nn.py 553.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
17 18
from __future__ import print_function

P
peizhilin 已提交
19
import os
S
sneaxiy 已提交
20
import inspect
21 22 23 24 25 26
import warnings

import numpy as np
import six

import paddle
Y
Yu Yang 已提交
27
from ..layer_helper import LayerHelper
28
from ..initializer import Normal, Constant, NumpyArrayInitializer
29
from ..framework import Variable, OpProtoHolder, in_dygraph_mode, dygraph_only, _dygraph_tracer, default_main_program
30
from .. import dygraph_utils
Y
yangyaming 已提交
31
from ..param_attr import ParamAttr
S
sneaxiy 已提交
32
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
33
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
34
from . import utils
F
fengjiayi 已提交
35
from .. import unique_name
36
from functools import reduce
37
from .. import core
38
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
39
import paddle
Y
Yu Yang 已提交
40 41

__all__ = [
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'chunk_eval',
    'conv2d',
    'conv3d',
    'softmax',
    'pool2d',
    'pool3d',
53 54
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
55
    'batch_norm',
K
Kaipeng Deng 已提交
56
    'inplace_abn',
L
lvmengsi 已提交
57
    'instance_norm',
H
heqiaozhi 已提交
58
    'data_norm',
X
Xin Pan 已提交
59 60 61 62 63 64 65
    'conv2d_transpose',
    'conv3d_transpose',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
66 67
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
68 69 70 71 72 73 74 75 76 77 78
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'l2_normalize',
    'matmul',
    'topk',
    'transpose',
    'im2sequence',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
79
    'group_norm',
D
dengkaipeng 已提交
80
    'spectral_norm',
X
Xin Pan 已提交
81 82 83 84 85 86 87
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
88
    'lod_append',
X
Xin Pan 已提交
89 90 91 92 93
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
94
    'roi_align',
X
Xin Pan 已提交
95 96 97 98
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
K
Kaipeng Deng 已提交
99
    'resize_trilinear',
100
    'resize_nearest',
X
Xin Pan 已提交
101
    'gather',
102
    'gather_nd',
X
Xin Pan 已提交
103
    'scatter',
104 105
    'scatter_nd_add',
    'scatter_nd',
X
Xin Pan 已提交
106 107 108
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
109
    'selu',
X
Xin Pan 已提交
110 111
    'log',
    'crop',
112
    'crop_tensor',
X
Xin Pan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'stack',
    'pad2d',
    'unstack',
Z
zhoukunsheng 已提交
127
    'unique',
128
    'unique_with_counts',
X
Xin Pan 已提交
129
    'expand',
130
    'expand_as',
X
Xin Pan 已提交
131 132 133 134 135 136 137 138
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
139 140
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
141 142 143 144 145 146
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
W
wangchaochaohu 已提交
147
    'strided_slice',
X
Xin Pan 已提交
148
    'shape',
Z
zhoukunsheng 已提交
149
    'rank',
Z
zhoukunsheng 已提交
150
    'size',
X
Xin Pan 已提交
151 152 153 154 155 156 157 158 159
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'maxout',
J
JiabinYang 已提交
160
    'space_to_depth',
W
whs 已提交
161
    'affine_grid',
162
    'affine_channel',
B
barrierye 已提交
163
    'similarity_focus',
M
minqiyang 已提交
164
    'hash',
D
dengkaipeng 已提交
165
    'grid_sampler',
G
gmcather 已提交
166 167
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
168
    'bilinear_tensor_product',
C
chengduo 已提交
169 170
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
S
shippingwang 已提交
171
    'shuffle_channel',
172
    'temporal_shift',
S
sneaxiy 已提交
173
    'py_func',
174
    'psroi_pool',
175
    'prroi_pool',
R
ruri 已提交
176
    'pixel_shuffle',
177
    'fsp_matrix',
H
heqiaozhi 已提交
178
    'continuous_value_model',
Z
zhoukunsheng 已提交
179
    'where',
Z
zhoukunsheng 已提交
180
    'sign',
181
    'deformable_conv',
182
    'unfold',
C
cjt222 已提交
183
    'deformable_roi_pooling',
J
Jiawei Wang 已提交
184
    'filter_by_instag',
185
    'shard_index',
H
huangjun12 已提交
186
    'hard_swish',
G
Guo Sheng 已提交
187
    'gather_tree',
188
    'uniform_random',
Y
Yu Yang 已提交
189 190 191
]


192 193 194 195 196 197 198 199
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
    op = getattr(core.ops, op_name)
200
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
201

202 203
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)
204 205


Y
Yu Yang 已提交
206 207 208 209 210 211
def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
212
       name=None):
Y
Yu Yang 已提交
213
    """
214
    **Fully Connected Layer**
Y
Yu Yang 已提交
215

216 217 218
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
219
    which represents a fully connected weight matrix from each input unit to
220 221 222 223
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
224
    is not None, a bias variable will be created and added to the output.
225
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
226

227
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
228

229 230 231 232
    .. math::

        Out = Act({XW + b})

233
    When the input is a list of Tensor(or LoDTensor):
234 235 236

    .. math::

237
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
238 239 240

    In the above equation:

241 242 243
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
244
    * :math:`b`: The bias parameter created by this layer (if needed).
245
    * :math:`Act`: The activation function.
246
    * :math:`Out`: The output Tensor.
247 248 249

    .. code-block:: text

250 251 252 253 254 255 256 257 258 259 260 261 262 263
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
264 265 266 267 268 269 270 271 272 273 274 275 276
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
277
    Args:
278 279 280
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
281
        size(int): The number of output units in this layer, which also means the feature size of output
282 283
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
284
            two dimensions. If this happens, the multidimensional tensor will first be flattened
285 286
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
287
            dimensions will be flatten to form the first dimension of the final matrix (height of
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
303 304

    Raises:
305
        ValueError: If dimensions of the input Tensor is less than 2.
306 307 308 309

    Examples:
        .. code-block:: python

310
          import paddle.fluid as fluid
311
          # when input is single tensor
312
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
313
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
314 315

          # when input are multiple tensors
316 317
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
318
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
319
    """
C
caoying03 已提交
320
    helper = LayerHelper("fc", **locals())
321
    check_type(input, 'input', (list, tuple, Variable), 'fc')
322 323
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
324
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
325
    dtype = helper.input_dtype()
326
    check_dtype(dtype, 'input', ['float16', 'float32', 'float64'], 'fc')
Y
Yu Yang 已提交
327
    mul_results = []
328 329
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
330 331
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
332 333 334
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
335

Y
Yu Yang 已提交
336
        w = helper.create_parameter(
337
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
338
        tmp = helper.create_variable_for_type_inference(dtype)
339
        helper.append_op(
340 341 342
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
343
            outputs={"Out": tmp},
M
mozga-intel 已提交
344 345
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
346 347 348 349
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
350
    else:
X
Xin Pan 已提交
351
        pre_bias = helper.create_variable_for_type_inference(dtype)
352
        helper.append_op(
353 354 355
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
356
            attrs={"use_mkldnn": False})
357 358 359 360
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
361 362


363 364 365
def embedding(input,
              size,
              is_sparse=False,
366
              is_distributed=False,
367 368 369
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
370
    """
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` , 
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
        
        Case 2:
409

410 411 412 413 414 415 416 417 418 419 420 421 422 423
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
424 425

    Args:
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
449
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
450 451 452
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
453

454
    Returns:
455
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
456

457 458
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
459

B
bdzhuxiaoning 已提交
460
          import paddle.fluid as fluid
461 462 463
          import numpy as np
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
464
          # example 1
465 466 467 468 469 470 471 472 473 474
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')   
Y
Yu Yang 已提交
475 476 477
    """

    helper = LayerHelper('embedding', **locals())
478 479
    check_variable_and_dtype(input, 'input', ['int64'],
                             'fluid.layers.embedding')
480 481
    check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                'fluid.layers.embedding')
482
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
483 484
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
485 486
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
487
    tmp = helper.create_variable_for_type_inference(dtype)
488 489
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
490 491 492 493 494
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
495 496 497
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
498
            'remote_prefetch': remote_prefetch,
499 500
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
501 502 503
    return tmp


504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
def _pull_sparse(input,
                 size,
                 table_id,
                 accessor_class,
                 name="embedding",
                 ctr_label_name="",
                 padding_id=0,
                 dtype='float32',
                 scale_sparse_grad=True):
    """
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
        'is_distributed': True
    }
    # this is only for compatible with embedding op
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True)
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs,
                'W': w},
        outputs={'Out': outs},
        attrs=attrs)
    if len(outs) == 1:
        return outs[0]
    return outs


def _pull_sparse_v2(input,
                    size,
                    table_id,
                    accessor_class,
                    name="embedding",
                    ctr_label_name="",
                    padding_id=0,
                    dtype='float32',
                    scale_sparse_grad=True):
    """
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
        'is_distributed': True
    }
    # this is only for compatible with embedding op
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True)
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs,
                'W': w},
        outputs={'Out': outs},
        attrs=attrs)
    if len(outs) == 1:
        return outs[0]
    return outs


H
hutuxian 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
def _pull_box_sparse(input, size, dtype='float32'):
    """
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which 
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of 
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports 
	    float32 now.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])    
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
            "BoxPS only support float type embedding now, and your type is: " +
            dtype)
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs},
        outputs={'Out': outs},
        attrs={'size': size})
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
694
@templatedoc()
695
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
696 697 698 699 700 701
    """
    Linear Chain CRF.

    ${comment}

    Args:
702
        input(${emission_type}): ${emission_comment} 
Y
yuyang18 已提交
703
        label(${label_type}): ${label_comment}
704
        Length(${length_type}): ${length_comment}
705
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
706 707

    Returns:
D
dzhwinter 已提交
708 709
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
710
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
711

J
JesseyXujin 已提交
712 713 714
    Examples:
        .. code-block:: python

715 716 717 718 719 720 721
            import paddle.fluid as fluid
            import numpy as np

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
722 723
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
                    learning_rate=0.01)) 
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)    
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
            print(loss) 

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
746 747 748
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
749 750 751 752 753 754
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
755
                     name='crfw',
756 757 758 759 760 761
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
762

763 764 765
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
766
            ll=np.array([[3],[3],[4],[2]])
767 768 769
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
            print(loss2) 
770 771 772 773 774
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

775 776 777
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
778
            
Y
yuyang18 已提交
779
    """
Y
Yu Yang 已提交
780
    helper = LayerHelper('linear_chain_crf', **locals())
781
    size = input.shape[2] if length else input.shape[1]
Y
Yu Yang 已提交
782 783 784 785
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
786 787 788 789 790 791 792 793
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
794 795 796 797 798 799
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
        "Label": [label]
    }
    if length:
800
        this_inputs['Length'] = [length]
Y
Yu Yang 已提交
801 802
    helper.append_op(
        type='linear_chain_crf',
803
        inputs=this_inputs,
Y
Yu Yang 已提交
804 805 806 807 808 809 810 811 812 813
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
814
@templatedoc()
815
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
816 817
    """
    ${comment}
Y
yi.wu 已提交
818

W
wopeizl 已提交
819 820
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
821

Y
Yibing Liu 已提交
822 823 824
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Y
yuyang18 已提交
825

Y
Yibing Liu 已提交
826
        label(${label_type}, optional): ${label_comment}
827
        
Y
Yibing Liu 已提交
828
        length(${length_type}, optional): ${length_comment}
829

W
wopeizl 已提交
830 831
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
832

W
wopeizl 已提交
833 834
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
835

836
           import paddle.fluid as fluid
837 838 839

           # LoDTensor-based example
           num_labels = 10
Y
Yibing Liu 已提交
840 841
           feature = fluid.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = fluid.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
842 843 844
           emission = fluid.layers.fc(input=feature, size=num_labels)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, 
Y
Yibing Liu 已提交
845
                     param_attr=fluid.ParamAttr(name="crfw"))
846
           crf_decode = fluid.layers.crf_decoding(input=emission, 
Y
Yibing Liu 已提交
847
                     param_attr=fluid.ParamAttr(name="crfw"))
848 849 850

           # Common tensor example
           num_labels, max_len = 10, 20
Y
Yibing Liu 已提交
851 852 853
           feature = fluid.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = fluid.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = fluid.data(name='length', shape=[-1, 1], dtype='int64')
854 855 856 857 858 859 860
           emission = fluid.layers.fc(input=feature, size=num_labels,
                                      num_flatten_dims=2)
           
           crf_cost = fluid.layers.linear_chain_crf(input=emission, label=label, length=length, 
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
           crf_decode = fluid.layers.crf_decoding(input=emission, length=length,
                     param_attr=fluid.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
861 862 863 864 865
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
866 867 868
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
W
wopeizl 已提交
869 870
    helper.append_op(
        type='crf_decoding',
871
        inputs=inputs,
W
wopeizl 已提交
872
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
873

W
wopeizl 已提交
874
    return viterbi_path
Y
Yu Yang 已提交
875 876


Y
yi.wu 已提交
877
@templatedoc()
F
fengjiayi 已提交
878
def cos_sim(X, Y):
Y
Yu Yang 已提交
879
    """
Y
yi.wu 已提交
880 881 882
    ${comment}

    Args:
883 884
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
885

Y
yi.wu 已提交
886
    Returns:
L
lvmengsi 已提交
887
        A Variable holding LoDTensor representing the output of cosine(X, Y).
L
lvmengsi 已提交
888 889 890 891

    Examples:
        .. code-block:: python

892
            import paddle.fluid as fluid
L
lvmengsi 已提交
893 894
            x = fluid.data(name='x', shape=[3, 7], dtype='float32')
            y = fluid.data(name='y', shape=[1, 7], dtype='float32')
L
lvmengsi 已提交
895
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
896
    """
F
fengjiayi 已提交
897
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
898 899 900
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
901 902 903 904 905 906 907 908 909 910
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
911 912 913 914 915
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
916
            dropout_implementation="downgrade_in_infer"):
917 918 919 920 921
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
922
    training. The dropout operator randomly sets (according to the given dropout
923 924 925
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
926 927
    dropout op can be removed from the program to make the program more efficient.

928
    Args:
L
lvmengsi 已提交
929
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
930
        dropout_prob (float): Probability of setting units to zero.
931 932 933 934
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
935
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
936 937
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
938 939
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
940
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
941 942

                                           - train: out = input * mask
C
ceci3 已提交
943
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
944 945 946

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
947
                                        2. upscale_in_train, upscale the outcome at training time
948

H
haowang101779990 已提交
949 950
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
951

H
haowang101779990 已提交
952 953
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
954

M
minqiyang 已提交
955

956
    Returns:
L
lvmengsi 已提交
957
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
958 959

    Examples:
960

961 962
        .. code-block:: python

963
            import paddle.fluid as fluid
L
lvmengsi 已提交
964
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
965
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
966 967
    """

968 969 970 971 972 973 974 975 976 977 978 979 980
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

    if in_dygraph_mode():
981 982 983 984 985 986 987 988 989 990
        if (seed is None or
                seed == 0) and default_main_program().random_seed != 0:
            seed = default_main_program().random_seed
        seed = seed if seed is not None else 0
        _is_test = not _dygraph_tracer()._train_mode
        out, mask = core.ops.dropout(x, 'dropout_prob', dropout_prob, 'is_test',
                                     _is_test, 'fix_seed', seed is not None,
                                     'seed', seed, 'dropout_implementation',
                                     dropout_implementation)
        return out
991

F
fengjiayi 已提交
992
    helper = LayerHelper('dropout', **locals())
993 994
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'dropout')
995

X
Xin Pan 已提交
996 997
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
998
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
999

1000
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
1001

1002 1003 1004 1005 1006
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1007
        attrs=attrs)
1008 1009 1010
    return out


Y
yi.wu 已提交
1011
@templatedoc()
Y
Yu Yang 已提交
1012 1013 1014 1015
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
1016 1017
               excluded_chunk_types=None,
               seq_length=None):
Y
Yu Yang 已提交
1018
    """
G
Guo Sheng 已提交
1019 1020
    This operator computes the precision, recall and F1-score for chunk detection.
    It is often used in sequence tagging tasks, such as Named Entity Recognition(NER).
Y
yi.wu 已提交
1021

M
minqiyang 已提交
1022
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1023
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1024

G
Guo Sheng 已提交
1025 1026
    This operator supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example for the usage of these tagging schemes:
Y
yi.wu 已提交
1027 1028

    .. code-block:: python
1029

Y
yi.wu 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
G
Guo Sheng 已提交
1040
    and LOC(location), and we can see that the labels have the form `<tag type>-<chunk type>` .
Y
yi.wu 已提交
1041

G
Guo Sheng 已提交
1042 1043 1044
    Since the implementation of this operator actually uses label ids rather than
    label strings, to make it work, there should be a way to map label ids to
    tag types and chunk types. This operator uses the following way to do mapping:
Y
yi.wu 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1055

Y
yi.wu 已提交
1056 1057 1058 1059 1060 1061
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

G
Guo Sheng 已提交
1062 1063
    Accordingly, in the above NER example, if the tagging scheme is IOB and chunk
    types are ORG, PER and LOC, then the label ids would be as follows:
Y
yi.wu 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

G
Guo Sheng 已提交
1075 1076
    With which we can map each label id to the corresponding tag type and chunk
    type correctly.
Y
yi.wu 已提交
1077

Y
yi.wu 已提交
1078
    Args:
G
Guo Sheng 已提交
1079 1080 1081 1082 1083 1084
        input (Variable): A Tensor or LoDTensor, representing the predicted labels
            from the network. When it is a Tensor, its shape would be `[N, M, 1]`,
            where `N` stands for batch size, `M` for sequence length; When it is
            a LoDTensor, its shape would be `[N, 1]` where `N` stands for the total
            sequence lengths in this mini-batch. The data type should be int64.
        label (Variable): A Tensor or LoDTensor representing the ground-truth labels.
T
tianshuo78520a 已提交
1085
            It should have the same shape, lod and data type as ``input`` .
G
Guo Sheng 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094
        chunk_scheme (str): Indicate the tagging schemes used here. The value must
            be IOB, IOE, IOBES or plain.
        num_chunk_types (int): The number of chunk types.
        excluded_chunk_types (list, optional): Indicate the chunk types shouldn't
            be taken into account. It should be a list of chunk type ids(integer).
            Default None.
        seq_length(Variable, optional): A 1D Tensor containing the length of each
            sequence when ``input`` and ``label`` are Tensor. It needn't be
            provided if ``input`` and ``label`` are LoDTensor. Default None.
F
fengjiayi 已提交
1095

Y
yi.wu 已提交
1096
    Returns:
G
Guo Sheng 已提交
1097 1098 1099 1100
        tuple: A tuple including precision, recall, F1-score, chunk number detected, \
            chunk number in ground-truth, chunk number correctly detected. Each \
            is a Tensor with shape `[1]`. The data type of precision, recall and \
            F1-score all is float32, and the others' data type all is int64.
1101

Y
yi.wu 已提交
1102 1103 1104
    Examples:
        .. code-block:: python

1105 1106 1107 1108
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
G
Guo Sheng 已提交
1109 1110 1111
            sequence = fluid.data(
                name='id', shape=[-1, 1], lod_level=1, dtype='int64')
            embedding = fluid.embedding(
1112 1113 1114 1115
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1116
            crf = fluid.layers.linear_chain_crf(
1117
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1118
            crf_decode = fluid.layers.crf_decoding(
1119
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1120 1121 1122 1123 1124
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1125
    """
F
fengjiayi 已提交
1126
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1127 1128

    # prepare output
X
Xin Pan 已提交
1129 1130 1131 1132 1133 1134 1135
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1136

1137 1138 1139 1140 1141
    this_input = {"Inference": [input], "Label": [label]}

    if seq_length:
        this_input["SeqLength"] = [seq_length]

Y
Yu Yang 已提交
1142 1143
    helper.append_op(
        type="chunk_eval",
1144
        inputs=this_input,
Y
Yu Yang 已提交
1145 1146 1147
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1148 1149 1150 1151
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1152 1153 1154
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1155 1156
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1157
        })
1158 1159
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1160 1161


1162
def softmax(input, use_cudnn=False, name=None, axis=-1):
Y
Yu Yang 已提交
1163
    """
1164
    This operator implements the softmax layer. The calculation process is as follows:
1165

1166
    1. The dimension :attr:`axis` of the ``input`` will be permuted to the last.
1167
    
1168 1169 1170 1171 1172 1173 1174
    2. Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
1175

1176 1177
    3. After the softmax operation is completed, the inverse operations of steps 1 and 2 
    are performed to restore the two-dimensional matrix to the same dimension as the ``input``.
1178

1179 1180 1181 1182 1183
    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.
1184

1185
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
1186

1187
    .. math::
1188

1189
        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}
1190

1191
    Example:
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

    .. code-block:: text

        Case 1:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            X.shape = [2, 3, 4]
            X.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            Out.shape = [2, 3, 4]
            Out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]] 

Q
qiaolongfei 已提交
1238
    Args:
1239 1240
        input (Variable): The input variable. A multi-dimension ``Tensor`` with type float32 or float64.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn \
T
tianshuo78520a 已提交
1241
            library is installed. To improve numerical stability, set use_cudnn to \
1242 1243
            False by default.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Default: None.
C
chengduo 已提交
1244
            will be named automatically. Default: None.
1245
        axis (int, optional): The index of dimension to perform softmax calculations, it should
D
dengkaipeng 已提交
1246
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
1247
            input variable. Default: -1. -1 means the last dimension.
Q
qiaolongfei 已提交
1248 1249

    Returns:
1250
        Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input`` .
Q
qiaolongfei 已提交
1251 1252 1253 1254 1255

    Examples:

        .. code-block:: python

1256 1257
            import paddle.fluid as fluid
            import numpy as np
Q
qiaolongfei 已提交
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267
            data = fluid.data(name="input", shape=[-1, 3],dtype="float32")
            result = fluid.layers.softmax(data,axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3, 3).astype("float32")
            output= exe.run(feed={"input": x},
                             fetch_list=[result[0]])
            print(output)
Q
qiaolongfei 已提交
1268
    """
1269 1270

    if in_dygraph_mode():
1271 1272 1273 1274
        return core.ops.softmax(input, 'axis', axis, 'use_cudnn', use_cudnn)

    inputs = {"X": [input]}
    attrs = {"axis": axis, "use_cudnn": use_cudnn}
1275

1276
    helper = LayerHelper('softmax', **locals())
1277 1278
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'softmax')
1279

1280
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1281
    softmax_out = helper.create_variable_for_type_inference(dtype)
1282 1283 1284 1285
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
1286
        attrs=attrs)
1287 1288 1289
    return softmax_out


Y
Yu Yang 已提交
1290 1291 1292
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1293 1294
           stride=1,
           padding=0,
1295
           dilation=1,
Y
Yu Yang 已提交
1296 1297 1298
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1299
           use_cudnn=True,
1300
           act=None,
L
liym27 已提交
1301 1302
           name=None,
           data_format="NCHW"):
Y
Yu Yang 已提交
1303
    """
C
chengduoZH 已提交
1304
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1305
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1306
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1307
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1308 1309 1310 1311 1312 1313
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1314
    for more details.
1315 1316 1317
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1318

1319
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1320

C
chengduoZH 已提交
1321 1322
    .. math::

C
refine  
chengduoZH 已提交
1323
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1324

T
tensor-tang 已提交
1325
    Where:
C
chengduoZH 已提交
1326

L
liym27 已提交
1327
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1328 1329 1330 1331
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1332
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1333 1334 1335

    Example:

1336 1337
        - Input:

W
weixing02 已提交
1338
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1339

W
weixing02 已提交
1340
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1341

1342
        - Output:
T
tensor-tang 已提交
1343

W
weixing02 已提交
1344
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1345

C
chengduoZH 已提交
1346
        Where
1347 1348

        .. math::
C
chengduoZH 已提交
1349

W
weixing02 已提交
1350 1351
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1352 1353

    Args:
L
lvmengsi 已提交
1354 1355
        input (Variable): The input is 4-D Tensor with shape [N, C, H, W], the data type 
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1356
        num_filters(int): The number of filter. It is as same as the output
1357
            image channel.
1358 1359
        filter_size (int|tuple): The filter size. If filter_size 
            is a tuple, it must contain two integers, (filter_size_height, 
L
lvmengsi 已提交
1360 1361 1362 1363 1364 1365
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
        stride (int|tuple): The stride size. It means the stride in convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1366
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1367 1368
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
L
lvmengsi 已提交
1369 1370 1371
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when 
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0], 
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1372 1373 1374
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1375 1376 1377 1378
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
            points. If dilation is a tuple, it must contain two integers, (dilation_height, 
            dilation_width). Otherwise, dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
1379 1380 1381 1382
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1383 1384 1385 1386 1387
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1388
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1389 1390 1391 1392 1393
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1394 1395
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1396 1397
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
L
lvmengsi 已提交
1398 1399 1400
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1401 1402
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1403 1404
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1405 1406

    Returns:
L
lvmengsi 已提交
1407 1408 1409 1410
        A Variable holding Tensor representing the conv2d, whose data type is the 
        same with input. If act is None, the tensor variable storing the convolution 
        result, and if act is not None, the tensor variable storing convolution 
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1411

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1425 1426 1427
    Examples:
        .. code-block:: python

1428
          import paddle.fluid as fluid
L
lvmengsi 已提交
1429
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
1430
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1431 1432
    """

1433 1434
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'conv2d')
1435
    num_channels = input.shape[1]
L
liym27 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NHWC")
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduo 已提交
1451
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1452

1453
    l_type = 'conv2d'
X
xzl 已提交
1454 1455
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1456
        l_type = 'depthwise_conv2d'
1457 1458 1459 1460

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1461 1462 1463 1464
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1465
            raise ValueError(
1466 1467 1468
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
                ", the groups is {}".format(num_channels, input.shape, groups))
M
minqiyang 已提交
1469
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1470

C
chengduoZH 已提交
1471 1472
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1473
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1474

L
liym27 已提交
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1498 1499 1500
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1515
            padding = [0, 0]
L
liym27 已提交
1516 1517
        elif padding == "SAME":
            padding_algorithm = "SAME"
1518
            padding = [0, 0]
L
liym27 已提交
1519 1520

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1521

M
minqiyang 已提交
1522
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1523 1524

    def _get_default_param_initializer():
C
chengduo 已提交
1525 1526
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1527 1528 1529 1530 1531 1532 1533 1534
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1535
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1536 1537

    helper.append_op(
1538
        type=l_type,
Y
Yu Yang 已提交
1539 1540 1541 1542 1543
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1544 1545 1546
        attrs={
            'strides': stride,
            'paddings': padding,
1547
            'dilations': dilation,
C
chengduoZH 已提交
1548
            'groups': groups,
1549
            'use_cudnn': use_cudnn,
1550
            'use_mkldnn': False,
L
liym27 已提交
1551 1552 1553
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1554
        })
Y
Yu Yang 已提交
1555

1556 1557 1558 1559
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1560 1561 1562 1563

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
L
liym27 已提交
1575 1576
           name=None,
           data_format="NCDHW"):
C
chengduoZH 已提交
1577 1578 1579
    """
    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
L
liym27 已提交
1580
    Output(Output) are in NCDHW or NDHWC format. Where N is batch size C is the number of
1581 1582 1583 1584 1585
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

L
liym27 已提交
1595
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
1596
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1597 1598 1599
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1600
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
L
lvmengsi 已提交
1622 1623
        input (Variable): The input is 5-D Tensor with shape [N, C, D, H, W], the data 
            type of input is float16 or float32 or float64.
1624
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
1625
            image channel.
1626 1627 1628 1629
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_depth, filter_size_height, 
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size.
L
lvmengsi 已提交
1630 1631 1632 1633
        stride (int|tuple): The stride size. It means the stride in convolution. If stride is a 
            tuple, it must contain three integers, (stride_depth, stride_height, stride_width). 
            Otherwise, stride_depth = stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings 
T
tianshuo78520a 已提交
1634
            on both sides for each dimension. If `padding` is a string, either 'VALID' or
L
liym27 已提交
1635 1636 1637 1638 1639 1640 1641 1642
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1643 1644 1645 1646
        dilation (int|tuple): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height,
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
C
chengduoZH 已提交
1647 1648 1649 1650 1651
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1662 1663
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1664 1665
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
L
lvmengsi 已提交
1666 1667 1668
        name(str|None): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
1669 1670 1671 1672
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1673 1674

    Returns:
L
lvmengsi 已提交
1675 1676 1677 1678
        A Variable holding Tensor representing the conv3d, whose data type is 
        the same with input. If act is None, the tensor variable storing the 
        convolution result, and if act is not None, the tensor variable storing 
        convolution and non-linearity activation result.
C
chengduoZH 已提交
1679

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1693 1694 1695
    Examples:
        .. code-block:: python

1696
          import paddle.fluid as fluid
L
lvmengsi 已提交
1697
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
1698
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1699 1700 1701
    """

    l_type = 'conv3d'
C
chengduo 已提交
1702
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1703 1704 1705
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

L
liym27 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
    if not isinstance(use_cudnn, bool):
        raise ValueError("Attr(use_cudnn) should be True or False. Received "
                         "Attr(use_cudnn): %s. " % str(use_cudnn))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    channel_last = (data_format == "NDHWC")
    num_channels = input.shape[4] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
            "Received: %s." % (str(input.shape), str(num_channels)))
C
chengduoZH 已提交
1721 1722 1723 1724 1725

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
L
liym27 已提交
1726 1727 1728 1729
            raise ValueError(
                "The number of input channels must be divisible by Attr(groups). "
                "Received: number of channels(%s), groups(%s)." %
                (str(num_channels), str(groups)))
M
minqiyang 已提交
1730
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1731 1732 1733 1734 1735

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

L
liym27 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
1758 1759
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1760 1761
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
1762 1763
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
L
liym27 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
1778
            padding = [0, 0, 0]
L
liym27 已提交
1779 1780
        elif padding == "SAME":
            padding_algorithm = "SAME"
1781
            padding = [0, 0, 0]
L
liym27 已提交
1782 1783

    padding = _update_padding(padding, data_format)
C
chengduoZH 已提交
1784 1785 1786 1787 1788

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1789 1790 1791
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1792 1793 1794 1795 1796 1797 1798 1799
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1800
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
L
liym27 已提交
1815 1816 1817
            'use_mkldnn': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
C
chengduoZH 已提交
1818 1819
        })

1820 1821 1822 1823
    if data_format == 'NCDHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
C
chengduoZH 已提交
1824 1825 1826 1827

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1828
@templatedoc()
Y
Yu Yang 已提交
1829
def pool2d(input,
C
chengduoZH 已提交
1830 1831
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1832 1833
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1834
           global_pooling=False,
C
chengduoZH 已提交
1835
           use_cudnn=True,
1836
           ceil_mode=False,
1837
           name=None,
1838 1839
           exclusive=True,
           data_format="NCHW"):
Y
Yu Yang 已提交
1840
    """
F
fengjiayi 已提交
1841
    ${comment}
1842 1843

    Args:
K
Kaipeng Deng 已提交
1844 1845 1846 1847 1848
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1849
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1850 1851
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1852
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1853 1854 1855
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1856 1857 1858 1859 1860 1861 1862
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1863
            Otherwise, the pool padding size will be a square of an int.
1864 1865 1866
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1867 1868 1869
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1870
        exclusive (bool): Whether to exclude padding points in average pooling
1871 1872 1873 1874
                          mode, default is `true`.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1875

1876
    Returns:
K
Kaipeng Deng 已提交
1877
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1878 1879

    Raises:
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1892 1893 1894 1895 1896

    Examples:

        .. code-block:: python

1897
          import paddle.fluid as fluid
1898

K
Kaipeng Deng 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1942 1943 1944
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1945
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
1946
            str(pool_type))
C
chengduoZH 已提交
1947

C
chengduoZH 已提交
1948 1949
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1950 1951 1952 1953
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received pool_size: %s." % str(pool_size))

    if not isinstance(use_cudnn, bool):
1954 1955
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s." % str(use_cudnn))
1956 1957 1958 1959 1960

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
C
chengduoZH 已提交
1961

C
chengduoZH 已提交
1962 1963 1964
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1987

1988 1989
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2004
            pool_padding = [0, 0]
2005 2006 2007 2008 2009 2010
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2011
            pool_padding = [0, 0]
2012 2013 2014 2015 2016

    pool_padding = update_padding(pool_padding, data_format)

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2017
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2018
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2019 2020

    helper.append_op(
2021
        type=op_type,
2022 2023 2024 2025 2026 2027 2028 2029
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
2030
            "padding_algorithm": padding_algorithm,
2031 2032
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2033 2034
            "use_mkldnn": False,
            "exclusive": exclusive,
2035
            "data_format": data_format,
2036 2037 2038 2039 2040
        })

    return pool_out


D
dengkaipeng 已提交
2041
@templatedoc()
2042 2043 2044 2045 2046 2047 2048 2049
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2050
           name=None,
2051 2052
           exclusive=True,
           data_format="NCDHW"):
2053
    """
2054
    ${comment}
2055 2056

    Args:
K
Kaipeng Deng 已提交
2057 2058
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of
2059 2060 2061
                          input tensor is `"NCDHW"` or `"NDHWC"`, where `N` is batch size, `C` is
                          the number of channels, `D` is the depth of the feature,
                          `H` is the height of the feature, and `W` is the width
D
dengkaipeng 已提交
2062
                          of the feature.
D
dengkaipeng 已提交
2063 2064 2065 2066 2067
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
        pool_stride (string|int|list|tuple)): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool stride size is a tuple or list,
            it must contain three integers, `[stride_Depth, stride_Height, stride_Width]`.
            Otherwise, the pool stride size will be a cube of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `"NCDHW"`, `pool_padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NDHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
2079 2080 2081
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
2082 2083 2084
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2085
        exclusive (bool): Whether to exclude padding points in average pooling
2086 2087 2088 2089
                          mode, default is true.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_depth, input_height, input_width]`.
2090

2091
    Returns:
K
Kaipeng Deng 已提交
2092
        Variable: The output tensor of pooling result. The data type is same as input tensor.
D
dengkaipeng 已提交
2093

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    Raises:
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

D
dengkaipeng 已提交
2107 2108 2109 2110
    Examples:

        .. code-block:: python

2111
          import paddle.fluid as fluid
2112

K
Kaipeng Deng 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
          data = fluid.data(name='data', shape=[None, 3, 32, 32, 32], dtype='float32')

          # max pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool3d
          pool3d = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

