If set None, the layer will be named automatically.
8057 8058 8059 8060 8061 8062 8063 8064 8065 8066

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

8067 8068
            index = fluid.data(name='index', shape=[3, 2], dtype='int64')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
8069 8070 8071 8072 8073 8074 8075
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Y
yuyang18 已提交
8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8089

8090
    Examples:
Q
qingqing01 已提交
8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103
        .. code-block:: python

            import paddle.fluid as fluid
            img = fluid.data("img", [None, 3, 256, 256])
            # cropped_img is [-1, 3, 224, 224]
            cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

            # cropped_img2 shape: [-1, 2, 224, 224]
            # cropped_img2 = fluid.layers.random_crop(img, shape=[2, 224, 224])

            # cropped_img3 shape: [-1, 3, 128, 224]
            # cropped_img3 = fluid.layers.random_crop(img, shape=[128, 224])

Y
yuyang18 已提交
8104
    """
F
stash  
fengjiayi 已提交
8105
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8106
    dtype = x.dtype
X
Xin Pan 已提交
8107
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8108
    if seed is None:
8109
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8110
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8111
    if isinstance(seed, int):
F
fengjiayi 已提交
8112 8113 8114 8115 8116
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8117 8118 8119 8120
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8121
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8122 8123
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8124 8125
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8126
    return out
W
whs 已提交
8127 8128


8129
def log(x, name=None):
W
wanghaoshuang 已提交
8130 8131 8132 8133 8134
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8135
        Out = \\ln(x)
W
wanghaoshuang 已提交
8136 8137

    Args:
W
Wilber 已提交
8138 8139 8140
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
W
wanghaoshuang 已提交
8141 8142

    Returns:
W
Wilber 已提交
8143
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
W
wanghaoshuang 已提交
8144 8145 8146 8147 8148

    Examples:

        .. code-block:: python

8149
            import paddle.fluid as fluid
W
Wilber 已提交
8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[1], dtype="float32")
            res = fluid.layers.log(x)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1], [2]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
W
wanghaoshuang 已提交
8163
    """
8164
    if in_dygraph_mode():
8165
        return core.ops.log(x)
8166

8167
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
8168
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8169
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8170
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8171
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8172 8173 8174
    return out


Z
zhupengyang 已提交
8175
@templatedoc()
8176
def relu(x, name=None):
W
wanghaoshuang 已提交
8177
    """
Z
zhupengyang 已提交
8178
    ${comment}
W
wanghaoshuang 已提交
8179 8180

    Args:
Z
zhupengyang 已提交
8181 8182 8183 8184
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
8185 8186

    Returns:
Z
zhupengyang 已提交
8187
        Variable: ${out_comment}
W
wanghaoshuang 已提交
8188 8189 8190 8191 8192

    Examples:

        .. code-block:: python

8193
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8194 8195 8196 8197 8198 8199 8200 8201 8202
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
                #  [1.  2.6]]
"""
8203
    if in_dygraph_mode():
8204
        return core.ops.relu(x)
8205

8206 8207
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')

8208
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
8209
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8210
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8211
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8212 8213
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8214
    return out
8215 8216


C
chengduo 已提交
8217 8218
def selu(x, scale=None, alpha=None, name=None):
    """
8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232
    Selu Operator.

    The equation is:
    
    .. math::
        selu= \\lambda*
        \\begin{cases}
            x                      &\\quad \\text{ if } x>0 \n
            \\alpha * e^x - \\alpha  &\\quad \\text{ if } x<=0
        \\end{cases}
    

    The input `X` can carry the LoD (Level of Details) information,
    or not. And the output shares the LoD information with input `X`.
C
chengduo 已提交
8233 8234

    Args:
8235 8236
        x (Variable): The input N-D Tensor.
        scale(float, optional): lambda in selu activation function,
C
chengduo 已提交
8237 8238 8239
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
8240
        alpha(float, optional): alpha in selu activation function,
C
chengduo 已提交
8241 8242 8243
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
8244 8245
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

C
chengduo 已提交
8246 8247

    Returns:
8248
        Variable(Tensor|LoDTensor): The output Tensor or LoDTensor with the same shape and LoD information as input.
C
chengduo 已提交
8249 8250 8251 8252

    Examples:

        .. code-block:: python
8253 8254
             
            import paddle.fluid as fluid
8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.selu(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.      , 1.050701],[2.101402, 3.152103]], dtype=float32)]
C
chengduo 已提交
8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8282 8283 8284
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8285 8286 8287 8288
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8289
    .. math::
8290

H
haowang101779990 已提交
8291
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8292

8293
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8294 8295 8296
    is then calculated from it.


L
Liufang Sang 已提交
8297 8298
    Parameters:
        input (Variable): A n-D Tensor of prediction results for semantic labels with type int32 or int64.
8299
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8300
                           Its shape should be the same as input.
L
Liufang Sang 已提交
8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
        num_classes (int32): The possible number of labels.

    Returns: 
	Three Variables.

        - mean_iou(Variable) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \
			    Data type is float32.
        - out_wrong(Variable) : A 1-D Tensor with shape [num_classes]. Data type is int32. \
			     The wrong numbers of each class.
        - out_correct(Variable): A 1-D  Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class.
 
   
W
whs 已提交
8313 8314 8315
    Examples:

        .. code-block:: python
8316

B
Bai Yifan 已提交
8317
            import paddle.fluid as fluid
L
Liufang Sang 已提交
8318
            iou_shape = [None, 32, 32]
8319
            num_classes = 5
L
Liufang Sang 已提交
8320 8321 8322
            predict = fluid.data(name='predict', shape=iou_shape, dtype='int64')
            label = fluid.data(name='label', shape=iou_shape, dtype='int64')
            mean_iou, out_wrong, out_correct = fluid.layers.mean_iou(predict, label,
8323
                                                          num_classes)
W
whs 已提交
8324 8325 8326
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8327 8328 8329
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8330 8331
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8332 8333
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8334
        outputs={
W
whs 已提交
8335 8336 8337
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8338 8339 8340
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8341 8342 8343 8344 8345 8346


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

S
SunGaofeng 已提交
8347 8348
    **Warning:** THIS OP IS DEPRECATED. It will be removed in the future version.
    Instructions for updating: Use :ref:`api_fluid_layers_crop_tensor` instead.
8349

8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

S
SunGaofeng 已提交
8378 8379 8380 8381 8382 8383
    Parameters:
        x (Variable): Tensor, data type can be float32 or float64.
        shape (Variable|list/tuple of integers): The output shape is specified
            by `shape`, which can be a Tensor or a list/tuple of integers.
            If it is a Tensor, it's rank must be the same as `x` , only 
            it's shape will be used, and the value of it will be ignored. This way
8384
            is suitable for the case that the output shape may be changed each
S
SunGaofeng 已提交
8385
            iteration. If it is a list/tuple of integers, it's length must be the same
8386
            as the rank of `x`
S
SunGaofeng 已提交
8387 8388 8389
        offsets (Variable|list/tuple of integers|None): Specifies the cropping
            offsets at each dimension. It can be a Tensor or a list/tuple
            of integers. If it is a Tensor, it's rank must be the same as `x`.
8390
            This way is suitable for the case that the offsets may be changed
S
SunGaofeng 已提交
8391 8392 8393 8394 8395
            each iteration. If it is a list/tuple of integers, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each dimension.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name` . Usually name is no need to set and 
            None by default. 
8396 8397

    Returns:
S
SunGaofeng 已提交
8398 8399 8400 8401
        The cropped Tensor, which has the same rank and data type with `x`

    Return Type:
        Variable
8402 8403 8404 8405 8406 8407 8408 8409

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8410
            import paddle.fluid as fluid
S
SunGaofeng 已提交
8411 8412
            x = fluid.data(name="x", shape=[3, 3, 5], dtype="float32")
            y = fluid.data(name="y", shape=[2, 2, 3], dtype="float32")
8413 8414 8415
            crop = fluid.layers.crop(x, shape=y)

            # or
S
SunGaofeng 已提交
8416 8417
            z = fluid.data(name="z", shape=[3, 3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 2, 3])
8418 8419 8420 8421 8422

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8423
            isinstance(shape, Variable)):
8424 8425 8426 8427 8428
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8429
    out = helper.create_variable_for_type_inference(x.dtype)
8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8447 8448


8449 8450 8451 8452 8453 8454
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

8455 8456
        * Case 1 (input is a 2-D Tensor):
            Input:
8457
                X.shape = [3, 5]
8458 8459 8460 8461 8462 8463 8464
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
8465 8466 8467
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
8468 8469 8470 8471 8472 8473 8474 8475 8476 8477
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
8478
                shape = [2, 2, -1]
8479 8480
                offsets = [0, 0, 1]
            Output:
8481 8482 8483 8484 8485
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]
8486 8487

    Parameters:
8488
        x (Variable): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
8489 8490
        shape (list|tuple|Variable): The output shape is specified
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
T
tianshuo78520a 已提交
8491
            the same as the dimension size of `x`. If a Variable, it should be a 1-D Tensor.
8492
            When it is a list, each element can be an integer or a Tensor of shape: [1].
8493 8494
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
8495 8496
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
T
tianshuo78520a 已提交
8497
            must be the same as the dimension size of `x`. If a Variable, it should be a 1-D
8498 8499 8500 8501 8502
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
        name(str, optional): The default value is None. Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
8503 8504

    Returns:
8505
        Variable: The cropped Tensor has same data type with `x`.
8506 8507

    Raises:
8508 8509 8510 8511 8512 8513
        TypeError: If the data type of `x` is not in: float32, float64, int32, int64.
        TypeError: If `shape` is not a list, tuple or Variable.
        TypeError: If the data type of `shape` is not int32.
        TypeError: If `offsets` is not None and not a list, tuple or Variable.
        TypeError: If the data type of `offsets` is not int32.
        ValueError: If the element in `offsets` is less than zero.
8514 8515 8516 8517 8518 8519

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
8520
            x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32")
8521 8522
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

8523 8524
            # shape is a 1-D Tensor
            crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32")
8525 8526 8527 8528
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
8529
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, -1, 3], offsets=[0, 1, 0])
8530 8531
            # crop1.shape = [-1, 2, 3]

8532 8533 8534 8535 8536
            # or shape is a list in which each element is a constant or Variable
            y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
            # crop2.shape = [3, -1, 4]
8537

8538 8539
            # offsets is a 1-D Tensor
            crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32")
8540 8541 8542
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

8543 8544
            # offsets is a list in which each element is a constant or Variable
            offsets_var =  fluid.data(name="dim1", shape=[1], dtype="int32")
8545 8546 8547 8548 8549
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())
8550 8551
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'crop_tensor')
8552 8553 8554
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')
8555 8556 8557 8558 8559 8560 8561 8562

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586
    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

8587 8588 8589
    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
8590
        attrs['offsets'] = [-1] * len(x.shape)
L
Leo Chen 已提交
8591
    elif utils._contain_var(offsets):
8592
        new_offsets_tensor = []
8593
        offsets_attr = []
8594 8595 8596 8597
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
8598
                offsets_attr.append(-1)
8599
            else:
8600
                _attr_offsets_check(dim)
8601 8602 8603
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
8604
                offsets_attr.append(dim)
8605
        ipts['OffsetsTensor'] = new_offsets_tensor
8606
        attrs['offsets'] = offsets_attr
8607
    else:
8608 8609
        for offset in offsets:
            _attr_offsets_check(offset)
8610 8611 8612 8613 8614
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
L
Leo Chen 已提交
8615
    elif utils._contain_var(shape):
8616 8617
        new_shape_tensor = []
        shape_attr = []
8618
        for dim_size in shape:
8619 8620 8621
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
8622
                shape_attr.append(0)
8623
            else:
8624
                _attr_shape_check(dim_size)
8625 8626 8627 8628 8629 8630 8631 8632
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
8633 8634
        for dim_size in shape:
            _attr_shape_check(dim_size)
8635 8636 8637 8638 8639 8640 8641 8642 8643 8644
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8645 8646 8647 8648 8649 8650 8651 8652
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
8653 8654 8655 8656 8657 8658
        theta (Variable) - A Tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Variable | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
W
whs 已提交
8659 8660

    Returns:
8661
        Variable: A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`. 
W
whs 已提交
8662 8663 8664 8665 8666 8667 8668

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8669

S
SunGaofeng 已提交
8670
            import paddle.fluid as fluid
8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684
            import numpy as np
            place = fluid.CPUPlace()
            theta = fluid.data(name="x", shape=[None, 2, 3], dtype="float32")
            out_shape = fluid.data(name="y", shape=[4], dtype="int32")
            grid_0 = fluid.layers.affine_grid(theta, out_shape)
            grid_1 = fluid.layers.affine_grid(theta, [5, 3, 28, 28])
            batch_size=2
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output= exe.run(feed={"x": np.random.rand(batch_size,2,3).astype("float32"),
                                  "y": np.array([5, 3, 28, 28]).astype("int32")},
                                  fetch_list=[grid_0.name, grid_1.name])
            print(output[0])
            print(output[1])
W
whs 已提交
8685 8686 8687 8688
    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8689
            isinstance(out_shape, Variable)):
W
whs 已提交
8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8711 8712 8713 8714 8715 8716 8717
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
T
tianshuo78520a 已提交
8718
    Pad 2-d images according to 'paddings' and 'mode'.
W
whs 已提交
8719 8720 8721
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

L
Liufang Sang 已提交
8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739
    Parameters:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32.
        paddings (Variable | List[int32]): The padding size. If padding is a List, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Otherwise, it is a 1-D Tensor with shape [4]. Data type is int32.
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

T
tianshuo78520a 已提交
8740
    Returns: a 4-D Tensor padded according to paddings and mode and data type is same as input.
L
Liufang Sang 已提交
8741 8742 8743 8744 8745

    Return Type: Variable


    Examples:
T
Tink_Y 已提交
8746
        .. code-block:: text
W
whs 已提交
8747

8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771
            Input = [[[[1., 2., 3.],
                       [4., 5., 6.]]]]