          # example 1:
          # Attr(pool_padding) is a list with 6 elements, Attr(data_format) is "NCDHW".
          out_1 = fluid.layers.pool3d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0, 1, 2],
            global_pooling = False,
            data_format = "NCDHW")

          # example 2:
          # Attr(pool_padding) is a string, Attr(data_format) is "NCDHW".
          out_2 = fluid.layers.pool3d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            global_pooling = False,
            data_format = "NCDHW")

Y
Yu Yang 已提交
2161 2162 2163
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
2164
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
Y
Yu Yang 已提交
2165
            str(pool_type))
C
chengduoZH 已提交
2166

C
chengduoZH 已提交
2167 2168
    if global_pooling is False and pool_size == -1:
        raise ValueError(
2169 2170 2171 2172 2173
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
            "and be a valid value. Received Attr(pool_size): %s." %
            str(pool_size))

    if not isinstance(use_cudnn, bool):
2174 2175
        raise TypeError("Attr(use_cudnn) should be True or False. Received "
                        "Attr(use_cudnn): %s. " % str(use_cudnn))
2176 2177 2178 2179 2180

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s" % str(data_format))
C
chengduoZH 已提交
2181

2182 2183
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2184

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, (list, tuple)):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
2207 2208
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2209 2210 2211

        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
2212 2213
            if utils._is_symmetric_padding(padding, 3):
                padding = [padding[0], padding[2], padding[4]]
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
                % str(pool_padding))
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
2228
            pool_padding = [0, 0, 0]
2229 2230 2231 2232 2233 2234
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", ceil_mode must be False. "
                    "Received ceil_mode: True.")
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
2235
            pool_padding = [0, 0, 0]
2236 2237 2238 2239 2240

    pool_padding = update_padding(pool_padding, data_format)

    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2241
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2242
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2243 2244

    helper.append_op(
2245
        type=op_type,
Y
Yu Yang 已提交
2246 2247 2248 2249 2250 2251 2252
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2253
            "paddings": pool_padding,
2254
            "padding_algorithm": padding_algorithm,
2255
            "use_cudnn": use_cudnn,
2256
            "ceil_mode": ceil_mode,
2257 2258
            "use_mkldnn": False,
            "exclusive": exclusive,
2259
            "data_format": data_format,
Y
Yu Yang 已提交
2260 2261 2262 2263 2264
        })

    return pool_out


2265 2266 2267 2268 2269 2270 2271
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2272
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2273 2274 2275 2276
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
K
Kaipeng Deng 已提交
2277
    is same as Parameter(pool_size). The output tensor shape will be [N, C, pool_size[0], pool_size[1]]
2278

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2292 2293

    Args:
K
Kaipeng Deng 已提交
2294 2295 2296 2297 2298
        input (Variable): The input tensor of pooling operator, which is a 4-D tensor
                          with shape [N, C, H, W].  The format of input tensor is NCHW,
                          where N is batch size, C is the number of channels, H is the
                          height of the feature, and W is the width of the feature.
                          The data type is float32 or float64.
2299 2300 2301
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2302
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2303 2304 2305 2306
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2307 2308

    Returns:
K
Kaipeng Deng 已提交
2309 2310
        Variable: The output tensor of adaptive pooling result. The data type is same 
                  as input tensor.
2311 2312 2313 2314 2315 2316 2317 2318 2319

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2320
          # average adaptive pool2d
M
minqiyang 已提交
2321
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2322
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
M
minqiyang 已提交
2323
          # of input data into m * n grids averagely and performs poolings in each
2324 2325
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2326
          #
2327 2328 2329 2330 2331 2332 2333 2334
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2335
          import paddle.fluid as fluid
K
Kaipeng Deng 已提交
2336
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2337
          pool_out = fluid.layers.adaptive_pool2d(
2338 2339
                            input=data,
                            pool_size=[3, 3],
2340
                            pool_type='avg')
K
Kaipeng Deng 已提交
2341 2342 2343

          # max adaptive pool2d
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
T
tianshuo78520a 已提交
2344
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
K
Kaipeng Deng 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
          # of input data into m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle.fluid as fluid
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool2d(
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max')
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2373
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2399
    return (pool_out, mask) if require_index else pool_out
2400 2401 2402 2403 2404 2405 2406 2407 2408


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
K
Kaipeng Deng 已提交
2409
    This operation calculates the output based on the input, pool_size,
D
dengkaipeng 已提交
2410 2411 2412 2413
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
K
Kaipeng Deng 已提交
2414 2415
    dimensions of output(Out) is same as Parameter(pool_size). The output tensor shape
    will be [N, C, pool_size[0], pool_size[1], pool_size[2]]
2416

2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2434 2435

    Args:
K
Kaipeng Deng 已提交
2436 2437 2438
        input (Variable): The input tensor of pooling operator, which is a 5-D tensor with 
                          shape [N, C, D, H, W]. The format of input tensor is NCDHW, where
                          N is batch size, C is the number of channels, D is the depth of the feature,
D
dengkaipeng 已提交
2439
                          H is the height of the feature, and W is the width of the feature.
K
Kaipeng Deng 已提交
2440
                          The data type is float32 or float64.
2441
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2442
            it must contain three integers, (Depth, Height, Width).
2443
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2444
        require_index (bool): If true, the index of max pooling point will be returned along
K
Kaipeng Deng 已提交
2445 2446 2447 2448
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
2449 2450

    Returns:
K
Kaipeng Deng 已提交
2451
        Variable: The output tensor of adaptive pooling result. The data type is same as input tensor.
2452 2453 2454 2455 2456 2457 2458 2459 2460

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

K
Kaipeng Deng 已提交
2461
          # average adaptive pool3d
2462
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2463
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
M
minqiyang 已提交
2464
          # of input data into l * m * n grids averagely and performs poolings in each
2465 2466
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2467
          #
2468 2469 2470 2471 2472 2473 2474 2475 2476
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2477
          #                 output[:, :, i, j, k] =
2478 2479
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
2480 2481 2482

          import paddle.fluid as fluid

K
Kaipeng Deng 已提交
2483 2484
          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
2485
          pool_out = fluid.layers.adaptive_pool3d(
2486
                            input=data,
D
dengkaipeng 已提交
2487
                            pool_size=[3, 3, 3],
2488
                            pool_type='avg')
K
Kaipeng Deng 已提交
2489 2490 2491

          # max adaptive pool3d
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
T
tianshuo78520a 已提交
2492
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
K
Kaipeng Deng 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
          # of input data into l * m * n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] =
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #

          import paddle.fluid as fluid

          data = fluid.data(
              name='data', shape=[None, 3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
                            input=data,
                            pool_size=[3, 3, 3],
                            pool_type='max')
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2528
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2554
    return (pool_out, mask) if require_index else pool_out
2555 2556


Y
Yu Yang 已提交
2557 2558 2559 2560 2561 2562 2563
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2564
               data_layout='NCHW',
Y
Yang Yang 已提交
2565
               in_place=False,
2566 2567
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2568
               moving_variance_name=None,
2569
               do_model_average_for_mean_and_var=True,
2570
               use_global_stats=False):
Y
Yu Yang 已提交
2571
    """
Q
qiaolongfei 已提交
2572 2573
    **Batch Normalization Layer**

L
lvmengsi 已提交
2574
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
2575
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2576

Q
qiaolongfei 已提交
2577
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2578

Q
qiaolongfei 已提交
2579 2580
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2581 2582 2583
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2596

L
lvmengsi 已提交
2597 2598 2599
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum) 

2600

L
lvmengsi 已提交
2601
    moving_mean is global mean and moving_var is global variance.
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
2615 2616 2617
    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.
2618
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
2619

2620
    Args:
2621
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
L
lvmengsi 已提交
2622
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
2623
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2624 2625
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
2626 2627 2628
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
2629 2630 2631 2632 2633
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2634 2635
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
2636 2637 2638
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
C
chengduo 已提交
2639 2640
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
2641 2642 2643
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
2644
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
K
Kaipeng Deng 已提交
2645 2646 2647
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
2648
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
L
lvmengsi 已提交
2649 2650 2651
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
2652 2653
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
L
lvmengsi 已提交
2654
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
2655 2656
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
2657 2658
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
2659 2660 2661 2662 2663
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2664
    Returns:
L
lvmengsi 已提交
2665 2666
        A Variable holding Tensor which is the result after applying batch normalization on the input, 
        has same shape and data type with input. 
Q
qiaolongfei 已提交
2667 2668 2669 2670 2671

    Examples:

        .. code-block:: python

2672
            import paddle.fluid as fluid
L
lvmengsi 已提交
2673
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
Q
qiaolongfei 已提交
2674 2675
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702

        .. code-block:: python

            # batch_norm with momentum as Variable
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            def get_decay_momentum(momentum_init, decay_steps, decay_rate):
                global_step = lr_scheduler._decay_step_counter()
                momentum = fluid.layers.create_global_var(
		    shape=[1],
		    value=float(momentum_init),
		    dtype='float32',
		    # set persistable for save checkpoints and resume
		    persistable=True,
		    name="momentum")
                div_res = global_step / decay_steps
                decayed_momentum = momentum_init * (decay_rate**div_res)
                fluid.layers.assign(decayed_momentum, momentum)

                return momentum

            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            momentum = get_decay_momentum(0.9, 1e5, 0.9)
            hidden2 = fluid.layers.batch_norm(input=hidden1, momentum=momentum)

Y
Yu Yang 已提交
2703
    """
C
chengduo 已提交
2704
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2705 2706
    helper = LayerHelper('batch_norm', **locals())

2707 2708
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'batch_norm')
2709
    dtype = helper.input_dtype()
2710 2711 2712 2713 2714 2715 2716

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

W
Wu Yi 已提交
2717 2718 2719 2720
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
2739
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2740

2741 2742
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2743 2744 2745
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2746
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2747
        shape=param_shape,
W
Wu Yi 已提交
2748
        dtype=dtype)
2749 2750 2751 2752 2753 2754
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2755
            trainable=False,
W
wanghaoshuang 已提交
2756
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2757
        shape=param_shape,
W
Wu Yi 已提交
2758
        dtype=dtype)
2759
    variance.stop_gradient = True
Y
Yu Yang 已提交
2760 2761 2762 2763 2764 2765

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2766 2767 2768 2769
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2770

2771 2772 2773 2774 2775
    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

K
Kaipeng Deng 已提交
2776 2777
    batch_norm_out = input if in_place else \
            helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2778

2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

Y
Yu Yang 已提交
2809
    helper.append_op(
2810
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs)
Y
Yu Yang 已提交
2811 2812 2813 2814

    return helper.append_activation(batch_norm_out)


K
Kaipeng Deng 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
def inplace_abn(input,
                act=None,
                is_test=False,
                momentum=0.9,
                epsilon=1e-05,
                param_attr=None,
                bias_attr=None,
                data_layout='NCHW',
                name=None,
                moving_mean_name=None,
                moving_variance_name=None,
                do_model_average_for_mean_and_var=True,
                use_global_stats=False,
                act_alpha=1.0):
    """
    **In-place Activation Batch Normalization Layer**
    
    This layer calculates batch normalization and activation with in-place memory.
    For batch normalization calculations, see `fluid.layers.batch_norm`.
    For in-place activation batch normalization, see `In-Place Activated BatchNorm for 
    Memory-Optimized Training of DNNs <https://arxiv.org/abs/1712.02616>`_

    `inplace_abn` only support activation type as `None`, `identity`, `leaky_relu`,
    `elu` currently.
    `inplace_abn` only support data type as `float32`, `float64` currently.

    Note:
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use 
        sync_batch_norm automatically.
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.

    Args:
        input(Variable): The rank of input variable can be 2, 3, 4, 5. The data type 
            is float16 or float32 or float64.
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float|Variable, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Variable with
            shape [1] and data type as float32. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of inplace_abn. If it is set to None or one attribute of ParamAttr, inplace_abn 
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of inplace_abn.
             If it is set to None or one attribute of ParamAttr, inplace_abn 
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`. 
            Usually name is no need to set and None by default. 
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, inplace_abn will save global mean with a random name, otherwise, inplace_abn 
            will save global mean with the string.
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
            If it is set to None, inplace_abn, will save global variance with a random name, otherwise, inplace_abn 
            will save global variance with the string.
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
        act_alpha(float, Default 1.0): when activation is in ['elu', 'identity', 'leaky_relu'],
            inplace activative batch normalization will be used, and alpha parameter for activation
            can be given by this parameter.
    Returns:
        A Variable holding Tensor which is the result after applying batch normalization and activation on the input, 
        has same shape and data type with input. 

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.inplace_abn(input=hidden1)
            hidden3 = fluid.layers.inplace_abn(input=hidden2, act='leaky_relu', act_alpha=0.2)

    """
    assert act in [None, 'identity', 'leaky_relu', 'elu'], \
        "inplace_abn only support act as None, 'identity', " \
        "'leaky_relu', 'elu' currently"
    assert bias_attr is not False, "bias_attr should not be False in inplace_abn."
    helper = LayerHelper('inplace_abn', **locals())

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'inplace_abn')
    dtype = helper.input_dtype()

    has_reserve_space = False
    if data_layout == 'NHWC':
        flag = os.environ.get('FLAGS_cudnn_batchnorm_spatial_persistent')
        if flag is not None and flag.lower() in ['true', '1']:
            has_reserve_space = True

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)

    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
        shape=param_shape,
        dtype=dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var),
        shape=param_shape,
        dtype=dtype)
    variance.stop_gradient = True

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    reserve_space = None
    if has_reserve_space:
        reserve_space = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.FP16, stop_gradient=True)

    batch_norm_out = input

    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
        "Variance": variance
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
        "use_global_stats": use_global_stats,
        "activation": act,
        "alpha": act_alpha,
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
        "SavedVariance": saved_variance
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

    helper.append_op(
        type="inplace_abn", inputs=inputs, outputs=outputs, attrs=attrs)

    return batch_norm_out


L
lvmengsi 已提交
3018 3019 3020 3021 3022 3023 3024 3025
def instance_norm(input,
                  epsilon=1e-05,
                  param_attr=None,
                  bias_attr=None,
                  name=None):
    """
    **Instance Normalization Layer**

L
lvmengsi 已提交
3026
    Can be used as a normalizer function for convolution or fully_connected operations.
L
lvmengsi 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
    The required data format for this layer is one of the following:

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Instance Normalization: The Missing Ingredient for 
    Fast Stylization <https://arxiv.org/pdf/1607.08022.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW} x_i \\qquad &//\\
L
lvmengsi 已提交
3040
        \\ mean\ of\ one\  feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
3041
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{HW} \\sum_{i=1}^{HW}(x_i - \\
L
lvmengsi 已提交
3042
        \\mu_{\\beta})^2 \\qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\\\
L
lvmengsi 已提交
3043 3044 3045 3046
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

L
lvmengsi 已提交
3047 3048
    Note:
        `H` means height of feature map, `W` means width of feature map.
L
lvmengsi 已提交
3049 3050

    Args:
L
lvmengsi 已提交
3051 3052
        input(variable): The rank of input variable can be 2, 3, 4, 5. 
            The data type is float32 or float64.
L
lvmengsi 已提交
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
	     If the Initializer of the param_attr is not set, the parameter is initialized 
	     with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of instance_norm.
             If it is set to None or one attribute of ParamAttr, instance_norm
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr. 
	     If the Initializer of the bias_attr is not set, the bias is initialized zero. 
	     Default: None.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
L
lvmengsi 已提交
3069 3070
        A Variable holding Tensor which is the result after applying instance normalization on the input, 
        has same shape and data type with input. 
L
lvmengsi 已提交
3071 3072 3073 3074 3075 3076

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
L
lvmengsi 已提交
3077
            x = fluid.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
L
lvmengsi 已提交
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.instance_norm(input=hidden1)
    """
    assert bias_attr is not False, "bias_attr should not be False in instance_norm."
    helper = LayerHelper('instance_norm', **locals())
    dtype = helper.input_dtype()

    # use fp32 for in parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

    input_shape = input.shape
    channel_num = input_shape[1]

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
        attr=helper.bias_attr,
        shape=param_shape,
        dtype=dtype,
        is_bias=True,
        default_initializer=Constant(0.0))

    # create output
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    instance_norm_out = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type="instance_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
        },
        outputs={
            "Y": instance_norm_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
        attrs={"epsilon": epsilon, })

    return instance_norm_out


H
heqiaozhi 已提交
3132 3133 3134 3135 3136 3137 3138 3139 3140
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
3141
              do_model_average_for_mean_and_var=True,
H
hutuxian 已提交
3142 3143 3144
              slot_dim=-1,
              sync_stats=False,
              summary_decay_rate=0.9999999):
H
heqiaozhi 已提交
3145 3146 3147
    """
    **Data Normalization Layer**

3148
    This op can be used as a normalizer function for conv2d and fully_connected operations.
H
heqiaozhi 已提交
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
3172 3173 3174 3175
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
H
heqiaozhi 已提交
3176 3177 3178 3179 3180
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3181 3182
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance
            should do model average when model average is enabled.
3183 3184 3185 3186 3187 3188 3189
        slot_dim(int): The embedding dimension of one slot. Slot is a set of one specific feature. In pslib mode, we 
            distinguish feature ids by slot and pull their embeddings from parameter server (pslib). The first
            place of the embedding is the historical show number (occurence time of this feature id with a label 0).
            If the input of this op is concated by slot-wise embeddings, and the show number is zero when this slot 
            is new or empty, the normalization result may be impractical. To avoid this, we add slot_dim to locate 
            the show number and judge if the show number is zero. If so, we choose to skip normalization on this
            embedding.
H
hutuxian 已提交
3190 3191 3192
        sync_stats(bool, Default False): When running with multiple GPU cards, using allreduce to sync the
            summary messages.
        summary_decay_rate(float, Default 0.9999999): The decay rate when updating summary.
H
heqiaozhi 已提交
3193 3194 3195 3196 3197 3198 3199

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3200 3201
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3202

3203
            hidden1 = fluid.data(name="hidden1", shape=[64, 200])
3204
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
H
hutuxian 已提交
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
        outputs={
            "Y": data_norm_out,
            "Means": means,
            "Scales": scales,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        attrs={
            "epsilon": epsilon,
            "slot_dim": slot_dim,
            "sync_stats": sync_stats,
            "summary_decay_rate": summary_decay_rate
        })
H
heqiaozhi 已提交
3281 3282 3283 3284

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3285
@templatedoc()
G
guosheng 已提交
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
3296 3297 3298 3299
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
3300 3301 3302

    The formula is as follows:

Y
yuyang18 已提交
3303
    ..  math::
G
guosheng 已提交
3304

3305
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
3306

3307
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
3308

3309
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
3310

3311 3312 3313 3314 3315
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3316

G
guosheng 已提交
3317
    Args:
3318 3319 3320 3321 3322 3323
        input(Variable): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
3324
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
3325 3326 3327 3328
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
3329 3330
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3331
            a default :code:`ParamAttr` would be added as scale. The
3332 3333
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
3334 3335
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3336
            a default :code:`ParamAttr` would be added as bias. The
3337
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
3338
        act(str, optional): Activation to be applied to the output of layer normalization.
3339 3340
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
3341 3342

    Returns:
3343
        Variable: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
3344 3345 3346

    Examples:

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            x = fluid.data(name='x', shape=[-1, 32, 32], dtype='float32')
            hidden1 = fluid.layers.layer_norm(input=x, begin_norm_axis=1)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            np_x = np.random.random(size=(8, 3, 32, 32)).astype('float32')
            output = exe.run(feed={"x": np_x}, fetch_list = [hidden1])
            print(output)
G
guosheng 已提交
3359
    """
L
lujun 已提交
3360
    assert in_dygraph_mode(
3361
    ) is not True, "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
3362 3363 3364 3365 3366 3367 3368 3369
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
3370
        assert param_attr is not False, "param_attr should not be False when using scale."
G
guosheng 已提交
3371 3372 3373 3374 3375 3376
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
3377 3378
    else:
        if param_attr:
T
tianshuo78520a 已提交
3379
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
3380
    if shift:
3381
        assert bias_attr is not False, "bias_attr should not be False when using shift."
G
guosheng 已提交
3382 3383 3384
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias
3385 3386
    else:
        if bias_attr:
T
tianshuo78520a 已提交
3387
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
3388 3389

    # create output
X
Xin Pan 已提交
3390 3391 3392 3393 3394
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3422
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3423

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
    Parameters:
        input(Variable): 4-D Tensor, the data type is float32 or float64.
        groups(int): The number of groups that divided from channels, the data type
            is int32.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero, the data type is float32. Default: 1e-05.
        param_attr(ParamAttr|bool, optional): ParamAttr object that specifies weight parameter
            attribute. If a bool type, only False is supported, which means there is no weight parameter.
            Default: None, the default weight parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
        bias_attr(ParamAttr|bool, optional): ParamAttr object that specifies bias parameter
            attribute. If a bool type, only False is supported, which means there is no bias parameter.
            Default: None, the default bias parameter attribute is used. For more information, please
            refer to :ref:`api_guide_ParamAttr` .
T
tianshuo78520a 已提交
3438
        act(str, optional): Activation to be applied to the output of group normalization.
3439 3440 3441 3442
        data_layout(str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
3443 3444
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name` .
D
Dun 已提交
3445 3446

    Returns:
3447 3448 3449 3450
        Variable: A 4-D Tensor has same data type and data format with `input`.

    Raises:
        ValueError: If `data_layout` is neither 'NCHW' nor 'NHWC'.
3451 3452 3453 3454 3455 3456
        ValueError: If `groups` is greater than the number of input channels.
        ValueError: If `groups` is less than 1.
        ShapeError: If the param_attr(Scale) is not 1-D Tensor.
        ShapeError: If the param_attr(Scale)'s first dimension size is not equal to the input channels.
        ShapeError: If the bias_attr(Bias) is not 1-D Tensor.
        ShapeError: If the bias_attr(Bias)'s first dimension size is not equal to the input channels.
D
Dun 已提交
3457 3458

    Examples:
3459
       .. code-block:: python
D
Dun 已提交
3460

3461 3462 3463
            import paddle.fluid as fluid
            data = fluid.data(name='data', shape=[None, 8, 32, 32], dtype='float32')
            x = fluid.layers.group_norm(input=data, groups=4)
D
Dun 已提交
3464 3465 3466 3467 3468 3469 3470
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
3471 3472 3473 3474 3475 3476
    if data_layout != 'NCHW' and data_layout != 'NHWC':
        raise ValueError(
            "Param(data_layout) of Op(fluid.layers.group_norm) got wrong value: received "
            + data_layout + " but only NCHW or NHWC supported.")
    channel_num = input_shape[1] if data_layout == 'NCHW' else input_shape[-1]
    param_shape = [channel_num]
D
Dun 已提交
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3490 3491
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
3502 3503 3504 3505 3506
        attrs={
            "epsilon": epsilon,
            "groups": groups,
            "data_layout": data_layout
        })
D
dengkaipeng 已提交
3507 3508 3509 3510 3511

    return helper.append_activation(group_norm_out)


@templatedoc()
3512
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3513 3514 3515
    """
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
3516
    This operation calculates the spectral normalization value of weight parameters of
3517
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
3518 3519
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
3520

D
dengkaipeng 已提交
3521 3522 3523
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3524
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3525 3526

    Step 2:
T
tianshuo78520a 已提交
3527
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
3528 3529
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
3530 3531 3532 3533 3534 3535 3536 3537

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3538
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3539 3540 3541 3542

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3543

D
dengkaipeng 已提交
3544
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3545 3546
                

D
dengkaipeng 已提交
3547 3548 3549 3550
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3551 3552 3553
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
3554 3555 3556
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
3557 3558

    Returns:
D
dengkaipeng 已提交
3559
        Variable: A tensor variable of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
3560
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
3561 3562

    Examples:
K
Kaipeng Deng 已提交
3563
       .. code-block:: python
D
dengkaipeng 已提交
3564

K
Kaipeng Deng 已提交
3565 3566
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
3567
            weight = fluid.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
3568
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3569 3570
    """
    helper = LayerHelper('spectral_norm', **locals())
3571
    dtype = weight.dtype
D
dengkaipeng 已提交
3572 3573 3574

    # create intput and parameters
    inputs = {'Weight': weight}
3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3593 3594

    # create output
3595
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3596 3597

    helper.append_op(
3598
        type="spectral_norm",
D
Dun 已提交
3599
        inputs=inputs,
3600 3601 3602 3603 3604 3605
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3606

3607
    return out
D
Dun 已提交
3608 3609


Y
Yu Yang 已提交
3610 3611 3612 3613
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3614 3615 3616
                     padding=0,
                     stride=1,
                     dilation=1,
3617
                     groups=None,
C
caoying03 已提交
3618
                     param_attr=None,
3619
                     bias_attr=None,
C
chengduoZH 已提交
3620
                     use_cudnn=True,
3621
                     act=None,
3622 3623
                     name=None,
                     data_format='NCHW'):
Y
Yu Yang 已提交
3624
    """
3625 3626
    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3627
    are in NCHW or NHWC format. Where N is batch size, C is the number of channels,
3628 3629 3630
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3631
    layer, please refer to the following explanation and references
L
lvmengsi 已提交
3632
    `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3633 3634 3635
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3636 3637 3638 3639 3640

    For each input :math:`X`, the equation is:

    .. math::

3641
        Out = \sigma (W \\ast X + b)
3642

3643
    Where:
3644

3645 3646
    * :math:`X`: Input value, a 4-D Tensor with NCHW or NHWC format.
    * :math:`W`: Filter value, a 4-D Tensor with MCHW format.
3647
    * :math:`\\ast`: Convolution operation.
3648
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3649
    * :math:`\\sigma`: Activation function.
3650
    * :math:`Out`: Output value, a 4-D Tensor with data format 'NCHW' or 'NHWC', the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3651

3652 3653 3654 3655
    Example:

        - Input:

3656
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3657

3658
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3659 3660 3661

        - Output:

3662
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3663 3664

        Where
Y
Yu Yang 已提交
3665

3666 3667
        .. math::

3668 3669
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - pad_width_left - pad_width_right + dilations[1] * (W_f - 1) + 1 \\\\
L
lvmengsi 已提交
3670
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ] \\\\
3671 3672
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ]

L
lvmengsi 已提交
3673
    Note:
L
lvmengsi 已提交
3674 3675 3676 3677
          The conv2d_transpose can be seen as the backward of the conv2d. For conv2d, 
          when stride > 1, conv2d maps multiple input shape to the same output shape, 
          so for conv2d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, W_{out} = W^\prime_{out}`; 
L
lvmengsi 已提交
3678 3679 3680 3681
          else, the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[0]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[1]`, 
          conv2d_transpose can compute the kernel size automatically.
Y
Yu Yang 已提交
3682 3683

    Args:
3684 3685
        input(Variable): 4-D Tensor with [N, C, H, W] or [N, H, W, C] format,
                         its data type is float32 or float64.
3686 3687
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3688
        output_size(int|tuple, optional): The output image size. If output size is a
3689
            tuple, it must contain two integers, (image_height, image_width). None if use
3690
            filter_size, padding, and stride to calculate output_size.
L
lvmengsi 已提交
3691 3692 3693
            If output_size and filter_size are specified at the same time, They
            should follow the formula above. Default: None. output_size and filter_size 
            should not be None at the same time.
3694
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
3695 3696
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
L
lvmengsi 已提交
3697 3698 3699 3700 3701 3702 3703
            use output size to calculate filter_size. Default: None. filter_size and 
            output_size should not be None at the same time.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain two integers, (stride_height, stride_width). 
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively adds
             `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a
3704 3705 3706 3707 3708 3709 3710 3711 3712
             string, either 'VALID' or 'SAME' supported, which is the padding algorithm.
             If `padding` is a tuple or list, it could be in three forms:
             `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and
            when `data_format` is `'NCHW'`,
            `padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NHWC'`, `padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
3713 3714 3715 3716 3717 3718 3719
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain two integers, (dilation_height, dilation_width). 
            Otherwise, dilation_height = dilation_width = dilation. Default: dilation = 1.
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_height, filter_size_width).
            Otherwise, filter_size_height = filter_size_width = filter_size. None if 
            use output size to calculate filter_size. Default: None.
3720
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
3721 3722 3723 3724
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3725
            Default: groups = 1.
3726
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
3727 3728 3729
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
3730
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv2d_transpose.
C
chengduo 已提交
3731 3732 3733 3734
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3735
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3736
            library is installed. Default: True.
3737
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
3738
            Default: None.
L
lvmengsi 已提交
3739 3740 3741
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
3742 3743 3744 3745
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
3746 3747

    Returns:
L
lvmengsi 已提交
3748 3749 3750 3751 3752 3753
        A Variable holding Tensor representing the conv2d_transpose, whose 
        data type is the same with input and shape is (num_batches, channels, out_h, 
        out_w) or (num_batches, out_h, out_w, channels). If act is None, the tensor variable 
        storing the transposed convolution result, and if act is not None, the 
        tensor variable storing transposed convolution and non-linearity activation 
        result.
3754 3755

    Raises:
3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
3767 3768 3769 3770

    Examples:
       .. code-block:: python

3771
          import paddle.fluid as fluid
L
lvmengsi 已提交
3772
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
3773
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3774
    """
C
chengduo 已提交
3775
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3776 3777 3778 3779
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(fluid.layers.conv2d_transpose) got wrong value: received "
            + data_format + " but only NCHW or NHWC supported.")
3780

3781
    input_channel = input.shape[1] if data_format == 'NCHW' else input.shape[-1]
3782 3783 3784 3785 3786 3787
    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3788 3789 3790
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3791 3792
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3793

C
chengduoZH 已提交
3794 3795
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3796

3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')
            padding = [padding[0], padding[0], padding[1], padding[1]]
        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0]

    padding = _update_padding(padding, data_format)

Y
Yu Yang 已提交
3840 3841 3842 3843 3844
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3845

3846 3847
        h_in = input.shape[2] if data_format == 'NCHW' else input.shape[1]
        w_in = input.shape[3] if data_format == 'NCHW' else input.shape[2]
G
guosheng 已提交
3848

3849 3850 3851 3852
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3853
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3854 3855 3856
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3857

3858 3859 3860
    if len(padding) == 4 and utils._is_symmetric_padding(padding, 2):
        padding = [padding[0], padding[2]]

3861 3862
    if output_size is None:
        output_size = []
3863
    elif isinstance(output_size, (list, tuple, int)):
3864 3865
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
3866
        raise ValueError("output_size should be int, list[int] or tuple[int]")
3867
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3868
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3869

Y
Yu Yang 已提交
3870 3871 3872
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3873
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3874
    helper.append_op(
3875
        type=op_type,
Y
Yu Yang 已提交
3876 3877
        inputs={'Input': [input],
                'Filter': [img_filter]},
3878
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3879
        attrs={
3880
            'output_size': output_size,
3881 3882
            'strides': stride,
            'paddings': padding,
3883
            'padding_algorithm': padding_algorithm,
3884 3885
            'dilations': dilation,
            'groups': groups,
3886 3887
            'use_cudnn': use_cudnn,
            'data_format': data_format
Y
Yu Yang 已提交
3888 3889
        })

3890 3891 3892 3893
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
3894 3895
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3896 3897


3898
def conv3d_transpose(input,
Y
Yu Yang 已提交
3899 3900 3901
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3902 3903 3904
                     padding=0,
                     stride=1,
                     dilation=1,
3905
                     groups=None,
C
caoying03 已提交
3906
                     param_attr=None,
3907
                     bias_attr=None,
C
chengduoZH 已提交
3908
                     use_cudnn=True,
3909
                     act=None,
3910 3911
                     name=None,
                     data_format='NCDHW'):
Y
Yu Yang 已提交
3912
    """
3913
    The convolution3D transpose layer calculates the output based on the input,
3914
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3915
    are in NCDHW or NDHWC format. Where N is batch size, C is the number of channels,
3916 3917 3918 3919
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
L
lvmengsi 已提交
3920
    explanation and references `therein <https://arxiv.org/pdf/1603.07285.pdf>`_.
3921 3922 3923
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3924 3925 3926 3927 3928

    For each input :math:`X`, the equation is:

    .. math::

3929
        Out = \sigma (W \\ast X + b)
3930 3931 3932

    In the above equation:

3933 3934
    * :math:`X`: Input value, a Tensor with NCDHW or NDHWC format.
    * :math:`W`: Filter value, a Tensor with MCDHW format.
3935
    * :math:`\\ast`: Convolution operation.
3936
    * :math:`b`: Bias value, a 2-D Tensor with shape [M, 1].
3937 3938
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3939

3940 3941 3942 3943
    Example:

        - Input:

3944
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3945

3946
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3947 3948 3949

        - Output:

3950
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3951 3952

        Where
Y
Yu Yang 已提交
3953

3954 3955
        .. math::

L
lvmengsi 已提交
3956 3957 3958 3959 3960 3961
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[2] ]
Y
Yu Yang 已提交
3962

L
lvmengsi 已提交
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
    Note:
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

    Args:
        input(Variable): The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C], the data type 
            of input is float32 or float64.
3978 3979
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
3980
        output_size(int|tuple, optional): The output image size. If output size is a
L
lvmengsi 已提交
3981 3982 3983 3984
            tuple, it must contain three integers, (image_depth, image_height, image_width). This
            parameter only works when filter_size is None. If output_size and filter_size are 
            specified at the same time, They should follow the formula above. Default: None. 
            Output_size and filter_size should not be None at the same time.
3985
        filter_size(int|tuple, optional): The filter size. If filter_size is a tuple,
L
lvmengsi 已提交
3986
            it must contain three integers, (filter_size_depth, filter_size_height,
3987 3988
            filter_size_width). Otherwise, filter_size_depth = filter_size_height = \
            filter_size_width = filter_size. None if use output size to
L
lvmengsi 已提交
3989 3990 3991 3992
            calculate filter_size. Default: None. filter_size and output_size should not be 
            None at the same time.
        padding(int|list|str|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
3993 3994 3995 3996 3997 3998 3999 4000
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
4001 4002 4003 4004 4005 4006 4007 4008
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            Default: stride = 1.
        dilation(int|tuple, optional): The dilation size. It means the spacing between the kernel points. 
            If dilation is a tuple, it must contain three integers, (dilation_depth, dilation_height, 
            dilation_width). Otherwise, dilation_depth = dilation_height = dilation_width = dilation. 
            Default: dilation = 1.
4009
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
4010 4011 4012 4013 4014
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
4015
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
C
chengduo 已提交
4016 4017 4018
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
4019
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
C
chengduo 已提交
4020 4021 4022 4023
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
4024
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
4025
            library is installed. Default: True
4026
        act (str, optional): Activation type, if it is set to None, activation is not appended.
C
chengduo 已提交
4027
            Default: None.
L
lvmengsi 已提交
4028 4029 4030
        name(str, optional): For detailed information, please refer 
           to :ref:`api_guide_Name`. Usually name is no need to set and 
           None by default.
4031 4032 4033 4034
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
Yu Yang 已提交
4035 4036

    Returns:
L
lvmengsi 已提交
4037 4038 4039 4040 4041
        A Variable holding Tensor representing the conv3d_transpose, whose data 
        type is the same with input and shape is (num_batches, channels, out_d, out_h, 
        out_w) or (num_batches, out_d, out_h, out_w, channels). If act is None, the tensor 
        variable storing the transposed convolution result, and if act is not None, the tensor 
        variable storing transposed convolution and non-linearity activation result.
4042 4043

    Raises:
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0 
            or the element corresponding to the input's channel is not 0.
        ValueError: If `output_size` and filter_size are None at the same time.
        ShapeError: If the input is not 5-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels.
        ShapeError: If the size of `output_size` is not equal to that of `stride`.
4055 4056 4057 4058

    Examples:
       .. code-block:: python

4059
          import paddle.fluid as fluid
L
lvmengsi 已提交
4060
          data = fluid.data(name='data', shape=[None, 3, 12, 32, 32], dtype='float32')
4061
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
4062
    """
C
chengduo 已提交
4063
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
4064 4065 4066 4067
    if data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Param(data_format) of Op(fluid.layers.conv3d_transpose) got wrong value: received "
            + data_format + " but only NCDHW or NDHWC supported.")
4068 4069
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
4070
    if not isinstance(input, Variable):
4071
        raise TypeError("Input of conv3d_transpose must be Variable")
4072 4073
    input_channel = input.shape[1] if data_format == 'NCDHW' else input.shape[
        -1]
Y
Yu Yang 已提交
4074

4075 4076
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
4077

C
chengduoZH 已提交
4078 4079 4080
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 5:
            if is_list_or_tuple(padding[0]) and (data_format == "NCDHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[2:5]
                padding = [ele for a_list in padding for ele in a_list]
4095 4096 4097 4098 4099 4100 4101 4102
            elif is_list_or_tuple(padding[0]) and (data_format == "NDHWC"):
                if not (padding[0] == [0, 0] and padding[4] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
                        "is not supported." % str(padding))
                padding = padding[1:4]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
4103

4104 4105
        elif is_list_or_tuple(padding) and len(padding) == 6:
            padding = utils.convert_to_list(padding, 6, 'padding')
G
Guo Sheng 已提交
4106

4107 4108 4109 4110 4111 4112 4113
        else:
            padding = utils.convert_to_list(padding, 3, 'padding')
            padding = [
                padding[0], padding[0], padding[1], padding[1], padding[2],
                padding[2]
            ]
        return padding
G
Guo Sheng 已提交
4114

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'." %
                str(padding))
        if padding == "VALID":
            padding_algorithm = "VALID"
            padding = [0, 0, 0, 0, 0, 0]
        elif padding == "SAME":
            padding_algorithm = "SAME"
            padding = [0, 0, 0, 0, 0, 0]
G
Guo Sheng 已提交
4128

4129
    padding = _update_padding(padding, data_format)
Y
yangyaming 已提交
4130

4131 4132 4133 4134
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
4135
            output_size = [output_size, output_size, output_size]
Y
yangyaming 已提交
4136

4137 4138 4139
        d_in = input.shape[2] if data_format == 'NCDHW' else input.shape[1]
        h_in = input.shape[3] if data_format == 'NCDHW' else input.shape[2]
        w_in = input.shape[4] if data_format == 'NCDHW' else input.shape[3]
Y
yangyaming 已提交
4140

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + padding[0] +
                         padding[1] - 1) // dilation[0] + 1
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + padding[2] +
                         padding[3] - 1) // dilation[1] + 1
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + padding[4] +
                         padding[5] - 1) // dilation[2] + 1
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
    else:
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
yangyaming 已提交
4151

4152 4153
    if len(padding) == 6 and utils._is_symmetric_padding(padding, 3):
        padding = [padding[0], padding[2], padding[4]]
Y
yangyaming 已提交
4154

4155 4156 4157 4158 4159 4160 4161
    if output_size is None:
        output_size = []
    elif isinstance(output_size, (list, tuple, int)):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
        raise ValueError("output_size should be int, list[int] or tuple[int]")

4162 4163 4164 4165
    groups = 1 if groups is None else groups
    filter_shape = [input_channel, num_filters // groups] + filter_size
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
4166

4167 4168 4169 4170
    if data_format == 'NCDHW':
        data_format = 'NCHW'
    if data_format == 'NDHWC':
        data_format = 'NHWC'
Y
yangyaming 已提交
4171

4172
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
yangyaming 已提交
4173
    helper.append_op(
4174 4175 4176 4177 4178
        type=l_type,
        inputs={'Input': [input],
                'Filter': [img_filter]},
        outputs={'Output': pre_bias},
        attrs={
4179
            'output_size': output_size,
4180 4181 4182 4183 4184 4185 4186 4187
            'strides': stride,
            'paddings': padding,
            'padding_algorithm': padding_algorithm,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'data_format': data_format
        })
Y
yangyaming 已提交
4188

4189 4190 4191 4192 4193 4194
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=4, dim_end=5)
    out = helper.append_activation(pre_act)
    return out
G
guosheng 已提交
4195 4196


C
caoying03 已提交
4197
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4198
    """
Y
yangyaming 已提交
4199
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4200 4201

    Args:
4202 4203 4204
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4205 4206
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4207 4208
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4209
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4210
            output Tensor. The result tensor will have one fewer dimension
4211 4212 4213 4214
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
4215 4216

    Returns:
4217 4218
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
4219

4220 4221 4222
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
4223 4224 4225
    Examples:
        .. code-block:: python

4226
            import paddle.fluid as fluid
G
guosheng 已提交
4227 4228 4229
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4230
            # Each example is followed by the corresponding output tensor.
4231
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
4232 4233 4234 4235
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4236

4237
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4238 4239
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4240
            # Each example is followed by the corresponding output tensor.
4241
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4242 4243
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4244

G
guosheng 已提交
4245
    """
4246 4247
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4248 4249 4250 4251 4252 4253

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        return core.ops.reduce_sum(input, 'dim', dim, 'keep_dim', keep_dim,
                                   'reduce_all', reduce_all)
4254
    attrs = {
4255
        'dim': dim if dim != None and dim != [] else [0],
4256
        'keep_dim': keep_dim,
4257
        'reduce_all': True if dim == None or dim == [] else False
4258
    }
4259 4260
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_sum')
4261
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4262
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4263 4264 4265 4266
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
4267
        attrs=attrs)
G
guosheng 已提交
4268
    return out
G
guosheng 已提交
4269 4270


C
caoying03 已提交
4271
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4272
    """
Y
Yibing Liu 已提交
4273
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4274 4275

    Args:
4276 4277 4278
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the mean is computed. If
Y
Yibing Liu 已提交
4279 4280
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4281
            must be in the range :math:`[-rank(input), rank(input))`. If
4282
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4283
            :math:`rank(input) + dim[i]`.
4284
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4285
            output Tensor. The result tensor will have one fewer dimension
4286 4287 4288 4289 4290
            than the :attr:`input` unless :attr:`keep_dim` is true, default 
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
G
guosheng 已提交
4291
    Returns:
4292 4293 4294 4295 4296 4297
        Variable: Tensor, results of average on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
    Raises:
        TypeError, if out data type is different with the input data type.
    
G
guosheng 已提交
4298 4299 4300
    Examples:
        .. code-block:: python

4301
            import paddle.fluid as fluid
G
guosheng 已提交
4302 4303 4304
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4305
            # Each example is followed by the corresponding output tensor.
4306
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
4307 4308 4309
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4310
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4311

4312
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4313 4314
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4315
            # Each example is followed by the corresponding output tensor.
4316
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4317 4318
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4319
    """
4320 4321 4322

    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4323 4324 4325 4326 4327 4328

    if in_dygraph_mode():
        reduce_all = True if dim == None or dim == [] else False
        dim = dim if dim != None and dim != [] else [0]
        return core.ops.reduce_mean(input, 'dim', dim, 'keep_dim', keep_dim,
                                    'reduce_all', reduce_all)
4329
    attrs = {
4330
        'dim': dim if dim != None and dim != [] else [0],
4331
        'keep_dim': keep_dim,
4332
        'reduce_all': True if dim == None or dim == [] else False
4333
    }
4334 4335
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'reduce_mean')
4336
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4337
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4338 4339 4340 4341
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
4342
        attrs=attrs)
G
guosheng 已提交
4343
    return out
4344 4345


C
caoying03 已提交
4346
def reduce_max(input, dim=None, keep_dim=False, name=None):
4347
    """
Y
yangyaming 已提交
4348
    Computes the maximum of tensor elements over the given dimension.
4349 4350

    Args:
4351 4352 4353
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4354 4355 4356
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4357
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4358
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4359
            output Tensor. The result tensor will have one fewer dimension
4360 4361 4362 4363
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4364 4365

    Returns:
4366 4367
        Variable: Tensor, results of maximum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4368

4369 4370 4371
    Examples:
        .. code-block:: python

4372
            import paddle.fluid as fluid
4373 4374 4375
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4376
            # Each example is followed by the corresponding output tensor.
4377
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4378 4379 4380 4381
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4382

4383
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4384 4385
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4386
            # Each example is followed by the corresponding output tensor.
4387
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4388 4389
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4390 4391
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4392
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4393 4394
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4395 4396 4397 4398 4399
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4400
            'dim': dim if dim != None and dim != [] else [0],
4401
            'keep_dim': keep_dim,
4402
            'reduce_all': True if dim == None or dim == [] else False
4403 4404 4405 4406
        })
    return out


C
caoying03 已提交
4407
def reduce_min(input, dim=None, keep_dim=False, name=None):
4408
    """
Y
yangyaming 已提交
4409
    Computes the minimum of tensor elements over the given dimension.
4410 4411

    Args:
4412 4413 4414
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4415 4416 4417
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4418
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
4419
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4420
            output Tensor. The result tensor will have one fewer dimension
4421 4422 4423 4424
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4425 4426

    Returns:
4427 4428
        Variable: Tensor, result of minimum on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
Y
yangyaming 已提交
4429

4430 4431 4432
    Examples:
        .. code-block:: python

4433
            import paddle.fluid as fluid
4434 4435 4436
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4437
            # Each example is followed by the corresponding output tensor.
4438
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4439 4440 4441 4442
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4443

4444
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4445 4446
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4447
            # Each example is followed by the corresponding output tensor.
4448
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4449 4450
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4451 4452
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4453
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4454 4455
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4456 4457 4458 4459 4460
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4461
            'dim': dim if dim != None and dim != [] else [0],
4462
            'keep_dim': keep_dim,
4463
            'reduce_all': True if dim == None or dim == [] else False
4464 4465
        })
    return out
G
guosheng 已提交
4466 4467


4468 4469 4470 4471 4472
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
4473 4474 4475
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the product is performed. If
T
tianshuo78520a 已提交
4476
            :attr:`None`, multiply all elements of :attr:`input` and return a
4477
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4478 4479
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4480
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
4481
            output Tensor. The result tensor will have one fewer dimension
4482 4483 4484 4485
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4486 4487

    Returns:
4488 4489 4490
        Variable: Tensor, result of product on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
    
4491 4492 4493
    Examples:
        .. code-block:: python

4494
            import paddle.fluid as fluid
4495 4496 4497
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
T
tianshuo78520a 已提交
4498
            # Each example is followed by the corresponding output tensor.
4499
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
4500 4501 4502
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4503
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4504
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4505

4506
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4507 4508
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
T
tianshuo78520a 已提交
4509
            # Each example is followed by the corresponding output tensor.
4510
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
4511 4512
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4513 4514
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4515
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4516 4517
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4518 4519 4520 4521 4522
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4523
            'dim': dim if dim != None and dim != [] else [0],
4524
            'keep_dim': keep_dim,
4525
            'reduce_all': True if dim == None or dim == [] else False
4526 4527 4528 4529
        })
    return out


Z
zhoukunsheng 已提交
4530 4531
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
4532
    This OP computes the ``logical and`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4533 4534

    Args:
4535 4536
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
Z
zhoukunsheng 已提交
4537 4538 4539
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4540
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4541 4542
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4543
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4544
        name(str|None): A name for this layer(optional). If set None, the layer
4545
                       will be named automatically. The default value is None. 
Z
zhoukunsheng 已提交
4546

4547 4548
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical and`` in given dims.
Z
zhoukunsheng 已提交
4549 4550 4551

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4552
        
4553
            import paddle.fluid as fluid
4554 4555 4556
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4557 4558 4559
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
4560 4561 4562 4563 4564 4565
            x = layers.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_all(x)  # False 
            out = layers.reduce_all(x, dim=0)  # [True, False]
            out = layers.reduce_all(x, dim=-1)  # [False, True]
4566 4567
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4568
            out = layers.reduce_all(x, dim=1, keep_dim=True)  # [[False], [True]]
4569
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4581
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4582
            'keep_dim': keep_dim,
4583
            'reduce_all': True if dim == None or dim == [] else False
Z
zhoukunsheng 已提交
4584 4585 4586 4587 4588 4589
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
4590
    This OP computes the ``logical or`` of tensor elements over the given dimension, and output the result.
Z
zhoukunsheng 已提交
4591 4592

    Args:
4593 4594 4595
        input (Variable): The input variable which is a Tensor or LoDTensor, the input data type should be `bool`.
        dim (list|int|optional): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
Z
zhoukunsheng 已提交
4596 4597
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
4598
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`. The default value is None. 
Z
zhoukunsheng 已提交
4599 4600
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4601
            than the :attr:`input` unless :attr:`keep_dim` is true. The default value is False.
Z
zhoukunsheng 已提交
4602 4603
        name(str|None): A name for this layer(optional). If set None, the layer

4604 4605
    Returns: 
        Variable, the output data type is bool. : The reduced tensor variable with ``logical or`` in given dims.
Z
zhoukunsheng 已提交
4606 4607 4608

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4609

4610
            import paddle.fluid as fluid
4611 4612 4613
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4614 4615 4616
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
4617 4618 4619 4620 4621 4622
            x = layers.assign(np.array([[1, 0], [0, 0]], dtype='int32'))
            x = layers.cast(x, 'bool')

            out = layers.reduce_any(x)  # True
            out = layers.reduce_any(x, dim=0)  # [True, False]
            out = layers.reduce_any(x, dim=-1)  # [True, False]
4623 4624
            # keep_dim=False, x.shape=(2,2), out.shape=(2,)

4625
            out = layers.reduce_any(x, dim=1,
Z
zhoukunsheng 已提交
4626
                                     keep_dim=True)  # [[True], [False]]
4627
            # keep_dim=True, x.shape=(2,2), out.shape=(2,1)
Z
zhoukunsheng 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
4639
            'dim': dim if dim != None and dim != [] else [0],
Z
zhoukunsheng 已提交
4640
            'keep_dim': keep_dim,
4641
            'reduce_all': True if dim == None or dim == [] else False
4642 4643 4644 4645
        })
    return out


C
caoying03 已提交
4646
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4647
    """
4648
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
4649 4650

    Args:
4651
        input (Variable): The input variable which is an N-D Tensor or LoDTensor, data type being float32, float64, int32 or int64.
4652
        num_or_sections (int|list|tuple): If :attr:`num_or_sections` is an integer,
4653 4654
            then the integer indicates the number of equal sized sub-Tensors
            that the Tensor will be divided into. If :attr:`num_or_sections`
4655 4656 4657 4658 4659
            is a list or tuple, the length of it indicates the number of
            sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            :attr:`dim` dimension orderly. The length of the list mustn't be larger than the Tensor's size of :attr:`dim` .
        dim (int32|Varible, optional): A scalar with type ``int32`` or a ``Tensor`` with shape [1] and type ``int32``. The dimension along which to split. If :math:`dim < 0`, the
            dimension to split along is :math:`rank(input) + dim`. Default is -1.
4660
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
4661 4662

    Returns:
4663
        list(Variable): The list of segmented Tensor variables.
G
guosheng 已提交
4664

4665 4666 4667 4668
    Raises:
        TypeError: num_or_sections is not int, list or tuple.
        TypeError: dim is not int or Variable.

4669
    Example:
G
guosheng 已提交
4670 4671
        .. code-block:: python

4672 4673
            import paddle.fluid as fluid

4674 4675
            # input is a variable which shape is [3, 9, 5]
            input = fluid.data(
4676 4677
                 name="input", shape=[3, 9, 5], dtype="float32")

4678 4679 4680 4681
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # x0.shape [3, 3, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 3, 5]
4682

4683 4684 4685 4686 4687 4688 4689 4690 4691
            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # x0.shape [3, 2, 5]
            # x1.shape [3, 3, 5]
            # x2.shape [3, 4, 5]
G
guosheng 已提交
4692
    """
4693
    if in_dygraph_mode():
4694 4695 4696
        num = None
        attrs = ()

S
songyouwei 已提交
4697 4698 4699 4700 4701 4702
        if isinstance(dim, Variable):
            dim = dim.numpy()
            assert dim.shape == (1,
                                 ), "dim of type Variable should have shape [1]"
            dim = dim[0]
        dim = (len(input.shape) + dim) if dim < 0 else dim
4703
        attrs += ('axis', dim)
4704 4705 4706

        if isinstance(num_or_sections, int):
            num = num_or_sections
4707
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
4708
        elif isinstance(num_or_sections, (list, tuple)):
4709
            num = len(num_or_sections)
L
Leo Chen 已提交
4710
            if utils._contain_var(num_or_sections):
4711
                raise TypeError(
L
Leo Chen 已提交
4712 4713 4714 4715
                    "The type of 'num_or_sections' in split must be int or list[int] or tuple[int] in Dygraph mode, but "
                    "received %s, which contains Variable." %
                    (type(num_or_sections)))
            else:
4716
                attrs += ('sections', list(num_or_sections))
4717 4718 4719 4720
        else:
            raise TypeError(
                "The type of 'num_or_sections' in split must be int or list in Dygraph mode, but "
                "received %s." % (type(num_or_sections)))
4721
        return core.ops.split(input, num, *attrs)
L
Leo Chen 已提交
4722

4723 4724 4725 4726 4727 4728 4729 4730 4731
    if not isinstance(num_or_sections, (int, list, tuple)):
        raise TypeError(
            "The type of 'num_or_sections' in split must be int, list or "
            "tuple, but received %s." % (type(num_or_sections)))
    if not isinstance(dim, (int, Variable)):
        raise TypeError(
            "The type of 'dim' in split must be int or Variable, but "
            "received %s." % (type(dim)))

G
guosheng 已提交
4732 4733
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
                assert (isinstance(dim_size, int))
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
                        "be -1. But received num_or_section[%d] is also -1." %
                        idx)
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
4765 4766
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
4767 4768 4769 4770 4771
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert input_shape[dim] % num_or_sections ==0, \
                "The input's size along the split dimension " \
                "must be evenly divisible by Attr(num_or_sections). " \
                "But %d is not evenly divisible by %d. " % (num_or_sections,input_shape[dim])
G
guosheng 已提交
4772 4773
        num = num_or_sections
    else:
4774 4775 4776
        if isinstance(dim, int) and input_shape[dim] > 0:
            assert len(num_or_sections) <= input_shape[
                dim], 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
4777
        num = len(num_or_sections)
4778 4779 4780
        attrs['sections'] = list(
            map(lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections))
L
Leo Chen 已提交
4781
        if utils._contain_var(num_or_sections):
4782 4783 4784
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
                num_or_sections)

G
guosheng 已提交
4785
    outs = [
X
Xin Pan 已提交
4786
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4787 4788 4789
        for i in range(num)
    ]
    helper.append_op(
4790
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs)
G
guosheng 已提交
4791
    return outs
C
caoying03 已提交
4792 4793 4794 4795


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
R
ruri 已提交
4796
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
4797 4798
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4799
    .. math::
4800 4801

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4802 4803 4804 4805 4806

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
R
ruri 已提交
4807
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float32 or float64.
4808
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4809 4810
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4811
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
4812
            the default value is 1e-12.
R
ruri 已提交
4813 4814
	name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    
C
caoying03 已提交
4815
    Returns:
R
ruri 已提交
4816
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
4817 4818

    Examples:
4819

C
caoying03 已提交
4820
        .. code-block:: python
R
ruri 已提交
4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
	    
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,3])
	    output = fluid.layers.l2_normalize(x=input,axis=0)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3).astype("float32")
	    print(input_data)
C
caoying03 已提交
4833

R
ruri 已提交
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
	    # [[0.5171216  0.12704141 0.56018186]
	    # [0.93251234 0.5382788  0.81709313]]
	
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data)

	    # [array([[0.48496857, 0.22970329, 0.56545246],
	    # [0.8745316 , 0.9732607 , 0.82478094]], dtype=float32)]

	    # imperative mode
	    import paddle.fluid.dygraph as dg

	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.l2_normalize(x=input, axis=-1)
    		print(output.numpy())
	    	
		# [[0.66907585 0.16437206 0.7247892 ]
		# [0.6899054  0.3982376  0.6045142 ]]
		
C
caoying03 已提交
4858 4859
    """

F
fengjiayi 已提交
4860 4861
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4862 4863
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4864 4865
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4866
    helper.append_op(
4867 4868 4869 4870
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4871
        attrs={
4872 4873
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4874 4875
        })
    return out
4876 4877


S
sneaxiy 已提交
4878
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4879
    """
Y
ying 已提交
4880 4881 4882 4883
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4884

C
chengduoZH 已提交
4885
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4886
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4887

4888 4889 4890 4891 4892
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4893
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4894

C
chengduoZH 已提交
4895
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4896
      performs in the following way.
G
guosheng 已提交
4897

4898
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4899
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4900
        last two dimensions and a batched matrix multiply supporting broadcast
4901
        applies on the two tensors.
G
guosheng 已提交
4902

Y
ying 已提交
4903 4904
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4905
    removed after matrix multiplication.
G
guosheng 已提交
4906 4907 4908

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4909 4910 4911
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4912
        alpha (float): The scale of output. Default 1.0.
4913
        name(str|None): A name for this layer(optional). If set None, the layer
4914
            will be named automatically.
G
guosheng 已提交
4915 4916

    Returns:
石晓伟 已提交
4917
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
4918

G
guosheng 已提交
4919 4920 4921
    Examples:
        .. code-block:: python

4922
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4923
            # x: [B, ..., M, K], y: [B, ..., K, N]
4924
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4925

4926
            # x: [B, M, K], y: [B, K, N]
4927
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4928

4929
            # x: [B, M, K], y: [K, N]
4930
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4931

4932
            # x: [M, K], y: [K, N]
4933
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4934 4935

            # x: [B, M, K], y: [K]
4936
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
4937

4938
            # x: [K], y: [K]
4939
            # fluid.layers.matmul(x, y)  # out: [1]
4940

Y
ying 已提交
4941
            # x: [M], y: [N]
4942 4943
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

4944
            import paddle.fluid as fluid
4945 4946 4947
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
4948
    """
4949
    return paddle.matmul(x, y, transpose_x, transpose_y, alpha, name)
4950 4951


4952
def topk(input, k, name=None):
Q
qingqing01 已提交
4953
    """
4954
    This OP is used to find values and indices of the k largest entries
Q
qingqing01 已提交
4955 4956
    for the last dimension.

4957 4958
    If the input is a 1-D Tensor, finds the k largest entries and outputs
    their values and indices.
Q
qingqing01 已提交
4959 4960 4961 4962

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4963 4964
    .. code-block:: text

4965 4966 4967 4968 4969
        Case 1:

          Input:
            input.shape = [3, 4]
            input.data = [[5, 4, 2, 3],
F
fengjiayi 已提交
4970 4971 4972 4973
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

4974
          Output:
F
fengjiayi 已提交
4975
            The first output:
4976 4977
            values.shape = [3, 2]
            values.data = [[5, 4],
F
fengjiayi 已提交
4978 4979 4980 4981
                      [10, 25],
                      [6, 10]]

            The second output:
4982 4983
            indices.shape = [3, 2]
            indices.data = [[0, 1],
F
fengjiayi 已提交
4984 4985 4986
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4987
    Args:
4988 4989 4990 4991
        input(Variable): The input tensor. Support data types: float32, float64.
        k(int | Variable): The number of top elements to look for along the last dimension
                           of input tensor.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Q
qingqing01 已提交
4992 4993

    Returns:
4994 4995
        Values (Variable): Input tensor's k largest elements along each last dimensional slice. The dimension is: :math:`input.shape[:-1]+[k]`.
        Indices (Variable): Indices of k largest elements alone the last dimension of input. The dimension is same as values.
Q
qingqing01 已提交
4996

F
fengjiayi 已提交
4997
    Raises:
4998
        ValueError: If :math:`k < 1` or :math:`k > last dimension of input`.
Q
qingqing01 已提交
4999 5000 5001 5002

    Examples:
        .. code-block:: python

5003
            import paddle.fluid as fluid
5004
            import paddle.fluid.layers as layers
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
            # set batch size=None
            input = fluid.data(name="input", shape=[None, 13, 11], dtype='float32')
            top5_values, top5_indices = layers.topk(input, k=5) # top5_values.shape[None, 13, 5], top5_indices.shape=[None, 13, 5]

            # 1D Tensor
            input1 = fluid.data(name="input1", shape=[None, 13], dtype='float32')
            top5_values, top5_indices = layers.topk(input1, k=5) #top5_values.shape=[None, 5], top5_indices.shape=[None, 5]

            # k=Variable
            input2 = fluid.data(name="input2", shape=[None, 13, 11], dtype='float32')
            vk = fluid.data(name="vk", shape=[None, 1], dtype='int32') # save k in vk.data[0]
            vk_values, vk_indices = layers.topk(input2, k=vk) #vk_values.shape=[None, 13, k], vk_indices.shape=[None, 13, k]

Q
qingqing01 已提交
5018
    """
5019
    if in_dygraph_mode():
5020 5021 5022 5023 5024
        _k = k.numpy().item(0) if isinstance(k, Variable) else k
        out, indices = core.ops.top_k(input, 'k', _k)
        out.stop_gradient = True
        indices.stop_gradient = True
        return out, indices
5025

5026 5027
    inputs = {"X": [input]}
    attrs = {}
S
songyouwei 已提交
5028 5029 5030 5031 5032
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}

5033 5034 5035 5036
    helper = LayerHelper("top_k", **locals())
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

Q
qingqing01 已提交
5037 5038
    helper.append_op(
        type="top_k",
W
whs 已提交
5039
        inputs=inputs,
Q
qingqing01 已提交
5040 5041
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5042
        attrs=attrs)
Q
qingqing01 已提交
5043 5044 5045 5046 5047
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5048 5049 5050 5051 5052
def ctc_greedy_decoder(input,
                       blank,
                       input_length=None,
                       padding_value=0,
                       name=None):
5053
    """
S
SunGaofeng 已提交
5054
    This op is used to decode sequences by greedy policy by the following steps:
Y
yi.wu 已提交
5055

S
SunGaofeng 已提交
5056
    1. Get the indexes of maximum value for each row in input. a.k.a.
Y
ying 已提交
5057 5058 5059
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5060

S
SunGaofeng 已提交
5061 5062 5063 5064
    This op is implemented in two modes: lod and padding, either of them can be used.
    The input can be either LoDTensor or Tensor, corresponding to lod and padding 
    mode respectively.

5065 5066 5067 5068 5069
    A simple example as below:

    .. code-block:: text

        Given:
S
SunGaofeng 已提交
5070
        (1) for lod mode:
5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5082
        input.lod = [[4, 4]]
M
minqiyang 已提交
5083

W
whs 已提交
5084
        Computation:
5085

W
whs 已提交
5086 5087 5088 5089 5090 5091
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5092 5093 5094 5095 5096

        output.data = [[2],
                       [1],
                       [3]]

5097
        output.lod = [[2, 1]]
5098

S
SunGaofeng 已提交
5099
        (2) for padding mode:
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125

         input.data = [[[0.6, 0.1, 0.3, 0.1],
                        [0.3, 0.2, 0.4, 0.1],
                        [0.1, 0.5, 0.1, 0.3],
                        [0.5, 0.1, 0.3, 0.1]],

                       [[0.5, 0.1, 0.3, 0.1],
                        [0.2, 0.2, 0.2, 0.4],
                        [0.2, 0.2, 0.1, 0.5],
                        [0.5, 0.1, 0.3, 0.1]]]

        input_length.data = [[4], [4]]
        input.shape = [2, 4, 4]

        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]], for input.data[4:8] is [[0], [3], [3], [0]], shape is [2,4,1]
        step2: Change the argmax result to use padding mode, then argmax result is 
                [[0, 2, 1, 0], [0, 3, 3, 0]], shape is [2, 4], lod is [], input_length is [[4], [4]]
        step3: Apply ctc_align to padding argmax result, padding_value is 0

        Finally:
        output.data = [[2, 1, 0, 0],
                       [3, 0, 0, 0]]
        output_length.data = [[2], [1]]


S
SunGaofeng 已提交
5126
    Parameters:
5127

S
SunGaofeng 已提交
5128 5129
        input(Variable): the probabilities of variable-length sequences. When in lod mode, 
                         it is a 2-D LoDTensor with LoD information. It's shape is [Lp, num_classes + 1] 
Y
ying 已提交
5130
                         where Lp is the sum of all input sequences' length and
5131 5132
                         num_classes is the true number of classes. When in padding mode,
                         it is a 3-D Tensor with padding, It's shape is [batch_size, N, num_classes + 1].
S
SunGaofeng 已提交
5133
                         (not including the blank label). The data type can be float32 or float64.
Y
ying 已提交
5134
        blank(int): the blank label index of Connectionist Temporal
S
SunGaofeng 已提交
5135
                    Classification (CTC) loss, which is in the half-opened
Y
ying 已提交
5136
                    interval [0, num_classes + 1).
S
SunGaofeng 已提交
5137 5138
        input_length(Variable, optional): 2-D LoDTensor, shape is [batch_size, 1], data type is int64.
                                 It is used for padding mode. In lod mode, input_length is None.
5139
        padding_value(int): padding value.
S
SunGaofeng 已提交
5140 5141 5142
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name` 
5143 5144

    Returns:
S
SunGaofeng 已提交
5145 5146 5147 5148 5149
        For lod mode, returns the result of CTC greedy decoder, 2-D LoDTensor, shape is [Lp, 1], \
        data type is int64. 'Lp' is the sum of all output sequences' length. If all the sequences \
        in result were empty, the result LoDTensor will be [-1] with  empty \
        LoD [[]].

T
tianshuo78520a 已提交
5150
        For padding mode, returns a tuple of (output, output_length), which was described as below: 
S
SunGaofeng 已提交
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161

        output, 2-D Tensor, shape is [batch_size, N], data type is int64.

        output_length, 2-D Tensor, shape is [batch_size, 1], data type is int64. It is the length of \
                           each sequence of output for padding mode.

    Return type:
        For lod mode: Variable

        For padding mode: tuple of two Variables (output, output_length).