            Case 0:
                paddings = [0, 1, 2, 3],
                mode = 'constant'
                pad_value = 0
                Out = [[[[0., 0., 1., 2., 3., 0., 0., 0.],
                         [0., 0., 4., 5., 6., 0., 0., 0.],
                         [0., 0., 0., 0., 0., 0., 0., 0.]]]]

            Case 1:
                paddings = [0, 1, 2, 1],
                mode = 'reflect'
                Out = [[[[3., 2., 1., 2., 3., 2.],
                         [6., 5., 4., 5., 6., 5.],
                         [3., 2., 1., 2., 3., 2.]]]]

            Case 2:
                paddings = [0, 1, 2, 1],
                mode = 'edge'
                Out = [[[[1., 1., 1., 2., 3., 3.],
                         [4., 4., 4., 5., 6., 6.],
                         [4., 4., 4., 5., 6., 6.]]]]
M
minqiyang 已提交
8772

L
Liufang Sang 已提交
8773
    Code Examples:
W
whs 已提交
8774 8775
        .. code-block:: python

8776 8777 8778
            import paddle.fluid as fluid
            data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
            result = fluid.layers.pad2d(input=data, paddings=[0, 1, 2, 3], mode='reflect')
W
whs 已提交
8779
    """
8780 8781 8782 8783 8784 8785 8786

    if in_dygraph_mode():
        _paddings = paddings.numpy().tolist() if isinstance(
            paddings, Variable) else paddings
        return core.ops.pad2d(input, 'mode', mode, 'pad_value', pad_value,
                              'data_format', data_format, 'paddings', _paddings)

8787 8788 8789 8790 8791 8792 8793 8794
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}
    inputs = {'X': [input]}
    if isinstance(paddings, Variable):
        inputs['Paddings'] = [paddings]
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8795
    helper = LayerHelper('pad2d', **locals())
8796 8797 8798 8799

    assert mode in ['reflect', 'edge', 'constant'
                    ], "mode should be one of constant, reflect, edge."

W
whs 已提交
8800
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8801
    out = helper.create_variable_for_type_inference(dtype)
8802

W
whs 已提交
8803
    helper.append_op(
8804
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8805 8806 8807 8808

    return out


8809 8810 8811 8812 8813 8814 8815
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
8816 8817
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8818
    Returns:
8819
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8820 8821 8822 8823 8824

    Examples:

        .. code-block:: python

8825
            import paddle.fluid as fluid
8826 8827 8828 8829 8830 8831 8832 8833 8834
            import numpy as np
         
            input_elu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_elu)
                y = fluid.layers.elu(x, alpha=0.2)
                print(y.numpy())
                # [[-0.12642411  6.        ]
                # [ 1.          15.6       ]]
8835 8836
    """
    helper = LayerHelper('elu', **locals())
8837
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
X
Xin Pan 已提交
8838
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
Z
zhupengyang 已提交
8851

8852 8853
    Args:
        x(${x_type}): ${x_comment}
Z
zhupengyang 已提交
8854 8855 8856 8857
        threshold(float, optional): ${threshold_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
8858 8859 8860

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8861 8862 8863 8864 8865

    Examples:

        .. code-block:: python

8866
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8867 8868 8869 8870 8871 8872 8873 8874
            import numpy as np
            in1 = np.array([[-1,0],[2.5,7.8]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu6(x=x1, threshold=6.0)
                print(out1.numpy())
                # [[0.  0. ]
                #  [2.5 6. ]]
8875 8876
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8877
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
8889 8890 8891 8892
    This is Pow Activation Operator.

    :math:`out = x^{factor}`

8893
    Args:
8894 8895 8896
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        factor(float32|Variable, optional): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.  The exponential factor of Pow. Default 1.0.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
8897 8898

    Returns:
8899
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``.
Z
ZhenWang 已提交
8900 8901 8902 8903 8904

    Examples:

        .. code-block:: python

8905
            import paddle.fluid as fluid
8906

8907
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
8908 8909 8910

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)
8911
            # y_1 is x^{2.0}
8912 8913 8914 8915

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
8916
            # y_2 is x^{3.0}
8917 8918
    """
    helper = LayerHelper('pow', **locals())
8919 8920 8921 8922 8923 8924 8925 8926
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
8927
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8928
    helper.append_op(
8929
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8930 8931 8932 8933
    return out


@templatedoc()
8934
def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
8935 8936 8937 8938 8939 8940 8941 8942 8943 8944
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
8945
        output(${out_type}): ${out_comment}. 
Z
ZhenWang 已提交
8946 8947 8948 8949 8950

    Examples:

        .. code-block:: python

8951
            import paddle.fluid as fluid
8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966
            import numpy as np
            data = fluid.data(name="input", shape=[-1, 3])
            result = fluid.layers.stanh(data,scale_a=0.67, scale_b=1.72)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.random(size=(3, 3)).astype('float32')
            output= exe.run(feed={"input": x},
                         fetch_list=[result])
            print(output)

            #[array([[0.626466  , 0.89842904, 0.7501062 ],
            #       [0.25147712, 0.7484996 , 0.22902708],
            #       [0.62705994, 0.23110689, 0.56902856]], dtype=float32)]

8967 8968
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8969
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
8983 8984 8985 8986 8987 8988 8989
    Parameters:
        x (${x_type}): ${x_comment}
        slope (float, optional): ${slope_comment}
        offset (float, optional): ${offset_comment}
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`
8990 8991

    Returns:
8992
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8993 8994 8995 8996 8997

    Examples:

        .. code-block:: python

8998
            import paddle.fluid as fluid
8999 9000
            data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
            result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
9001 9002
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
9003
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
9016 9017 9018 9019 9020 9021 9022
    Elementwise swish activation function. See `Searching for Activation Functions <https://arxiv.org/abs/1710.05941>`_ for more details.
    
    Equation:

    .. math::
        out = \\frac{x}{1 + e^{- beta * x}}
    
9023
    Args:
9024 9025 9026 9027 9028
        x(Variable): Tensor or LoDTensor, dtype: float32 or float64, the input of swish activation.
        
        beta(float): Constant beta of swish operator, default 1.0.
        
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
9029 9030

    Returns:
9031 9032

        Variable: Output of the swish activation, Tensor or LoDTensor, with the same dtype and shape with the input x.
Z
ZhenWang 已提交
9033 9034 9035 9036

    Examples:

        .. code-block:: python
9037 9038 9039 9040 9041 9042
            
            # declarative mode
            import numpy as np
            from paddle import fluid
            
            x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
Z
ZhenWang 已提交
9043
            y = fluid.layers.swish(x, beta=2.0)
9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080
            
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            start = fluid.default_startup_program()
            main = fluid.default_main_program()
            
            data = np.random.randn(2, 3).astype("float32")
            exe.run(start)
            y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
            
            data
            # array([[-1.1239197 ,  1.3391294 ,  0.03921051],
            #        [ 1.1970421 ,  0.02440812,  1.2055548 ]], dtype=float32)
            y_np
            # array([[-0.2756806 ,  1.0610548 ,  0.01998957],
            #        [ 0.9193261 ,  0.01235299,  0.9276883 ]], dtype=float32)


        .. code-block:: python

            # imperative mode
            import numpy as np
            from paddle import fluid
            import paddle.fluid.dygraph as dg
            
            data = np.random.randn(2, 3).astype("float32")
            place = fluid.CPUPlace()
            with dg.guard(place) as g:
                x = dg.to_variable(data)
                y = fluid.layers.swish(x)
                y_np = y.numpy()
            data
            # array([[-0.0816701 ,  1.1603649 , -0.88325626],
            #        [ 0.7522361 ,  1.0978601 ,  0.12987892]], dtype=float32)
            y_np
            # array([[-0.03916847,  0.8835007 , -0.25835553],
            #        [ 0.51126915,  0.82324016,  0.06915068]], dtype=float32)
9081 9082
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9083
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9084 9085 9086 9087 9088 9089 9090 9091
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9092 9093 9094 9095
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9096 9097
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9098

J
jerrywgz 已提交
9099 9100 9101 9102 9103 9104 9105 9106
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9107
    Args:
W
wangguanzhong 已提交
9108 9109
        x (Variable): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing. 
J
jerrywgz 已提交
9110
        param_attr(ParamAttr|None): The parameter attribute for the learnable
W
wangguanzhong 已提交
9111 9112 9113 9114 9115
          weight (alpha), it can be create by ParamAttr. None by default.
          For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
        name(str|None): For detailed information, please refer 
          to :ref:`api_guide_Name`. Usually name is no need to set and 
          None by default. 
J
jerrywgz 已提交
9116 9117

    Returns:
W
wangguanzhong 已提交
9118 9119 9120 9121
        Variable:

        output(Variable): The tensor or LoDTensor with the same shape as input.
        The data type is float32.
J
jerrywgz 已提交
9122 9123 9124 9125 9126

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9127 9128
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
9129
            x = fluid.data(name="x", shape=[None,5,10,10], dtype="float32")
J
jerrywgz 已提交
9130
            mode = 'channel'
J
jerrywgz 已提交
9131 9132 9133
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9134 9135 9136 9137 9138 9139 9140 9141
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
9142
        alpha_shape = [1, x.shape[1], x.shape[2], x.shape[3]]
J
jerrywgz 已提交
9143 9144
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9145
        attr=helper.param_attr,
J
jerrywgz 已提交
9146 9147 9148
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
9149
        default_initializer=Constant(0.25))
X
Xin Pan 已提交
9150
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9151 9152 9153 9154 9155 9156 9157 9158 9159
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9160 9161 9162 9163 9164 9165 9166 9167
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
9168 9169
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
9170
    Returns:
9171
        ${out_type}: ${out_comment}
9172 9173 9174

    Examples:

9175
    .. code-block:: python
9176

9177
            import paddle.fluid as fluid
9178 9179 9180 9181 9182 9183 9184 9185 9186
            import numpy as np
            
            input_brelu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_brelu)
                y = fluid.layers.brelu(x, t_min=1.0, t_max=10.0)
                print(y.numpy())
                #[[ 1.  6.]
                #[ 1. 10.]] 
9187
    """
9188 9189
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'brelu')

9190
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9191
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
W
Wilber 已提交
9208 9209
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

9210
    Returns:
9211
        output(${out_type}): ${out_comment}
9212 9213 9214 9215 9216

    Examples:

        .. code-block:: python

9217
            import paddle.fluid as fluid
W
Wilber 已提交
9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[2], dtype="float32")
            res = fluid.layers.leaky_relu(x, alpha=0.1)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[-1, 2], [3, -4]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[-0.1, 2], [3, -0.4]]
9231
    """
9232
    if in_dygraph_mode():
9233
        return core.ops.leaky_relu(x, 'alpha', alpha)
9234

9235 9236 9237
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'leaky_relu')

9238 9239
    inputs = {'X': [x]}
    attrs = {'alpha': alpha}
9240
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9241
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9242
    helper.append_op(
9243
        type='leaky_relu', inputs=inputs, outputs={'Out': out}, attrs=attrs)
9244 9245 9246 9247 9248
    return out


def soft_relu(x, threshold=40.0, name=None):
    """
9249 9250 9251 9252
    SoftRelu Activation Operator.