5162 5163 5164 5165

    Examples:
        .. code-block:: python

5166
            # for lod mode
S
SunGaofeng 已提交
5167
            import paddle.fluid as fluid
S
SunGaofeng 已提交
5168
            x = fluid.data(name='x', shape=[None, 8], dtype='float32', lod_level=1)
5169
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
5170 5171

            # for padding mode
S
SunGaofeng 已提交
5172 5173
            x_pad = fluid.data(name='x_pad', shape=[10, 4, 8], dtype='float32')
            x_pad_len = fluid.data(name='x_pad_len', shape=[10, 1], dtype='int64')
5174 5175 5176
            out, out_len = fluid.layers.ctc_greedy_decoder(input=x_pad, blank=0,
                            input_length=x_pad_len)

W
wanghaoshuang 已提交
5177
    """
5178
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5179
    _, topk_indices = topk(input, k=1)
5180 5181

    # ctc align op
X
Xin Pan 已提交
5182
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207

    if input_length is None:
        helper.append_op(
            type="ctc_align",
            inputs={"Input": [topk_indices]},
            outputs={"Output": [ctc_out]},
            attrs={"merge_repeated": True,
                   "blank": blank})
        return ctc_out
    else:
        ctc_out_len = helper.create_variable_for_type_inference(dtype="int64")
        ctc_input = squeeze(topk_indices, [2])

        helper.append_op(
            type="ctc_align",
            inputs={"Input": [ctc_input],
                    "InputLength": [input_length]},
            outputs={"Output": [ctc_out],
                     "OutputLength": [ctc_out_len]},
            attrs={
                "merge_repeated": True,
                "blank": blank,
                "padding_value": padding_value
            })
        return ctc_out, ctc_out_len
5208 5209


Y
fix ci.  
ying 已提交
5210
def transpose(x, perm, name=None):
Y
ying 已提交
5211
    """
5212
    Permute the data dimensions of `input` according to `perm`.
Y
ying 已提交
5213 5214 5215 5216 5217

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5218
        x (Variable): The input Tensor. It is a N-D Tensor of data types float32, float64, int32.
T
tianshuo78520a 已提交
5219
        perm (list): Permute the input according to the data of perm.
5220
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5221 5222

    Returns:
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
        Variable: A transposed n-D Tensor, with data type being float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]
Y
ying 已提交
5247 5248

    Examples:
5249

Y
ying 已提交
5250 5251
        .. code-block:: python

5252
            # use append_batch_size=False to avoid prepending extra
5253
            # batch size in shape
5254
            import paddle.fluid as fluid
5255
            x = fluid.layers.data(name='x', shape=[2, 3, 4],
5256
                            dtype='float32', append_batch_size=False)
5257
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
5258 5259
            print x_transposed.shape
            #(3L, 2L, 4L)
Y
ying 已提交
5260

5261
    """
5262
    if in_dygraph_mode():
5263 5264
        out, _ = core.ops.transpose2(x, 'axis', perm)
        return out
5265

5266 5267 5268
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')
5269
    check_type(perm, 'perm', list, 'transpose')
5270

Y
fix ci.  
ying 已提交
5271
    if len(perm) != len(x.shape):
Y
ying 已提交
5272
        raise ValueError(
5273 5274 5275 5276
            "Input(perm) is the permutation of dimensions of Input(x), "
            "its length should be equal to dimensions of Input(x), "
            "but received dimension of Input(x) is %s, "
            "the length of Input(perm) is %s." % (len(x.shape), len(perm)))
Y
ying 已提交
5277 5278 5279
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
5280 5281 5282
                "Each element in Input(perm) should be less than Input(x)'s dimension, "
                "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                "dimension %d." % (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5283 5284

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5285 5286
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5287
    helper.append_op(
5288
        type='transpose2',
Y
fix ci.  
ying 已提交
5289
        inputs={'X': [x]},
5290 5291
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5292 5293
        attrs={'axis': perm})
    return out
5294 5295


5296 5297 5298 5299 5300 5301 5302
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5303
    """
5304
    Extracts image patches from the input tensor to form a tensor of shape
L
Liufang Sang 已提交
5305 5306 5307
    {input.batch_size * output_height * output_width, filter_size_height *
    filter_size_width * input.channels}. This op use filter to scan images
    and convert these images to sequences. After expanding, the number of time step are
5308 5309
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5310 5311 5312

    .. math::

L
Liufang Sang 已提交
5313 5314 5315 5316
        output\_height  = 1 + \
            (padding\_up + padding\_down + input\_height  - filter\_size\_height  + stride\_height - 1) / stride\_height \\\\
        output\_width  = 1 + \
            (padding\_left + padding\_right + input\_width  - filter\_size\_width  + stride\_width - 1) / stride\_width
5317

L
Liufang Sang 已提交
5318
    And the dimension of each time step is filter_size_height * filter_size_width * input.channels.
5319

L
Liufang Sang 已提交
5320 5321
    Parameters:
        input (Variable): The input should be a 4-D Tensor in :math:`NCHW` format. The data type is float32.
W
wanghaoshuang 已提交
5322

L
Liufang Sang 已提交
5323 5324 5325
        filter_size(int32 | List[int32]): The filter size. If filter_size is a List,
            it must contain two integers, :math:`[filter\_size\_height, filter\_size\_width]` .
            Otherwise, the filter size will be a square :math:`[filter\_size, filter\_size]` . Default is 1.
5326

L
Liufang Sang 已提交
5327 5328
        stride(int32 | List[int32]): The stride size. If stride is a List, it must
            contain two integers, :math:`[stride\_height, stride\_width]` . Otherwise, the stride size will be a square :math:`[stride\_size, stride\_size]` . Default is 1.
5329

L
Liufang Sang 已提交
5330 5331 5332 5333 5334 5335 5336
        padding(int32 | List[int32]): The padding size. If padding is a List, it can
            contain four integers like :math:`[padding\_up, padding\_left, padding\_down, padding\_right]` to indicate
            paddings of four direction.  Or it can contain two integers :math:`[padding\_height, padding\_width]` which means
            padding_up = padding_down = padding_height and
            padding_left = padding_right = padding_width. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding. 
            Default is 0.
5337

L
Liufang Sang 已提交
5338 5339 5340 5341
        input_image_size(Variable, optional): the input contains image real size.It's dim
            is :math:`[batchsize, 2]` . It is just for batch inference when not None. Default is None.

        out_stride(int32 | List[int32]): The scaling of image through CNN. It is valid only when input_image_size is not None.
T
tianshuo78520a 已提交
5342
            If out_stride is List,  it must contain two integers,
L
Liufang Sang 已提交
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
            :math:`[out\_stride\_height, out\_stride\_W]` . Otherwise,
            the out_stride_height = out_stride_width = out_stride. Default is 1.

        name (str, optional): The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
    
    Returns: 
            The output is a 2-D LoDTensor with shape {input.batch\_size * output\_height * output\_width, \ 
            filter\_size\_height * filter\_size\_width * input.channels}. The data type is float32.

    Return Type: Variable
5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5381 5382 5383
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5396
            output.dims = {8, 8}
5397

5398
            output.lod = [[4, 4]]
5399

T
Tink_Y 已提交
5400
    Examples:
5401 5402 5403

        .. code-block:: python

B
Bai Yifan 已提交
5404
            import paddle.fluid as fluid
L
Liufang Sang 已提交
5405
            data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
5406
                                     dtype='float32')
5407
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
5408 5409
                input=data, stride=[1, 1], filter_size=[2, 2])

5410 5411

    """
L
lujun 已提交
5412
    assert not in_dygraph_mode(), (
5413
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5424
    inputs = {"X": input}
5425
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
5426 5427 5428 5429 5430
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5431
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5432
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5433
    helper.append_op(
5434
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5435
    return out
5436 5437


Y
yuyang18 已提交
5438
@templatedoc()
5439
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5440 5441
    """
    ${comment}
5442 5443

    Args:
Y
yuyang18 已提交
5444
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5445 5446
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5447 5448 5449 5450 5451
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5452
        ${out_comment}.
5453 5454

    Examples:
D
Double_V 已提交
5455
        >>>  # for LodTensor inputs
Y
yuyang18 已提交
5456
        >>> import paddle.fluid as fluid
D
Double_V 已提交
5457
        >>> x = fluid.data(name='x', shape=[9, 16],
Y
yuyang18 已提交
5458 5459
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
D
Double_V 已提交
5460 5461 5462
        >>> # for Tensor inputs
        >>> x = fluid.data(name='x', shape=[9, 4, 16], dtype='float32')
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5463 5464 5465 5466 5467 5468
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5469
    out = helper.create_variable_for_type_inference(dtype)
5470 5471 5472 5473 5474
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5475
    return helper.append_activation(out)
5476 5477


Y
yuyang18 已提交
5478
@templatedoc()
5479 5480
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5481

5482
    Based on the given index parameter, the OP selects a specific row from each input Tensor to construct the output Tensor.
L
lujun 已提交
5483

5484
    If the input of this OP contains :math:`m` Tensors, where :math:`I_{i}` means the i-th input Tensor, :math:`i` between :math:`[0,m)` .
L
lujun 已提交
5485

5486
    And :math:`O` means the output, where :math:`O[i]` means the i-th row of the output, then the output satisfies that :math:`O[i] = I_{index[i]}[i]` .
L
lujun 已提交
5487

5488
    For Example:
L
lujun 已提交
5489

5490
            .. code-block:: text
L
lujun 已提交
5491

5492
                Given:
L
lujun 已提交
5493

5494 5495 5496 5497
                inputs = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
                          [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
                          [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
                          [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]
L
lujun 已提交
5498

5499
                index = [[3],[0],[1],[2]]
L
lujun 已提交
5500

5501 5502 5503 5504
                out = [[3,0,3,4],    # out[0] = inputs[index[0]][0] = inputs[3][0] = [3,0,3,4]
                       [0,1,3,4],    # out[1] = inputs[index[1]][1] = inputs[0][1] = [0,1,3,4]
                       [1,2,4,2],    # out[2] = inputs[index[2]][2] = inputs[1][2] = [1,2,4,2]
                       [2,3,3,4]]    # out[3] = inputs[index[3]][3] = inputs[2][3] = [2,3,3,4]
L
lujun 已提交
5505 5506


5507 5508 5509
    Args:
       inputs (list): The input Tensor list. The list elements are N-D Tensors of data types float32, float64, int32, int64. All input Tensor shapes should be the same and rank must be at least 2.
       index (Variable): Used to select some rows in the input Tensor to construct an index of the output Tensor. It is a 2-D Tensor with data type int32 or int64 and shape [M, 1], where M is the number of input Tensors.
L
lujun 已提交
5510

5511
    Returns:
5512
        Variable(Tensor): Output of multiplex OP, with data type being float32, float64, int32, int64.
X
xuezhong 已提交
5513 5514

    Examples:
5515

X
xuezhong 已提交
5516 5517
        .. code-block:: python

5518
            import paddle.fluid as fluid
5519
            import numpy as np
5520

5521 5522 5523 5524
            x1 = fluid.data(name='x1', shape=[None, 2], dtype='float32')
            x2 = fluid.data(name='x2', shape=[None, 2], dtype='float32')
            index = fluid.data(name='index', shape=[None, 1], dtype='int32')
            out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
X
xuezhong 已提交
5525

5526 5527 5528 5529 5530 5531 5532 5533 5534
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img1 = np.array([[1, 2], [3, 4]]).astype(np.float32)
            img2 = np.array([[5, 6], [7, 8]]).astype(np.float32)
            index = np.array([[1], [0]]).astype(np.int32)

            res = exe.run(fluid.default_main_program(), feed={'x1':img1, 'x2':img2, 'index':index}, fetch_list=[out])
            print(res) # [array([[5., 6.], [3., 4.]], dtype=float32)]
X
xuezhong 已提交
5535

5536 5537 5538 5539 5540 5541 5542 5543
    """
    helper = LayerHelper('multiplex', **locals())

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5544
    helper.append_op(
5545 5546 5547 5548 5549
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
X
xuezhong 已提交
5550 5551


5552 5553
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5554 5555
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5556
    For each instance, it computes the smooth L1 loss element by element first
T
tianshuo78520a 已提交
5557
    and then sums all the losses. So the shape of output Variable is
5558
    [batch_size, 1].
5559

5560 5561
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5562
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5563
            A LoDTensor or Tensor with type float32.
5564
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5565
            L1 loss op with same shape as :attr:`x`.
5566
            A LoDTensor or Tensor with type float32.
5567
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5568 5569
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5570
            by this tensor element by element.
5571
            A Tensor with type float32.
5572
        outside_weight (Variable|None): A tensor with rank at least 2. This
5573 5574
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5575
            element by element.
5576
            A Tensor with type float32.
5577
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5578 5579
           scalar with default value 1.0.

5580
    Returns:
5581
        Variable: The output smooth L1 loss with shape [batch_size, 1].  A Tensor with type float32.
5582 5583 5584 5585

    Examples:
        .. code-block:: python

5586
            import paddle.fluid as fluid
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
            import numpy as np
            data = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            label = fluid.data(name="y", shape=[-1, 3], dtype="float32")
            result = fluid.layers.smooth_l1(data,label)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.rand(3,3).astype("float32")
            y = np.random.rand(3,3).astype("float32")
            output= exe.run(feed={"x":x, "y":y},
                             fetch_list=[result])
            print(output)
        
            #[array([[0.08220536],
            #       [0.36652038],
            #      [0.20541131]], dtype=float32)]

5604
    """
5605

5606
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5607 5608
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
5619
        attrs={'sigma': sigma if sigma is not None else 1.0})
5620
    return loss
5621 5622


5623
def one_hot(input, depth, allow_out_of_range=False):
5624
    """
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.], 
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
            The second dimension in X is 5, which is greater than depth.  
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
5679 5680

    Args:
5681 5682 5683 5684 5685
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input 
            is word id, depth is generally the dictionary size.
5686
        allow_out_of_range(bool): A bool value indicating whether the input
5687 5688 5689 5690
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
5691 5692

    Returns:
5693
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
5694 5695

    Examples:
C
caoying03 已提交
5696
        .. code-block:: python
5697

5698
            import paddle.fluid as fluid
5699 5700 5701
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
5702
    """
5703
    if in_dygraph_mode():
S
songyouwei 已提交
5704 5705 5706 5707 5708
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
                1, ), "depth of type Variable should have shape [1]"
            depth = depth[0]
5709 5710 5711 5712
        out = core.ops.one_hot(input, 'depth', depth, 'allow_out_of_range',
                               allow_out_of_range)
        out.stop_gradient = True
        return out
5713

5714
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5715
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5716

5717 5718
    if not isinstance(depth, Variable):
        # user attribute
5719
        inputs = {'X': input}
Y
Yi Liu 已提交
5720
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
5721
    else:
5722 5723 5724
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
5725 5726
    helper.append_op(
        type="one_hot",
5727 5728
        inputs=inputs,
        attrs=attrs,
5729 5730
        outputs={'Out': one_hot_out})
    one_hot_out.stop_gradient = True
5731
    return one_hot_out
Y
Yu Yang 已提交
5732 5733


Y
Yu Yang 已提交
5734
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5735
    """
Y
Yibing Liu 已提交
5736 5737 5738
    Create an auto-increase variable. which will be automatically increased 
    by 1 in every iteration. By default, the first return of this counter is 1, 
    and the step size is 1.
Y
Yu Yang 已提交
5739 5740

    Args:
Y
Yibing Liu 已提交
5741 5742 5743
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
5744

5745
    Returns:
Y
Yibing Liu 已提交
5746
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
5747 5748 5749 5750

    Examples:
        .. code-block:: python

5751
           import paddle.fluid as fluid
Y
yi.wu 已提交
5752
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
5753
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
5754 5755
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5756 5757
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5758
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
5759 5760 5761 5762 5763
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
        belong_to_optimizer=True)
Y
Yu Yang 已提交
5764 5765 5766
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5767
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5768
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5769 5770
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5771
            outputs={'Out': [counter]},
5772
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5773 5774 5775
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5776 5777


5778
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5779
    """
5780
    This operator changes the shape of ``x`` without changing its data.
C
caoying03 已提交
5781

5782 5783 5784 5785
    The target shape can be given by ``shape`` or ``actual_shape``.
    When ``shape`` and ``actual_shape`` are set at the same time,
    ``actual_shape`` has a higher priority than ``shape``
    but at this time ``shape`` can only be an integer list or tuple, and ``shape`` still should be set correctly to
T
tianshuo78520a 已提交
5786
    guarantee shape inference in compile-time.
C
caoying03 已提交
5787

5788
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5789

5790 5791 5792 5793
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5794
    2. 0 means the actual dimension value is going to be copied from the
T
tianshuo78520a 已提交
5795
    corresponding dimension of x. The index of 0s in shape can not exceed
5796
    the dimension of x.
5797 5798

    Here are some examples to explain it.
C
caoying03 已提交
5799 5800

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5801
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5802
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5803

5804
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5805 5806
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5807 5808
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5809
    dimensions.
C
caoying03 已提交
5810

5811
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5812 5813 5814 5815
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5816

5817 5818
    **Note**:
        The parameter ``actual_shape`` will be deprecated in the future and only use ``shape`` instead to represent the target shape.
5819

C
caoying03 已提交
5820
    Args:
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        shape(list|tuple|Variable): Define the target shape. At most one dimension of the target shape can be -1.
                        The data type is ``int32`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
                        If ``shape`` is an Variable, it should be an 1-D Tensor .
        actual_shape(variable, optional): An 1-D ``Tensor`` or ``LoDTensor`` . The data type is ``int32`` . If provided, reshape
                                according to this given shape rather than ``shape`` specifying shape.
                                That is to say ``actual_shape`` has a higher priority
                                than ``shape(list|tuple)`` but not ``shape(Variable)``. \
                                This argument ``actual_shape`` will be removed in a future version. \
                                Instructions for updating: ``actual_shape`` will be removed in future versions and replaced by ``shape``.
        act (str, optional): The non-linear activation to be applied to the reshaped input. Default None.
        inplace(bool, optional): If ``inplace`` is True, the input and output of ``layers.reshape``
                       are the same variable. Otherwise, the input and output of
                       ``layers.reshape`` are different variable. Default False. Note that if ``x``
                       is more than one OPs' input, ``inplace`` must be False.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.
                            For more information, please refer to :ref:`api_guide_Name` .
C
caoying03 已提交
5838

5839
    Returns:
5840
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. It is a new tensor variable if ``inplace`` is ``False``, otherwise it is ``x``. If ``act`` is None, return the reshaped tensor variable, otherwise return the activated tensor variable.
C
caoying03 已提交
5841

X
Xin Pan 已提交
5842
    Raises:
5843 5844 5845 5846
        TypeError: If actual_shape is neither Variable nor None.
        ValueError: If more than one elements of ``shape`` is -1.
        ValueError: If the element of ``shape`` is 0, the corresponding dimension should be less than or equal to the dimension of ``x``.
        ValueError: If the elements in ``shape`` is negative except -1.
X
Xin Pan 已提交
5847

C
caoying03 已提交
5848 5849
    Examples:
        .. code-block:: python
G
guosheng 已提交
5850

5851
            import paddle.fluid as fluid
5852 5853 5854

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
5855 5856
            data_1 = fluid.data(
              name='data_1', shape=[2, 4, 6], dtype='float32')
5857
            reshaped_1 = fluid.layers.reshape(
5858 5859
              x=data_1, shape=[-1, 0, 3, 2], inplace=True)
            # the shape of reshaped_1 is [2,4,3,2].
5860 5861 5862 5863 5864 5865

            # example 2:
            # attr shape is a list which contains tensor Variable.
            data_2 = fluid.layers.fill_constant([2,25], "int32", 3)
            dim = fluid.layers.fill_constant([1], "int32", 5)
            reshaped_2 = fluid.layers.reshape(data_2, shape=[dim, 10])
5866
            # the shape of reshaped_2 is [5,10].
M
mapingshuo 已提交
5867 5868 5869 5870 5871 5872

            # example 3:
            data_3 = fluid.data(
              name="data_3", shape=[2,4,6], dtype='float32')
            reshaped_3 = fluid.layers.reshape(x=data_3, shape=[6,8])
            # the shape of reshaped_3 is [6,8].
C
caoying03 已提交
5873
    """
5874
    if in_dygraph_mode():
L
Leo Chen 已提交
5875
        #TODO(zhiqiu): enable inplace in dygraph mode.
5876 5877 5878 5879 5880 5881
        if inplace:
            warnings.warn(
                "Inplace on reshape is not allowed and will be discarded in dygraph mode currently."
            )
        attrs = {}
        if isinstance(shape, (list, tuple)):
L
Leo Chen 已提交
5882
            if utils._contain_var(shape):
5883 5884 5885 5886 5887 5888 5889 5890 5891
                raise TypeError(
                    "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
            attrs['shape'] = shape
        else:
            raise TypeError(
                "The type of 'shape' in reshape must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

5892
        out, _ = core.ops.reshape2(x, 'shape', shape)
5893
        return dygraph_utils._append_activation_in_dygraph(out, act)
5894

5895 5896
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'reshape')
5897 5898
    check_type(shape, 'shape', (list, tuple, Variable), 'reshape')
    check_type(actual_shape, 'actual_shape', (Variable, type(None)), 'reshape')
5899

5900
    helper = LayerHelper("reshape2", **locals())
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924

    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
5925 5926
                        "Only one dimension value of 'shape' in reshape can "
                        "be -1. But received shape[%d] is also -1." % dim_idx)
5927 5928 5929
                    unk_dim_idx = dim_idx
                elif dim_size == 0:
                    assert dim_idx < len(x.shape), (
5930 5931 5932 5933
                        "The index of 0 in `shape` must be less than "
                        "the input tensor X's dimensions. "
                        "But received shape[%d] = 0, X's dimensions = %d." %
                        (dim_idx, len(x.shape)))
5934 5935
                else:
                    assert dim_size > 0, (
5936
                        "Each dimension value of 'shape' in reshape must not "
T
tianshuo78520a 已提交
5937
                        "be negative except one unknown dimension. "
5938 5939
                        "But received shape[%d] = %s." %
                        (dim_idx, str(dim_size)))
5940 5941
        return attrs_shape

5942 5943 5944 5945 5946 5947 5948 5949 5950
    inputs = {"X": x}
    attrs = {}
    if isinstance(shape, Variable):
        shape.stop_gradient = True
        inputs["Shape"] = shape
    elif isinstance(shape, (list, tuple)):
        assert len(shape) > 0, ("The size of 'shape' in reshape can't be zero, "
                                "but received %s." % len(shape))
        attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
5951
        if utils._contain_var(shape):
5952 5953 5954 5955 5956 5957 5958
            inputs['ShapeTensor'] = get_new_shape_tensor(shape)
        elif isinstance(actual_shape, Variable):
            actual_shape.stop_gradient = True
            inputs["Shape"] = actual_shape

    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5959
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5960
    helper.append_op(
5961
        type="reshape2",
X
Xin Pan 已提交
5962
        inputs=inputs,
5963
        attrs=attrs,
5964 5965
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5966

D
dzhwinter 已提交
5967
    return helper.append_activation(out)
5968

5969

5970
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5971
    """
5972 5973 5974
    This OP will squeeze single-dimensional entries of input tensor's shape. If axes is provided, will
    remove the dims by axes, the dims selected by axes should be one. If not provide axes, all dims equal
    to one will be deleted.
M
minqiyang 已提交
5975

H
haowang101779990 已提交
5976

5977
    .. code-block:: text 
H
haowang101779990 已提交
5978

5979
        Case1:
H
haowang101779990 已提交
5980

5981
          Input:
H
haowang101779990 已提交
5982 5983
            X.shape = (1, 3, 1, 5)
            axes = [0]
5984
          Output:
H
haowang101779990 已提交
5985 5986
            Out.shape = (3, 1, 5)

5987
        Case2:
H
haowang101779990 已提交
5988

5989
          Input:
H
haowang101779990 已提交
5990 5991
            X.shape = (1, 3, 1, 5)
            axes = []
5992
          Output:
H
haowang101779990 已提交
5993
            Out.shape = (3, 5)
M
minqiyang 已提交
5994

5995 5996 5997 5998 5999 6000 6001 6002
        Case3:

          Input:
            X.shape = [1,3,1,5]
            axes = [-2]
          Output:
            Out.shape = [1,3,5]

Y
Yibing Liu 已提交
6003
    Args:
6004 6005 6006 6007 6008
        input (Variable): The input Tensor. Support data type: float32, float64, int8, int32, int64.
                          axes (list): One integer or List of integers, indicating the dimensions to be squeezed.
                          Axes range is :math:`[-rank(input), rank(input))`.
                          If axes is negative, :math:`axes=axes+rank(input)`.
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
Y
Yibing Liu 已提交
6009 6010

    Returns:
6011
        Variable: Output squeezed Tensor. Data type is same as input Tensor.
Y
Yibing Liu 已提交
6012 6013 6014 6015

    Examples:
        .. code-block:: python

6016
            import paddle.fluid as fluid
6017
            import paddle.fluid.layers as layers
6018 6019 6020 6021
            # set batch size=None
            x = fluid.data(name='x', shape=[None, 5, 1, 10])
            y = layers.squeeze(input=x, axes=[2]) # y.shape=[None, 5, 10]

Y
Yibing Liu 已提交
6022 6023
    """
    helper = LayerHelper("squeeze", **locals())
6024 6025 6026
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int8', 'int32', 'int64'],
                             'squeeze')
6027
    check_type(axes, 'axes', list, 'squeeze')
X
Xin Pan 已提交
6028 6029
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6030
    helper.append_op(
6031
        type="squeeze2",
6032
        inputs={"X": input},
Y
Yibing Liu 已提交
6033
        attrs={"axes": axes},
6034 6035
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6036

6037 6038 6039
    return out


6040
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6041
    """
6042
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
6043 6044
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6045

M
minqiyang 已提交
6046
    For example:
H
haowang101779990 已提交
6047 6048 6049

    .. code-block:: text

M
minqiyang 已提交
6050
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6051
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6052

Y
Yibing Liu 已提交
6053
    Args:
6054
        input (Variable): The input Tensor to be unsqueezed. It is a N-D Tensor of data types float32, float64, int32.
6055
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
6056
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6057 6058

    Returns:
6059
        Variable: Output unsqueezed Tensor, with data type being float32, float64, int32, int64.
Y
Yibing Liu 已提交
6060 6061 6062 6063

    Examples:
        .. code-block:: python

6064 6065 6066
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
6067

Y
Yibing Liu 已提交
6068
    """
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
    if not isinstance(axes, (int, list, tuple, Variable)):
        raise TypeError(
            "The type of 'axes' in unsqueeze must be int, list, tuple or Variable, but "
            "received %s." % (type(axes)))
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    def _to_Variable_list(one_list):
        Variable_list = []
        for ele in one_list:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                Variable_list.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                Variable_list.append(temp_out)
        return Variable_list

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
6096
        if utils._contain_var(axes):
6097 6098 6099 6100
            inputs["AxesTensorList"] = _to_Variable_list(axes)
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
6101 6102
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6103
    helper.append_op(
6104
        type="unsqueeze2",
6105 6106
        inputs=inputs,
        attrs=attrs,
6107 6108
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6109

6110 6111
    return out

6112

Y
yangyaming 已提交
6113
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6114
    """
Y
Yibing Liu 已提交
6115
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6116 6117 6118 6119
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
6120
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6121 6122 6123 6124 6125 6126

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6127
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6128 6129 6130
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6131
            target_lod: [4, 2]
Y
yangyaming 已提交
6132 6133

            then we get a 1-level LoDTensor:
6134
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6135 6136 6137 6138 6139 6140
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6141
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6142 6143 6144 6145
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6146
                y.data = [[2, 4]]
Y
yangyaming 已提交
6147 6148 6149
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6150
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6151 6152 6153 6154 6155 6156
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6157
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6158 6159 6160 6161
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6162
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6163 6164 6165 6166
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6167
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6168 6169 6170 6171
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
6172
        x (Variable): Input variable which could be a Tensor or LoDTensor.
6173
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6174
                           from :attr:`y`.
Y
yangyaming 已提交
6175
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6176
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6177 6178

    Returns:
Y
Yibing Liu 已提交
6179
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6180 6181

    Raises:
Y
Yibing Liu 已提交
6182
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6183 6184 6185 6186

    Examples:
        .. code-block:: python

6187
            import paddle.fluid as fluid
6188 6189 6190
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
6191
    """
6192 6193
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'lod_reset')
Y
yangyaming 已提交
6194
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6195
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6196
    if y is not None:
6197 6198 6199 6200 6201
        if y.lod_level > 0:
            check_variable_and_dtype(
                y, 'y', ['float32', 'float64', 'int32', 'int64'], 'lod_reset')
        else:
            check_variable_and_dtype(y, 'y', ['int32', 'int64'], 'lod_reset')
Y
yangyaming 已提交
6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
        raise ValueError("y and target_lod should not be both none.")
    return out


def lod_append(x, level):
    """
    Append level to LoD of :attr:`x`.

    .. code-block:: text

        * Example 1:

            given a 1-level LoDTensor x:
                x.lod =  [[ 2,           3,                   1 ]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            level: [1, 1, 1, 1, 1, 1, 1]

            then we get a 2-level LoDTensor:
                x.lod =  [[ 2, 3, 1 ], [1, 1, 1, 1, 1, 1]]
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a tensor or LoDTensor.
6238
        level (list|tuple|Variable): The LoD level to be appended into LoD of x.
6239 6240 6241 6242 6243 6244

    Returns:
        Variable: Output variable with new LoD level.

    Raises:
        ValueError: If :attr:`y` is None or and :attr:`level` is not Iterator.
Y
yangyaming 已提交
6245

6246 6247 6248 6249 6250 6251 6252 6253 6254 6255
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[6, 10], lod_level=1)
            out = fluid.layers.lod_append(x, [1,1,1,1,1,1])
    """
    from collections import Iterable
    if x is None:
        raise ValueError("Input(x) can't be None.")
6256 6257 6258
    if (not isinstance(level, Iterable)) and (not isinstance(level, Variable)):
        raise ValueError("Input(level) must be list, tuple or Variable.")

6259 6260
    helper = LayerHelper("lod_append", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6261 6262 6263 6264 6265 6266 6267 6268

    inputs = {'X': x}
    attrs = {'append': True}

    if isinstance(level, Variable):
        inputs['Y'] = level
    else:
        attrs['target_lod'] = level
6269
    helper.append_op(
6270
        type="lod_reset", inputs=inputs, attrs=attrs, outputs={'Out': out})
Y
yangyaming 已提交
6271
    return out
D
dragonwarrior 已提交
6272 6273


6274 6275
def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None,
        data_format='NCHW'):
D
dragonwarrior 已提交
6276
    """
6277 6278 6279
    This operator implements the Local Response Normalization Layer.
    This layer performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
D
dragonwarrior 已提交
6280 6281 6282 6283 6284

    The formula is as follows:

    .. math::

6285
        Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6286 6287 6288

    In the above equation:

6289 6290 6291 6292
    - :math:`n` : The number of channels to sum over.
    - :math:`k` : The offset (avoid being divided by 0).
    - :math:`\\alpha` : The scaling parameter.
    - :math:`\\beta` : The exponent parameter.
D
dragonwarrior 已提交
6293 6294 6295


    Args:
6296 6297 6298
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W] or [N, H, W, C], 
            where N is the batch size, C is the input channel, H is Height, W is weight. The data 
            type is float32. The rank of this tensor must be 4, otherwise it will raise ValueError.
6299 6300 6301 6302
        n (int, optional): The number of channels to sum over. Default: 5
        k (float, optional): An offset, positive. Default: 1.0
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
6303 6304
        name (str, optional): The default value is None. Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` 
6305 6306 6307 6308 6309
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
        
D
dragonwarrior 已提交
6310
    Returns:
6311 6312
        Variable: A tensor variable storing the transformation result with the same shape and data type as input.

D
dragonwarrior 已提交
6313 6314 6315

    Examples:

6316 6317 6318 6319 6320 6321 6322 6323
    .. code-block:: python

        import paddle.fluid as fluid
        data = fluid.data(
            name="data", shape=[None, 3, 112, 112], dtype="float32")
        lrn = fluid.layers.lrn(input=data)
        print(lrn.shape)  # [-1, 3, 112, 112]
        print(lrn.dtype)  # float32
D
dragonwarrior 已提交
6324 6325 6326 6327 6328 6329 6330 6331
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
6332
            "Input's dimension size of Op(lrn) must be 4, but received %d." %
D
dragonwarrior 已提交
6333
            (dims))
6334 6335 6336 6337
    if data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Attr(data_format) of Op(lrn) got wrong value: received " +
            data_format + " but only NCHW or NHWC supported.")
D
dragonwarrior 已提交
6338

X
Xin Pan 已提交
6339 6340 6341
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6342 6343 6344 6345 6346 6347 6348
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
6349 6350 6351 6352 6353 6354 6355
        attrs={
            "n": n,
            "k": k,
            "alpha": alpha,
            "beta": beta,
            "data_format": data_format
        })
D
dragonwarrior 已提交
6356 6357

    return lrn_out
G
guosheng 已提交
6358 6359 6360 6361


def pad(x, paddings, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6362 6363
    This op will pad a tensor with a constant value given by :attr:`pad_value`, and the
    padded shape is specified by :attr:`paddings`.
G
guosheng 已提交
6364

S
SunGaofeng 已提交
6365 6366 6367 6368
    Specifically, the number of values padded before the elements of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[2*i]`, and the number
    of values padded after the elements of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[2*i+1]`.
G
guosheng 已提交
6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
S
SunGaofeng 已提交
6388
        x (Variable): Tensor, data type is float32.
G
guosheng 已提交
6389
        paddings (list): A list of integers. Its elements specify the padded
S
SunGaofeng 已提交
6390 6391
                         width before and after each dimension in turn.
                         The length of :attr:`paddings` must be equal to 
G
guosheng 已提交
6392 6393
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6394 6395 6396
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
6397 6398

    Returns:
S
SunGaofeng 已提交
6399 6400 6401 6402
        The padded tensor, with the same data type and rank as :attr:`x`

    Return Type:
        Variable
G
guosheng 已提交
6403 6404 6405

    Examples:
        .. code-block:: python
G
guosheng 已提交
6406

S
SunGaofeng 已提交
6407 6408
            # x is a rank 2 tensor variable with shape [100, 224].
            # out will be a tensor of shape [101, 227] 
S
SunGaofeng 已提交
6409
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6410
            x = fluid.data(name='data', shape=[100, 224], dtype='float32')
G
guosheng 已提交
6411 6412 6413 6414 6415
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6416
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6417 6418 6419 6420 6421 6422 6423
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6424 6425


C
chengduo 已提交
6426 6427
def pad_constant_like(x, y, pad_value=0., name=None):
    """
S
SunGaofeng 已提交
6428
    Pad :attr:`y` with :attr:`pad_value`, the number of values padded to
C
chengduo 已提交
6429
    the edges of each axis is specified by the difference of the shape
S
SunGaofeng 已提交
6430 6431
    of :attr:`x` and :attr:`y` . ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    specify padding widths for each axis. The input should be a k-D tensor(k > 0 and k < 7).
C
chengduo 已提交
6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6456 6457
		And
            pad_value = -1,
C
chengduo 已提交
6458

T
Tink_Y 已提交
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6473 6474

    Args:
T
tianshuo78520a 已提交
6475
        x (Variable): Tensor, its shape specifies the shape of output.
S
SunGaofeng 已提交
6476 6477
        y (Variable): Tensor, its rank is the same with :attr:`x`, and for each dimension :math:`i` , 
                      :math:`y\_shape[i] <= x\_shape[i]` . The data type can be float32 or float64.
C
chengduo 已提交
6478
        pad_value (float): The constant value used to pad.
S
SunGaofeng 已提交
6479 6480 6481
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
C
chengduo 已提交
6482 6483

    Returns:
S
SunGaofeng 已提交
6484 6485 6486 6487
        The padded tensor, with the same shape as :attr:`x` and the same data type as :attr:`y`

    Return Type:
        Variable
C
chengduo 已提交
6488 6489 6490 6491 6492 6493

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
6494
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6495 6496
            x = fluid.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
6497 6498 6499 6500 6501
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6502
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6503 6504 6505 6506 6507 6508 6509 6510 6511
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6512 6513 6514 6515 6516 6517
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
D
DuYao 已提交
6518 6519
    Label smoothing is a mechanism to regularize the classifier layer and is called 
    label-smoothing regularization (LSR). 
6520

6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

D
DuYao 已提交
6538
    Parameters:
6539
        label(Variable): The input variable containing the label data. The
D
DuYao 已提交
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
                        label data should use one-hot representation. It's 
                        a multidimensional tensor with a shape of 
                        :math:`[N_1, ..., Depth]`, where Depth is class number.
        prior_dist(Variable, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is 
                        0.1.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set
                        as 'float32', 'float64'. The default value is 'float32'.
        name(str, optional): The default value is None. Normally there is no need for user 
                        to set this property. For more information, please refer to 
                        :ref:`api_guide_Name`.
6555 6556 6557 6558 6559 6560

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
6561
            
6562
            import paddle.fluid as fluid
6563
            import paddle.fluid.layers as layers
6564 6565 6566 6567 6568 6569 6570 6571

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
6572 6573

    if in_dygraph_mode():
6574 6575
        return core.ops.label_smooth(label, prior_dist, 'epsilon',
                                     float(epsilon))
6576

6577 6578
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6579
    smooth_label = helper.create_variable_for_type_inference(dtype)
6580 6581 6582 6583 6584 6585 6586
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6587 6588


W
wopeizl 已提交
6589 6590 6591
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
    This operator implements the roi_pooling layer. 
    Region of interest pooling (also known as RoI pooling) is to perform max pooling on inputs of nonuniform sizes to obtain fixed-size feature maps (e.g. 7*7).
    