    $out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$

9253
    Args:
9254 9255 9256 9257
        x(Variable): Input of soft_relu operator. Data type can be float32, float64.
        threshold(float, optional): The threshold value of soft_relu, default value being 40.0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

9258
    Returns:
9259
        Variable(Tensor|LoDTensor)): Output of soft_relu operator, shape and LoD same as input.
9260 9261 9262

    Examples:

9263 9264 9265
        .. code-block:: python 
 
            import paddle.fluid as fluid
9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.soft_relu(inputs, threshold=20.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.6931472, 1.3132616], [2.126928 , 3.0485873]], dtype=float32)]
9278 9279
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9280
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9281 9282 9283 9284 9285 9286 9287 9288
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9289 9290
def flatten(x, axis=1, name=None):
    """
9291 9292 9293
    **Flatten op**

    Flatten the input tensor into a 2D matrix.
M
minqiyang 已提交
9294

H
haowang101779990 已提交
9295
    For Example:
M
minqiyang 已提交
9296

H
haowang101779990 已提交
9297
    .. code-block:: text
9298

H
haowang101779990 已提交
9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9320 9321

    Args:
9322 9323
        x (Variable): A tensor of rank >= axis. A tensor with type float32,
                      float64, int8, int32, int64.
9324 9325
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9326
                    The value for axis must be in the range [0, R], where R
9327 9328 9329
                    is the rank of the input tensor. Default: 1.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
9330 9331

    Returns:
H
haowang101779990 已提交
9332 9333 9334
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9335
                  inner dimension of the output. A Tensor with type same as input x.
9336 9337 9338

    Raises:
        ValueError: If x is not a variable.
9339
        ValueError: If axis is not in range [0, rank(x)].
9340 9341 9342 9343 9344

    Examples:

        .. code-block:: python

9345
            import paddle.fluid as fluid
B
Bai Yifan 已提交
9346
            x = fluid.data(name="x", shape=[4, 4, 3], dtype="float32")
9347
            # x shape is [4, 4, 3]
9348
            out = fluid.layers.flatten(x=x, axis=2)
9349
            # out shape is [16, 3]
9350 9351 9352 9353 9354 9355 9356 9357 9358
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9359 9360
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9361
    helper.append_op(
9362
        type='flatten2',
9363
        inputs={"X": x},
9364 9365
        outputs={'Out': out,
                 'XShape': x_shape},
9366 9367
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9368 9369 9370


def stack(x, axis=0):
S
sneaxiy 已提交
9371
    """
9372

9373
    This OP stacks all the inputs :code:`x` along axis.
C
chengduozh 已提交
9374

C
chengduozh 已提交
9375 9376 9377
    .. code-block:: text

        Case 1:
9378

C
chengduozh 已提交
9379
          Input:
9380
            x[0].shape = [1, 2]
C
chengduozh 已提交
9381
            x[0].data = [ [1.0 , 2.0 ] ]
9382
            x[1].shape = [1, 2]
C
chengduozh 已提交
9383
            x[1].data = [ [3.0 , 4.0 ] ]
9384
            x[2].shape = [1, 2]
C
chengduozh 已提交
9385 9386 9387 9388 9389 9390
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
9391
            Out.dims = [3, 1, 2]
C
chengduozh 已提交
9392 9393 9394
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
9395

C
chengduozh 已提交
9396 9397

        Case 2:
9398 9399 9400 9401


          Input:
            x[0].shape = [1, 2]
C
chengduozh 已提交
9402
            x[0].data = [ [1.0 , 2.0 ] ]
9403
            x[1].shape = [1, 2]
C
chengduozh 已提交
9404
            x[1].data = [ [3.0 , 4.0 ] ]
9405
            x[2].shape = [1, 2]
C
chengduozh 已提交
9406
            x[2].data = [ [5.0 , 6.0 ] ]
9407

C
chengduozh 已提交
9408 9409 9410 9411 9412

          Attrs:
            axis = 1 or axis = -2

          Output:
9413
            Out.shape = [1, 3, 2]
C
chengduozh 已提交
9414 9415 9416
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
9417

C
chengduozh 已提交
9418

S
sneaxiy 已提交
9419
    Args:
9420 9421 9422 9423 9424 9425 9426 9427 9428
        x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
                                     If :code:`x` is a :code:`list`, the shapes of all these Tensors
                                     must be the same. Supposing input is N dims
                                     Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
                                     Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
                                     Support data types: float32, float64, int32, int64.
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
                              R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
                              The default value of axis is 0.
9429

S
sneaxiy 已提交
9430
    Returns:
9431
        Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.
9432

9433 9434 9435
    Examples:
        .. code-block:: python

9436
            import paddle.fluid as fluid
9437
            import paddle.fluid.layers as layers
9438 9439 9440 9441 9442 9443 9444 9445 9446 9447
            # set batch size=None
            x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32')
            x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32')
            # stack Tensor list
            data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2]

            data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]

            # stack single Tensor
            data = layers.stack(x1)  # stack according to axis 0, data.shape=[1, None, 1, 2]
9448

S
sneaxiy 已提交
9449 9450
    """

X
Xin Pan 已提交
9451 9452 9453 9454 9455
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]
X
Xin Pan 已提交
9456
    out = helper.create_variable_for_type_inference(x[0].dtype)
9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474
    if not in_dygraph_mode() and \
            x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': True})
    else:
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis})
9475

X
Xin Pan 已提交
9476
    return out
D
dzhwinter 已提交
9477 9478


J
Jiawei Wang 已提交
9479
@templatedoc(op_type="filter_by_instag")
Y
yaoxuefeng 已提交
9480
def filter_by_instag(ins, ins_tag, filter_tag, is_lod, out_val_if_empty=0):
J
Jiawei Wang 已提交
9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.
Y
yaoxuefeng 已提交
9517 9518
        out_val_if_empty(Int64): If the output after filter is empty, this value
                        will be set to Output tensor.
J
Jiawei Wang 已提交
9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
Y
yaoxuefeng 已提交
9546 9547
        attrs={'is_lod': is_lod,
               'out_val_if_empty': out_val_if_empty})
J
Jiawei Wang 已提交
9548 9549 9550 9551

    return [out, loss_weight]


D
dzhwinter 已提交
9552 9553 9554 9555
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

9556
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.
M
minqiyang 已提交
9557

D
dzhwinter 已提交
9558 9559 9560
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9561
    raised.
D
dzhwinter 已提交
9562 9563

    Args:
9564
        x (Variable): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
D
dzhwinter 已提交
9565 9566
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9567

D
dzhwinter 已提交
9568
    Returns:
9569 9570 9571 9572
        list(Variable): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).
M
minqiyang 已提交
9573

9574 9575 9576 9577
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
9578 9579
            x = fluid.layers.data(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = fluid.layers.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]
D
dzhwinter 已提交
9580

9581
    """
D
dzhwinter 已提交
9582 9583 9584 9585 9586 9587 9588 9589
    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9590
    for _ in range(num):
X
Xin Pan 已提交
9591
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9592 9593 9594 9595 9596 9597 9598 9599

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9600 9601 9602


def expand(x, expand_times, name=None):
9603 9604 9605 9606
    """
    This operation tiles ``x`` multiple times according to the parameter ``expand_times``.
    The times number for each dimension of ``x`` is set by the parameter ``expand_times``.
    The rank of ``x`` should be less than or equal to 6. Please note that size of ``expand_times`` must be the same
W
whs 已提交
9607 9608 9609 9610 9611 9612
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9613

W
whs 已提交
9614 9615 9616 9617
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9618

W
whs 已提交
9619
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9620

W
whs 已提交
9621
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9622

W
whs 已提交
9623 9624 9625 9626
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9627

W
whs 已提交
9628
    Args:
9629 9630 9631 9632 9633
        x (Variable): A ``Tensor`` or ``LoDTensor`` with dimension in [1, 6]. The data type is ``bool``, ``float32``, ``float64`` or ``int32`` .
        expand_times (list|tuple|Variable): The data type is ``int32`` . If ``expand_times`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``expand_times`` is an Variable, it should be an 1-D Tensor.
                Expand times number for each dimension of ``x`` .
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
W
whs 已提交
9634 9635

    Returns:
9636
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. After expanding, size of each dimension of output is equal to the size of the corresponding dimension of ``x`` multiplying the corresponding value given by ``expand_times`` .
W
whs 已提交
9637

9638 9639 9640
    Raises:
        TypeError: The type of ``expand_times`` must be list, tuple or Variable.
        ValueError: The elements of ``expand_times`` cannot be negative.
W
whs 已提交
9641 9642 9643

    Examples:
        .. code-block:: python
L
liym27 已提交
9644

W
wangchaochaohu 已提交
9645
            import paddle.fluid as fluid
L
liym27 已提交
9646 9647 9648 9649

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])
9650
            # the shape of expanded_1 is [2, 6, 2].
L
liym27 已提交
9651 9652 9653 9654 9655

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
9656
            # the shape of expanded_2 is [48, 56].
W
whs 已提交
9657
    """
9658 9659
    if in_dygraph_mode():
        if isinstance(expand_times, (list, tuple)):
L
Leo Chen 已提交
9660
            if utils._contain_var(expand_times):
9661 9662 9663 9664 9665 9666 9667 9668
                raise TypeError(
                    "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

9669
        return core.ops.expand(x, 'expand_times', expand_times)
9670

9671 9672
    inputs = {"X": [x]}
    attrs = {}
9673 9674
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
9675
    check_type(expand_times, 'expand_times', (list, tuple, Variable), 'expand')
W
wangchaochaohu 已提交
9676 9677 9678
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True:
        raise ValueError(
            "expand op bool date type must set the stop_gradient to be False")
L
liym27 已提交
9679

W
whs 已提交
9680
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
9681 9682 9683 9684 9685 9686 9687 9688 9689

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
T
tianshuo78520a 已提交
9690
                    "Each element given in expand_times must not be negative.")
L
liym27 已提交
9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
9705

L
Leo Chen 已提交
9706 9707 9708 9709 9710 9711 9712 9713
    if isinstance(expand_times, Variable):
        expand_times.stop_gradient = True
        inputs['ExpandTimes'] = expand_times
    elif isinstance(expand_times, (list, tuple)):
        attrs['expand_times'] = get_attr_expand_times(expand_times)
        if utils._contain_var(expand_times):
            inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                expand_times)
9714

L
liym27 已提交
9715 9716
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9717
    helper.append_op(
9718
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9719
    return out
S
sneaxiy 已提交
9720 9721


9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791
def expand_as(x, target_tensor, name=None):
    """
    expand_as operator tiles to the input by given expand tensor. You should set expand tensor
    for each dimension by providing tensor 'target_tensor'. The rank of X
    should be in [1, 6]. Please note that size of 'target_tensor' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:

                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]

        target_tensor's shape:  [2, 6, 2] 

        Output(Out) is a 3-D tensor with shape [2, 6, 2]:

                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
                

    Args:
        x (Variable): A Tensor with dtype float64, float32, int32.
        A tensor with rank in [1, 6].
        target_tensor (Variable): A Tensor with dtype float64, float32, int32.
        target_tensor for expanding to Input(X). Only use target_tensor'shape.

    Returns:
        Variable: A Tensor with dtype float64, float32, int32. 
        After expanding, size of each dimension of Output(Out) is equal to the size 
        of the corresponding dimension of target_tensor multiplying the corresponding
        value given by target_tensor.


    Examples:
        .. code-block:: python
          
        import paddle.fluid as fluid
        import numpy as np

        data = fluid.layers.data(name="data", shape=[-1,10], dtype='float64')
        target_tensor = fluid.layers.data(
          name="target_tensor", shape=[-1,20], dtype='float64')
        result = fluid.layers.expand_as(x=data, target_tensor=target_tensor) 
        use_cuda = False
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        x = np.random.rand(3,10)
        y = np.random.rand(3,20)
        output= exe.run(feed={"data":x,"target_tensor":y},fetch_list=[result.name])
        print(output[0].shape)
        #(3,20)

    """

    helper = LayerHelper('expand_as', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    inputs = {'X': x, 'target_tensor': target_tensor}
    helper.append_op(type='expand_as', inputs=inputs, outputs={'Out': out})
    return out


G
fix  
gongweibao 已提交
9792 9793 9794
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9795
@templatedoc()
G
fix  
gongweibao 已提交
9796 9797 9798 9799 9800 9801 9802 9803 9804
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
9805 9806 9807 9808 9809 9810
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.

    .. code-block:: text

        *Case 1:
G
fix  
gongweibao 已提交
9811

9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]

            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0, 
            input_dim_idx = 0,
            result.shape[0] = input.shape[0], 
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
            
       *Case 2:
           
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
         
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1, 
           input_dim_idx = 1,
           result.shape[1] = input.shape[1], 
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
G
fix  
gongweibao 已提交
9838
    Args:
9839 9840 9841 9842 9843 9844 9845 9846
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0. 
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
G
fix  
gongweibao 已提交
9847
    Returns:
9848
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
G
fix  
gongweibao 已提交
9849

9850 9851 9852
    Examples:
        .. code-block:: python

9853
            import paddle.fluid as fluid
9854 9855 9856 9857
            
            # example 1: 
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
9858

9859 9860 9861 9862
            # example 2: 
            out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]

            
G
fix  
gongweibao 已提交
9863 9864 9865
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9866
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9883 9884


G
gongweibao 已提交
9885
@templatedoc()
X
Xin Pan 已提交
9886
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9887
    """
9888
    Generate a random tensor whose data is drawn from a Gaussian distribution.
G
fix  
gongweibao 已提交
9889 9890

    Args:
9891 9892 9893 9894 9895 9896 9897 9898 9899
        shape (Tuple[int] | List[int]): Shape of the generated random tensor.
        
        mean (float): Mean of the random tensor, defaults to 0.0.
            
        std (float): Standard deviation of the random tensor, defaults to 1.0.
        
        seed (int): ${seed_comment}
        
        dtype(np.dtype | core.VarDesc.VarType | str): Output data type, float32 or float64.
G
fix  
gongweibao 已提交
9900 9901

    Returns:
9902
        Variable: Random tensor whose data is drawn from a Gaussian distribution, dtype: flaot32 or float64 as specified.
G
fix  
gongweibao 已提交
9903

9904
    Examples:
9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919
       .. code-block:: python
       
           # declarative mode 
           import numpy as np
           from paddle import fluid
   
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
   
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
   
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
9920

9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
    
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
               x_np = x.numpy()       
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
9939 9940 9941
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9942
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9943 9944 9945 9946 9947 9948 9949 9950 9951 9952
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9953
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9954 9955 9956 9957 9958
        })

    return out


G
gongweibao 已提交
9959
@templatedoc()
G
fix  
gongweibao 已提交
9960
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9961
    """
R
ruri 已提交
9962
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
9963

R
ruri 已提交
9964 9965 9966 9967 9968
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time. 
G
fix  
gongweibao 已提交
9969
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9970 9971

    Returns:
R
ruri 已提交
9972
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
9973

9974 9975 9976
    Examples:
        .. code-block:: python

9977
            import paddle.fluid as fluid
R
ruri 已提交
9978
            x = fluid.data(
9979 9980
                name="X",
                shape=[13, 11],
R
ruri 已提交
9981
                dtype='float32')
9982

Y
Yibing Liu 已提交
9983
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9984 9985 9986
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9987
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9999
@templatedoc()
G
fix  
gongweibao 已提交
10000 10001 10002 10003 10004 10005 10006 10007 10008
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
10009
    ${comment}
G
fix  
gongweibao 已提交
10010 10011

    Args:
G
gongweibao 已提交
10012 10013
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
Y
Yibing Liu 已提交
10014 10015 10016 10017 10018 10019
        input_dim_idx (int): ${input_dim_idx_comment}
        output_dim_idx (int): ${output_dim_idx_comment}
        mean (float): ${mean_comment}
        std (float): ${std_comment}
        seed (int): ${seed_comment}
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data, float32 or float_64.
G
fix  
gongweibao 已提交
10020 10021

    Returns:
G
gongweibao 已提交
10022
        out (Variable): ${out_comment}
10023 10024 10025 10026

    Examples:
        .. code-block:: python

10027
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10028
            input = fluid.data(name="input", shape=[13, 11], dtype='float32')
10029

Y
Yibing Liu 已提交
10030
            out = fluid.layers.gaussian_random_batch_size_like(
10031
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
10032 10033 10034
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
10035
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
10054
@templatedoc()
X
Xin Pan 已提交
10055
def sum(x):
G
fix  
gongweibao 已提交
10056
    """
G
gongweibao 已提交
10057
    ${comment}
10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087
    
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]
G
fix  
gongweibao 已提交
10088 10089

    Args:
10090
        x (Variable|list(Variable)): ${x_comment}
G
fix  
gongweibao 已提交
10091 10092

    Returns:
10093
        Variable: ${out_comment}
10094 10095 10096 10097

    Examples:
        .. code-block:: python

10098
            import paddle.fluid as fluid
10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = fluid.layers.sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
G
fix  
gongweibao 已提交
10121 10122
    """

10123
    return paddle.elementwise_sum(x)
G
fix  
gongweibao 已提交
10124 10125


G
gongweibao 已提交
10126
@templatedoc()
G
fix  
gongweibao 已提交
10127 10128
def slice(input, axes, starts, ends):
    """
10129
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
10130
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
10131 10132 10133 10134 10135 10136 10137
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
10138
    For slicing to the end of a dimension with unknown size, it is recommended
10139
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
10140 10141 10142
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
10143

10144 10145 10146 10147 10148 10149 10150 10151
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
10152

10153 10154 10155 10156 10157
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
10158
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
10159
            Then:
10160
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
G
fix  
gongweibao 已提交
10161
    Args:
10162 10163 10164 10165 10166 10167 10168 10169 10170
        input (Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
G
fix  
gongweibao 已提交
10171 10172

    Returns:
10173 10174 10175 10176 10177
        Variable:  A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
G
fix  
gongweibao 已提交
10178

10179 10180 10181
    Examples:
        .. code-block:: python

10182
            import paddle.fluid as fluid
10183

10184 10185
            input = fluid.data(
                name="input", shape=[4, 5, 6], dtype='float32')
10186

10187 10188 10189 10190 10191 10192
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
10193
            # sliced_1 is input[0:3, 0:2, 2:4].
10194 10195 10196 10197 10198

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
10199
            # sliced_2 is input[0:3, 0:2, 2:4].
G
fix  
gongweibao 已提交
10200
    """
10201 10202 10203
    if in_dygraph_mode():
        infer_flags = list(1 for i in range(len(axes)))
        if isinstance(starts, (list, tuple)):
L
Leo Chen 已提交
10204
            if utils._contain_var(starts):
10205 10206 10207 10208 10209 10210 10211 10212 10213
                raise TypeError(
                    "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        if isinstance(ends, (list, tuple)):
L
Leo Chen 已提交
10214
            if utils._contain_var(ends):
10215 10216 10217 10218 10219 10220 10221 10222
                raise TypeError(
                    "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

10223 10224
        return core.ops.slice(input, 'axes', axes, 'starts', starts, 'ends',
                              ends, 'infer_flags', infer_flags)
10225

10226 10227 10228 10229 10230 10231 10232
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
10233
    helper = LayerHelper('slice', **locals())
10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

10252 10253 10254 10255 10256 10257 10258
    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
L
Leo Chen 已提交
10259
        if utils._contain_var(starts):
10260 10261 10262 10263 10264 10265 10266
            inputs['StartsTensorList'] = get_new_list_tensor(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
L
Leo Chen 已提交
10267 10268
        else:
            attrs['starts'] = starts
10269 10270 10271 10272 10273 10274 10275 10276

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
L
Leo Chen 已提交
10277
        if utils._contain_var(ends):
10278 10279 10280 10281 10282 10283 10284
            inputs['EndsTensorList'] = get_new_list_tensor(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
L
Leo Chen 已提交
10285 10286 10287
        else:
            attrs['ends'] = ends

10288 10289
    # infer_flags
    attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
10290 10291
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10292
    helper.append_op(
10293
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
10294 10295 10296 10297

    return out


W
wangchaochaohu 已提交
10298 10299 10300
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
W
wangchaochaohu 已提交
10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:
W
wangchaochaohu 已提交
10314 10315 10316 10317 10318 10319 10320 10321 10322

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
W
wangchaochaohu 已提交
10323
                strides = [1, 1]
W
wangchaochaohu 已提交
10324
            Then:
10325
                result = [ [5, 6, 7], ]
W
wangchaochaohu 已提交
10326 10327 10328 10329 10330
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10331
                starts = [0, 1]
W
wangchaochaohu 已提交
10332 10333 10334 10335 10336 10337 10338 10339 10340
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10341
                starts = [0, 1]
10342 10343
                ends = [-1, 1000]
                strides = [1, 3]
W
wangchaochaohu 已提交
10344
            Then:
10345 10346
                result = [ [2], ]
    Args:
W
wangchaochaohu 已提交
10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358
        input (Variable): An N-D ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Variable): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Variable, it should be an 1-D Tensor .
                It represents slice step of corresponding axis in ``axes``.
10359 10360

    Returns:
W
wangchaochaohu 已提交
10361 10362 10363 10364 10365 10366
        Variable:  A ``Tensor`` or ``LoDTensor`` with the same dimension as ``input``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
        TypeError: The type of ``strides`` must be list, tuple or Variable.
10367

W
wangchaochaohu 已提交
10368 10369 10370 10371 10372
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

W
wangchaochaohu 已提交
10373
            input = fluid.data(
W
wangchaochaohu 已提交
10374 10375
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10376 10377 10378 10379 10380
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
W
wangchaochaohu 已提交
10381 10382 10383 10384 10385
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is input[:, 0:3:1, 0:2:1, 2:4:1].

10386 10387 10388 10389

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
W
wangchaochaohu 已提交
10390 10391
            sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is input[:, 0:3:1, 0:2:1, 2:4:2].
W
wangchaochaohu 已提交
10392
    """
10393 10394 10395 10396 10397 10398 10399 10400 10401 10402
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")
    if not isinstance(strides, (list, tuple, Variable)):
        raise ValueError(
            "Input strides must be an Variable, python list or tuple.")

W
wangchaochaohu 已提交
10403 10404
    helper = LayerHelper('strided_slice', **locals())

10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424
    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
W
wangchaochaohu 已提交
10425 10426 10427
            'axes': axes,
            'starts': starts,
            'ends': ends,
10428 10429 10430 10431 10432 10433 10434 10435 10436 10437
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
L
Leo Chen 已提交
10438
            if utils._contain_var(starts):
10439 10440 10441 10442 10443 10444 10445
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
L
Leo Chen 已提交
10446 10447
            else:
                attrs['starts'] = starts
10448 10449 10450 10451 10452 10453 10454

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
L
Leo Chen 已提交
10455
            if utils._contain_var(ends):
10456 10457 10458 10459 10460 10461 10462
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
L
Leo Chen 已提交
10463 10464 10465
            else:
                attrs['ends'] = ends

10466 10467 10468 10469 10470 10471
        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
L
Leo Chen 已提交
10472
            if utils._contain_var(strides):
10473 10474 10475 10476 10477 10478 10479
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
L
Leo Chen 已提交
10480 10481
            else:
                attrs['strides'] = strides
10482 10483 10484 10485 10486
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
W
wangchaochaohu 已提交
10487 10488 10489 10490

    return out


G
fix  
gongweibao 已提交
10491 10492
def shape(input):
    """
C
chengduozh 已提交
10493 10494
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10495
    Get the shape of the input.
G
fix  
gongweibao 已提交
10496 10497

    Args:
10498
        input (Variable): The input N-D Tensor. Datatype can be float32, float64, int32, int64.
G
fix  
gongweibao 已提交
10499 10500

    Returns:
10501
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
10502

10503 10504 10505
    Examples:
        .. code-block:: python

10506
            import paddle.fluid as fluid
10507
            import numpy as np
10508

10509 10510 10511 10512 10513 10514 10515 10516 10517 10518
            inputs = fluid.layers.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
10519 10520 10521
    """

    helper = LayerHelper('shape', **locals())
10522
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10523
    helper.append_op(
G
fix  
gongweibao 已提交
10524
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10525 10526

    return out
G
merge  
gongweibao 已提交
10527 10528


Z
zhoukunsheng 已提交
10529 10530
def rank(input):
    """
10531
    The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10532 10533

    Args:
10534
        input (Variable): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
Z
zhoukunsheng 已提交
10535 10536

    Returns:
10537
        Variable, the output data type is int32.: The 0-D tensor with the dimensions of the input variable.
Z
zhoukunsheng 已提交
10538 10539 10540 10541

    Examples:
        .. code-block:: python

10542 10543
            import paddle.fluid as fluid

10544 10545
            input = fluid.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # rank=(3,)
Z
zhoukunsheng 已提交
10546 10547 10548 10549 10550 10551 10552 10553
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10583 10584 10585 10586
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
10587

S
sneaxiy 已提交
10588 10589
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
10590 10591 10592 10593
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
10594

S
sneaxiy 已提交
10595 10596
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10597
    name = helper.kwargs.get('name', None)
10598
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10599

S
sneaxiy 已提交
10600 10601 10602 10603 10604 10605 10606 10607 10608 10609
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


S
sneaxiy 已提交
10610
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10611
    """
10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)
S
sneaxiy 已提交
10625 10626

    Args:
10627
        x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
10628
        scale(float|Variable): The scale factor of the input, it should be a float number or a Variable with shape [1] and data type as float32.
10629 10630 10631 10632
        bias(float): The bias to be put on the input.
        bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` 
S
sneaxiy 已提交
10633 10634

    Returns:
10635
        Variable(Tensor|LoDTensor): Output tensor of scale operator, with shape and data type same as input.
10636 10637 10638 10639 10640

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
10641 10642 10643 10644 10645 10646 10647 10648 10649
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
            output = fluid.layers.scale(inputs, scale = 2.0, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
10650

10651 10652
            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]
10653 10654 10655 10656 10657 10658 10659 10660