    The operator has three steps:
    
        1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height;
        2. Finding the largest value in each section;
        3. Copying these max values to the output buffer.
    
    For more information, please refer to https://stackoverflow.com/questions/43430056/what-is-roi-layer-in-fast-rcnn
    
W
wopeizl 已提交
6603
    Args:
6604 6605 6606 6607 6608 6609
        input (Variable): Input feature, 4D-Tensor with the shape of [N,C,H,W], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32 or float64.
        rois (Variable): ROIs (Regions of Interest) to pool over. 2D-LoDTensor with the shape of [num_rois,4], the lod level is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the bottom right coordinates.
        pooled_height (int, optional): The pooled output height, data type is int32. Default: 1
        pooled_width (int, optional): The pooled output height, data type is int32. Default: 1
        spatial_scale (float, optional): Multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0
    
W
wopeizl 已提交
6610
    Returns:
6611 6612 6613
        Variable: The pooled feature, 4D-Tensor with the shape of [num_rois, C, pooled_height, pooled_width].
    
    
W
wopeizl 已提交
6614
    Examples:
6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
    
    ..  code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
    
        input_data = np.array([i for i in range(1,17)]).reshape(1,1,4,4).astype(DATATYPE)
        roi_data =fluid.create_lod_tensor(np.array([[1., 1., 2., 2.], [1.5, 1.5, 3., 3.]]).astype(DATATYPE),[[2]], place)
    
        x = fluid.data(name='input', shape=[None,1,4,4], dtype=DATATYPE)
        rois = fluid.data(name='roi', shape=[None,4], dtype=DATATYPE)
    
        pool_out = fluid.layers.roi_pool(
6633 6634
                input=x,
                rois=rois,
6635 6636
                pooled_height=1,
                pooled_width=1,
6637
                spatial_scale=1.0)
6638 6639 6640 6641 6642
    
        exe = fluid.Executor(place)
        out, = exe.run(feed={'input':input_data ,'roi':roi_data}, fetch_list=[pool_out.name])
        print(out)   #array([[[[11.]]], [[[16.]]]], dtype=float32)
        print(np.array(out).shape)  # (2, 1, 1, 1)
W
wopeizl 已提交
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6660 6661


J
jerrywgz 已提交
6662 6663 6664 6665 6666 6667
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6668 6669
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6670 6671 6672 6673 6674
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
6675
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
W
wangguanzhong 已提交
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
            a 2-D LoDTensor of shape (num_rois, 4), the lod level is 1. The 
            data type is float32 or float64. Given as [[x1, y1, x2, y2], ...], 
            (x1, y1) is the top left coordinates, and (x2, y2) is the bottom
            right coordinates. 
        pooled_height (int32, optional): ${pooled_height_comment} Default: 1
        pooled_width (int32, optional): ${pooled_width_comment} Default: 1
        spatial_scale (float32, optional): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(int32, optional): ${sampling_ratio_comment} Default: -1
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
J
jerrywgz 已提交
6687 6688

    Returns:
W
wangguanzhong 已提交
6689 6690 6691 6692 6693
        Variable:

        Output: ${out_comment}.


J
jerrywgz 已提交
6694 6695 6696
    Examples:
        .. code-block:: python

6697
            import paddle.fluid as fluid
6698 6699 6700 6701
            x = fluid.data(
                name='data', shape=[None, 256, 32, 32], dtype='float32')
            rois = fluid.data(
                name='rois', shape=[None, 4], dtype='float32')
6702 6703 6704
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6705 6706 6707 6708 6709 6710
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6711
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


S
SunGaofeng 已提交
6726
def dice_loss(input, label, epsilon=0.00001, name=None):
W
whs 已提交
6727
    """
S
SunGaofeng 已提交
6728 6729 6730 6731
    Dice loss for comparing the similarity between the input predictions and the label.
    This implementation is for binary classification, where the input is sigmoid
    predictions of each pixel, usually used for segmentation task. The dice loss can
    be defined as the following equation:
W
whs 已提交
6732 6733 6734 6735 6736 6737 6738 6739

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


S
SunGaofeng 已提交
6740 6741 6742 6743 6744 6745
    Parameters:
        input (Variable): Tensor, rank>=2, shape is :math:`[N_1, N_2, ..., N_D]`, where :math:`N_1` is
                          the batch_size, :math:`N_D` is 1. It is usually the output predictions of sigmoid activation.
                          The data type can be float32 or float64.
        label (Variable): Tensor, the groud truth with the same rank as input, shape is :math:`[N_1, N_2, ..., N_D]`. 
                          where :math:`N_1` is the batch_size, :math:`N_D` is 1. The data type can be float32 or float64.
W
whs 已提交
6746 6747 6748
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001
S
SunGaofeng 已提交
6749 6750 6751
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
W
whs 已提交
6752 6753

    Returns:
S
SunGaofeng 已提交
6754 6755 6756
        The dice loss with shape [1], data type is the same as `input` .
    Return Type:
        Varaible
W
whs 已提交
6757

S
SunGaofeng 已提交
6758
    Example:
6759 6760
        .. code-block:: python

S
SunGaofeng 已提交
6761
            import paddle.fluid as fluid
S
SunGaofeng 已提交
6762 6763 6764
            x = fluid.data(name='data', shape = [3, 224, 224, 1], dtype='float32')
            label = fluid.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
            predictions = fluid.layers.sigmoid(x)
S
SunGaofeng 已提交
6765
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
6766 6767
    """
    label = one_hot(label, depth=input.shape[-1])
6768
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6769 6770 6771 6772 6773 6774
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6775 6776


6777 6778 6779 6780
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6781
                 resample='BILINEAR',
6782 6783
                 actual_shape=None,
                 align_corners=True,
6784 6785
                 align_mode=1,
                 data_format='NCHW'):
6786
    """
R
ruri 已提交
6787
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
6788

6789 6790 6791
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w) 
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape 
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels), 
T
tianshuo78520a 已提交
6792
    and the resizing only applies on the three dimensions(depth, height and width).
6793

6794
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
6795 6796
    future and only use :attr:`out_shape` instead.

6797
    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6798

6799
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6800

K
Kaipeng Deng 已提交
6801 6802
        'TRILINEAR' : Trilinear interpolation

6803
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6804

6805
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
T
tianshuo78520a 已提交
6806
    in both the 3rd dimension(in height direction) and the 4th dimension(in width 
6807 6808 6809 6810 6811 6812 6813 6814
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

K
Kaipeng Deng 已提交
6815 6816 6817 6818 6819
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

T
tianshuo78520a 已提交
6820
    Align_corners and align_mode are optional parameters,the calculation method 
6821 6822 6823 6824
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
6825
    .. code-block:: text
6826

T
Tink_Y 已提交
6827
        For scale:
6828
          
T
Tink_Y 已提交
6829
            if align_corners = True && out_size > 1 :
6830

T
Tink_Y 已提交
6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
6842

T
Tink_Y 已提交
6843 6844
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6845

T
Tink_Y 已提交
6846 6847
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
6848

T
Tink_Y 已提交
6849 6850
          else:
              align_corners = True
6851

T
Tink_Y 已提交
6852 6853
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6854

T
Tink_Y 已提交
6855 6856
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
6857

T
Tink_Y 已提交
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
6868

T
Tink_Y 已提交
6869 6870 6871 6872
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
6873

T
Tink_Y 已提交
6874 6875
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
6876

K
Kaipeng Deng 已提交
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
           
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
          
6899 6900 6901 6902 6903 6904
    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.

K
Kaipeng Deng 已提交
6905 6906 6907
    For details of trilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Trilinear_interpolation.

6908 6909


R
ruri 已提交
6910
    Parameters:
6911 6912
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
6913
        out_shape(list|tuple|Variable|None): Output shape of image resize
6914 6915 6916 6917
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If 
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
6918 6919 6920
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
6921
             Default: None.
6922 6923
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
K
Kaipeng Deng 已提交
6924 6925
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR'
                       and 'NEAREST' currently. Default: 'BILINEAR'
6926 6927 6928
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6929
                                :attr:`out_shape` and :attr:`scale` specifying
6930 6931
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
6932 6933 6934 6935 6936
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
6937
                                errors would be occurred in graph constructing stage.
6938
                                Default: None
6939 6940 6941 6942
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
6943
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
6944
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
6945
                            src_idx = scale*dst_index.
6946 6947 6948 6949 6950
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored 
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
6951 6952

    Returns:
6953 6954
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
6955

6956 6957 6958
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
K
Kaipeng Deng 已提交
6959 6960 6961 6962
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR' or 'NEAREST' currently.
        ValueError: 'BILINEAR' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
6963
        ValueError: One of out_shape and scale must not be None.
K
Kaipeng Deng 已提交
6964 6965
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
6966
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
6967
        TypeError: align_corners should be a bool value
6968
        ValueError: align_mode can only be '0' or '1'
6969
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
6970

6971 6972
    Examples:
        .. code-block:: python
R
ruri 已提交
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.image_resize(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.image_resize(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7005

R
ruri 已提交
7006 7007 7008 7009 7010 7011
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7012

R
ruri 已提交
7013 7014 7015 7016 7017 7018 7019 7020
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7021

R
ruri 已提交
7022 7023
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7024

R
ruri 已提交
7025 7026 7027 7028
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.image_resize(input=input, out_shape=[12,12])
    		print(output.shape)
7029

R
ruri 已提交
7030
		# [2L, 3L, 12L, 12L]
7031

7032
    """
7033 7034
    resample_methods = {
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
7035
        'TRILINEAR': 'trilinear',
7036 7037
        'NEAREST': 'nearest',
    }
7038 7039
    if resample not in resample_methods:
        raise ValueError(
K
Kaipeng Deng 已提交
7040 7041
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR' "
            "or 'NEAREST' currently.")
7042
    resample_type = resample_methods[resample]
7043

K
Kaipeng Deng 已提交
7044 7045 7046 7047 7048
    if resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

7049 7050 7051 7052 7053
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7054
    if out_shape is None and scale is None:
7055
        raise ValueError("One of out_shape and scale must not be None.")
7056
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7057
    dtype = helper.input_dtype()
7058

7059 7060 7061 7062 7063 7064 7065 7066 7067
    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

7068 7069 7070
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7071 7072 7073 7074 7075
    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

7076
    inputs = {"X": input}
D
dengkaipeng 已提交
7077
    attrs = {
7078 7079 7080
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
7081 7082
        "interp_method": resample_type,
        "align_corners": align_corners,
7083 7084
        "align_mode": align_mode,
        "data_layout": data_layout
D
dengkaipeng 已提交
7085 7086
    }

7087
    if out_shape is not None:
7088
        if isinstance(out_shape, Variable):
7089
            out_shape.stop_gradient = True
7090
            inputs['OutSize'] = out_shape
7091 7092
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7093 7094
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

K
Kaipeng Deng 已提交
7123 7124 7125 7126
            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
7127 7128 7129 7130 7131 7132 7133
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
7134 7135 7136 7137
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
7138 7139 7140 7141 7142 7143 7144 7145 7146
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
7147

7148
    else:
7149 7150 7151
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
7152
        elif isinstance(scale, float) or isinstance(scale, int):
7153
            if scale <= 0:
7154
                raise ValueError("Attr(scale) should be greater than zero.")
7155
            attrs['scale'] = float(scale)
7156 7157 7158
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")
7159

7160
    if isinstance(actual_shape, Variable):
7161 7162 7163 7164 7165
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
7166 7167 7168 7169
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7170
    out = helper.create_variable_for_type_inference(dtype)
7171
    helper.append_op(
7172
        type='{}_interp'.format(resample_type),
7173
        inputs=inputs,
7174
        outputs={"Out": out},
D
dengkaipeng 已提交
7175
        attrs=attrs)
7176
    return out
F
stash  
fengjiayi 已提交
7177 7178


7179
@templatedoc(op_type="bilinear_interp")
7180 7181 7182 7183
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7184 7185
                    actual_shape=None,
                    align_corners=True,
7186 7187
                    align_mode=1,
                    data_format='NCHW'):
7188
    """
R
ruri 已提交
7189
    This op resizes the input by performing bilinear interpolation based on given
7190
    output shape which specified by actual_shape, out_shape and scale
7191 7192
    in priority order.

7193 7194 7195
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in 
    the future and only use :attr:`out_shape` instead.

7196 7197 7198 7199
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7200 7201
    again in the other direction.

7202
    For details of bilinear interpolation, please refer to Wikipedia:
7203
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7204

T
tianshuo78520a 已提交
7205
    Align_corners and align_mode are optional parameters,the calculation 
7206 7207 7208 7209
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7210
    .. code-block:: text
7211

T
Tink_Y 已提交
7212
        For scale:
7213
          
T
Tink_Y 已提交
7214
            if align_corners = True && out_size > 1 :
7215

T
Tink_Y 已提交
7216 7217 7218 7219
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
7220
              scale_factor = float(in_size/out_size)
7221

T
Tink_Y 已提交
7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7232

T
Tink_Y 已提交
7233
          else:
T
tink2123 已提交
7234

T
Tink_Y 已提交
7235 7236 7237 7238
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7239

R
ruri 已提交
7240 7241
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
7242
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
7243
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
7244
            layer, the shape is (out_h, out_w).Default: None. If a list, each 
7245 7246
            element can be an integer or a Tensor Variable with shape: [1]. If a 
            Tensor Variable, its dimension size should be 1.
7247
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7248
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7249
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7250
             Default: None.
7251 7252 7253
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7254
                                :attr:`out_shape` and :attr:`scale` specifying
7255 7256
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7257 7258 7259 7260 7261
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7262
                                errors would be occurred in graph constructing stage.
7263
                                Default: None
7264 7265
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7266 7267 7268 7269
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
7270
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
7271 7272

    Returns:
R
ruri 已提交
7273 7274
	Variable: 4-D tensor(NCHW or NHWC).
    
7275 7276
    Examples:
        .. code-block:: python
R
ruri 已提交
7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7309

R
ruri 已提交
7310 7311 7312 7313 7314 7315
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)
7316

R
ruri 已提交
7317 7318 7319 7320 7321 7322 7323 7324
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7325

R
ruri 已提交
7326 7327
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7328

R
ruri 已提交
7329 7330 7331 7332
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
    		print(output.shape)
7333

R
ruri 已提交
7334
		# [2L, 3L, 12L, 12L]
7335

7336 7337
    """

7338
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
7339
                        align_corners, align_mode, data_format)
7340 7341


K
Kaipeng Deng 已提交
7342 7343 7344 7345 7346 7347 7348
@templatedoc(op_type="trilinear_interp")
def resize_trilinear(input,
                     out_shape=None,
                     scale=None,
                     name=None,
                     actual_shape=None,
                     align_corners=True,
7349 7350
                     align_mode=1,
                     data_format='NCDHW'):
K
Kaipeng Deng 已提交
7351
    """
R
ruri 已提交
7352
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
7353 7354 7355
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

7356 7357 7358
    **Warning:** the parameter :attr:`actual_shape` will be deprecated 
    in the future and only use :attr:`out_shape` instead.

K
Kaipeng Deng 已提交
7359 7360 7361 7362 7363 7364 7365 7366
    Trilinear interpolation is an extension of linear interpolation for 
    interpolating functions of three variables (e.g. D-direction, 
    H-direction and W-direction in this op) on a rectilinear 3D grid. 
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

T
tianshuo78520a 已提交
7367
    Align_corners and align_mode are optional parameters,the calculation 
K
Kaipeng Deng 已提交
7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     

        Bilinear interpolation:

          if:
7387

K
Kaipeng Deng 已提交
7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405
              align_corners = False , align_mode = 0
              
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
7406
    Parameters:
7407 7408
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7409
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
7410
        scale(float|Variable|None): The multiplier for the input depth, height or width.
K
Kaipeng Deng 已提交
7411 7412 7413
             At least one of :attr:`out_shape` or :attr:`scale` must be set. 
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
             Default: None.
R
ruri 已提交
7414
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
7415 7416 7417 7418 7419 7420
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7421 7422 7423 7424 7425
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7426
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
7427 7428 7429
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
7430 7431 7432 7433
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
7434 7435

    Returns:
R
ruri 已提交
7436
        Variable: A 5-D Tensor(NCDHW or NDHWC) 
K
Kaipeng Deng 已提交
7437 7438 7439

    Examples:
        .. code-block:: python
R
ruri 已提交
7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,8,10])

	    #1
	    output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])

	    #3
	    #x = np.array([3,12,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
7472

R
ruri 已提交
7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12, 12)
	    #2
	    # (2, 3, 12, 2, 4)
	    #3
	    # (2, 3, 3, 12, 12)
	    #4
	    # (2, 3, 3, 4, 5)

	    #imperative mode
	    import paddle.fluid.dygraph as dg
7491

R
ruri 已提交
7492 7493 7494 7495
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
    		print(output.shape)
7496

R
ruri 已提交
7497
		# [2L, 3L, 12L, 12L, 12L]
7498 7499 7500



K
Kaipeng Deng 已提交
7501 7502 7503
    """

    return image_resize(input, out_shape, scale, name, 'TRILINEAR',
7504
                        actual_shape, align_corners, align_mode, data_format)
K
Kaipeng Deng 已提交
7505 7506


7507
@templatedoc(op_type="nearest_interp")
7508 7509 7510 7511
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7512
                   actual_shape=None,
7513 7514
                   align_corners=True,
                   data_format='NCHW'):
7515
    """
R
ruri 已提交
7516
    This op resizes the input by performing nearest neighbor interpolation in both the
7517 7518
    height direction and the width direction based on given output shape 
    which is specified by actual_shape, out_shape and scale in priority order.
7519

7520 7521 7522
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the 
    future and only use :attr:`out_shape` instead.

7523 7524
    Example:

T
Tink_Y 已提交
7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
          
        Nearest neighbor interpolation:
7537
          
T
Tink_Y 已提交
7538 7539
          if:
              align_corners = False
7540

T
Tink_Y 已提交
7541 7542
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7543

T
Tink_Y 已提交
7544 7545
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7546

T
Tink_Y 已提交
7547 7548
          else:
              align_corners = True
7549

T
Tink_Y 已提交
7550 7551
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7552

T
Tink_Y 已提交
7553 7554
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7555 7556


7557
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7558
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7559

R
ruri 已提交
7560
    Parameters:
7561 7562
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
7563
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
7564
        scale(float|Variable|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7565
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7566
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
R
ruri 已提交
7567 7568 7569
             Default: None. 
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
	actual_shape(Variable): An optional input to specify output shape
7570 7571
                                dynamically. If provided, image resize
                                according to this given shape rather than
7572
                                :attr:`out_shape` and :attr:`scale` specifying
7573 7574
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
7575 7576 7577 7578 7579
                                :attr:`out_shape` if you want to specify output 
                                shape dynamically, because :attr:`actual_shape` 
                                will be deprecated. When using actual_shape to 
                                specify output shape, one of :attr:`out_shape` 
                                and :attr:`scale` should also be set, otherwise 
T
tianshuo78520a 已提交
7580
                                errors would be occurred in graph constructing stage.
7581
                                Default: None
7582
        align_corners(bool): ${align_corners_comment}
7583 7584 7585 7586
        data_format (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
7587 7588

    Returns:
R
ruri 已提交
7589
	Variable: 4-D tensor(NCHW or NHWC).
7590 7591 7592

    Examples:
        .. code-block:: python
R
ruri 已提交
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624
	
	    #declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])

	    #1
	    output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])

	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])

	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)

	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,3,6,10).astype("float32")
7625

R
ruri 已提交
7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
	    print(output_data[0].shape)

	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
7641

R
ruri 已提交
7642 7643
	    #imperative mode
	    import paddle.fluid.dygraph as dg
7644

R
ruri 已提交
7645 7646 7647 7648 7649 7650
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
    		print(output.shape)

		# [2L, 3L, 12L, 12L]
7651 7652 7653



7654 7655
    """

7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format)
7666 7667 7668 7669


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
R
ruri 已提交
7670
    This op resizes a batch of images. The short edge of input images will be
7671 7672
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7673 7674
    constant.

R
ruri 已提交
7675 7676
    Parameters:
        input (Variable): 4-D tensor(NCHW), The input tensor of image resize layer.
7677
        out_short_len(int): The length of output images' short edge.
7678
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7679

7680
    Returns:
R
ruri 已提交
7681
        Variable: 4-D tensor(NCHW).
R
ruri 已提交
7682 7683 7684 7685

    Examples:
        .. code-block:: python

7686
            import paddle.fluid as fluid
R
ruri 已提交
7687
            input = fluid.data(name="input", shape=[None,3,6,9], dtype="float32")
R
ruri 已提交
7688
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7699 7700 7701
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7702 7703 7704
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7705
def gather(input, index, overwrite=True):
W
whs 已提交
7706
    """
Q
qiaolongfei 已提交
7707 7708
    **Gather Layer**

7709
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7710 7711 7712 7713
    of X indexed by `index` and concatenate them together.

    .. math::

7714
        Out = X[Index]
W
whs 已提交
7715 7716 7717 7718 7719 7720 7721


    .. code-block:: text


                Given:

7722 7723
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7724 7725 7726 7727 7728 7729 7730 7731 7732 7733
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
Y
Yibing Liu 已提交
7734 7735 7736 7737 7738
        input (Variable): The source input tensor with rank>=1. Supported data type is 
            int32, int64, float32, float64 and uint8 (only for CPU), 
            float16 (only for GPU).
        index (Variable): The index input tensor with rank=1. Data type is int32 or int64.
        overwrite (bool, optional): The mode that updating the grad when has same index.
7739 7740 7741 7742 7743
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7744 7745 7746 7747 7748

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7749

W
whs 已提交
7750 7751
        .. code-block:: python

7752
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7753 7754
            x = fluid.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7755 7756 7757 7758
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7759
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7760 7761 7762 7763
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7764 7765
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7766 7767 7768
    return out


7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
def gather_nd(input, index, name=None):
    """
    **Gather Nd Layer**

    This function is actually a high-dimensional extension of :code:`gather` 
    and supports for simultaneous indexing by multiple axes. :attr:`index` is a 
    K-dimensional integer tensor, which is regarded as a (K-1)-dimensional 
    tensor of :attr:`index` into :attr:`input`, where each element defines 
    a slice of params:

    .. math::

        output[(i_0, ..., i_{K-2})] = input[index[(i_0, ..., i_{K-2})]]

    Obviously, :code:`index.shape[-1] <= input.rank` . And, the output tensor has
    shape :code:`index.shape[:-1] + input.shape[index.shape[-1]:]` .

    .. code-block:: text

            Given:
                input = [[[ 0,  1,  2,  3],
                          [ 4,  5,  6,  7],
                          [ 8,  9, 10, 11]],
                         [[12, 13, 14, 15],
                          [16, 17, 18, 19],
                          [20, 21, 22, 23]]]
                input.shape = (2, 3, 4)

            * Case 1:
                index = [[1]]
                
                gather_nd(input, index)  
                         = [input[1, :, :]] 
                         = [[12, 13, 14, 15],
                            [16, 17, 18, 19],
                            [20, 21, 22, 23]]

            * Case 2:
                index = [[0,2]]

                gather_nd(input, index)
                         = [input[0, 2, :]]
                         = [8, 9, 10, 11]

            * Case 3:
                index = [[1, 2, 3]]

                gather_nd(input, index)
                         = [input[1, 2, 3]]
                         = [23]

    Args:
7821 7822 7823
        input (Variable): The source input. Its dtype should be int32, int64, float32, float64.
        index (Variable): The index input with rank > 1, index.shape[-1] <= input.rank.
                          Its dtype should be int32, int64.
7824
        name (str|None): A name for this layer(optional). If set None, the
7825
                         layer will be named automatically.
7826 7827 7828 7829 7830 7831 7832 7833 7834

    Returns:
        output (Variable): A tensor with the shape index.shape[:-1] + input.shape[index.shape[-1]:]

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
7835 7836
            x = fluid.data(name='x', shape=[3, 4, 5], dtype='float32')
            index = fluid.data(name='index', shape=[2, 2], dtype='int32')
7837 7838 7839 7840 7841
            output = fluid.layers.gather_nd(x, index)

    """
    helper = LayerHelper('gather_nd', **locals())
    dtype = helper.input_dtype()
7842 7843 7844 7845 7846
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
7847 7848 7849 7850 7851 7852 7853 7854
    helper.append_op(
        type="gather_nd",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": output})
    return output


7855
def scatter(input, index, updates, name=None, overwrite=True):
7856 7857 7858
    """
    **Scatter Layer**

7859
    Output is obtained by updating the input on selected indices based on updates.
7860

7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884
    .. code-block:: python
        import numpy as np
                
        #input:
        input = np.array([[1, 1], [2, 2], [3, 3]])
        index = np.array([2, 1, 0, 1])
        # shape of updates should be the same as input
        # shape of updates with dim > 1 should be the same as input
        updates = np.array([[1, 1], [2, 2], [3, 3], [4, 4]])
        overwrite = False

        # calculation:
        if not overwrite:
            for i in range(len(index)):
                input[index[i]] = np.zeros((2))

        for i in range(len(index)):
            if (overwrite):
                input[index[i]] = updates[i]
            else:
                input[index[i]] += updates[i]
        # output:
        out = np.array([[3, 3], [6, 6], [1, 1]])
        out.shape # [3, 2]
7885 7886

    Args:
7887 7888
        input (Variable): The input N-D Tensor with rank>=1. Data type can be float32.
        index (Variable): The index 1-D Tensor. Data type can be int32, int64. The length of index cannot exceed updates's length, and the value in index cannot exceed input's length.
T
tianshuo78520a 已提交
7889
        updates (Variable): update input with updates parameter based on index. shape should be the same as input, and dim value with dim > 1 should be the same as input.
7890 7891
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
        overwrite (bool): The mode that updating the output when there are same indices.
7892 7893
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
7894
	    Default value is True.
7895 7896

    Returns:
7897
        Variable(Tensor|LoDTensor): The output is a Tensor with the same shape as input.
7898 7899 7900 7901 7902

    Examples:

        .. code-block:: python

7903
            import numpy as np
7904 7905
            import paddle.fluid as fluid

7906 7907 7908
            input = fluid.layers.data(name='data', shape=[3, 2], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[4], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[4, 2], dtype='float32', append_batch_size=False)
7909

7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
            output = fluid.layers.scatter(input, index, updates, overwrite=False)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            in_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
            index_data = np.array([2, 1, 0, 1]).astype(np.int64)
            update_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'data':in_data, "index":index_data, "update":update_data}, fetch_list=[output])
            print(res)
            # [array([[3., 3.],
            #   [6., 6.],
            #   [1., 1.]], dtype=float32)]
7924 7925 7926
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7927
    out = helper.create_variable_for_type_inference(dtype)
7928 7929 7930 7931 7932
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
7933
        attrs={'overwrite': overwrite},
7934 7935 7936 7937
        outputs={"Out": out})
    return out


7938 7939 7940 7941 7942
def scatter_nd_add(ref, index, updates, name=None):
    """
    **Scatter_nd_add Layer**

    Output is obtained by applying sparse addition to a single value
7943 7944 7945
    or slice in a Variable. 

    :attr:`ref` is a Tensor with rank :math:`R` 
7946 7947 7948 7949
    and :attr:`index` is a Tensor with rank :math:`K` . Thus, :attr:`index` 
    has shape :math:`[i_0, i_1, ..., i_{K-2}, Q]` where :math:`Q \leq R` . :attr:`updates` 
    is a Tensor with rank :math:`K - 1 + R - Q` and its
    shape is :math:`index.shape[:-1] + ref.shape[index.shape[-1]:]` .
7950

7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981
    According to the :math:`[i_0, i_1, ..., i_{K-2}]` of :attr:`index` ,
    add the corresponding :attr:`updates` slice to the :attr:`ref` slice
    which is obtained by the last one dimension of :attr:`index` .

    .. code-block:: text
        
        Given:

        * Case 1:
            ref = [0, 1, 2, 3, 4, 5]
            index = [[1], [2], [3], [1]]
            updates = [9, 10, 11, 12]

          we get:
             
            output = [0, 22, 12, 14, 4, 5]

        * Case 2:
            ref = [[65, 17], [-14, -25]]
            index = [[], []]
            updates = [[[-1, -2], [1, 2]],
                       [[3, 4], [-3, -4]]]
            ref.shape = (2, 2)
            index.shape = (2, 0)
            updates.shape = (2, 2, 2)

          we get:
             
            output = [[67, 19], [-16, -27]]

    Args:
S
ShenLiang 已提交
7982
        ref (Variable): The ref input. Its dtype should be float32, float64.
7983 7984
        index (Variable): The index input with rank > 1 and index.shape[-1] <= ref.rank.
                          Its dtype should be int32 or int64 as it is used as indexes.
7985 7986 7987
        updates (Variable): The updated value of scatter_nd_add op, and it must have the same dtype
                            as ref. It must have the shape index.shape[:-1] + ref.shape[index.shape[-1]:].
        name (str|None): The output variable name. If set None, the layer will be named automatically.
7988 7989

    Returns:
7990
        output (Variable): The output is a tensor with the same shape and dtype as ref.
7991 7992 7993 7994 7995 7996 7997

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

7998 7999 8000
            ref = fluid.data(name='ref', shape=[3, 5, 9, 10], dtype='float32')
            index = fluid.data(name='index', shape=[3, 2], dtype='int32')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
8001 8002 8003 8004 8005 8006 8007

            output = fluid.layers.scatter_nd_add(ref, index, updates)
    """
    if ref.dtype != updates.dtype:
        raise ValueError("ref and updates must have same data type.")

    helper = LayerHelper('scatter_nd_add', **locals())
8008
    dtype = helper.input_dtype(input_param_name='ref')
8009 8010 8011 8012 8013
    if name is None:
        output = helper.create_variable_for_type_inference(dtype)
    else:
        output = helper.create_variable(
            name=name, dtype=dtype, persistable=False)
8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038
    helper.append_op(
        type="scatter_nd_add",
        inputs={"X": ref,
                "Index": index,
                "Updates": updates},
        outputs={"Out": output})
    return output


def scatter_nd(index, updates, shape, name=None):
    """
    **Scatter_nd Layer**

    Output is obtained by scattering the :attr:`updates` in a new tensor according 
    to :attr:`index` . This op is similar to :code:`scatter_nd_add`, except the 
    tensor of :attr:`shape` is zero-initialized. Correspondingly, :code:`scatter_nd(index, updates, shape)` 
    is equal to :code:`scatter_nd_add(fluid.layers.zeros(shape, updates.dtype), index, updates)` . 
    If :attr:`index` has repeated elements, then the corresponding updates are accumulated. 
    Because of the numerical approximation issues, the different order of repeated elements 
    in :attr:`index` may cause different results. The specific calculation method can be 
    seen :code:`scatter_nd_add` . This op is the inverse of the :code:`gather_nd` op.

    Args:
        index (Variable): The index input with rank > 1 and index.shape[-1] <= len(shape).
                          Its dtype should be int32 or int64 as it is used as indexes.
S
ShenLiang 已提交
8039
        updates (Variable): The updated value of scatter_nd op. Its dtype should be float32, float64.
8040 8041
                            It must have the shape index.shape[:-1] + shape[index.shape[-1]:]
        shape(tuple|list): Shape of output tensor.
8042
        name (str|None): The output variable name. If set None, the layer will be named automatically.
8043 8044 8045 8046 8047 8048 8049 8050 8051 8052

    Returns:
        output (Variable): The output is a tensor with the same type as :attr:`updates` .

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid

8053 8054
            index = fluid.data(name='index', shape=[3, 2], dtype='int64')
            updates = fluid.data(name='update', shape=[3, 9, 10], dtype='float32')
8055 8056 8057 8058 8059 8060 8061
            shape = [3, 5, 9, 10]

            output = fluid.layers.scatter_nd(index, updates, shape)
    """
    return scatter_nd_add(zeros(shape, updates.dtype), index, updates, name)


Y
yuyang18 已提交
8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8075

8076
    Examples:
Q
qingqing01 已提交
8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089
        .. code-block:: python

            import paddle.fluid as fluid
            img = fluid.data("img", [None, 3, 256, 256])
            # cropped_img is [-1, 3, 224, 224]
            cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])

            # cropped_img2 shape: [-1, 2, 224, 224]
            # cropped_img2 = fluid.layers.random_crop(img, shape=[2, 224, 224])

            # cropped_img3 shape: [-1, 3, 128, 224]
            # cropped_img3 = fluid.layers.random_crop(img, shape=[128, 224])

Y
yuyang18 已提交
8090
    """
F
stash  
fengjiayi 已提交
8091
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8092
    dtype = x.dtype
X
Xin Pan 已提交
8093
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8094
    if seed is None:
8095
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8096
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8097
    if isinstance(seed, int):
F
fengjiayi 已提交
8098 8099 8100 8101 8102
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8103 8104 8105 8106
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8107
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8108 8109
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8110 8111
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8112
    return out
W
whs 已提交
8113 8114


8115
def log(x, name=None):
W
wanghaoshuang 已提交
8116 8117 8118 8119 8120
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8121
        Out = \\ln(x)
W
wanghaoshuang 已提交
8122 8123

    Args:
W
Wilber 已提交
8124 8125 8126
        x (Variable): Input LoDTensor or Tensor. Must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
    
W
wanghaoshuang 已提交
8127 8128

    Returns:
W
Wilber 已提交
8129
        Variable: The natural log of the input LoDTensor or Tensor computed element-wise.
W
wanghaoshuang 已提交
8130 8131 8132 8133 8134

    Examples:

        .. code-block:: python

8135
            import paddle.fluid as fluid
W
Wilber 已提交
8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[1], dtype="float32")
            res = fluid.layers.log(x)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1], [2]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[0.], [0.6931472]]
W
wanghaoshuang 已提交
8149
    """
8150
    if in_dygraph_mode():
8151
        return core.ops.log(x)
8152

8153
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
8154
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8155
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8156
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8157
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8158 8159 8160
    return out


Z
zhupengyang 已提交
8161
@templatedoc()
8162
def relu(x, name=None):
W
wanghaoshuang 已提交
8163
    """
Z
zhupengyang 已提交
8164
    ${comment}
W
wanghaoshuang 已提交
8165 8166

    Args:
Z
zhupengyang 已提交
8167 8168 8169 8170
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
8171 8172

    Returns:
Z
zhupengyang 已提交
8173
        Variable: ${out_comment}
W
wanghaoshuang 已提交
8174 8175 8176 8177 8178

    Examples:

        .. code-block:: python

8179
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8180 8181 8182 8183 8184 8185 8186 8187 8188
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
                #  [1.  2.6]]
"""
8189
    if in_dygraph_mode():
8190
        return core.ops.relu(x)
8191

8192
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
8193
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8194
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8195
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8196 8197
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8198
    return out
8199 8200


C
chengduo 已提交
8201 8202
def selu(x, scale=None, alpha=None, name=None):
    """
8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216
    Selu Operator.