        .. code-block:: python

            # scale with parameter scale as Variable
            import paddle.fluid as fluid
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
10661
            scale = fluid.layers.data(name="scale", shape=[1], dtype='float32',
10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673
                                      append_batch_size=False)
            output = fluid.layers.scale(inputs, scale = scale, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
            scale_np = np.array([2.]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img, 'scale':scale_np}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]

S
sneaxiy 已提交
10674
    """
10675 10676 10677 10678 10679 10680 10681 10682

    if in_dygraph_mode():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
        out = core.ops.scale(x, 'scale',
                             float(_scale), 'bias',
                             float(bias), 'bias_after_scale', bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out)

10683
    inputs = {'X': [x]}
10684 10685 10686 10687 10688
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
10689
        inputs['ScaleTensor'] = [scale]
10690 10691
    else:
        attrs['scale'] = float(scale)
10692
    helper = LayerHelper('scale', **locals())
10693
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
10694

S
sneaxiy 已提交
10695
    helper.append_op(
10696
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
sneaxiy 已提交
10697
    return helper.append_activation(out)
S
sneaxiy 已提交
10698 10699


X
Xin Pan 已提交
10700
def elementwise_add(x, y, axis=-1, act=None, name=None):
10701 10702 10703 10704 10705 10706 10707 10708 10709 10710
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10711 10712
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10713 10714
            }

10715 10716
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10717
        z = fluid.layers.elementwise_add(x, y)
10718
        # z = x + y
10719 10720 10721 10722 10723 10724

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10725
        print(z_value) # [3., 8., 6.]
10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10739 10740
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10741
        z = fluid.layers.elementwise_add(x, y, axis=1)
10742
        # z = x + y
10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10764 10765
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10766
        z = fluid.layers.elementwise_add(x, y, axis=3)
10767
        # z = x + y
10768 10769 10770 10771 10772 10773 10774 10775 10776

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10777 10778 10779 10780
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_add')

S
sneaxiy 已提交
10781 10782 10783
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10784
def elementwise_div(x, y, axis=-1, act=None, name=None):
10785 10786 10787 10788 10789 10790 10791 10792 10793 10794
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10795 10796
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10797 10798
            }

10799 10800
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10801
        z = fluid.layers.elementwise_div(x, y)
10802
        # z = x / y
10803 10804 10805 10806 10807 10808

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10809
        print(z_value) # [2., 0.6, 2.]
10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10823 10824
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10825
        z = fluid.layers.elementwise_div(x, y, axis=1)
10826
        # z = x / y
10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10848 10849
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10850
        z = fluid.layers.elementwise_div(x, y, axis=3)
10851
        # z = x / y
10852 10853 10854 10855 10856 10857 10858 10859 10860

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10861 10862 10863 10864
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div')

S
sneaxiy 已提交
10865 10866 10867
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10868
def elementwise_sub(x, y, axis=-1, act=None, name=None):
10869 10870 10871 10872 10873 10874 10875 10876 10877 10878
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10879 10880
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10881 10882
            }

10883 10884
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10885
        z = fluid.layers.elementwise_sub(x, y)
10886
        # z = x - y
10887 10888 10889 10890 10891 10892

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10893
        print(z_value) # [1., -2., 2.]
10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10907 10908
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10909
        z = fluid.layers.elementwise_sub(x, y, axis=1)
10910
        # z = x - y
10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10932 10933
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10934
        z = fluid.layers.elementwise_sub(x, y, axis=3)
10935
        # z = x - y
10936 10937 10938 10939 10940 10941 10942 10943 10944

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10945 10946 10947 10948
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub')

S
sneaxiy 已提交
10949 10950 10951
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10952
def elementwise_mul(x, y, axis=-1, act=None, name=None):
10953 10954 10955 10956 10957 10958 10959 10960 10961 10962
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10963 10964
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10965 10966
            }

10967 10968
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10969
        z = fluid.layers.elementwise_mul(x, y)
10970
        # z = x * y
10971 10972 10973 10974 10975 10976

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10977
        print(z_value) # [2., 15., 8.]
10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10991 10992
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10993
        z = fluid.layers.elementwise_mul(x, y, axis=1)
10994
        # z = x * y
10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
11016 11017
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
11018
        z = fluid.layers.elementwise_mul(x, y, axis=3)
11019
        # z = x * y
11020 11021 11022 11023 11024 11025 11026 11027 11028

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]
 
    """
11029 11030 11031 11032
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul')

S
sneaxiy 已提交
11033 11034 11035
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
11036
def elementwise_max(x, y, axis=-1, act=None, name=None):
11037 11038 11039 11040 11041 11042 11043 11044 11045 11046
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11047 11048
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11049 11050
            }

11051 11052
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 5, 4]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

11074 11075
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]]

    """
11087 11088 11089 11090
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_max')

S
sneaxiy 已提交
11091 11092 11093
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
11094
def elementwise_min(x, y, axis=-1, act=None, name=None):
11095 11096 11097 11098 11099 11100 11101 11102 11103 11104
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11105 11106
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11107 11108
            }

11109 11110
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11111
        z = fluid.layers.elementwise_min(x, y)
11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 2]

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

11131 11132
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
11133
        z = fluid.layers.elementwise_min(x, y, axis=1)
11134 11135 11136 11137 11138 11139 11140 11141 11142

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]]
    """
11143 11144 11145
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_min')
11146

S
sneaxiy 已提交
11147 11148 11149
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
11150
def elementwise_pow(x, y, axis=-1, act=None, name=None):
11151 11152 11153 11154 11155 11156 11157 11158 11159 11160
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11161 11162
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11163 11164
            }

11165 11166
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11167 11168 11169 11170 11171 11172 11173 11174 11175
        z = fluid.layers.elementwise_pow(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 243, 16]
    """
11176 11177 11178
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_pow')
S
sneaxiy 已提交
11179 11180 11181
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


11182
def elementwise_mod(x, y, axis=-1, act=None, name=None):
11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 6, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_mod(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 3]
    """
11208 11209 11210 11211
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mod')

11212 11213 11214 11215
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 7, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_floordiv(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3, 2, 1]
    """
11241 11242 11243 11244
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_floordiv')

11245 11246 11247
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
11248
for func in [
11249 11250 11251 11252
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
11253 11254
        elementwise_max,
        elementwise_pow,
11255
        elementwise_min,
11256 11257
        elementwise_mod,
        elementwise_floordiv,
11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "axis (int32, optional): If X.dimension != Y.dimension, \
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
            "act (string, optional): Activation applied to the output. \
            Default is None. Details: :ref:`api_guide_activations_en` ",
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ],
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)

11275
for func in []:
S
sneaxiy 已提交
11276 11277 11278 11279
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
11280 11281
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
11282
        ])
11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11320 11321


11322
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11323 11324
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11325 11326
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11327 11328

    if out is None:
11329
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11342
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11343
    """
W
Wilber 已提交
11344 11345 11346 11347 11348 11349 11350 11351
    logical_and Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \land Y
M
minqiyang 已提交
11352 11353 11354 11355

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11356 11357
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11358 11359

    Returns:
W
Wilber 已提交
11360
        ${out_type}: ${out_comment}
11361 11362 11363 11364

    Examples:
        .. code-block:: python

11365
            import paddle.fluid as fluid
W
Wilber 已提交
11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_and(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_and(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, False], [False, False]]
M
minqiyang 已提交
11384 11385 11386 11387 11388 11389 11390
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11391
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11392
    """
W
Wilber 已提交
11393 11394 11395 11396 11397 11398 11399 11400
    logical_or Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \lor Y
M
minqiyang 已提交
11401 11402 11403 11404

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11405 11406
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11407 11408

    Returns:
W
Wilber 已提交
11409
        ${out_type}: ${out_comment}
11410 11411 11412 11413

    Examples:
        .. code-block:: python

11414
            import paddle.fluid as fluid
W
Wilber 已提交
11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_or(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_or(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, True], [False, True]]
M
minqiyang 已提交
11433 11434 11435 11436 11437 11438 11439
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11440
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11441
    """
W
Wilber 已提交
11442 11443 11444 11445 11446 11447 11448 11449
    logical_xor Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = (X \lor Y) \land \lnot (X \land Y)
M
minqiyang 已提交
11450 11451 11452 11453

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11454 11455
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11456 11457

    Returns:
W
Wilber 已提交
11458
        ${out_type}: ${out_comment}
11459 11460 11461 11462

    Examples:
        .. code-block:: python

11463
            import paddle.fluid as fluid
W
Wilber 已提交
11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_xor(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_xor(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[False, True], [False, True]]
M
minqiyang 已提交
11482 11483 11484 11485 11486 11487 11488
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11489
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11490
    """
W
Wilber 已提交
11491 11492 11493 11494 11495 11496 11497 11498
    logical_not Operator

    It operates element-wise on X, and returns the Out. X and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = \lnot X
M
minqiyang 已提交
11499 11500 11501

    Args:
        x(${x_type}): ${x_comment}
W
Wilber 已提交
11502 11503
        out(LoDTensor/Tensor): The LoDTensor/Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11504 11505

    Returns:
W
Wilber 已提交
11506
        ${out_type}: ${out_comment}
11507 11508 11509 11510

    Examples:
        .. code-block:: python

11511
            import paddle.fluid as fluid
W
Wilber 已提交
11512 11513 11514 11515 11516
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            res = fluid.layers.logical_not(x)
T
tianshuo78520a 已提交
11517
            # The comment lists another avaliable method.
W
Wilber 已提交
11518 11519 11520 11521 11522 11523 11524 11525 11526 11527
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_not(x, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[False, True]]
M
minqiyang 已提交
11528 11529 11530 11531
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11532 11533 11534 11535 11536 11537 11538 11539 11540


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
11541 11542 11543 11544 11545
        min(float): ${min_comment}
        max(float): ${max_comment}
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
11546 11547

    Returns:
S
SunGaofeng 已提交
11548 11549 11550 11551
        ${out_comment}

    Return Type:
        ${out_type}
11552 11553 11554 11555

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11556
            import paddle.fluid as fluid
S
SunGaofeng 已提交
11557
            input = fluid.data(
11558 11559
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11560 11561 11562 11563 11564
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11565 11566
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11567 11568 11569

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
W
wangguanzhong 已提交
11589 11590 11591
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
11592 11593

    Returns:
W
wangguanzhong 已提交
11594 11595
        Variable:

11596
        out(${out_type}): ${out_comment}
11597

W
wangguanzhong 已提交
11598

11599 11600 11601
    Examples:
        .. code-block:: python

11602
            import paddle.fluid as fluid
11603 11604
            input = fluid.data(
                name='data', shape=[None, 1], dtype='float32')
11605
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11606 11607 11608 11609 11610
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11611 11612
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11613 11614 11615

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11616 11617 11618 11619 11620 11621 11622 11623

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11637 11638 11639 11640

    Examples:
        .. code-block:: python

11641
            import paddle.fluid as fluid
11642 11643 11644
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11645
    """
11646
    if in_dygraph_mode():
11647
        return core.ops.mean(x)
X
Xin Pan 已提交
11648 11649

    helper = LayerHelper("mean", **locals())
11650
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
11651
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11652 11653 11654 11655 11656 11657 11658

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11670 11671 11672 11673

    Examples:
        .. code-block:: python

11674
            import paddle.fluid as fluid
11675 11676 11677 11678 11679
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11692 11693
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
11694 11695 11696 11697 11698 11699 11700 11701
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
11702 11703

    Args:
L
liu zhengxi 已提交
11704 11705 11706 11707 11708
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. 
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1. 
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
X
Xin Pan 已提交
11709 11710

    Returns:
L
liu zhengxi 已提交
11711
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
11712 11713

    Examples:
L
liu zhengxi 已提交
11714
        ..  code-block:: python
11715 11716 11717 11718 11719 11720 11721 11722 11723
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11724
    """
11725
    if in_dygraph_mode():
11726 11727
        return core.ops.mul(x, y, 'x_num_col_dims', x_num_col_dims,
                            'y_num_col_dims', y_num_col_dims)
X
Xin Pan 已提交
11728

11729 11730
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
11731
    helper = LayerHelper("mul", **locals())
11732 11733
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
11734
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11735 11736

    helper.append_op(
11737 11738
        type="mul", inputs={"X": x,
                            "Y": y}, attrs=attrs, outputs={"Out": out})
X
Xin Pan 已提交
11739 11740 11741 11742
    return out


@templatedoc()
11743
def maxout(x, groups, name=None, axis=1):
X
Xin Pan 已提交
11744 11745 11746 11747 11748
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
11749 11750
        groups(int): ${groups_comment}
        axis(int, optional): ${axis_comment}
W
wangguanzhong 已提交
11751 11752 11753
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
X
Xin Pan 已提交
11754 11755

    Returns:
11756
        Variable: ${out_comment}
J
jerrywgz 已提交
11757

11758 11759
    Raises:
        ValueError: If `axis` is not 1, -1 or 3.
11760
        ValueError: If the number of input channels can not be divisible by `groups`.
W
wangguanzhong 已提交
11761