    The equation is:
    
    .. math::
        selu= \\lambda*
        \\begin{cases}
            x                      &\\quad \\text{ if } x>0 \n
            \\alpha * e^x - \\alpha  &\\quad \\text{ if } x<=0
        \\end{cases}
    

    The input `X` can carry the LoD (Level of Details) information,
    or not. And the output shares the LoD information with input `X`.
C
chengduo 已提交
8217 8218

    Args:
8219 8220
        x (Variable): The input N-D Tensor.
        scale(float, optional): lambda in selu activation function,
C
chengduo 已提交
8221 8222 8223
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
8224
        alpha(float, optional): alpha in selu activation function,
C
chengduo 已提交
8225 8226 8227
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
8228 8229
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

C
chengduo 已提交
8230 8231

    Returns:
8232
        Variable(Tensor|LoDTensor): The output Tensor or LoDTensor with the same shape and LoD information as input.
C
chengduo 已提交
8233 8234 8235 8236

    Examples:

        .. code-block:: python
8237 8238
             
            import paddle.fluid as fluid
8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.selu(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.      , 1.050701],[2.101402, 3.152103]], dtype=float32)]
C
chengduo 已提交
8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8266 8267 8268
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8269 8270 8271 8272
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8273
    .. math::
8274

H
haowang101779990 已提交
8275
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8276

8277
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8278 8279 8280
    is then calculated from it.


L
Liufang Sang 已提交
8281 8282
    Parameters:
        input (Variable): A n-D Tensor of prediction results for semantic labels with type int32 or int64.
8283
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8284
                           Its shape should be the same as input.
L
Liufang Sang 已提交
8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296
        num_classes (int32): The possible number of labels.

    Returns: 
	Three Variables.

        - mean_iou(Variable) : A 1-D Tensor representing the mean intersection-over-union with shape [1]. \
			    Data type is float32.
        - out_wrong(Variable) : A 1-D Tensor with shape [num_classes]. Data type is int32. \
			     The wrong numbers of each class.
        - out_correct(Variable): A 1-D  Tensor with shape [num_classes]. Data type is int32. The correct numbers of each class.
 
   
W
whs 已提交
8297 8298 8299
    Examples:

        .. code-block:: python
8300

B
Bai Yifan 已提交
8301
            import paddle.fluid as fluid
L
Liufang Sang 已提交
8302
            iou_shape = [None, 32, 32]
8303
            num_classes = 5
L
Liufang Sang 已提交
8304 8305 8306
            predict = fluid.data(name='predict', shape=iou_shape, dtype='int64')
            label = fluid.data(name='label', shape=iou_shape, dtype='int64')
            mean_iou, out_wrong, out_correct = fluid.layers.mean_iou(predict, label,
8307
                                                          num_classes)
W
whs 已提交
8308 8309 8310
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8311 8312 8313
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8314 8315
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8316 8317
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8318
        outputs={
W
whs 已提交
8319 8320 8321
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8322 8323 8324
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8325 8326 8327 8328 8329 8330


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

S
SunGaofeng 已提交
8331 8332
    **Warning:** THIS OP IS DEPRECATED. It will be removed in the future version.
    Instructions for updating: Use :ref:`api_fluid_layers_crop_tensor` instead.
8333

8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

S
SunGaofeng 已提交
8362 8363 8364 8365 8366 8367
    Parameters:
        x (Variable): Tensor, data type can be float32 or float64.
        shape (Variable|list/tuple of integers): The output shape is specified
            by `shape`, which can be a Tensor or a list/tuple of integers.
            If it is a Tensor, it's rank must be the same as `x` , only 
            it's shape will be used, and the value of it will be ignored. This way
8368
            is suitable for the case that the output shape may be changed each
S
SunGaofeng 已提交
8369
            iteration. If it is a list/tuple of integers, it's length must be the same
8370
            as the rank of `x`
S
SunGaofeng 已提交
8371 8372 8373
        offsets (Variable|list/tuple of integers|None): Specifies the cropping
            offsets at each dimension. It can be a Tensor or a list/tuple
            of integers. If it is a Tensor, it's rank must be the same as `x`.
8374
            This way is suitable for the case that the offsets may be changed
S
SunGaofeng 已提交
8375 8376 8377 8378 8379
            each iteration. If it is a list/tuple of integers, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each dimension.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name` . Usually name is no need to set and 
            None by default. 
8380 8381

    Returns:
S
SunGaofeng 已提交
8382 8383 8384 8385
        The cropped Tensor, which has the same rank and data type with `x`

    Return Type:
        Variable
8386 8387 8388 8389 8390 8391 8392 8393

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8394
            import paddle.fluid as fluid
S
SunGaofeng 已提交
8395 8396
            x = fluid.data(name="x", shape=[3, 3, 5], dtype="float32")
            y = fluid.data(name="y", shape=[2, 2, 3], dtype="float32")
8397 8398 8399
            crop = fluid.layers.crop(x, shape=y)

            # or
S
SunGaofeng 已提交
8400 8401
            z = fluid.data(name="z", shape=[3, 3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 2, 3])
8402 8403 8404 8405 8406

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8407
            isinstance(shape, Variable)):
8408 8409 8410 8411 8412
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8413
    out = helper.create_variable_for_type_inference(x.dtype)
8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8431 8432


8433 8434 8435 8436 8437 8438
def crop_tensor(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

8439 8440
        * Case 1 (input is a 2-D Tensor):
            Input:
8441
                X.shape = [3, 5]
8442 8443 8444 8445 8446 8447 8448
                X.data = [[0, 1, 2, 0, 0],
                          [0, 3, 4, 0, 0],
                          [0, 0, 0, 0, 0]]
            Parameters:
                shape = [2, 2]
                offsets = [0, 1]
            Output:
8449 8450 8451
                Out.shape = [2, 2]
                Out.data = [[1, 2],
                            [3, 4]]
8452 8453 8454 8455 8456 8457 8458 8459 8460 8461
        * Case 2 (input is a 3-D Tensor):
            Input:
                X.shape = [2, 3, 4]
                X.data =  [[[0, 1, 2, 3],
                            [0, 5, 6, 7],
                            [0, 0, 0, 0]],
                           [[0, 3, 4, 5],
                            [0, 6, 7, 8],
                            [0, 0, 0, 0]]]
            Parameters:
8462
                shape = [2, 2, -1]
8463 8464
                offsets = [0, 0, 1]
            Output:
8465 8466 8467 8468 8469
                Out.shape = [2, 2, 3]
                Out.data  = [[[1, 2, 3],
                              [5, 6, 7]],
                             [[3, 4, 5],
                              [6, 7, 8]]]
8470 8471

    Parameters:
8472
        x (Variable): 1-D to 6-D Tensor, the data type is float32, float64, int32 or int64.
8473 8474
        shape (list|tuple|Variable): The output shape is specified
            by `shape`. Its data type is int32. If a list/tuple, it's length must be
T
tianshuo78520a 已提交
8475
            the same as the dimension size of `x`. If a Variable, it should be a 1-D Tensor.
8476
            When it is a list, each element can be an integer or a Tensor of shape: [1].
8477 8478
            If Variable contained, it is suitable for the case that the shape may
            be changed each iteration.
8479 8480
        offsets (list|tuple|Variable, optional): Specifies the cropping
            offsets at each dimension. Its data type is int32. If a list/tuple, it's length
T
tianshuo78520a 已提交
8481
            must be the same as the dimension size of `x`. If a Variable, it should be a 1-D
8482 8483 8484 8485 8486
            Tensor. When it is a list, each element can be an integer or a Tensor of shape: [1].
            If Variable contained, it is suitable for the case that the offsets may be changed
            each iteration. Default: None, the offsets are 0 at each dimension.
        name(str, optional): The default value is None. Normally there is no need for user to set
            this property. For more information, please refer to :ref:`api_guide_Name` .
8487 8488

    Returns:
8489
        Variable: The cropped Tensor has same data type with `x`.
8490 8491

    Raises:
8492 8493 8494 8495 8496 8497
        TypeError: If the data type of `x` is not in: float32, float64, int32, int64.
        TypeError: If `shape` is not a list, tuple or Variable.
        TypeError: If the data type of `shape` is not int32.
        TypeError: If `offsets` is not None and not a list, tuple or Variable.
        TypeError: If the data type of `offsets` is not int32.
        ValueError: If the element in `offsets` is less than zero.
8498 8499 8500 8501 8502 8503

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
8504
            x = fluid.data(name="x", shape=[None, 3, 5], dtype="float32")
8505 8506
            # x.shape = [-1, 3, 5], where -1 indicates batch size, and it will get the exact value in runtime.

8507 8508
            # shape is a 1-D Tensor
            crop_shape = fluid.data(name="crop_shape", shape=[3], dtype="int32")
8509 8510 8511 8512
            crop0 = fluid.layers.crop_tensor(x, shape=crop_shape)
            # crop0.shape = [-1, -1, -1], it means crop0.shape[0] = x.shape[0] in runtime.

            # or shape is a list in which each element is a constant
8513
            crop1 = fluid.layers.crop_tensor(x, shape=[-1, -1, 3], offsets=[0, 1, 0])
8514 8515
            # crop1.shape = [-1, 2, 3]

8516 8517 8518 8519 8520
            # or shape is a list in which each element is a constant or Variable
            y = fluid.data(name="y", shape=[3, 8, 8], dtype="float32")
            dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            crop2 = fluid.layers.crop_tensor(y, shape=[3, dim1, 4])
            # crop2.shape = [3, -1, 4]
8521

8522 8523
            # offsets is a 1-D Tensor
            crop_offsets = fluid.data(name="crop_offsets", shape=[3], dtype="int32")
8524 8525 8526
            crop3 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=crop_offsets)
            # crop3.shape = [-1, 2, 3]

8527 8528
            # offsets is a list in which each element is a constant or Variable
            offsets_var =  fluid.data(name="dim1", shape=[1], dtype="int32")
8529 8530 8531 8532 8533
            crop4 = fluid.layers.crop_tensor(x, shape=[-1, 2, 3], offsets=[0, 1, offsets_var])
            # crop4.shape = [-1, 2, 3]

    """
    helper = LayerHelper('crop_tensor', **locals())
8534 8535
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'crop_tensor')
8536 8537 8538
    check_type(shape, 'shape', (list, tuple, Variable), 'crop_tensor')
    check_type(offsets, 'offsets', (list, tuple, Variable, type(None)),
               'crop_tensor')
8539 8540 8541 8542 8543 8544 8545 8546

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_variable_for_type_inference(x.dtype)
    ipts = {'X': x}
    attrs = {}

8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570
    def _attr_shape_check(shape_val):
        if not isinstance(shape_val, int):
            raise TypeError(
                "Attr(shape)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(shape_val))
        if shape_val == 0:
            raise ValueError(
                "Attr(shape) of Op(crop_tensor) should not be zero, but received: %s."
                % str(shape_val))
        if shape_val < -1:
            raise ValueError(
                "When the element in Attr(shape) of Op(crop_tensor) is negative, only -1 is supported, but received: %s."
                % str(shape_val))

    def _attr_offsets_check(offset_val):
        if not isinstance(offset_val, int):
            raise TypeError(
                "Attr(offsets)'s dtype of Op(crop_tensor) should be int32, but received: %s."
                % type(offset_val))
        if offset_val < 0:
            raise ValueError(
                "Attr(offsets) of Op(crop_tensor) should be greater or equal to zero, but received: %s."
                % str(offset_val))

8571 8572 8573
    if isinstance(offsets, Variable):
        offsets.stop_gradient = True
        ipts['Offsets'] = offsets
8574
        attrs['offsets'] = [-1] * len(x.shape)
L
Leo Chen 已提交
8575
    elif utils._contain_var(offsets):
8576
        new_offsets_tensor = []
8577
        offsets_attr = []
8578 8579 8580 8581
        for dim in offsets:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_offsets_tensor.append(dim)
8582
                offsets_attr.append(-1)
8583
            else:
8584
                _attr_offsets_check(dim)
8585 8586 8587
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_offsets_tensor.append(temp_out)
8588
                offsets_attr.append(dim)
8589
        ipts['OffsetsTensor'] = new_offsets_tensor
8590
        attrs['offsets'] = offsets_attr
8591
    else:
8592 8593
        for offset in offsets:
            _attr_offsets_check(offset)
8594 8595 8596 8597 8598
        attrs['offsets'] = offsets

    if isinstance(shape, Variable):
        shape.stop_gradient = True
        ipts['Shape'] = shape
L
Leo Chen 已提交
8599
    elif utils._contain_var(shape):
8600 8601
        new_shape_tensor = []
        shape_attr = []
8602
        for dim_size in shape:
8603 8604 8605
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                new_shape_tensor.append(dim_size)
8606
                shape_attr.append(0)
8607
            else:
8608
                _attr_shape_check(dim_size)
8609 8610 8611 8612 8613 8614 8615 8616
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
                shape_attr.append(dim_size)
        ipts['ShapeTensor'] = new_shape_tensor
        attrs['shape'] = shape_attr
    else:
8617 8618
        for dim_size in shape:
            _attr_shape_check(dim_size)
8619 8620 8621 8622 8623 8624 8625 8626 8627 8628
        attrs['shape'] = shape

    helper.append_op(
        type='crop_tensor',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8629 8630 8631 8632 8633 8634 8635 8636
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
8637 8638 8639 8640 8641 8642
        theta (Variable) - A Tensor with shape [N, 2, 3]. It contains a batch of affine transform parameters.
                           The data type can be float32 or float64.
        out_shape (Variable | list | tuple): The shape of target output with format [batch_size, channel, height, width].
                                             ``out_shape`` can be a Tensor or a list or tuple. The data
                                             type must be int32.
        name(str|None): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
W
whs 已提交
8643 8644

    Returns:
8645
        Variable: A Tensor with shape [batch_size, H, W, 2] while 'H' and 'W' are the height and width of feature map in affine transformation. The data type is the same as `theta`. 
W
whs 已提交
8646 8647 8648 8649 8650 8651 8652

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8653

S
SunGaofeng 已提交
8654
            import paddle.fluid as fluid
8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668
            import numpy as np
            place = fluid.CPUPlace()
            theta = fluid.data(name="x", shape=[None, 2, 3], dtype="float32")
            out_shape = fluid.data(name="y", shape=[4], dtype="int32")
            grid_0 = fluid.layers.affine_grid(theta, out_shape)
            grid_1 = fluid.layers.affine_grid(theta, [5, 3, 28, 28])
            batch_size=2
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            output= exe.run(feed={"x": np.random.rand(batch_size,2,3).astype("float32"),
                                  "y": np.array([5, 3, 28, 28]).astype("int32")},
                                  fetch_list=[grid_0.name, grid_1.name])
            print(output[0])
            print(output[1])
W
whs 已提交
8669 8670 8671 8672
    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8673
            isinstance(out_shape, Variable)):
W
whs 已提交
8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


W
whs 已提交
8695 8696 8697 8698 8699 8700 8701
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
T
tianshuo78520a 已提交
8702
    Pad 2-d images according to 'paddings' and 'mode'.
W
whs 已提交
8703 8704 8705
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

L
Liufang Sang 已提交
8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723
    Parameters:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format, which is a 4-D Tensor with data type float32.
        paddings (Variable | List[int32]): The padding size. If padding is a List, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Otherwise, it is a 1-D Tensor with shape [4]. Data type is int32.
            Default is [0, 0, 0, 0].
        mode (str): Three modes: 'constant' (default), 'reflect', 'edge' .
        	When in 'constant' mode, this op uses a constant value to pad the input tensor.
        	When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
        	When in 'edge' mode, uses input boundaries to pad the input tensor.
        	Default is 'constant'
        pad_value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
                    user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

T
tianshuo78520a 已提交
8724
    Returns: a 4-D Tensor padded according to paddings and mode and data type is same as input.
L
Liufang Sang 已提交
8725 8726 8727 8728 8729

    Return Type: Variable


    Examples:
T
Tink_Y 已提交
8730
        .. code-block:: text
W
whs 已提交
8731

T
Tink_Y 已提交
8732
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8733

T
Tink_Y 已提交
8734 8735
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8736

T
Tink_Y 已提交
8737
	      Case 0:
M
minqiyang 已提交
8738

T
Tink_Y 已提交
8739 8740 8741
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8742

T
Tink_Y 已提交
8743 8744 8745
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8746

T
Tink_Y 已提交
8747
	      Case 1:
M
minqiyang 已提交
8748

T
Tink_Y 已提交
8749 8750
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8751

T
Tink_Y 已提交
8752 8753 8754
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8755

T
Tink_Y 已提交
8756
	      Case 2:
M
minqiyang 已提交
8757

T
Tink_Y 已提交
8758 8759
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8760

T
Tink_Y 已提交
8761 8762 8763
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8764

L
Liufang Sang 已提交
8765
    Code Examples:
W
whs 已提交
8766 8767
        .. code-block:: python

B
Bai Yifan 已提交
8768
          import paddle.fluid as fluid
L
Liufang Sang 已提交
8769
          data = fluid.data(name='data', shape=[None, 3, 32, 32],
B
Bai Yifan 已提交
8770 8771 8772
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8773
    """
8774 8775 8776 8777 8778 8779 8780

    if in_dygraph_mode():
        _paddings = paddings.numpy().tolist() if isinstance(
            paddings, Variable) else paddings
        return core.ops.pad2d(input, 'mode', mode, 'pad_value', pad_value,
                              'data_format', data_format, 'paddings', _paddings)

8781 8782 8783 8784 8785 8786 8787 8788
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}
    inputs = {'X': [input]}
    if isinstance(paddings, Variable):
        inputs['Paddings'] = [paddings]
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8789
    helper = LayerHelper('pad2d', **locals())
8790 8791 8792 8793

    assert mode in ['reflect', 'edge', 'constant'
                    ], "mode should be one of constant, reflect, edge."

W
whs 已提交
8794
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8795
    out = helper.create_variable_for_type_inference(dtype)
8796

W
whs 已提交
8797
    helper.append_op(
8798
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8799 8800 8801 8802

    return out


8803 8804 8805 8806 8807 8808 8809
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
8810 8811
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
8812
    Returns:
8813
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8814 8815 8816 8817 8818

    Examples:

        .. code-block:: python

8819
            import paddle.fluid as fluid
8820 8821 8822 8823 8824 8825 8826 8827 8828
            import numpy as np
         
            input_elu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_elu)
                y = fluid.layers.elu(x, alpha=0.2)
                print(y.numpy())
                # [[-0.12642411  6.        ]
                # [ 1.          15.6       ]]
8829 8830
    """
    helper = LayerHelper('elu', **locals())
8831
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'elu')
X
Xin Pan 已提交
8832
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
Z
zhupengyang 已提交
8845

8846 8847
    Args:
        x(${x_type}): ${x_comment}
Z
zhupengyang 已提交
8848 8849 8850 8851
        threshold(float, optional): ${threshold_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
8852 8853 8854

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8855 8856 8857 8858 8859

    Examples:

        .. code-block:: python

8860
            import paddle.fluid as fluid
Z
zhupengyang 已提交
8861 8862 8863 8864 8865 8866 8867 8868
            import numpy as np
            in1 = np.array([[-1,0],[2.5,7.8]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu6(x=x1, threshold=6.0)
                print(out1.numpy())
                # [[0.  0. ]
                #  [2.5 6. ]]
8869 8870
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8871
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
8883 8884 8885 8886
    This is Pow Activation Operator.

    :math:`out = x^{factor}`

8887
    Args:
8888 8889 8890
        x(Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float32`` or ``float64``.
        factor(float32|Variable, optional): A scalar with type ``float32`` or a ``Tensor`` with shape [1] and type ``float32``.  The exponential factor of Pow. Default 1.0.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
8891 8892

    Returns:
8893
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``.
Z
ZhenWang 已提交
8894 8895 8896 8897 8898

    Examples:

        .. code-block:: python

8899
            import paddle.fluid as fluid
8900

8901
            x = fluid.data(name="x", shape=[32,32], dtype="float32")
8902 8903 8904

            # example 1: argument factor is float
            y_1 = fluid.layers.pow(x, factor=2.0)
8905
            # y_1 is x^{2.0}
8906 8907 8908 8909

            # example 2: argument factor is Variable
            factor_tensor = fluid.layers.fill_constant([1], "float32", 3.0)
            y_2 = fluid.layers.pow(x, factor=factor_tensor)
8910
            # y_2 is x^{3.0}
8911 8912
    """
    helper = LayerHelper('pow', **locals())
8913 8914 8915 8916 8917 8918 8919 8920
    inputs = {'X': x}
    attrs = {}
    if isinstance(factor, Variable):
        factor.stop_gradient = True
        inputs['FactorTensor'] = factor
    else:
        attrs['factor'] = factor

X
Xin Pan 已提交
8921
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8922
    helper.append_op(
8923
        type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
8924 8925 8926 8927
    return out


@templatedoc()
8928
def stanh(x, scale_a=0.67, scale_b=1.7159, name=None):
8929 8930 8931 8932 8933 8934 8935 8936 8937 8938
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
8939
        output(${out_type}): ${out_comment}. 
Z
ZhenWang 已提交
8940 8941 8942 8943 8944

    Examples:

        .. code-block:: python

8945
            import paddle.fluid as fluid
8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960
            import numpy as np
            data = fluid.data(name="input", shape=[-1, 3])
            result = fluid.layers.stanh(data,scale_a=0.67, scale_b=1.72)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            x = np.random.random(size=(3, 3)).astype('float32')
            output= exe.run(feed={"input": x},
                         fetch_list=[result])
            print(output)

            #[array([[0.626466  , 0.89842904, 0.7501062 ],
            #       [0.25147712, 0.7484996 , 0.22902708],
            #       [0.62705994, 0.23110689, 0.56902856]], dtype=float32)]

8961 8962
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8963
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
8977 8978 8979 8980 8981 8982 8983
    Parameters:
        x (${x_type}): ${x_comment}
        slope (float, optional): ${slope_comment}
        offset (float, optional): ${offset_comment}
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`
8984 8985

    Returns:
8986
        ${out_type}: ${out_comment}
Z
ZhenWang 已提交
8987 8988 8989 8990 8991

    Examples:

        .. code-block:: python

8992
            import paddle.fluid as fluid
8993 8994
            data = fluid.layers.fill_constant(shape=[3, 2], value=0.5, dtype='float32') # [[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]
            result = fluid.layers.hard_sigmoid(data) # [[0.6, 0.6], [0.6, 0.6], [0.6, 0.6]]
8995 8996
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8997
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
9010 9011 9012 9013 9014 9015 9016
    Elementwise swish activation function. See `Searching for Activation Functions <https://arxiv.org/abs/1710.05941>`_ for more details.
    
    Equation:

    .. math::
        out = \\frac{x}{1 + e^{- beta * x}}
    
9017
    Args:
9018 9019 9020 9021 9022
        x(Variable): Tensor or LoDTensor, dtype: float32 or float64, the input of swish activation.
        
        beta(float): Constant beta of swish operator, default 1.0.
        
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
9023 9024

    Returns:
9025 9026

        Variable: Output of the swish activation, Tensor or LoDTensor, with the same dtype and shape with the input x.
Z
ZhenWang 已提交
9027 9028 9029 9030

    Examples:

        .. code-block:: python
9031 9032 9033 9034 9035 9036
            
            # declarative mode
            import numpy as np
            from paddle import fluid
            
            x = fluid.data(name="x", shape=(-1, 3), dtype="float32")
Z
ZhenWang 已提交
9037
            y = fluid.layers.swish(x, beta=2.0)
9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074
            
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            start = fluid.default_startup_program()
            main = fluid.default_main_program()
            
            data = np.random.randn(2, 3).astype("float32")
            exe.run(start)
            y_np, = exe.run(main, feed={"x": data}, fetch_list=[y])
            
            data
            # array([[-1.1239197 ,  1.3391294 ,  0.03921051],
            #        [ 1.1970421 ,  0.02440812,  1.2055548 ]], dtype=float32)
            y_np
            # array([[-0.2756806 ,  1.0610548 ,  0.01998957],
            #        [ 0.9193261 ,  0.01235299,  0.9276883 ]], dtype=float32)


        .. code-block:: python

            # imperative mode
            import numpy as np
            from paddle import fluid
            import paddle.fluid.dygraph as dg
            
            data = np.random.randn(2, 3).astype("float32")
            place = fluid.CPUPlace()
            with dg.guard(place) as g:
                x = dg.to_variable(data)
                y = fluid.layers.swish(x)
                y_np = y.numpy()
            data
            # array([[-0.0816701 ,  1.1603649 , -0.88325626],
            #        [ 0.7522361 ,  1.0978601 ,  0.12987892]], dtype=float32)
            y_np
            # array([[-0.03916847,  0.8835007 , -0.25835553],
            #        [ 0.51126915,  0.82324016,  0.06915068]], dtype=float32)
9075 9076
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
9077
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9078 9079 9080 9081 9082 9083 9084 9085
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
9086 9087 9088 9089
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
9090 9091
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
9092

J
jerrywgz 已提交
9093 9094 9095 9096 9097 9098 9099 9100
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
9101
    Args:
W
wangguanzhong 已提交
9102 9103
        x (Variable): The input Tensor or LoDTensor with data type float32.
        mode (str): The mode for weight sharing. 
J
jerrywgz 已提交
9104
        param_attr(ParamAttr|None): The parameter attribute for the learnable
W
wangguanzhong 已提交
9105 9106 9107 9108 9109
          weight (alpha), it can be create by ParamAttr. None by default.
          For detailed information, please refer to :ref:`api_fluid_ParamAttr`.
        name(str|None): For detailed information, please refer 
          to :ref:`api_guide_Name`. Usually name is no need to set and 
          None by default. 
J
jerrywgz 已提交
9110 9111

    Returns:
W
wangguanzhong 已提交
9112 9113 9114 9115
        Variable:

        output(Variable): The tensor or LoDTensor with the same shape as input.
        The data type is float32.
J
jerrywgz 已提交
9116 9117 9118 9119 9120

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
9121 9122
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
9123
            x = fluid.data(name="x", shape=[None,5,10,10], dtype="float32")
J
jerrywgz 已提交
9124
            mode = 'channel'
J
jerrywgz 已提交
9125 9126 9127
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
9128 9129 9130 9131 9132 9133 9134 9135
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
9136
        alpha_shape = [1, x.shape[1], x.shape[2], x.shape[3]]
J
jerrywgz 已提交
9137 9138
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9139
        attr=helper.param_attr,
J
jerrywgz 已提交
9140 9141 9142
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
9143
        default_initializer=Constant(0.25))
X
Xin Pan 已提交
9144
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9145 9146 9147 9148 9149 9150 9151 9152 9153
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9154 9155 9156 9157 9158 9159 9160 9161
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
9162 9163
        name(str|None): The default value is None. Normally there is no need for user to set this property. 
                        For more information, please refer to :ref:`api_guide_Name`.
9164
    Returns:
9165
        ${out_type}: ${out_comment}
9166 9167 9168

    Examples:

9169
    .. code-block:: python
9170

9171
            import paddle.fluid as fluid
9172 9173 9174 9175 9176 9177 9178 9179 9180
            import numpy as np
            
            input_brelu = np.array([[-1,6],[1,15.6]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(input_brelu)
                y = fluid.layers.brelu(x, t_min=1.0, t_max=10.0)
                print(y.numpy())
                #[[ 1.  6.]
                #[ 1. 10.]] 
9181 9182
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9183
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
W
Wilber 已提交
9200 9201
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

9202
    Returns:
9203
        output(${out_type}): ${out_comment}
9204 9205 9206 9207 9208

    Examples:

        .. code-block:: python

9209
            import paddle.fluid as fluid
W
Wilber 已提交
9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222
            import numpy as np

            # Graph Organizing
            x = fluid.layers.data(name="x", shape=[2], dtype="float32")
            res = fluid.layers.leaky_relu(x, alpha=0.1)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[-1, 2], [3, -4]]).astype(np.float32)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[-0.1, 2], [3, -0.4]]
9223
    """
9224
    if in_dygraph_mode():
9225
        return core.ops.leaky_relu(x, 'alpha', alpha)
9226

9227 9228
    inputs = {'X': [x]}
    attrs = {'alpha': alpha}
9229
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9230
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9231
    helper.append_op(
9232
        type='leaky_relu', inputs=inputs, outputs={'Out': out}, attrs=attrs)
9233 9234 9235 9236 9237
    return out


def soft_relu(x, threshold=40.0, name=None):
    """
9238 9239 9240 9241
    SoftRelu Activation Operator.

    $out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$

9242
    Args:
9243 9244 9245 9246
        x(Variable): Input of soft_relu operator. Data type can be float32, float64.
        threshold(float, optional): The threshold value of soft_relu, default value being 40.0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

9247
    Returns:
9248
        Variable(Tensor|LoDTensor)): Output of soft_relu operator, shape and LoD same as input.
9249 9250 9251

    Examples:

9252 9253 9254
        .. code-block:: python 
 
            import paddle.fluid as fluid
9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 2], dtype="float32")
            output = fluid.layers.soft_relu(inputs, threshold=20.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[0, 1],[2, 3]]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[0.6931472, 1.3132616], [2.126928 , 3.0485873]], dtype=float32)]
9267 9268
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9269
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9270 9271 9272 9273 9274 9275 9276 9277
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9278 9279
def flatten(x, axis=1, name=None):
    """
9280 9281 9282
    **Flatten op**

    Flatten the input tensor into a 2D matrix.
M
minqiyang 已提交
9283

H
haowang101779990 已提交
9284
    For Example:
M
minqiyang 已提交
9285

H
haowang101779990 已提交
9286
    .. code-block:: text
9287

H
haowang101779990 已提交
9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9309 9310

    Args:
9311 9312
        x (Variable): A tensor of rank >= axis. A tensor with type float32,
                      float64, int8, int32, int64.
9313 9314
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9315
                    The value for axis must be in the range [0, R], where R
9316 9317 9318
                    is the rank of the input tensor. Default: 1.
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
9319 9320

    Returns:
H
haowang101779990 已提交
9321 9322 9323
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9324
                  inner dimension of the output. A Tensor with type same as input x.
9325 9326 9327

    Raises:
        ValueError: If x is not a variable.
9328
        ValueError: If axis is not in range [0, rank(x)].
9329 9330 9331 9332 9333

    Examples:

        .. code-block:: python

9334
            import paddle.fluid as fluid
B
Bai Yifan 已提交
9335
            x = fluid.data(name="x", shape=[4, 4, 3], dtype="float32")
9336
            # x shape is [4, 4, 3]
9337
            out = fluid.layers.flatten(x=x, axis=2)
9338
            # out shape is [16, 3]
9339 9340 9341 9342 9343 9344 9345 9346 9347
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9348 9349
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9350
    helper.append_op(
9351
        type='flatten2',
9352
        inputs={"X": x},
9353 9354
        outputs={'Out': out,
                 'XShape': x_shape},
9355 9356
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9357 9358 9359


def stack(x, axis=0):
S
sneaxiy 已提交
9360
    """
9361

9362
    This OP stacks all the inputs :code:`x` along axis.
C
chengduozh 已提交
9363

C
chengduozh 已提交
9364 9365 9366
    .. code-block:: text

        Case 1:
9367

C
chengduozh 已提交
9368
          Input:
9369
            x[0].shape = [1, 2]
C
chengduozh 已提交
9370
            x[0].data = [ [1.0 , 2.0 ] ]
9371
            x[1].shape = [1, 2]
C
chengduozh 已提交
9372
            x[1].data = [ [3.0 , 4.0 ] ]
9373
            x[2].shape = [1, 2]
C
chengduozh 已提交
9374 9375 9376 9377 9378 9379
            x[2].data = [ [5.0 , 6.0 ] ]

          Attrs:
            axis = 0

          Output:
9380
            Out.dims = [3, 1, 2]
C
chengduozh 已提交
9381 9382 9383
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
9384

C
chengduozh 已提交
9385 9386

        Case 2:
9387 9388 9389 9390


          Input:
            x[0].shape = [1, 2]
C
chengduozh 已提交
9391
            x[0].data = [ [1.0 , 2.0 ] ]
9392
            x[1].shape = [1, 2]
C
chengduozh 已提交
9393
            x[1].data = [ [3.0 , 4.0 ] ]
9394
            x[2].shape = [1, 2]
C
chengduozh 已提交
9395
            x[2].data = [ [5.0 , 6.0 ] ]
9396

C
chengduozh 已提交
9397 9398 9399 9400 9401

          Attrs:
            axis = 1 or axis = -2

          Output:
9402
            Out.shape = [1, 3, 2]
C
chengduozh 已提交
9403 9404 9405
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
9406

C
chengduozh 已提交
9407

S
sneaxiy 已提交
9408
    Args:
9409 9410 9411 9412 9413 9414 9415 9416 9417
        x (Variable|list(Variable)): Input :code:`x` can be a single Tensor, a :code:`list` of Tensors.
                                     If :code:`x` is a :code:`list`, the shapes of all these Tensors
                                     must be the same. Supposing input is N dims
                                     Tensors :math:`[d_0, d_1, ..., d_{n-1}]`, the output is N+1 dims
                                     Tensor :math:`[d_0, d_1, d_{axis-1}, len(x), d_{axis}, ..., d_{n-1}]`.
                                     Support data types: float32, float64, int32, int64.
        axis (int, optional): The axis along which all inputs are stacked. ``axis`` range is :math:`[-(R+1), R+1)`.
                              R is the first tensor of inputs. If ``axis`` < 0, :math:`axis=axis+rank(x[0])+1`.
                              The default value of axis is 0.
9418

S
sneaxiy 已提交
9419
    Returns:
9420
        Variable: The stacked Tensor, has same data type with input Tensors. Output dim is :math:`rank(x[0])+1`.
9421

9422 9423 9424
    Examples:
        .. code-block:: python

9425
            import paddle.fluid as fluid
9426
            import paddle.fluid.layers as layers
9427 9428 9429 9430 9431 9432 9433 9434 9435 9436
            # set batch size=None
            x1 = fluid.data(name='x1', shape=[None, 1, 2], dtype='int32')
            x2 = fluid.data(name='x2', shape=[None, 1, 2], dtype='int32')
            # stack Tensor list
            data = layers.stack([x1,x2]) # stack according to axis 0, data.shape=[2, None, 1, 2]

            data = layers.stack([x1,x2], axis=1) # stack according to axis 1, data.shape=[None, 2, 1, 2]

            # stack single Tensor
            data = layers.stack(x1)  # stack according to axis 0, data.shape=[1, None, 1, 2]
9437

S
sneaxiy 已提交
9438 9439
    """

X
Xin Pan 已提交
9440 9441 9442 9443 9444
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]
X
Xin Pan 已提交
9445
    out = helper.create_variable_for_type_inference(x[0].dtype)
9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463
    if not in_dygraph_mode() and \
            x[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(x) == 1, "If the elements of 'x' in stack are Variable(LoDTensorArray), " \
                            "number of the elements must be 1, but received %s." % len(x)
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': x[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': True})
    else:
        helper.append_op(
            type='stack',
            inputs={'X': x},
            outputs={'Y': out},
            attrs={'axis': axis})
9464

X
Xin Pan 已提交
9465
    return out
D
dzhwinter 已提交
9466 9467


J
Jiawei Wang 已提交
9468
@templatedoc(op_type="filter_by_instag")
Y
yaoxuefeng 已提交
9469
def filter_by_instag(ins, ins_tag, filter_tag, is_lod, out_val_if_empty=0):
J
Jiawei Wang 已提交
9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505
    """
    **Filter By Instag Layer**
   
    This function filter a batch of ins by instag, 
    There are multiple ins, and every ins belongs to some tags. 
    We can specify some tags we want. So the ins which belongs to that tags
    remains in the output, and others removed.
 
    For example, one batch has 4 ins. Every ins has its tag list. 
     
       | Ins   |   Ins_Tag |
       |:-----:|:------:|
       |  0    |   0, 1 |
       |  1    |   1, 3 |
       |  2    |   0, 3 |
       |  3    |   2, 6 |

    And Lod is [1,1,1,1]

    And the filter tags [1]

    From the definition above, ins which has tag 1 can pass the filter
    So Ins 0 and Ins 1 can pass and be seen in the output,
    Ins 2 and 3 cannot pass because they do not has tag 1.

    Actually, if is_lod is false, it is normal tensor that equals to 
    lod_tensor with all 1, similar to the example above.

    Args:
        ins (Variable): Input Variable (LoDTensor), usually it is 2D tensor
                        And first dimension can have lod info or not.
        ins_tag (Variable): Input Variable (LoDTensor), usually it is 1D list
                        And split them by lod info
        filter_tag (Variable): Input Variable (1D Tensor/List), usually it is 
                        list that holds the tags.
        is_lod (Bool): Boolean value to indicate ins is lod tensor or not.
Y
yaoxuefeng 已提交
9506 9507
        out_val_if_empty(Int64): If the output after filter is empty, this value
                        will be set to Output tensor.
J
Jiawei Wang 已提交
9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534

    Returns:
        Variable: filtered ins (LoDTensor) and loss weight (Tensor)

    Examples:
        .. code-block:: python

          import paddle.fluid.layers as layers
          ins = layers.data(name='Ins', shape=[-1,32], lod_level=0, dtype='float64')
          ins_tag = layers.data(name='Ins_tag', shape=[-1,16], lod_level=0, dtype='int64')
          filter_tag = layers.data(name='Filter_tag', shape=[-1,16], dtype='int64')
          out, loss_weight = layers.filter_by_instag(ins,  ins_tag,  filter_tag, True)
        		
    """
    helper = LayerHelper('filter_by_instag', **locals())

    out = helper.create_variable_for_type_inference(dtype=ins.dtype)
    loss_weight = helper.create_variable_for_type_inference(dtype=np.float64)
    mmap = helper.create_variable_for_type_inference(dtype=ins_tag.dtype)
    helper.append_op(
        type='filter_by_instag',
        inputs={'Ins': ins,
                'Ins_tag': ins_tag,
                'Filter_tag': filter_tag},
        outputs={'Out': out,
                 'LossWeight': loss_weight,
                 'IndexMap': mmap},
Y
yaoxuefeng 已提交
9535 9536
        attrs={'is_lod': is_lod,
               'out_val_if_empty': out_val_if_empty})
J
Jiawei Wang 已提交
9537 9538 9539 9540

    return [out, loss_weight]


D
dzhwinter 已提交
9541 9542 9543 9544
def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

9545
    This layer unstacks input Tensor :code:`x` into several Tensors along :code:`axis`.
M
minqiyang 已提交
9546

D
dzhwinter 已提交
9547 9548 9549
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9550
    raised.
D
dzhwinter 已提交
9551 9552

    Args:
9553
        x (Variable): Input Tensor. It is a N-D Tensors of data types float32, float64, int32, int64.
D
dzhwinter 已提交
9554 9555
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9556

D
dzhwinter 已提交
9557
    Returns:
9558 9559 9560 9561
        list(Variable): The unstacked Tensors list. The list elements are N-D Tensors of data types float32, float64, int32, int64.

    Raises:
        ValueError: If x.shape[axis] <= 0 or axis is not in range [-D, D).
M
minqiyang 已提交
9562

9563 9564 9565 9566
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
9567 9568
            x = fluid.layers.data(name='x', shape=[2, 3, 5], dtype='float32')  # create a tensor with shape=[2, 3, 5]
            y = fluid.layers.unstack(x, axis=1)  # unstack with second axis, which results 3 tensors with shape=[2, 5]
D
dzhwinter 已提交
9569

9570
    """
D
dzhwinter 已提交
9571 9572 9573 9574 9575 9576 9577 9578
    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9579
    for _ in range(num):
X
Xin Pan 已提交
9580
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9581 9582 9583 9584 9585 9586 9587 9588

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9589 9590 9591


def expand(x, expand_times, name=None):
9592 9593 9594 9595
    """
    This operation tiles ``x`` multiple times according to the parameter ``expand_times``.
    The times number for each dimension of ``x`` is set by the parameter ``expand_times``.
    The rank of ``x`` should be less than or equal to 6. Please note that size of ``expand_times`` must be the same
W
whs 已提交
9596 9597 9598 9599 9600 9601
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9602

W
whs 已提交
9603 9604 9605 9606
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9607

W
whs 已提交
9608
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9609

W
whs 已提交
9610
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9611

W
whs 已提交
9612 9613 9614 9615
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9616

W
whs 已提交
9617
    Args:
9618 9619 9620 9621 9622
        x (Variable): A ``Tensor`` or ``LoDTensor`` with dimension in [1, 6]. The data type is ``bool``, ``float32``, ``float64`` or ``int32`` .
        expand_times (list|tuple|Variable): The data type is ``int32`` . If ``expand_times`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``expand_times`` is an Variable, it should be an 1-D Tensor.
                Expand times number for each dimension of ``x`` .
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
W
whs 已提交
9623 9624

    Returns:
9625
        Variable: A ``Tensor`` or ``LoDTensor``. The data type is same as ``x``. After expanding, size of each dimension of output is equal to the size of the corresponding dimension of ``x`` multiplying the corresponding value given by ``expand_times`` .
W
whs 已提交
9626

9627 9628 9629
    Raises:
        TypeError: The type of ``expand_times`` must be list, tuple or Variable.
        ValueError: The elements of ``expand_times`` cannot be negative.
W
whs 已提交
9630 9631 9632

    Examples:
        .. code-block:: python
L
liym27 已提交
9633

W
wangchaochaohu 已提交
9634
            import paddle.fluid as fluid
L
liym27 已提交
9635 9636 9637 9638

            # example 1:
            data_1 = fluid.layers.fill_constant(shape=[2, 3, 1], dtype='int32', value=0)
            expanded_1 = fluid.layers.expand(data_1, expand_times=[1, 2, 2])
9639
            # the shape of expanded_1 is [2, 6, 2].
L
liym27 已提交
9640 9641 9642 9643 9644

            # example 2:
            data_2 = fluid.layers.fill_constant(shape=[12, 14], dtype="int32", value=3)
            expand_times = fluid.layers.fill_constant(shape=[2], dtype="int32", value=4)
            expanded_2 = fluid.layers.expand(data_2, expand_times=expand_times)
9645
            # the shape of expanded_2 is [48, 56].
W
whs 已提交
9646
    """
9647 9648
    if in_dygraph_mode():
        if isinstance(expand_times, (list, tuple)):
L
Leo Chen 已提交
9649
            if utils._contain_var(expand_times):
9650 9651 9652 9653 9654 9655 9656 9657
                raise TypeError(
                    "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'expand_times' in expand must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

9658
        return core.ops.expand(x, 'expand_times', expand_times)
9659

9660 9661
    inputs = {"X": [x]}
    attrs = {}
9662 9663
    check_variable_and_dtype(
        x, 'x', ['bool', 'float32', 'float64', 'int32', 'int64'], 'expand')
9664
    check_type(expand_times, 'expand_times', (list, tuple, Variable), 'expand')
W
wangchaochaohu 已提交
9665 9666 9667
    if convert_dtype(x.dtype) == 'bool' and x.stop_gradient == True:
        raise ValueError(
            "expand op bool date type must set the stop_gradient to be False")
L
liym27 已提交
9668

W
whs 已提交
9669
    helper = LayerHelper('expand', input=x, **locals())
L
liym27 已提交
9670 9671 9672 9673 9674 9675 9676 9677 9678

    def get_attr_expand_times(list_expand_times):
        attrs_expand_times = []
        for idx, times in enumerate(list_expand_times):
            if isinstance(times, Variable):
                attrs_expand_times.append(-1)
            else:
                attrs_expand_times.append(times)
                assert times > 0, (
T
tianshuo78520a 已提交
9679
                    "Each element given in expand_times must not be negative.")
L
liym27 已提交
9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693
        return attrs_expand_times

    def get_new_expand_times_tensor(list_expand_times):
        new_expand_times_tensor = []
        for ele in list_expand_times:
            if isinstance(ele, Variable):
                ele.stop_gradient = True
                new_expand_times_tensor.append(ele)
            else:
                assert (isinstance(ele, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', ele, force_cpu=True, out=temp_out)
                new_expand_times_tensor.append(temp_out)
        return new_expand_times_tensor
9694

L
Leo Chen 已提交
9695 9696 9697 9698 9699 9700 9701 9702
    if isinstance(expand_times, Variable):
        expand_times.stop_gradient = True
        inputs['ExpandTimes'] = expand_times
    elif isinstance(expand_times, (list, tuple)):
        attrs['expand_times'] = get_attr_expand_times(expand_times)
        if utils._contain_var(expand_times):
            inputs['expand_times_tensor'] = get_new_expand_times_tensor(
                expand_times)
9703

L
liym27 已提交
9704 9705
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
9706
    helper.append_op(
9707
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9708
    return out
S
sneaxiy 已提交
9709 9710


9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780
def expand_as(x, target_tensor, name=None):
    """
    expand_as operator tiles to the input by given expand tensor. You should set expand tensor
    for each dimension by providing tensor 'target_tensor'. The rank of X
    should be in [1, 6]. Please note that size of 'target_tensor' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:

                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]

        target_tensor's shape:  [2, 6, 2] 

        Output(Out) is a 3-D tensor with shape [2, 6, 2]:

                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
                

    Args:
        x (Variable): A Tensor with dtype float64, float32, int32.
        A tensor with rank in [1, 6].
        target_tensor (Variable): A Tensor with dtype float64, float32, int32.
        target_tensor for expanding to Input(X). Only use target_tensor'shape.

    Returns:
        Variable: A Tensor with dtype float64, float32, int32. 
        After expanding, size of each dimension of Output(Out) is equal to the size 
        of the corresponding dimension of target_tensor multiplying the corresponding
        value given by target_tensor.


    Examples:
        .. code-block:: python
          
        import paddle.fluid as fluid
        import numpy as np

        data = fluid.layers.data(name="data", shape=[-1,10], dtype='float64')
        target_tensor = fluid.layers.data(
          name="target_tensor", shape=[-1,20], dtype='float64')
        result = fluid.layers.expand_as(x=data, target_tensor=target_tensor) 
        use_cuda = False
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        x = np.random.rand(3,10)
        y = np.random.rand(3,20)
        output= exe.run(feed={"data":x,"target_tensor":y},fetch_list=[result.name])
        print(output[0].shape)
        #(3,20)

    """

    helper = LayerHelper('expand_as', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    inputs = {'X': x, 'target_tensor': target_tensor}
    helper.append_op(type='expand_as', inputs=inputs, outputs={'Out': out})
    return out


G
fix  
gongweibao 已提交
9781 9782 9783
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9784
@templatedoc()
G
fix  
gongweibao 已提交
9785 9786 9787 9788 9789 9790 9791 9792 9793
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
9794 9795 9796 9797 9798 9799
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max). The input_dim_idx used to get the input dimension value which will be used to resize the output dimension.

    .. code-block:: text

        *Case 1:
G
fix  
gongweibao 已提交
9800

9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826
            Given:
                input =[[0.946741  , 0.1357001 , 0.38086128]]    # input.shape=[1,3]
                shape=[2,4]

            result.shape[output_dim_idx] = input.shape[input_dim_idx],
            output_dim_idx = 0, 
            input_dim_idx = 0,
            result.shape[0] = input.shape[0], 
            then:
                result=[[ 0.3443427 , -0.23056602,  0.3477049 ,  0.06139076]]    # result.shape=[1,4]
            
       *Case 2:
           
           Given:
               input =[[0.946741  , 0.1357001 , 0.38086128]]     # input.shape=[1,3]
               shape=[2,4]
               input_dim_idx=1
               output_dim_idx=1
         
           result.shape[output_dim_idx] = input.shape[input_dim_idx],
           output_dim_idx = 1, 
           input_dim_idx = 1,
           result.shape[1] = input.shape[1], 
           then:
               result=[[-0.23133647, -0.84195036,  0.21441269],
                       [-0.08774924,  0.25605237, -0.09403259]]    # result.shape=[2,3]
G
fix  
gongweibao 已提交
9827
    Args:
9828 9829 9830 9831 9832 9833 9834 9835
        input (Variable): A Tensor. Supported data types: float32, float64.
        shape (tuple|list): A python list or python tuple. The shape of the output Tensor, the data type is int.
        input_dim_idx (int, optional): An index used to get the input dimension value which will be used to resize the output dimension. Default  0. 
        output_dim_idx (int, optional): An index used to indicate the specific dimension that will be replaced by corresponding input dimension value. Default 0.
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
        seed (int, optional):  Random seed used for generating samples. 0 means use a seed generated by the system.Note that if seed is not 0, this operator will always generate the same random numbers every time.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output Tensor. Supported data types: float32, float64. Default float32.
G
fix  
gongweibao 已提交
9836
    Returns:
9837
        Variable: A Tensor of the specified shape filled with uniform_random values. The shape of the Tensor is determined by the shape parameter and the specified dimension of the input Tensor.
G
fix  
gongweibao 已提交
9838

9839 9840 9841
    Examples:
        .. code-block:: python

9842
            import paddle.fluid as fluid
9843 9844 9845 9846
            
            # example 1: 
            input = fluid.data(name="input", shape=[1, 3], dtype='float32')
            out_1 = fluid.layers.uniform_random_batch_size_like(input, [2, 4]) # out_1.shape=[1, 4]
9847

9848 9849 9850 9851
            # example 2: 
            out_2 = fluid.layers.uniform_random_batch_size_like(input, [2, 4], input_dim_idx=1, output_dim_idx=1) # out_2.shape=[2, 3]

            
G
fix  
gongweibao 已提交
9852 9853 9854
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9855
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9872 9873


G
gongweibao 已提交
9874
@templatedoc()
X
Xin Pan 已提交
9875
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9876
    """
9877
    Generate a random tensor whose data is drawn from a Gaussian distribution.
G
fix  
gongweibao 已提交
9878 9879

    Args:
9880 9881 9882 9883 9884 9885 9886 9887 9888
        shape (Tuple[int] | List[int]): Shape of the generated random tensor.
        
        mean (float): Mean of the random tensor, defaults to 0.0.
            
        std (float): Standard deviation of the random tensor, defaults to 1.0.
        
        seed (int): ${seed_comment}
        
        dtype(np.dtype | core.VarDesc.VarType | str): Output data type, float32 or float64.
G
fix  
gongweibao 已提交
9889 9890

    Returns:
9891
        Variable: Random tensor whose data is drawn from a Gaussian distribution, dtype: flaot32 or float64 as specified.
G
fix  
gongweibao 已提交
9892

9893
    Examples:
9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908
       .. code-block:: python
       
           # declarative mode 
           import numpy as np
           from paddle import fluid
   
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
   
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
   
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
9909

9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
    
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
               x_np = x.numpy()       
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
9928 9929 9930
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9931
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9932 9933 9934 9935 9936 9937 9938 9939 9940 9941
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9942
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9943 9944 9945 9946 9947
        })

    return out


G
gongweibao 已提交
9948
@templatedoc()
G
fix  
gongweibao 已提交
9949
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9950
    """
R
ruri 已提交
9951
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
9952

R
ruri 已提交
9953 9954 9955 9956 9957
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time. 
G
fix  
gongweibao 已提交
9958
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9959 9960

    Returns:
R
ruri 已提交
9961
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
9962

9963 9964 9965
    Examples:
        .. code-block:: python

9966
            import paddle.fluid as fluid
R
ruri 已提交
9967
            x = fluid.data(
9968 9969
                name="X",
                shape=[13, 11],
R
ruri 已提交
9970
                dtype='float32')
9971

Y
Yibing Liu 已提交
9972
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9973 9974 9975
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9976
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9988
@templatedoc()
G
fix  
gongweibao 已提交
9989 9990 9991 9992 9993 9994 9995 9996 9997
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9998
    ${comment}
G
fix  
gongweibao 已提交
9999 10000

    Args:
G
gongweibao 已提交
10001 10002
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
Y
Yibing Liu 已提交
10003 10004 10005 10006 10007 10008
        input_dim_idx (int): ${input_dim_idx_comment}
        output_dim_idx (int): ${output_dim_idx_comment}
        mean (float): ${mean_comment}
        std (float): ${std_comment}
        seed (int): ${seed_comment}
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data, float32 or float_64.
G
fix  
gongweibao 已提交
10009 10010

    Returns:
G
gongweibao 已提交
10011
        out (Variable): ${out_comment}
10012 10013 10014 10015

    Examples:
        .. code-block:: python

10016
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
10017
            input = fluid.data(name="input", shape=[13, 11], dtype='float32')
10018

Y
Yibing Liu 已提交
10019
            out = fluid.layers.gaussian_random_batch_size_like(
10020
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
10021 10022 10023
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
10024
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
10043
@templatedoc()
X
Xin Pan 已提交
10044
def sum(x):
G
fix  
gongweibao 已提交
10045
    """
G
gongweibao 已提交
10046
    ${comment}
10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076
    
    Case 1:
    ::
        Input:
            Input. Shape = [2, 3]
            Input = [[1, 2, 3],
                     [4, 5, 6]]

        Output:
            The output. Shape = [2, 3]
            Output = [[1, 2, 3],
                      [4, 5, 6]]

    Case 2:
    ::
        Input:
            First input:
            Input1. Shape = [2, 3]
            Input1 = [[1, 2, 3],
                      [4, 5, 6]]

        The second input:
            Input2. Shape = [2, 3]
            Input2 = [[7, 8, 9],
                      [10, 11, 12]]

        Output:
            The output. Shape = [2, 3]
            Output = [[8, 10, 12],
                      [14, 16, 18]]
G
fix  
gongweibao 已提交
10077 10078

    Args:
10079
        x (Variable|list(Variable)): ${x_comment}
G
fix  
gongweibao 已提交
10080 10081

    Returns:
10082
        Variable: ${out_comment}
10083 10084 10085 10086

    Examples:
        .. code-block:: python

10087
            import paddle.fluid as fluid
10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109

            input0 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=5)
            input1 = fluid.layers.fill_constant(shape=[2, 3], dtype='int64', value=3)
            sum = fluid.layers.sum([input0, input1])

            # You can print out 'sum' via executor.
            out = fluid.layers.Print(sum, message="the sum of input0 and input1: ")
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_main_program())

            # The printed result is:
            # 1570701754	the sum of input0 and input1: 	The place is:CPUPlace
            # Tensor[sum_0.tmp_0]
            #    shape: [2,3,]
            #    dtype: l
            #    data: 8,8,8,8,8,8,

            # the sum of input0 and input1 is 2-D Tensor with shape [2,3].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
G
fix  
gongweibao 已提交
10110 10111
    """

10112
    return paddle.elementwise_sum(x)
G
fix  
gongweibao 已提交
10113 10114


G
gongweibao 已提交
10115
@templatedoc()
G
fix  
gongweibao 已提交
10116 10117
def slice(input, axes, starts, ends):
    """
10118
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
10119
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
10120 10121 10122 10123 10124 10125 10126
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` (here 0 is the initial position).
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
10127
    For slicing to the end of a dimension with unknown size, it is recommended
10128
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` and ``ends``.
10129 10130 10131
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
10132

10133 10134 10135 10136 10137 10138 10139 10140
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
10141

10142 10143 10144 10145 10146
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
10147
                ends = [-1, 1000]       # -1 denotes the reverse 0th position of dimension 0.
10148
            Then:
10149
                result = [ [2, 3, 4], ] # result = data[0:1, 1:4]
G
fix  
gongweibao 已提交
10150
    Args:
10151 10152 10153 10154 10155 10156 10157 10158 10159
        input (Variable): A ``Tensor`` or ``LoDTensor`` . The data type is ``float16``, ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
G
fix  
gongweibao 已提交
10160 10161

    Returns:
10162 10163 10164 10165 10166
        Variable:  A ``Tensor`` or ``LoDTensor``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
G
fix  
gongweibao 已提交
10167

10168 10169 10170
    Examples:
        .. code-block:: python

10171
            import paddle.fluid as fluid
10172

10173 10174
            input = fluid.data(
                name="input", shape=[4, 5, 6], dtype='float32')
10175

10176 10177 10178 10179 10180 10181
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            sliced_1 = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
10182
            # sliced_1 is input[0:3, 0:2, 2:4].
10183 10184 10185 10186 10187

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
            sliced_2 = fluid.layers.slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends)
10188
            # sliced_2 is input[0:3, 0:2, 2:4].
G
fix  
gongweibao 已提交
10189
    """
10190 10191 10192
    if in_dygraph_mode():
        infer_flags = list(1 for i in range(len(axes)))
        if isinstance(starts, (list, tuple)):
L
Leo Chen 已提交
10193
            if utils._contain_var(starts):
10194 10195 10196 10197 10198 10199 10200 10201 10202
                raise TypeError(
                    "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'starts' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

        if isinstance(ends, (list, tuple)):
L
Leo Chen 已提交
10203
            if utils._contain_var(ends):
10204 10205 10206 10207 10208 10209 10210 10211
                raise TypeError(
                    "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                    "received %s, which contains Variable." % type(shape))
        else:
            raise TypeError(
                "The type of 'ends' in slice must be list[int] or tuple(int) in Dygraph mode, but "
                "received %s." % type(shape))

10212 10213
        return core.ops.slice(input, 'axes', axes, 'starts', starts, 'ends',
                              ends, 'infer_flags', infer_flags)
10214

10215 10216 10217 10218 10219 10220 10221
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")

G
fix  
gongweibao 已提交
10222
    helper = LayerHelper('slice', **locals())
10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240

    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

10241 10242 10243 10244 10245 10246 10247
    # starts
    if isinstance(starts, Variable):
        starts.stop_gradient = True
        inputs['StartsTensor'] = starts
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(starts, (list, tuple)):
        attrs['starts'] = []
L
Leo Chen 已提交
10248
        if utils._contain_var(starts):
10249 10250 10251 10252 10253 10254 10255
            inputs['StartsTensorList'] = get_new_list_tensor(starts)
            for i, dim in enumerate(starts):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
L
Leo Chen 已提交
10256 10257
        else:
            attrs['starts'] = starts
10258 10259 10260 10261 10262 10263 10264 10265

    # ends
    if isinstance(ends, Variable):
        ends.stop_gradient = True
        inputs['EndsTensor'] = ends
        infer_flags = list(-1 for i in range(len(axes)))
    elif isinstance(ends, (list, tuple)):
        attrs['ends'] = []
L
Leo Chen 已提交
10266
        if utils._contain_var(ends):
10267 10268 10269 10270 10271 10272 10273
            inputs['EndsTensorList'] = get_new_list_tensor(ends)
            for i, dim in enumerate(ends):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
L
Leo Chen 已提交
10274 10275 10276
        else:
            attrs['ends'] = ends

10277 10278
    # infer_flags
    attrs['infer_flags'] = infer_flags
X
Xin Pan 已提交
10279 10280
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
10281
    helper.append_op(
10282
        type='slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
G
fix  
gongweibao 已提交
10283 10284 10285 10286

    return out


W
wangchaochaohu 已提交
10287 10288 10289
@templatedoc()
def strided_slice(input, axes, starts, ends, strides):
    """
W
wangchaochaohu 已提交
10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302
    This operator produces a slice of ``input`` along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses ``axes``, ``starts`` and ``ends`` attributes to specify the start and
    end dimension for each axis in the list of axes and Slice uses this information
    to slice the input data tensor. If a negative value is passed to
    ``starts`` or ``ends`` such as :math:`-i`,  it represents the reverse position of the
    axis :math:`i-1` th(here 0 is the initial position). The ``strides`` represents steps of
    slicing and if the ``strides`` is negative, slice operation is in the opposite direction.
    If the value passed to ``starts`` or ``ends`` is greater than n
    (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of ``axes`` must be equal to ``starts`` , ``ends`` and ``strides``.
    Following examples will explain how strided_slice works:
W
wangchaochaohu 已提交
10303 10304 10305 10306 10307 10308 10309 10310 10311

    .. code-block:: text

        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
W
wangchaochaohu 已提交
10312
                strides = [1, 1]
W
wangchaochaohu 已提交
10313
            Then:
10314
                result = [ [5, 6, 7], ]
W
wangchaochaohu 已提交
10315 10316 10317 10318 10319
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10320
                starts = [0, 1]
W
wangchaochaohu 已提交
10321 10322 10323 10324 10325 10326 10327 10328 10329
                ends = [2, 0]
                strides = [1, -1]
            Then:
                result = [ [8, 7, 6], ]
        
        Case3:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
10330
                starts = [0, 1]
10331 10332
                ends = [-1, 1000]
                strides = [1, 3]
W
wangchaochaohu 已提交
10333
            Then:
10334 10335
                result = [ [2], ]
    Args:
W
wangchaochaohu 已提交
10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347
        input (Variable): An N-D ``Tensor`` or ``LoDTensor`` . The data type is ``float32``, ``float64``, ``int32`` or ``int64``.
        axes (list|tuple): The data type is ``int32`` . Axes that `starts` and `ends` apply to.
                            It's optional. If it is not provides, it will be treated as :math:`[0,1,...,len(starts)-1]`.
        starts (list|tuple|Variable): The data type is ``int32`` . If ``starts`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``starts`` is an Variable, it should be an 1-D Tensor.
                It represents starting indices of corresponding axis in ``axes``.
        ends (list|tuple|Variable): The data type is ``int32`` . If ``ends`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``ends`` is an Variable, it should be an 1-D Tensor .
                It represents ending indices of corresponding axis in ``axes``.
        strides (list|tuple|Variable): The data type is ``int32`` . If ``strides`` is a list or tuple, the elements of
                it should be integers or Tensors with shape [1]. If ``strides`` is an Variable, it should be an 1-D Tensor .
                It represents slice step of corresponding axis in ``axes``.
10348 10349

    Returns:
W
wangchaochaohu 已提交
10350 10351 10352 10353 10354 10355
        Variable:  A ``Tensor`` or ``LoDTensor`` with the same dimension as ``input``. The data type is same as ``input``.

    Raises:
        TypeError: The type of ``starts`` must be list, tuple or Variable.
        TypeError: The type of ``ends`` must be list, tuple or Variable.
        TypeError: The type of ``strides`` must be list, tuple or Variable.
10356

W
wangchaochaohu 已提交
10357 10358 10359 10360 10361
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

W
wangchaochaohu 已提交
10362
            input = fluid.data(
W
wangchaochaohu 已提交
10363 10364
                name="input", shape=[3, 4, 5, 6], dtype='float32')

10365 10366 10367 10368 10369
            # example 1:
            # attr starts is a list which doesn't contain tensor Variable.
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
W
wangchaochaohu 已提交
10370 10371 10372 10373 10374
            strides_1 = [1, 1, 1]
            strides_2 = [1, 1, 2]
            sliced_1 = fluid.layers.strided_slice(input, axes=axes, starts=starts, ends=ends, strides=strides_1)
            # sliced_1 is input[:, 0:3:1, 0:2:1, 2:4:1].

10375 10376 10377 10378

            # example 2:
            # attr starts is a list which contain tensor Variable.
            minus_3 = fluid.layers.fill_constant([1], "int32", -3)
W
wangchaochaohu 已提交
10379 10380
            sliced_2 = fluid.layers.strided_slice(input, axes=axes, starts=[minus_3, 0, 2], ends=ends, strides=strides_2)
            # sliced_2 is input[:, 0:3:1, 0:2:1, 2:4:2].
W
wangchaochaohu 已提交
10381
    """
10382 10383 10384 10385 10386 10387 10388 10389 10390 10391
    if not isinstance(starts, (list, tuple, Variable)):
        raise ValueError(
            "Input starts must be an Variable, python list or tuple.")
    if not isinstance(ends, (list, tuple, Variable)):
        raise ValueError(
            "Input ends must be an Variable, python list or tuple.")
    if not isinstance(strides, (list, tuple, Variable)):
        raise ValueError(
            "Input strides must be an Variable, python list or tuple.")

W
wangchaochaohu 已提交
10392 10393
    helper = LayerHelper('strided_slice', **locals())

10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413
    def get_new_list_tensor(old_list):
        new_list_tensor = []
        for dim in old_list:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_list_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int32')
                fill_constant([1], 'int32', dim, force_cpu=True, out=temp_out)
                new_list_tensor.append(temp_out)
        return new_list_tensor

    inputs = {'Input': input}
    attrs = {'axes': axes}
    infer_flags = list(1 for i in range(len(axes)))

    if in_dygraph_mode():
        inputs = {'Input': input}
        attrs = {
W
wangchaochaohu 已提交
10414 10415 10416
            'axes': axes,
            'starts': starts,
            'ends': ends,
10417 10418 10419 10420 10421 10422 10423 10424 10425 10426
            'strides': strides,
            'infer_flags': infer_flags
        }
    else:
        # starts
        if isinstance(starts, Variable):
            starts.stop_gradient = True
            inputs['StartsTensor'] = starts
        elif isinstance(starts, (list, tuple)):
            attrs['starts'] = []
L
Leo Chen 已提交
10427
            if utils._contain_var(starts):
10428 10429 10430 10431 10432 10433 10434
                inputs['StartsTensorList'] = get_new_list_tensor(starts)
                for i, dim in enumerate(starts):
                    if isinstance(dim, Variable):
                        attrs['starts'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['starts'].append(dim)
L
Leo Chen 已提交
10435 10436
            else:
                attrs['starts'] = starts
10437 10438 10439 10440 10441 10442 10443

        # ends
        if isinstance(ends, Variable):
            ends.stop_gradient = True
            inputs['EndsTensor'] = ends
        elif isinstance(ends, (list, tuple)):
            attrs['ends'] = []
L
Leo Chen 已提交
10444
            if utils._contain_var(ends):
10445 10446 10447 10448 10449 10450 10451
                inputs['EndsTensorList'] = get_new_list_tensor(ends)
                for i, dim in enumerate(ends):
                    if isinstance(dim, Variable):
                        attrs['ends'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['ends'].append(dim)
L
Leo Chen 已提交
10452 10453 10454
            else:
                attrs['ends'] = ends

10455 10456 10457 10458 10459 10460
        # strides
        if isinstance(strides, Variable):
            strides.stop_gradient = True
            inputs['StridesTensor'] = strides
        elif isinstance(strides, (list, tuple)):
            attrs['strides'] = []
L
Leo Chen 已提交
10461
            if utils._contain_var(strides):
10462 10463 10464 10465 10466 10467 10468
                inputs['StridesTensorList'] = get_new_list_tensor(strides)
                for i, dim in enumerate(strides):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
L
Leo Chen 已提交
10469 10470
            else:
                attrs['strides'] = strides
10471 10472 10473 10474 10475
        attrs['infer_flags'] = infer_flags
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
    helper.append_op(
        type='strided_slice', inputs=inputs, attrs=attrs, outputs={'Out': out})
W
wangchaochaohu 已提交
10476 10477 10478 10479

    return out


G
fix  
gongweibao 已提交
10480 10481
def shape(input):
    """
C
chengduozh 已提交
10482 10483
    **Shape Layer**

C
fix doc  
chengduozh 已提交
10484
    Get the shape of the input.
G
fix  
gongweibao 已提交
10485 10486

    Args:
10487
        input (Variable): The input N-D Tensor. Datatype can be float32, float64, int32, int64.
G
fix  
gongweibao 已提交
10488 10489

    Returns:
10490
        Variable (Tensor): The shape of the input variable.
G
fix  
gongweibao 已提交
10491

10492 10493 10494
    Examples:
        .. code-block:: python

10495
            import paddle.fluid as fluid
10496
            import numpy as np
10497

10498 10499 10500 10501 10502 10503 10504 10505 10506 10507
            inputs = fluid.layers.data(name="x", shape=[3, 100, 100], dtype="float32")
            output = fluid.layers.shape(inputs)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.ones((3, 100, 100)).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([  3, 100, 100], dtype=int32)]
G
fix  
gongweibao 已提交
10508 10509 10510
    """

    helper = LayerHelper('shape', **locals())
10511
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
10512
    helper.append_op(
G
fix  
gongweibao 已提交
10513
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
10514 10515

    return out
G
merge  
gongweibao 已提交
10516 10517


Z
zhoukunsheng 已提交
10518 10519
def rank(input):
    """
10520
    The OP returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
10521 10522

    Args:
10523
        input (Variable): The input N-D tensor with shape of :math:`[N_1, N_2, ..., N_k]`, the data type is arbitrary.
Z
zhoukunsheng 已提交
10524 10525

    Returns:
10526
        Variable, the output data type is int32.: The 0-D tensor with the dimensions of the input variable.
Z
zhoukunsheng 已提交
10527 10528 10529 10530

    Examples:
        .. code-block:: python

10531 10532
            import paddle.fluid as fluid

10533 10534
            input = fluid.data(name="input", shape=[3, 100, 100], dtype="float32")
            rank = fluid.layers.rank(input) # rank=(3,)
Z
zhoukunsheng 已提交
10535 10536 10537 10538 10539 10540 10541 10542
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


Z
zhoukunsheng 已提交
10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571
def size(input):
    """
    **Size Layer**

    Returns the number of elements for a tensor, which is a int64 Tensor with shape [1].