J
jerrywgz 已提交
11762 11763 11764
    Examples:
        .. code-block:: python

11765
            import paddle.fluid as fluid
11766
            input = fluid.data(
J
jerrywgz 已提交
11767
                name='data', 
11768
                shape=[None, 256, 32, 32], 
J
jerrywgz 已提交
11769 11770
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11771 11772
    """
    helper = LayerHelper("maxout", **locals())
11773 11774 11775 11776 11777 11778
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3
X
Xin Pan 已提交
11779

11780
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
11781 11782 11783 11784

    helper.append_op(
        type="maxout",
        inputs={"X": x},
11785 11786
        attrs={"groups": groups,
               "axis": axis},
X
Xin Pan 已提交
11787 11788
        outputs={"Out": out})
    return out
11789 11790


J
JiabinYang 已提交
11791
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11792
    """
J
JiabinYang 已提交
11793
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11794

11795 11796 11797
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
        theinput LoDtensor where values from the height and width dimensions are moved to the channel \
        dimension.
J
JiabinYang 已提交
11798
    The attr blocksize indicates the input block size.
11799

T
tianshuo78520a 已提交
11800
    space_to_depth will reorganize the elements of input with shape[batch, channel, height, width] \
11801 11802
        according to blocksize to construct output with shape \
        [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
11803

J
JiabinYang 已提交
11804 11805 11806 11807 11808
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize

11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825
    This OP is useful for resizing the activations between convolutions \
        (but keeping all data)

    .. code-block:: text

        Given the input x with the shape [1, 1, 4, 4]:
        x.data = [[[[1,   2,  5,  6],
                    [3,   4,  7,  8],
                    [9,  10, 13, 14],
                    [11, 12, 15, 16]]]]
        blocksize = 2

        then get the output with the shape [1, 4, 2, 2]:
        out.data = [[[[1,   2],  [3,  4]],
                     [[5,   6],  [7,  8]],
                     [[9,  10], [11, 12]],
                     [[13, 14], [15, 16]]]]
J
JiabinYang 已提交
11826

J
JiabinYang 已提交
11827
    Args:
11828 11829 11830 11831 11832 11833
        x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel, height, width]
        blocksize (int): The blocksize to select the element on each feature map should be > 2
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.
J
JiabinYang 已提交
11834

11835 11836 11837 11838
    Returns: The output, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]

    Return Type: Variable
J
JiabinYang 已提交
11839 11840

    Raises:
11841
        TypeError: blocksize type must be int64.
J
JiabinYang 已提交
11842 11843 11844

    Examples:
        .. code-block:: python
11845
    
11846 11847
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11848

11849 11850
            data = fluid.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
11851
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11852
                x=data, blocksize=2)
11853

11854
            exe = fluid.Executor(fluid.CPUPlace())
11855
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
11856 11857 11858 11859 11860 11861 11862

            print(data_np)
            #array([[[[ 0.,  1.], [ 2.,  3.]],
            #        [[ 4.,  5.], [ 6.,  7.]],
            #        [[ 8.,  9.], [10., 11.]],
            #        [[12., 13.], [14., 15.]]]], dtype=float32)

11863
            out_main = exe.run(fluid.default_main_program(),
11864 11865 11866 11867 11868 11869 11870 11871
                        feed={'data': data_np},
                        fetch_list=[space_to_depthed])

            print(out_main)
            #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
            #         [[ 8.]], [[12.]], [[ 9.]], [[13.]],
            #         [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
            #         [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
11872

J
JiabinYang 已提交
11873 11874
    """

J
JiabinYang 已提交
11875
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11876

J
JiabinYang 已提交
11877 11878
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11879

11880
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
J
JiabinYang 已提交
11881 11882

    helper.append_op(
J
JiabinYang 已提交
11883
        type="space_to_depth",
J
JiabinYang 已提交
11884
        inputs={"X": x},
J
JiabinYang 已提交
11885
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11886
        outputs={"Out": out})
J
JiabinYang 已提交
11887 11888
    return out

J
JiabinYang 已提交
11889

11890 11891 11892 11893 11894 11895
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11896 11897 11898 11899 11900
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11901

11902 11903 11904
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
L
LielinJiang 已提交
11905
            is applied in the second dimension.The data type is float32 or float64.
11906 11907
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
L
LielinJiang 已提交
11908
            the input.The data type is float32 or float64.
11909 11910
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
L
LielinJiang 已提交
11911
            The data type is float32 or float64.
11912 11913 11914 11915 11916
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore 
            data_layout.
L
LielinJiang 已提交
11917 11918
        name (str, default None): The name of this layer. For more information,
            please refer to :ref:`api_guide_Name` .
11919
        act (str, default None): Activation to be applied to the output of this layer.
11920 11921

    Returns:
L
LielinJiang 已提交
11922
        Variable: A tensor which has the same shape, data layout and data type with x.
B
Bai Yifan 已提交
11923 11924 11925

    Examples:
        .. code-block:: python
L
LielinJiang 已提交
11926 11927

            import numpy as np
B
Bai Yifan 已提交
11928
            import paddle.fluid as fluid
L
LielinJiang 已提交
11929 11930 11931 11932 11933 11934 11935 11936 11937 11938

            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
                                    default_initializer=fluid.initializer.Constant(2.0))
            input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
                                    default_initializer=fluid.initializer.Constant(0.5))
B
Bai Yifan 已提交
11939
            out = fluid.layers.affine_channel(data,scale=input_scale,
L
LielinJiang 已提交
11940 11941 11942 11943 11944 11945 11946 11947 11948 11949
                                    bias=input_bias)

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_array] = exe.run(test_program,
                                  fetch_list=out,
                                  feed={'data': np.ones([1,1,2,2]).astype('float32')})
            # out_array is [[[[2.5, 2.5],
            #                [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
B
Bai Yifan 已提交
11950

11951 11952
    """
    helper = LayerHelper("affine_channel", **locals())
11953
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
11954 11955 11956 11957 11958 11959 11960 11961

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11962
    return helper.append_activation(out)
11963 11964


B
barrierye 已提交
11965
def similarity_focus(input, axis, indexes, name=None):
11966
    """
B
barrierye 已提交
11967
    SimilarityFocus Operator
B
barrierye 已提交
11968 11969

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11970

11971 11972 11973
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11974
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11975 11976 11977 11978 11979 11980 11981
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
11982
       each index.
B
barrierye 已提交
11983 11984 11985 11986
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
12036
    Args:
12037
        input(Variable): The input tensor variable(default float). It should
Y
Yibing Liu 已提交
12038 12039
            be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is 
            float32 or float64.
B
barrierye 已提交
12040
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
12041
            1, 2 or 3.
B
barrierye 已提交
12042
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
12043 12044

    Returns:
H
haowang101779990 已提交
12045 12046
        Variable: A tensor variable with the same shape and same type \
                  as the input.
12047

B
barrierye 已提交
12048 12049
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
12050

12051
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
12052
            data = fluid.data(
Y
Yibing Liu 已提交
12053 12054
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

12067
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
B
barrierye 已提交
12068 12069 12070 12071 12072 12073 12074
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
12075 12076


M
minqiyang 已提交
12077 12078
def hash(input, hash_size, num_hash=1, name=None):
    """
Z
zhupengyang 已提交
12079
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
12080 12081
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
12082 12083

    Args:
Z
zhupengyang 已提交
12084 12085 12086 12087 12088 12089
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
12090 12091

    Returns:
Z
zhupengyang 已提交
12092
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
12093 12094

    Examples:
Z
zhupengyang 已提交
12095
        .. code-block:: python
H
haowang101779990 已提交
12096

12097
            import paddle.fluid as fluid
Z
zhupengyang 已提交
12098
            import numpy as np
12099

Z
zhupengyang 已提交
12100
            place = fluid.core.CPUPlace()
12101

Z
zhupengyang 已提交
12102 12103
            x = fluid.data(name="x", shape=[1], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res",input=x, hash_size=1000, num_hash=4)
12104

Z
zhupengyang 已提交
12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
            x_i = fluid.core.LoDTensor()
            x_i.set(in1,place)
            x_i.set_recursive_sequence_lengths([[0,2]])
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
12122 12123
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
12124 12125
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
12126 12127 12128 12129 12130 12131 12132
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
12133 12134


D
dengkaipeng 已提交
12135
@templatedoc()
12136 12137
def grid_sampler(x, grid, name=None):
    """
12138
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
12139
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
12140 12141
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
12142 12143
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
K
Kaipeng Deng 已提交
12144 12145
    interpolation value of 4 nearest corner points. The output tensor 
    shape will be [N, C, H, W].
12146

H
haowang101779990 已提交
12147
    .. code-block:: text
12148

H
haowang101779990 已提交
12149 12150
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
12151

K
Kaipeng Deng 已提交
12152 12153 12154 12155
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
12156

H
haowang101779990 已提交
12157 12158 12159
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
12160

H
haowang101779990 已提交
12161 12162 12163 12164 12165 12166 12167 12168 12169
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
12170

H
haowang101779990 已提交
12171 12172 12173 12174
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
12175

H
haowang101779990 已提交
12176 12177 12178 12179
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
12180

H
haowang101779990 已提交
12181 12182 12183 12184
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
12185

H
haowang101779990 已提交
12186 12187
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
12188 12189

    Args:
K
Kaipeng Deng 已提交
12190 12191 12192 12193 12194 12195 12196 12197 12198
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
12199 12200

    Returns:
H
haowang101779990 已提交
12201
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
12202 12203
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
12204

H
haowang101779990 已提交
12205 12206 12207 12208
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
12209 12210
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
12211 12212
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
12213 12214
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
12215
            out = fluid.layers.grid_sampler(x=x, grid=grid)
12216

D
dengkaipeng 已提交
12217 12218 12219
    """
    helper = LayerHelper("grid_sampler", **locals())

12220 12221 12222
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sampler')
    check_variable_and_dtype(grid, 'grid', ['float32', 'float64'],
                             'grid_sampler')
D
dengkaipeng 已提交
12223 12224 12225 12226 12227 12228
    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

12229
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
12230 12231
    ipts = {'X': x, 'Grid': grid}

12232
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
12233 12234 12235
    return out


G
gmcather 已提交
12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
Y
Yibing Liu 已提交
12249
        input (Variable|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
12250
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
12251 12252 12253 12254 12255 12256 12257
                                by the previous operator. Data type float32.
        label (Variable|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size. 
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
12258 12259 12260 12261 12262 12263 12264

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

12265
          import paddle.fluid as fluid
12266 12267
          label = fluid.data(name='label', shape=[None, 1], dtype='float32')
          prob = fluid.data(name='prob', shape=[None, 1], dtype='float32')
G
gmcather 已提交
12268 12269 12270 12271
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

12272
    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
G
gmcather 已提交
12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
G
Guo Sheng 已提交
12285 12286
    This operator performs weighted sum of input feature at each position
    (position in the sequence) and the corresponding position encoding.
G
gmcather 已提交
12287

G
Guo Sheng 已提交
12288 12289
    For more details of position encoding, please refer to `Attention Is All You 
    Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12290

G
Guo Sheng 已提交
12291
    The formula is as follows:
G
gmcather 已提交
12292 12293

    .. math::
H
haowang101779990 已提交
12294 12295 12296
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12297 12298

    Where:
G
Guo Sheng 已提交
12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315
      - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`.
      - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos`

    Args:
        input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a
            Tensor, the shape should be `[N, M, P]`, where `N` stands for
            batch size, `M` for sequence length, `P` for the size of feature
            dimension. If it is a LoDTensor, the shape should be `[N, P]`,
            where `N` stands for the total sequence lengths in this mini-batch,
            `P` for the size of feature. The data type should be float32 or float64.
        alpha(float): Indicate the weight coefficient for `input` when performing
            weighted sum.
        beta(float): Indicate the weight coefficient for position encoding when
            performing weighted sum.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
G
gmcather 已提交
12316 12317

    Returns:
G
Guo Sheng 已提交
12318
        Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`.
G
gmcather 已提交
12319 12320 12321 12322

    Examples:
        .. code-block:: python

12323 12324
          import paddle.fluid as fluid

G
Guo Sheng 已提交
12325
          tensor = fluid.data(
12326
              name='tensor',
G
Guo Sheng 已提交
12327 12328
              shape=[None, 64, 512],
              dtype='float32')
12329 12330
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12331

G
gmcather 已提交
12332 12333 12334 12335
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

12336
    out = helper.create_variable_for_type_inference(dtype=dtype)
G
gmcather 已提交
12337 12338 12339 12340 12341 12342 12343 12344

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12345 12346 12347 12348 12349 12350 12351 12352 12353 12354


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Y
Yibing Liu 已提交
12355
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12356

Q
Qiao Longfei 已提交
12357
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12358 12359 12360
    For example:

    .. math::
H
haowang101779990 已提交
12361
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12362

Q
Qiao Longfei 已提交
12363
    In this formula:
12364 12365
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
12366
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
12367
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12368 12369 12370
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
Y
Yibing Liu 已提交
12371 12372 12373 12374
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type 
            is float32 or float64.
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type 
            should be same as **x**.
Q
Qiao Longfei 已提交
12375
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
12376 12377 12378 12379 12380 12381 12382 12383 12384
        act (str|None): Activation to be applied to the output of this layer. Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr|None): To specify the bias parameter attribute. 
            Default: None, which means the default bias parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
12385
    Returns:
Y
Yibing Liu 已提交
12386
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
12387 12388 12389 12390

    Examples:
        .. code-block:: python

12391
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12392 12393
          layer1 = fluid.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.data("t2", shape=[-1, 4], dtype="float32")
Y
Yibing Liu 已提交
12394
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12395 12396
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12397
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12398 12399 12400 12401

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12402
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
12403
    out = helper.create_variable_for_type_inference(dtype=dtype)
Q
Qiao Longfei 已提交
12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12416 12417 12418 12419 12420


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

        Ouput is LoDTensor:
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
12437 12438

    Args:
12439 12440 12441
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
12442 12443

    Returns:
12444
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
12445 12446 12447 12448 12449 12450 12451 12452

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12453 12454 12455 12456 12457 12458 12459 12460 12461 12462
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12463 12464


S
shippingwang 已提交
12465
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12466
    """
S
shippingwang 已提交
12467 12468 12469 12470 12471 12472
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12473
    
S
shippingwang 已提交
12474
    .. code-block:: text
12475

S
shippingwang 已提交
12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12504
    Args: 
S
shippingwang 已提交
12505
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
T
tianshuo78520a 已提交
12506
        group(int): Indicating the counts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12507 12508

    Returns:
S
shippingwang 已提交
12509 12510
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12511 12512

    Raises:
S
shippingwang 已提交
12513
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12514 12515 12516

    Examples:
        .. code-block:: python
12517

12518
            import paddle.fluid as fluid
R
ruri 已提交
12519
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
S
shippingwang 已提交
12520
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12521 12522 12523
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12524
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12525 12526 12527 12528 12529 12530 12531 12532 12533

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12534
    return out
S
Add  
shippingwang 已提交
12535 12536


12537
@templatedoc()
D
dengkaipeng 已提交
12538
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12539 12540 12541 12542 12543 12544 12545 12546
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12547
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
12548 12549 12550
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
12551 12552 12553

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
K
Kaipeng Deng 已提交
12554
        same shape and same data type as the input.
12555 12556 12557 12558 12559 12560 12561

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12562
            import paddle.fluid as fluid
K
Kaipeng Deng 已提交
12563
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
D
dengkaipeng 已提交
12564
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12565 12566
    """
    helper = LayerHelper("temporal_shift", **locals())
12567 12568 12569
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'temporal_shift')
    check_type(seg_num, 'seg_num', int, 'temporal_shift')
    check_type(shift_ratio, 'shift_ratio', float, 'temporal_shift')
12570 12571 12572 12573 12574 12575 12576 12577 12578 12579

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12580 12581
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12582 12583 12584
    return out


S
sneaxiy 已提交
12585
class PyFuncRegistry(object):
S
sneaxiy 已提交
12586 12587 12588
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12589
        if func is None or not callable(func):
S
sneaxiy 已提交
12590 12591 12592
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12593
        # find named args using reflection
S
sneaxiy 已提交
12594 12595 12596 12597 12598 12599 12600
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12601 12602 12603
        '''
        Why record self here?

M
minqiyang 已提交
12604 12605
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12606
           to find the registered function corresponding
M
minqiyang 已提交
12607
           to :code:`idx`.
S
sneaxiy 已提交
12608

M
minqiyang 已提交
12609 12610
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12611
           whose reference count is 1 would cause
M
minqiyang 已提交
12612
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12613 12614
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12615
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12630 12631 12632 12633 12634 12635 12636 12637 12638
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12639

S
sneaxiy 已提交
12640 12641
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12642 12643

        ret = []
S
sneaxiy 已提交
12644 12645 12646
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12647 12648
                continue

S
sneaxiy 已提交
12649 12650
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12651

S
sneaxiy 已提交
12652 12653 12654
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12655

S
sneaxiy 已提交
12656
        return tuple(ret)
S
sneaxiy 已提交
12657 12658


S
sneaxiy 已提交
12659 12660 12661
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
12662 12663 12664 12665 12666 12667 12668
    This OP is used to register customized Python OP to Paddle Fluid. The design 
    principe of py_func is that LodTensor and numpy array can be converted to each
    other easily. So you can use Python and numpy API to register a python OP.

    The forward  function of the registered OP is ``func`` and the backward function 
    of that is  ``backward_func``. Paddle will call ``func`` at forward runtime and 
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None). 
12669
    ``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is 
12670
    the output of ``func``, whose type can be either LoDTensor or numpy array.
12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686

    The input of the backward function ``backward_func`` is ``x``, ``out`` and 
    the gradient of ``out``. If some variables of ``out`` have no gradient, the 
    relevant input variable of ``backward_func`` is None. If some variables of 
    ``x`` do not have a gradient, the user should return None in ``backward_func``.

    The data type and shape of ``out`` should also be set correctly before this 
    API is called, and the data type and shape of the gradient of ``out`` and 
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
            is running, the forward output ``out`` will be calculated according to this 
12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697
            function and the forward input ``x``. In ``func`` , it's suggested that we 
            actively convert LoDTensor into a numpy array, so that we can use Python and
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
        x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``. 
            It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or 
            Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
            or list[Variale].
        out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``, 
            it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
            or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``, 
            you must create ``out`` in advance.
12698 12699 12700 12701 12702
        backward_func (callable, optional): The backward function of the registered OP. 
            Its default value is None, which means there is no reverse calculation. If 
            it is not None, ``backward_func`` is called to calculate the gradient of 
            ``x`` when the network is at backward runtime.
        skip_vars_in_backward_input (Variable, optional): It's used to limit the input 
12703 12704 12705 12706 12707
            variable list of ``backward_func``, and it can be Variable|tuple(Variale)|list[Variale]. 
            It must belong to either ``x`` or ``out``. The default  value is None, which means 
            that no variables need to be removed from ``x`` and ``out``. If it is not None, 
            these variables will not be the input of ``backward_func``. This parameter is only 
            useful when ``backward_func`` is not None.
12708 12709
    
    Returns: 
12710
        Variable|tuple(Variale)|list[Variale]: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
12711 12712

    Examples:
12713
        .. code-block:: python
12714 12715
	    
            # example 1:
12716 12717 12718
            import paddle.fluid as fluid
            import six

12719 12720
            # Creates a forward function, LodTensor can be input directly without
            # being converted into numpy array.
12721 12722 12723
            def tanh(x):
                return np.tanh(x)

12724 12725 12726
            # Skip x in backward function and return the gradient of x
            # LodTensor must be actively converted to numpy array, otherwise, 
            # operations such as +/- can't be used.
12727 12728
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
12729 12730
            
            # Creates a forward function for debugging running networks(print value)
12731 12732
            def debug_func(x):
                print(x)
12733 12734 12735 12736
            
            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                    name=name, dtype=dtype, shape=shape)
12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749

            def simple_net(img, label):
                hidden = img
                for idx in six.moves.range(4):
                    hidden = fluid.layers.fc(hidden, size=200)
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

                    # User-defined forward and backward 
                    hidden = fluid.layers.py_func(func=tanh, x=hidden,
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

12750
                    # User-defined debug functions that print out the input LodTensor
12751 12752 12753 12754 12755
                    fluid.layers.py_func(func=debug_func, x=hidden, out=None)

                prediction = fluid.layers.fc(hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                return fluid.layers.mean(loss)
12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812

            # example 2: 
            # This example shows how to turn LoDTensor into numpy array and 
            # use numpy API to register an Python OP
            import paddle.fluid as fluid
            import numpy as np

            def element_wise_add(x, y): 
                # LodTensor must be actively converted to numpy array, otherwise, 
                # numpy.shape can't be used.
                x = np.array(x)    
                y = np.array(y)

                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")

                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]

                return result

            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                            name=name, dtype=dtype, shape=shape)

            def py_func_demo():
                start_program = fluid.default_startup_program()
                main_program = fluid.default_main_program()

                # Input of the forward function
                x = fluid.data(name='x', shape=[2,3], dtype='int32')
                y = fluid.data(name='y', shape=[2,3], dtype='int32')
                
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])

                # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
                fluid.layers.py_func(func=element_wise_add, x=[x,y], out=output)

                exe=fluid.Executor(fluid.CPUPlace())
                exe.run(start_program)

                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                out = exe.run(main_program, 
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))

            py_func_demo()

            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
S
sneaxiy 已提交
12813
    """
S
sneaxiy 已提交
12814
    helper = LayerHelper('py_func', **locals())
12815
    check_type(x, 'X', (list, tuple, Variable, type(None)), 'py_func')
S
sneaxiy 已提交
12816 12817 12818
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12819
        x = [x]
12820 12821 12822
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
12823
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
12824
    check_type(out, 'Out', (list, tuple, Variable, type(None)), 'py_func')
S
sneaxiy 已提交
12825 12826 12827
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12828
        out_list = [out]
12829 12830
    elif isinstance(out, tuple):
        out_list = list(out)
12831 12832 12833
    elif isinstance(out, list):
        out_list = out
    else:
S
sneaxiy 已提交
12834 12835
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12836

S
sneaxiy 已提交
12837 12838
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12839
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12840 12841

    for each_out in out_list:
S
sneaxiy 已提交
12842 12843
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12844 12845
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12846

S
sneaxiy 已提交
12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12862 12863 12864 12865

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12866 12867
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12868 12869 12870
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12871
        })
S
sneaxiy 已提交
12872
    return out
S
sneaxiy 已提交
12873 12874 12875


# For debug usage
S
sneaxiy 已提交
12876 12877 12878 12879
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

S
SunGaofeng 已提交
12891
    Parameters:
12892
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12893
        rois (Variable): LoDTensor, ROIs (Regions of Interest) to pool over.It should be
S
SunGaofeng 已提交
12894 12895 12896
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
S
SunGaofeng 已提交
12897 12898
                         right coordinates. The data type is the same as `input`
        output_channels (int): ${output_channels_comment}
12899
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
S
SunGaofeng 已提交
12900 12901 12902 12903 12904
        pooled_height (int): ${pooled_height_comment} Default: 1
        pooled_width (int): ${pooled_width_comment} Default: 1
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
12905 12906

    Returns:
S
SunGaofeng 已提交
12907 12908 12909 12910
        ${out_comment}.

    Return Type:
        Variable
12911 12912 12913 12914

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12915
            import paddle.fluid as fluid
S
SunGaofeng 已提交
12916 12917
            x = fluid.data(name='x', shape=[100, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
S
SunGaofeng 已提交
12918
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12944 12945 12946 12947 12948 12949 12950 12951


@templatedoc()
def prroi_pool(input,
               rois,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
12952
               batch_roi_nums=None,
12953 12954
               name=None):
    """
12955
    The precise roi pooling implementation for paddle. Reference: https://arxiv.org/pdf/1807.11590.pdf
12956 12957

    Args:
12958
        input (Variable):The input of precise roi pooliing.The shape of input tensor is
12959 12960 12961
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
12962 12963 12964 12965 12966
                        a 2-D LoDTensor or Tensor of shape (num_rois, 4), the lod level
                        is 1 when it is LoDTensor. The LoD include the rois's batch index
                        information. If rois is Tensor, its batch index information should
                        be provided by batch_index.
                        Given as [[x1, y1, x2, y2], ...], (x1, y1) is
12967 12968 12969 12970 12971 12972
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
12973
        batch_roi_nums (Variable): The number of roi for each image in batch. It 
T
tianshuo78520a 已提交
12974
                         should be 1-D Tensor, with shape [N] and dtype int64, 
12975 12976
                         where N is the batch size. Default: None. Be note: The lod of input should be
                         empty when batch_roi_nums has values;
12977 12978 12979
        name (str, default None): The name of this operation.

    Returns:
12980
        Variable(Tensor):The shape of the returned Tensor is (N, C, pooled_height, pooled_width), with value type float32,float16. N, C denote batch_size and channels of input respectively.
12981 12982 12983 12984

    Examples:
        .. code-block:: python

12985
            ## prroi_pool without batch_roi_num
12986
            import paddle.fluid as fluid
12987 12988
            x = fluid.data(name='x', shape=[None, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
12989
            pool_out = fluid.layers.prroi_pool(x, rois, 1.0, 7, 7)
12990 12991 12992 12993 12994 12995 12996 12997 12998
            
            ## prroi_pool with batch_roi_num
            batchsize=4
            x2 = fluid.data(name='x2', shape=[batchsize, 490, 28, 28], dtype='float32')
            rois2 = fluid.data(name='rois2', shape=[batchsize, 4], dtype='float32')
            batch_rois_num = fluid.data(name='rois_nums', shape=[batchsize], dtype='int64')
            pool_out2 = fluid.layers.prroi_pool(x2, rois2, 1.0, 7, 7, batch_roi_nums=batch_rois_num)


12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
13010 13011 13012
    inputs_op = {'X': input, 'ROIs': rois}
    if batch_roi_nums is not None:
        inputs_op['BatchRoINums'] = batch_roi_nums
13013 13014
    helper.append_op(
        type='prroi_pool',
13015
        inputs=inputs_op,
13016 13017 13018 13019 13020 13021 13022
        outputs={'Out': out},
        attrs={
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13023

M
minqiyang 已提交
13024

R
ruri 已提交
13025 13026 13027
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
13028
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
13029 13030 13031 13032 13033 13034 13035
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
13036
    Parameters:
R
ruri 已提交
13037

R
ruri 已提交
13038 13039
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
13040 13041

    Returns:
13042
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
13043 13044 13045 13046 13047 13048 13049

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

R
ruri 已提交
13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,9,4,4])
	    output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,9,4,4).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
 	    # print(output.shape)
	    # (2L, 1L, 12L, 12L)
R
ruri 已提交
13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


13085 13086 13087 13088 13089
def fsp_matrix(x, y):
    """

    **FSP matrix op**

13090
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

13102 13103 13104
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
13105
                      The y_channel can be different with the x_channel of Input(X)
13106 13107
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
13108 13109 13110 13111

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
13112 13113
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
13114 13115 13116 13117 13118

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
13119
            import paddle.fluid as fluid
B
Bai Yifan 已提交
13120
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
13121 13122 13123 13124
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
13125 13126 13127 13128 13129 13130 13131 13132
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
13133 13134 13135 13136


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
13137

H
heqiaozhi 已提交
13138
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
13139

Z
zhoushiyu 已提交
13140
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
13141

Z
zhoushiyu 已提交
13142 13143
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
13144
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
13145 13146
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
13147

Z
zhoushiyu 已提交
13148 13149 13150 13151 13152 13153 13154
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
13155

H
heqiaozhi 已提交
13156
    Returns:
H
fix doc  
heqiaozhi 已提交
13157

Z
zhoushiyu 已提交
13158 13159
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
13160

H
heqiaozhi 已提交
13161
    Examples:
H
fix doc  
heqiaozhi 已提交
13162

H
heqiaozhi 已提交
13163
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
13164

13165
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
13166 13167
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
13168 13169 13170 13171 13172 13173 13174 13175
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
13176

H
heqiaozhi 已提交
13177 13178 13179 13180 13181 13182 13183 13184 13185
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
13186
    return out
Z
zhoukunsheng 已提交
13187 13188 13189 13190 13191 13192 13193


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
13194
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
13195 13196

    Returns:
13197
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate. 
Z
zhoukunsheng 已提交
13198 13199 13200 13201

    Examples:
        .. code-block:: python

13202
             import paddle.fluid as fluid
13203 13204 13205
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
13206
             # condition is a tensor [True, False, True]
13207 13208 13209
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
13210 13211

             # condition is a tensor [[True, False], [False, True]]
13212 13213 13214
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
13215 13216

             # condition is a tensor [False, False, False]
13217 13218 13219 13220
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
13221
    """
13222
    helper = LayerHelper("where_index", **locals())
Z
zhoukunsheng 已提交
13223 13224 13225 13226 13227

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
13228 13229 13230
        type='where_index',
        inputs={'Condition': condition},
        outputs={'Out': [out]})
Z
zhoukunsheng 已提交
13231
    return out
Z
zhoukunsheng 已提交
13232 13233 13234 13235


def sign(x):
    """
13236
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
13237 13238

    Args:
13239 13240
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
13241 13242

    Returns:
13243
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
13244 13245 13246 13247

    Examples:
        .. code-block:: python

13248 13249 13250
          import paddle.fluid as fluid
          import numpy as np

13251 13252
          # [1.0, 0.0, -1.0]
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32')) 
Z
zhoukunsheng 已提交
13253 13254 13255
    """

    helper = LayerHelper("sign", **locals())
13256 13257 13258 13259
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
13260 13261 13262 13263 13264
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
13265 13266


Z
zhoukunsheng 已提交
13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13306 13307
def unique_with_counts(x, dtype='int32'):
    """
T
tianshuo78520a 已提交
13308
    This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \
13309
    and an index tensor pointing to this unique tensor. 
13310

13311
    **NOTICE**: This op support the variable type of Tensor only.
13312 13313

    Args:
13314 13315
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Defalut value is int32.
13316

13317 13318 13319 13320
    Returns: 
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
T
tianshuo78520a 已提交
13321
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\
13322
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
13323 13324 13325 13326 13327 13328 13329 13330 13331

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
13332
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13375
                    modulated=True,
13376 13377
                    name=None):
    """
13378
    **Deformable Convolution op**
13379 13380 13381

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13382 13383 13384
   
    
    Deformable Convolution v2: 
13385 13386 13387 13388
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13389 13390

    Deformable Convolution v1:
13391
    
13392 13393 13394 13395 13396
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
13397
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
13398
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
13423 13424
        input (Variable): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
13425
        offset (Variable): The input coordinate offset of deformable convolution layer.
13426
            A Tensor with type float32, float64.
13427 13428 13429
        Mask (Variable, Optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
13430 13431
        num_filters(int): The number of filter. It is as same as the output
            image channel.
13432
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
T
tianshuo78520a 已提交
13452
            The total batch size should be devisable by this value or smaller
13453 13454 13455
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
13456
        param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
13457 13458 13459 13460 13461
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
13462
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
13463 13464 13465 13466
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13467 13468
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13469 13470
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
13471 13472
    Returns:
        Variable: The tensor variable storing the deformable convolution \
13473
                  result. A Tensor with type float32, float64.
13474 13475 13476 13477 13478 13479
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13480 13481
          #deformable conv v2:
         
13482
          import paddle.fluid as fluid
13483 13484
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13485 13486 13487
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          mask = fluid.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13488
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13489
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=True)
13490 13491 13492 13493

          #deformable conv v1:

          import paddle.fluid as fluid
13494 13495
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13496 13497
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13498
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
13499
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=False)
13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13577 13578 13579

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13580 13581 13582 13583 13584


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

S
SunGaofeng 已提交
13585
    This op returns a col buffer of sliding local blocks of input x, also known
13586
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
13587
    all element will be rearranged as a column. While the convolution filter sliding over
13588 13589
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
13590
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


S
SunGaofeng 已提交
13608 13609 13610
    Parameters:
        x(Varaible):              4-D Tensor, input tensor of format [N, C, H, W], 
                                  data type can be float32 or float64
13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
13623
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
13624
                                  [dilation_h, dilation_w], or an integer dilation treated as
13625
                                  [dilation, dilation]. For default, it will be [1, 1].
S
SunGaofeng 已提交
13626 13627 13628
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
13629 13630 13631

    
    Returns:
S
SunGaofeng 已提交
13632
        The tensor variable corresponding to the sliding local blocks. 
T
tianshuo78520a 已提交
13633
        The output shape is [N, Cout, Lout] as decriabled above. 
S
SunGaofeng 已提交
13634 13635 13636 13637 13638 13639
        Cout is the  total number of values within each block, 
        and Lout is the total number of such blocks. 
        The data type of output is the same as the input :math:`x`

    Return Type:
        Variable
13640 13641 13642 13643 13644 13645

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
S
SunGaofeng 已提交
13646
            x = fluid.data(name = 'data', shape = [100, 3, 224, 224], dtype = 'float32')
13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
13717 13718 13719 13720 13721 13722 13723
    Deformable ROI Pooling Layer
  
    Performs deformable region-of-interest pooling on inputs. As described
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after 
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
  
    The operation has three steps:
C
cjt222 已提交
13724
    
13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
  
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
     
    3. Sample several points in each bin to get average values as output.
  
  
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where 
                          N is number of ROIs, C is number of channels, which indicate the offset distance 
                          in the x and y directions, H is pooled height, and W is pooled width. 
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels 
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
13751
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
13752 13753 13754 13755 13756 13757 13758
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
13759
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
13760 13761 13762 13763
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
13764 13765 13766 13767

    Examples:
      .. code-block:: python

13768 13769
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=True)
13792 13793
  
        # position_sensitive=False
13794
        import paddle.fluid as fluid
C
chengjuntao 已提交
13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13854 13855 13856 13857


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
13858
    This operator recomputes the `input` indices according to the offset of the
13859 13860 13861 13862 13863
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
13864
        
13865 13866
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
13867

13868 13869
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
13870 13871

    Examples:
13872
    ::
13873
    
13874
        Input:
13875 13876
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
13877 13878 13879
          index_num = 20
          nshards = 2
          ignore_value = -1
13880
        
13881
        if shard_id == 0, we get:
13882 13883 13884
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
13885
        if shard_id == 1, we get:
13886 13887 13888 13889
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
13890
        - **input** (Variable): Input indices, last dimension must be 1.
T
tianshuo78520a 已提交
13891
        - **index_num** (scalar): An integer defining the range of the index.
13892 13893
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
T
tianshuo78520a 已提交
13894
        - **ignore_value** (scalar): An integer value out of sharded index range
13895 13896

    Returns:
13897
        Variable: The sharded index of input.
13898 13899 13900 13901 13902

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
13903 13904
            batch_size = 32
            label = fluid.data(name="label", shape=[batch_size, 1], dtype="int64")
13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13929 13930 13931 13932 13933


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
13934 13935 13936
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
13937

13938
    The formula is as follows:
H
huangjun12 已提交
13939

13940
    .. math::
H
huangjun12 已提交
13941

13942
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
13943

13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` 
        
    Returns:
        Variable: The output tensor with the same shape and data type as input.
    
    
    Examples:
    
    .. code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
    
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
13989 13990


G
Guo Sheng 已提交
13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065
def gather_tree(ids, parents):
    """
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:                
                gather_tree(ids, parents)  
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Variable): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
        Variable: A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            ids = fluid.layers.data(name='ids',
                                    shape=[5, 2, 2],
                                    dtype='int64',
                                    append_batch_size=False)
            parents = fluid.layers.data(name='parents',
                                        shape=[5, 2, 2],
                                        dtype='int64',
                                        append_batch_size=False)
            final_sequences = fluid.layers.gather_tree(ids, parents)
    """
    helper = LayerHelper('gather_tree', **locals())
    out = helper.create_variable_for_type_inference(dtype=ids.dtype)

    helper.append_op(
        type="gather_tree",
        inputs={"Ids": ids,
                "Parents": parents},
        outputs={"Out": out})

    return out


14066 14067 14068
@templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
    """
14069 14070
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max).
14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081

    Examples:
    ::
    
        Input:
          shape = [1, 2]
        
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
14082 14083
        shape (list|tuple|Variable): The shape of the output Tensor,  if the shape is a list or tuple, 
                                     its elements can be an integer
14084 14085
                                     or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. 
                                     If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be int32 or int64.
14086
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
14087
                                                  Default: float32.
14088 14089
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
14090 14091 14092 14093 14094
        seed (int, optional): Random seed used for generating samples. 0 means use a
            seed generated by the system. Note that if seed is not 0, this
            operator will always generate the same random numbers every time.
            Default 0.

14095 14096
    Returns: 
        Variable: A Tensor of the specified shape filled with uniform_random values.
14097

14098
    Raises:
T
tianshuo78520a 已提交
14099
        TypeError: The shape type should be list or tuple or variable.
14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
14113 14114
            dim_2 = fluid.layers.fill_constant([1],"int32",5)
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
14115 14116

            # example 3:
14117
            # attr shape is a Variable, the data type must be int64 or int32.
14118
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
14119
            result_3 = fluid.layers.uniform_random(var_shape)
14120 14121 14122 14123
            var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
            result_4 = fluid.layers.uniform_random(var_shape_int32)
             

14124 14125

    """
14126
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
14127 14128
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
14129
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
14130

14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152
    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
T
tianshuo78520a 已提交
14153
                    "Each dimension size given in shape must not be negative "
14154 14155 14156 14157 14158
                    "except one unknown dimension.")
        return attrs_shape

    helper = LayerHelper("uniform_random", **locals())
    inputs = dict()
14159
    attrs = {'seed': seed, 'min': min, 'max': max}
14160
    if in_dygraph_mode():
H
hong 已提交
14161
        attrs['shape'] = shape
14162 14163 14164 14165 14166 14167 14168 14169
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
14170
            if utils._contain_var(shape):
14171 14172 14173 14174 14175 14176 14177 14178
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})

    return helper.append_activation(out)