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The number of elements for the input variable.

    Examples:
        .. code-block:: python

            import paddle.fluid.layers as layers

            input = layers.data(
                name="input", shape=[3, 100], dtype="float32", append_batch_size=False)
            rank = layers.size(input) # 300
    """

    helper = LayerHelper('size', **locals())
    out = helper.create_variable_for_type_inference(dtype='int64')
    helper.append_op(type='size', inputs={'Input': input}, outputs={'Out': out})

    return out


S
sneaxiy 已提交
10572 10573 10574 10575
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
10576

S
sneaxiy 已提交
10577 10578
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
10579 10580 10581 10582
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
    check_variable_and_dtype(
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], op_type)
10583

S
sneaxiy 已提交
10584 10585
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
10586
    name = helper.kwargs.get('name', None)
10587 10588 10589 10590 10591
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
10592

S
sneaxiy 已提交
10593 10594 10595 10596 10597 10598 10599 10600 10601 10602
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


S
sneaxiy 已提交
10603
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
10604
    """
10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617
    Scale operator.

    Putting scale and bias to the input Tensor as following:

    ``bias_after_scale`` is True:

    .. math::
                            Out=scale*X+bias

    ``bias_after_scale`` is False:

    .. math::
                            Out=scale*(X+bias)
S
sneaxiy 已提交
10618 10619

    Args:
10620
        x(Variable): Input N-D Tensor of scale operator. Data type can be float32, float64, int8, int16, int32, int64, uint8.
10621
        scale(float|Variable): The scale factor of the input, it should be a float number or a Variable with shape [1] and data type as float32.
10622 10623 10624 10625
        bias(float): The bias to be put on the input.
        bias_after_scale(bool): Apply bias addition after or before scaling. It is useful for numeric stability in some circumstances.
        act(str, optional): Activation applied to the output such as tanh, softmax, sigmoid, relu.
        name(str, optional): The default value is None. Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` 
S
sneaxiy 已提交
10626 10627

    Returns:
10628
        Variable(Tensor|LoDTensor): Output tensor of scale operator, with shape and data type same as input.
10629 10630 10631 10632 10633

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
10634 10635 10636 10637 10638 10639 10640 10641 10642
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
            output = fluid.layers.scale(inputs, scale = 2.0, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
10643

10644 10645
            res = exe.run(fluid.default_main_program(), feed={'x':img}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]
10646 10647 10648 10649 10650 10651 10652 10653

        .. code-block:: python

            # scale with parameter scale as Variable
            import paddle.fluid as fluid
            import numpy as np

            inputs = fluid.layers.data(name="x", shape=[2, 3], dtype='float32')
10654
            scale = fluid.layers.data(name="scale", shape=[1], dtype='float32',
10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666
                                      append_batch_size=False)
            output = fluid.layers.scale(inputs, scale = scale, bias = 1.0)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
            scale_np = np.array([2.]).astype(np.float32)

            res = exe.run(fluid.default_main_program(), feed={'x':img, 'scale':scale_np}, fetch_list=[output])
            print(res) # [array([[ 3.,  5.,  7.], [ 9., 11., 13.]], dtype=float32)]

S
sneaxiy 已提交
10667
    """
10668 10669 10670 10671 10672 10673 10674 10675

    if in_dygraph_mode():
        _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
        out = core.ops.scale(x, 'scale',
                             float(_scale), 'bias',
                             float(bias), 'bias_after_scale', bias_after_scale)
        return dygraph_utils._append_activation_in_dygraph(out)

10676
    inputs = {'X': [x]}
10677 10678 10679 10680 10681
    attrs = {
        'bias': float(bias),
        'bias_after_scale': bias_after_scale,
    }
    if isinstance(scale, Variable):
10682
        inputs['ScaleTensor'] = [scale]
10683 10684
    else:
        attrs['scale'] = float(scale)
10685
    helper = LayerHelper('scale', **locals())
10686 10687 10688 10689 10690
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
10691

S
sneaxiy 已提交
10692
    helper.append_op(
10693
        type='scale', inputs=inputs, outputs={'Out': out}, attrs=attrs)
S
sneaxiy 已提交
10694
    return helper.append_activation(out)
S
sneaxiy 已提交
10695 10696


X
Xin Pan 已提交
10697
def elementwise_add(x, y, axis=-1, act=None, name=None):
10698 10699 10700 10701 10702 10703 10704 10705 10706 10707
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10708 10709
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10710 10711
            }

10712 10713
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10714
        z = fluid.layers.elementwise_add(x, y)
10715
        # z = x + y
10716 10717 10718 10719 10720 10721

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10722
        print(z_value) # [3., 8., 6.]
10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10736 10737
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10738
        z = fluid.layers.elementwise_add(x, y, axis=1)
10739
        # z = x + y
10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10761 10762
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10763
        z = fluid.layers.elementwise_add(x, y, axis=3)
10764
        # z = x + y
10765 10766 10767 10768 10769 10770 10771 10772 10773

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10774 10775 10776 10777
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_add')

S
sneaxiy 已提交
10778 10779 10780
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
10781
def elementwise_div(x, y, axis=-1, act=None, name=None):
10782 10783 10784 10785 10786 10787 10788 10789 10790 10791
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10792 10793
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10794 10795
            }

10796 10797
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10798
        z = fluid.layers.elementwise_div(x, y)
10799
        # z = x / y
10800 10801 10802 10803 10804 10805

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10806
        print(z_value) # [2., 0.6, 2.]
10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10820 10821
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10822
        z = fluid.layers.elementwise_div(x, y, axis=1)
10823
        # z = x / y
10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10845 10846
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10847
        z = fluid.layers.elementwise_div(x, y, axis=3)
10848
        # z = x / y
10849 10850 10851 10852 10853 10854 10855 10856 10857

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10858 10859 10860 10861
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div')

S
sneaxiy 已提交
10862 10863 10864
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
10865
def elementwise_sub(x, y, axis=-1, act=None, name=None):
10866 10867 10868 10869 10870 10871 10872 10873 10874 10875
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10876 10877
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10878 10879
            }

10880 10881
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10882
        z = fluid.layers.elementwise_sub(x, y)
10883
        # z = x - y
10884 10885 10886 10887 10888 10889

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10890
        print(z_value) # [1., -2., 2.]
10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10904 10905
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10906
        z = fluid.layers.elementwise_sub(x, y, axis=1)
10907
        # z = x - y
10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
10929 10930
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
10931
        z = fluid.layers.elementwise_sub(x, y, axis=3)
10932
        # z = x - y
10933 10934 10935 10936 10937 10938 10939 10940 10941

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]

    """
10942 10943 10944 10945
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub')

S
sneaxiy 已提交
10946 10947 10948
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
10949
def elementwise_mul(x, y, axis=-1, act=None, name=None):
10950 10951 10952 10953 10954 10955 10956 10957 10958 10959
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
10960 10961
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
10962 10963
            }

10964 10965
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
10966
        z = fluid.layers.elementwise_mul(x, y)
10967
        # z = x * y
10968 10969 10970 10971 10972 10973

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

10974
        print(z_value) # [2., 15., 8.]
10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

10988 10989
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
10990
        z = fluid.layers.elementwise_mul(x, y, axis=1)
10991
        # z = x * y
10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) # z.shape=[2,3,4,5]


    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                "y": np.random.randint(1, 5, size=[5]).astype('float32')
            }
        
11013 11014
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[5], dtype='float32')
11015
        z = fluid.layers.elementwise_mul(x, y, axis=3)
11016
        # z = x * y
11017 11018 11019 11020 11021 11022 11023 11024 11025

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])
        print(z_value) # z.shape=[2,3,4,5]
 
    """
11026 11027 11028 11029
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul')

S
sneaxiy 已提交
11030 11031 11032
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
11033
def elementwise_max(x, y, axis=-1, act=None, name=None):
11034 11035 11036 11037 11038 11039 11040 11041 11042 11043
    """
Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11044 11045
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11046 11047
            }

11048 11049
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070
        z = fluid.layers.elementwise_max(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 5, 4]


    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

11071 11072
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083
        z = fluid.layers.elementwise_max(x, y, axis=1)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]]

    """
11084 11085 11086 11087
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_max')

S
sneaxiy 已提交
11088 11089 11090
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
11091
def elementwise_min(x, y, axis=-1, act=None, name=None):
11092 11093 11094 11095 11096 11097 11098 11099 11100 11101
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11102 11103
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11104 11105
            }

11106 11107
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11108
        z = fluid.layers.elementwise_min(x, y)
11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 2]

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.ones((2, 3, 4, 5)).astype('float32'),
                "y": np.zeros((3, 4)).astype('float32')
            }

11128 11129
        x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
        y = fluid.data(name="y", shape=[3,4], dtype='float32')
11130
        z = fluid.layers.elementwise_min(x, y, axis=1)
11131 11132 11133 11134 11135 11136 11137 11138 11139

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)

        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]]
    """
11140 11141 11142
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_min')
11143

S
sneaxiy 已提交
11144 11145 11146
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
11147
def elementwise_pow(x, y, axis=-1, act=None, name=None):
11148 11149 11150 11151 11152 11153 11154 11155 11156 11157
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
11158 11159
                "x": np.array([2, 3, 4]).astype('float32'),
                "y": np.array([1, 5, 2]).astype('float32')
11160 11161
            }

11162 11163
        x = fluid.data(name="x", shape=[3], dtype='float32')
        y = fluid.data(name="y", shape=[3], dtype='float32')
11164 11165 11166 11167 11168 11169 11170 11171 11172
        z = fluid.layers.elementwise_pow(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[2, 243, 16]
    """
11173 11174 11175
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_pow')
S
sneaxiy 已提交
11176 11177 11178
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


11179
def elementwise_mod(x, y, axis=-1, act=None, name=None):
11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 6, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_mod(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[1, 3, 3]
    """
11205 11206 11207 11208
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mod')

11209 11210 11211 11212
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237
    """
Examples:

    ..  code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data():
            return {
                "x": np.array([10, 15, 8]).astype('int32'),
                "y": np.array([3, 7, 5]).astype('int32')
            }

        x = fluid.data(name="x", shape=[3], dtype='int32')
        y = fluid.data(name="y", shape=[3], dtype='int32')
        z = fluid.layers.elementwise_floordiv(x, y)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        z_value = exe.run(feed=gen_data(),
                            fetch_list=[z.name])

        print(z_value) #[3, 2, 1]
    """
11238 11239 11240 11241
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_floordiv')

11242 11243 11244
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
11245
for func in [
11246 11247 11248 11249
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
11250 11251
        elementwise_max,
        elementwise_pow,
11252
        elementwise_min,
11253 11254
        elementwise_mod,
        elementwise_floordiv,
11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
            "axis (int32, optional): If X.dimension != Y.dimension, \
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
            "act (string, optional): Activation applied to the output. \
            Default is None. Details: :ref:`api_guide_activations_en` ",
            "name (string, optional): Name of the output. \
            Default is None. It's used to print debug info for developers. Details: \
            :ref:`api_guide_Name` "
        ],
        skip_attrs_set={"x_data_format", "y_data_format", "axis"
                        }) + """\n""" + str(func.__doc__)

11272
for func in []:
S
sneaxiy 已提交
11273 11274 11275 11276
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
11277 11278
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
11279
        ])
11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
11317 11318


11319
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
11320 11321
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
11322 11323
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
11324 11325

    if out is None:
11326 11327 11328 11329 11330
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)
M
minqiyang 已提交
11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
11343
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
11344
    """
W
Wilber 已提交
11345 11346 11347 11348 11349 11350 11351 11352
    logical_and Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \land Y
M
minqiyang 已提交
11353 11354 11355 11356

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11357 11358
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11359 11360

    Returns:
W
Wilber 已提交
11361
        ${out_type}: ${out_comment}
11362 11363 11364 11365

    Examples:
        .. code-block:: python

11366
            import paddle.fluid as fluid
W
Wilber 已提交
11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_and(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_and(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, False], [False, False]]
M
minqiyang 已提交
11385 11386 11387 11388 11389 11390 11391
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11392
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
11393
    """
W
Wilber 已提交
11394 11395 11396 11397 11398 11399 11400 11401
    logical_or Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = X \lor Y
M
minqiyang 已提交
11402 11403 11404 11405

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11406 11407
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11408 11409

    Returns:
W
Wilber 已提交
11410
        ${out_type}: ${out_comment}
11411 11412 11413 11414

    Examples:
        .. code-block:: python

11415
            import paddle.fluid as fluid
W
Wilber 已提交
11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_or(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_or(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[True, True], [False, True]]
M
minqiyang 已提交
11434 11435 11436 11437 11438 11439 11440
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11441
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
11442
    """
W
Wilber 已提交
11443 11444 11445 11446 11447 11448 11449 11450
    logical_xor Operator

    It operates element-wise on X and Y, and returns the Out. X, Y and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = (X \lor Y) \land \lnot (X \land Y)
M
minqiyang 已提交
11451 11452 11453 11454

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
W
Wilber 已提交
11455 11456
        out(LoDTensor or Tensor): The LoDTensor or Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11457 11458

    Returns:
W
Wilber 已提交
11459
        ${out_type}: ${out_comment}
11460 11461 11462 11463

    Examples:
        .. code-block:: python

11464
            import paddle.fluid as fluid
W
Wilber 已提交
11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            y = fluid.layers.data(name='y', shape=[2], dtype='bool')
            res = fluid.layers.logical_xor(x=x, y=y)
            # The comment lists another available method.
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_xor(x=x, y=y, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0], [0, 1]]).astype(np.bool)
            y_i = np.array([[1, 1], [0, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[res])
            print(res_val) # [[False, True], [False, True]]
M
minqiyang 已提交
11483 11484 11485 11486 11487 11488 11489
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
11490
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
11491
    """
W
Wilber 已提交
11492 11493 11494 11495 11496 11497 11498 11499
    logical_not Operator

    It operates element-wise on X, and returns the Out. X and Out are N-dim boolean LoDTensor or Tensor.
    Each element of Out is calculated by
    
    .. math::

        Out = \lnot X
M
minqiyang 已提交
11500 11501 11502

    Args:
        x(${x_type}): ${x_comment}
W
Wilber 已提交
11503 11504
        out(LoDTensor/Tensor): The LoDTensor/Tensor that specifies the output of the operator, which can be any Variable that has been created in the program. The default value is None, and a new Variable will be created to save the output.
        name(str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`
M
minqiyang 已提交
11505 11506

    Returns:
W
Wilber 已提交
11507
        ${out_type}: ${out_comment}
11508 11509 11510 11511

    Examples:
        .. code-block:: python

11512
            import paddle.fluid as fluid
W
Wilber 已提交
11513 11514 11515 11516 11517
            import numpy as np

            # Graph organizing
            x = fluid.layers.data(name='x', shape=[2], dtype='bool')
            res = fluid.layers.logical_not(x)
T
tianshuo78520a 已提交
11518
            # The comment lists another avaliable method.
W
Wilber 已提交
11519 11520 11521 11522 11523 11524 11525 11526 11527 11528
            # res = fluid.layers.fill_constant(shape=[2], dtype='bool', value=0)
            # fluid.layers.logical_not(x, out=res)

            # Create an executor using CPU as an example
            exe = fluid.Executor(fluid.CPUPlace())

            # Execute
            x_i = np.array([[1, 0]]).astype(np.bool)
            res_val, = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res])
            print(res_val) # [[False, True]]
M
minqiyang 已提交
11529 11530 11531 11532
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
11533 11534 11535 11536 11537 11538 11539 11540 11541


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
11542 11543 11544 11545 11546
        min(float): ${min_comment}
        max(float): ${max_comment}
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
11547 11548

    Returns:
S
SunGaofeng 已提交
11549 11550 11551 11552
        ${out_comment}

    Return Type:
        ${out_type}
11553 11554 11555 11556

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11557
            import paddle.fluid as fluid
S
SunGaofeng 已提交
11558
            input = fluid.data(
11559 11560
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
11561 11562 11563 11564 11565
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
11566 11567
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11568 11569 11570

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
W
wangguanzhong 已提交
11590 11591 11592
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default. 
11593 11594

    Returns:
W
wangguanzhong 已提交
11595 11596
        Variable:

11597
        out(${out_type}): ${out_comment}
11598

W
wangguanzhong 已提交
11599

11600 11601 11602
    Examples:
        .. code-block:: python

11603
            import paddle.fluid as fluid
11604 11605
            input = fluid.data(
                name='data', shape=[None, 1], dtype='float32')
11606
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
11607 11608 11609 11610 11611
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
11612 11613
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
11614 11615 11616

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
11617 11618 11619 11620 11621 11622 11623 11624

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11638 11639 11640 11641

    Examples:
        .. code-block:: python

11642
            import paddle.fluid as fluid
11643 11644 11645
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
11646
    """
11647
    if in_dygraph_mode():
11648
        return core.ops.mean(x)
X
Xin Pan 已提交
11649 11650

    helper = LayerHelper("mean", **locals())
11651
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
11652 11653 11654 11655 11656
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
X
Xin Pan 已提交
11657 11658 11659 11660 11661 11662 11663

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
11675 11676 11677 11678

    Examples:
        .. code-block:: python

11679
            import paddle.fluid as fluid
11680 11681 11682 11683 11684
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
11697 11698
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
11699 11700 11701 11702 11703 11704 11705 11706
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
11707 11708

    Args:
L
liu zhengxi 已提交
11709 11710 11711 11712 11713
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1. 
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1. 
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. 
X
Xin Pan 已提交
11714 11715

    Returns:
L
liu zhengxi 已提交
11716
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
11717 11718

    Examples:
L
liu zhengxi 已提交
11719
        ..  code-block:: python
11720 11721 11722 11723 11724 11725 11726 11727 11728
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
11729
    """
11730
    if in_dygraph_mode():
11731 11732
        return core.ops.mul(x, y, 'x_num_col_dims', x_num_col_dims,
                            'y_num_col_dims', y_num_col_dims)
X
Xin Pan 已提交
11733

11734 11735
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
11736
    helper = LayerHelper("mul", **locals())
11737 11738
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
11739 11740 11741 11742 11743
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
X
Xin Pan 已提交
11744 11745

    helper.append_op(
11746 11747
        type="mul", inputs={"X": x,
                            "Y": y}, attrs=attrs, outputs={"Out": out})
X
Xin Pan 已提交
11748 11749 11750 11751
    return out


@templatedoc()
11752
def maxout(x, groups, name=None, axis=1):
X
Xin Pan 已提交
11753 11754 11755 11756 11757
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
11758 11759
        groups(int): ${groups_comment}
        axis(int, optional): ${axis_comment}
W
wangguanzhong 已提交
11760 11761 11762
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
X
Xin Pan 已提交
11763 11764

    Returns:
11765
        Variable: ${out_comment}
J
jerrywgz 已提交
11766

11767 11768
    Raises:
        ValueError: If `axis` is not 1, -1 or 3.
11769
        ValueError: If the number of input channels can not be divisible by `groups`.
W
wangguanzhong 已提交
11770

J
jerrywgz 已提交
11771 11772 11773
    Examples:
        .. code-block:: python

11774
            import paddle.fluid as fluid
11775
            input = fluid.data(
J
jerrywgz 已提交
11776
                name='data', 
11777
                shape=[None, 256, 32, 32], 
J
jerrywgz 已提交
11778 11779
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
11780 11781
    """
    helper = LayerHelper("maxout", **locals())
11782 11783 11784 11785 11786 11787
    if axis not in [1, -1, 3]:
        raise ValueError(
            "Attr(axis) should be 1 when data format is NCHW, -1 or 3 when data format is NHWC. Received "
            "Attr(axis): %s." % str(axis))
    if axis == -1:
        axis = 3
X
Xin Pan 已提交
11788

11789 11790 11791 11792 11793
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
X
Xin Pan 已提交
11794 11795 11796 11797

    helper.append_op(
        type="maxout",
        inputs={"X": x},
11798 11799
        attrs={"groups": groups,
               "axis": axis},
X
Xin Pan 已提交
11800 11801
        outputs={"Out": out})
    return out
11802 11803


J
JiabinYang 已提交
11804
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
11805
    """
J
JiabinYang 已提交
11806
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
11807

11808 11809 11810
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of \
        theinput LoDtensor where values from the height and width dimensions are moved to the channel \
        dimension.
J
JiabinYang 已提交
11811
    The attr blocksize indicates the input block size.
11812

T
tianshuo78520a 已提交
11813
    space_to_depth will reorganize the elements of input with shape[batch, channel, height, width] \
11814 11815
        according to blocksize to construct output with shape \
        [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
11816

J
JiabinYang 已提交
11817 11818 11819 11820 11821
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize

11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838
    This OP is useful for resizing the activations between convolutions \
        (but keeping all data)

    .. code-block:: text

        Given the input x with the shape [1, 1, 4, 4]:
        x.data = [[[[1,   2,  5,  6],
                    [3,   4,  7,  8],
                    [9,  10, 13, 14],
                    [11, 12, 15, 16]]]]
        blocksize = 2

        then get the output with the shape [1, 4, 2, 2]:
        out.data = [[[[1,   2],  [3,  4]],
                     [[5,   6],  [7,  8]],
                     [[9,  10], [11, 12]],
                     [[13, 14], [15, 16]]]]
J
JiabinYang 已提交
11839

J
JiabinYang 已提交
11840
    Args:
11841 11842 11843 11844 11845 11846
        x (Variable): The input, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel, height, width]
        blocksize (int): The blocksize to select the element on each feature map should be > 2
        name(str, optional): For detailed information, please refer \
            to :ref:`api_guide_Name`. Usually name is no need to set and \
            None by default.
J
JiabinYang 已提交
11847

11848 11849 11850 11851
    Returns: The output, which should be 4 dims Tensor or LodTensor, with the shape \
            [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]

    Return Type: Variable
J
JiabinYang 已提交
11852 11853

    Raises:
11854
        TypeError: blocksize type must be int64.
J
JiabinYang 已提交
11855 11856 11857

    Examples:
        .. code-block:: python
11858
    
11859 11860
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
11861

11862 11863
            data = fluid.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
11864
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
11865
                x=data, blocksize=2)
11866

11867
            exe = fluid.Executor(fluid.CPUPlace())
11868
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
11869 11870 11871 11872 11873 11874 11875

            print(data_np)
            #array([[[[ 0.,  1.], [ 2.,  3.]],
            #        [[ 4.,  5.], [ 6.,  7.]],
            #        [[ 8.,  9.], [10., 11.]],
            #        [[12., 13.], [14., 15.]]]], dtype=float32)

11876
            out_main = exe.run(fluid.default_main_program(),
11877 11878 11879 11880 11881 11882 11883 11884
                        feed={'data': data_np},
                        fetch_list=[space_to_depthed])

            print(out_main)
            #[array([[[[ 0.]], [[ 4.]], [[ 1.]], [[ 5.]],
            #         [[ 8.]], [[12.]], [[ 9.]], [[13.]],
            #         [[ 2.]], [[ 6.]], [[ 3.]], [[ 7.]],
            #         [[10.]], [[14.]], [[11.]], [[15.]]]], dtype=float32)]
11885

J
JiabinYang 已提交
11886 11887
    """

J
JiabinYang 已提交
11888
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
11889

J
JiabinYang 已提交
11890 11891
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
11892

11893 11894 11895 11896 11897 11898
    if name is None:
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
J
JiabinYang 已提交
11899 11900

    helper.append_op(
J
JiabinYang 已提交
11901
        type="space_to_depth",
J
JiabinYang 已提交
11902
        inputs={"X": x},
J
JiabinYang 已提交
11903
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
11904
        outputs={"Out": out})
J
JiabinYang 已提交
11905 11906
    return out

J
JiabinYang 已提交
11907

11908 11909 11910 11911 11912 11913
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
11914 11915 11916 11917 11918
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
11919

11920 11921 11922
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
L
LielinJiang 已提交
11923
            is applied in the second dimension.The data type is float32 or float64.
11924 11925
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
L
LielinJiang 已提交
11926
            the input.The data type is float32 or float64.
11927 11928
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
L
LielinJiang 已提交
11929
            The data type is float32 or float64.
11930 11931 11932 11933 11934
        data_layout (str, optional): Specify the data format of the input, and the data format of the output 
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. If input is 2D Tensor, you can ignore 
            data_layout.
L
LielinJiang 已提交
11935 11936
        name (str, default None): The name of this layer. For more information,
            please refer to :ref:`api_guide_Name` .
11937
        act (str, default None): Activation to be applied to the output of this layer.
11938 11939

    Returns:
L
LielinJiang 已提交
11940
        Variable: A tensor which has the same shape, data layout and data type with x.
B
Bai Yifan 已提交
11941 11942 11943

    Examples:
        .. code-block:: python
L
LielinJiang 已提交
11944 11945

            import numpy as np
B
Bai Yifan 已提交
11946
            import paddle.fluid as fluid
L
LielinJiang 已提交
11947 11948 11949 11950 11951 11952 11953 11954 11955 11956

            use_gpu = False
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
            exe = fluid.Executor(place)

            data = fluid.data(name='data', shape=[None, 1, 2, 2], dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[1], dtype="float32",
                                    default_initializer=fluid.initializer.Constant(2.0))
            input_bias = fluid.layers.create_parameter(shape=[1],dtype="float32",
                                    default_initializer=fluid.initializer.Constant(0.5))
B
Bai Yifan 已提交
11957
            out = fluid.layers.affine_channel(data,scale=input_scale,
L
LielinJiang 已提交
11958 11959 11960 11961 11962 11963 11964 11965 11966 11967
                                    bias=input_bias)

            exe.run(fluid.default_startup_program())
            test_program = fluid.default_main_program().clone(for_test=True)

            [out_array] = exe.run(test_program,
                                  fetch_list=out,
                                  feed={'data': np.ones([1,1,2,2]).astype('float32')})
            # out_array is [[[[2.5, 2.5],
            #                [2.5, 2.5]]]] with shape: [1, 1, 2, 2]
B
Bai Yifan 已提交
11968

11969 11970
    """
    helper = LayerHelper("affine_channel", **locals())
11971 11972 11973 11974 11975 11976

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
11977 11978 11979 11980 11981 11982 11983 11984

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
11985
    return helper.append_activation(out)
11986 11987


B
barrierye 已提交
11988
def similarity_focus(input, axis, indexes, name=None):
11989
    """
B
barrierye 已提交
11990
    SimilarityFocus Operator
B
barrierye 已提交
11991 11992

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
11993

11994 11995 11996
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
11997
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
11998 11999 12000 12001 12002 12003 12004
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
12005
       each index.
B
barrierye 已提交
12006 12007 12008 12009
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
12059
    Args:
12060
        input(Variable): The input tensor variable(default float). It should
Y
Yibing Liu 已提交
12061 12062
            be a 4-D tensor with shape [BatchSize, A, B, C]. Data type is 
            float32 or float64.
B
barrierye 已提交
12063
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
12064
            1, 2 or 3.
B
barrierye 已提交
12065
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
12066 12067

    Returns:
H
haowang101779990 已提交
12068 12069
        Variable: A tensor variable with the same shape and same type \
                  as the input.
12070

B
barrierye 已提交
12071 12072
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
12073

12074
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
12075
            data = fluid.data(
Y
Yibing Liu 已提交
12076 12077
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

12090 12091 12092 12093 12094
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
12095 12096 12097 12098 12099 12100 12101
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
12102 12103


M
minqiyang 已提交
12104 12105
def hash(input, hash_size, num_hash=1, name=None):
    """
Z
zhupengyang 已提交
12106
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
12107 12108
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
12109 12110

    Args:
Z
zhupengyang 已提交
12111 12112 12113 12114 12115 12116
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
12117 12118

    Returns:
Z
zhupengyang 已提交
12119
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
12120 12121

    Examples:
Z
zhupengyang 已提交
12122
        .. code-block:: python
H
haowang101779990 已提交
12123

12124
            import paddle.fluid as fluid
Z
zhupengyang 已提交
12125
            import numpy as np
12126

Z
zhupengyang 已提交
12127
            place = fluid.core.CPUPlace()
12128

Z
zhupengyang 已提交
12129 12130
            x = fluid.data(name="x", shape=[1], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res",input=x, hash_size=1000, num_hash=4)
12131

Z
zhupengyang 已提交
12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
            x_i = fluid.core.LoDTensor()
            x_i.set(in1,place)
            x_i.set_recursive_sequence_lengths([[0,2]])
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
12149 12150
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
12151 12152
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
12153 12154 12155 12156 12157 12158 12159
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
12160 12161


D
dengkaipeng 已提交
12162
@templatedoc()
12163 12164
def grid_sampler(x, grid, name=None):
    """
12165
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
12166
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
12167 12168
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
12169 12170
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
K
Kaipeng Deng 已提交
12171 12172
    interpolation value of 4 nearest corner points. The output tensor 
    shape will be [N, C, H, W].
12173

H
haowang101779990 已提交
12174
    .. code-block:: text
12175

H
haowang101779990 已提交
12176 12177
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
12178

K
Kaipeng Deng 已提交
12179 12180 12181 12182
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
12183

H
haowang101779990 已提交
12184 12185 12186
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
12187

H
haowang101779990 已提交
12188 12189 12190 12191 12192 12193 12194 12195 12196
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
12197

H
haowang101779990 已提交
12198 12199 12200 12201
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
12202

H
haowang101779990 已提交
12203 12204 12205 12206
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
12207

H
haowang101779990 已提交
12208 12209 12210 12211
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
12212

H
haowang101779990 已提交
12213 12214
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
12215 12216

    Args:
K
Kaipeng Deng 已提交
12217 12218 12219 12220 12221 12222 12223 12224 12225
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
12226 12227

    Returns:
H
haowang101779990 已提交
12228
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
12229 12230
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
12231

H
haowang101779990 已提交
12232 12233 12234 12235
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
12236 12237
            import paddle.fluid as fluid

K
Kaipeng Deng 已提交
12238 12239
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
12240 12241
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
12242
            out = fluid.layers.grid_sampler(x=x, grid=grid)
12243

D
dengkaipeng 已提交
12244 12245 12246 12247 12248 12249 12250 12251 12252
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

12253
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
12254 12255
    ipts = {'X': x, 'Grid': grid}

12256
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
12257 12258 12259
    return out


G
gmcather 已提交
12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
Y
Yibing Liu 已提交
12273
        input (Variable|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
12274
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
12275 12276 12277 12278 12279 12280 12281
                                by the previous operator. Data type float32.
        label (Variable|list):  The ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size. 
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
12282 12283 12284 12285 12286 12287 12288

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

12289
          import paddle.fluid as fluid
12290 12291
          label = fluid.data(name='label', shape=[None, 1], dtype='float32')
          prob = fluid.data(name='prob', shape=[None, 1], dtype='float32')
G
gmcather 已提交
12292 12293 12294 12295
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

12296 12297 12298 12299 12300
    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
G
gmcather 已提交
12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
G
Guo Sheng 已提交
12313 12314
    This operator performs weighted sum of input feature at each position
    (position in the sequence) and the corresponding position encoding.
G
gmcather 已提交
12315

G
Guo Sheng 已提交
12316 12317
    For more details of position encoding, please refer to `Attention Is All You 
    Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
12318

G
Guo Sheng 已提交
12319
    The formula is as follows:
G
gmcather 已提交
12320 12321

    .. math::
H
haowang101779990 已提交
12322 12323 12324
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
12325 12326

    Where:
G
Guo Sheng 已提交
12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343
      - :math:`PE(pos, 2i)` : the value at even index `2i` for encoding of position `pos`.
      - :math:`PE(pos, 2i + 1)` : the value at odd index `2i+1` for encoding of position `pos`

    Args:
        input(Variable): A Tensor or LoDTensor (lod level is 1). If it is a
            Tensor, the shape should be `[N, M, P]`, where `N` stands for
            batch size, `M` for sequence length, `P` for the size of feature
            dimension. If it is a LoDTensor, the shape should be `[N, P]`,
            where `N` stands for the total sequence lengths in this mini-batch,
            `P` for the size of feature. The data type should be float32 or float64.
        alpha(float): Indicate the weight coefficient for `input` when performing
            weighted sum.
        beta(float): Indicate the weight coefficient for position encoding when
            performing weighted sum.
        name(str, optional): For detailed information, please refer 
            to :ref:`api_guide_Name`. Usually name is no need to set and 
            None by default.
G
gmcather 已提交
12344 12345

    Returns:
G
Guo Sheng 已提交
12346
        Variable: A Tensor or LoDTensor. It has the same shape, data type and lod as `input`.
G
gmcather 已提交
12347 12348 12349 12350

    Examples:
        .. code-block:: python

12351 12352
          import paddle.fluid as fluid

G
Guo Sheng 已提交
12353
          tensor = fluid.data(
12354
              name='tensor',
G
Guo Sheng 已提交
12355 12356
              shape=[None, 64, 512],
              dtype='float32')
12357 12358
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
12359

G
gmcather 已提交
12360 12361 12362 12363
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

12364 12365 12366 12367
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
G
gmcather 已提交
12368 12369 12370 12371 12372 12373 12374 12375

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
12376 12377 12378 12379 12380 12381 12382 12383 12384 12385


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Y
Yibing Liu 已提交
12386
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
12387

Q
Qiao Longfei 已提交
12388
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
12389 12390 12391
    For example:

    .. math::
H
haowang101779990 已提交
12392
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
12393

Q
Qiao Longfei 已提交
12394
    In this formula:
12395 12396
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
12397
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
12398
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
12399 12400 12401
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
Y
Yibing Liu 已提交
12402 12403 12404 12405
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type 
            is float32 or float64.
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type 
            should be same as **x**.
Q
Qiao Longfei 已提交
12406
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
12407 12408 12409 12410 12411 12412 12413 12414 12415
        act (str|None): Activation to be applied to the output of this layer. Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        param_attr (ParamAttr|None): To specify the weight parameter attribute. 
            Default: None, which means the default weight parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr|None): To specify the bias parameter attribute. 
            Default: None, which means the default bias parameter property is 
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
12416
    Returns:
Y
Yibing Liu 已提交
12417
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
12418 12419 12420 12421

    Examples:
        .. code-block:: python

12422
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
12423 12424
          layer1 = fluid.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.data("t2", shape=[-1, 4], dtype="float32")
Y
Yibing Liu 已提交
12425
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
12426 12427
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
12428
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
12429 12430 12431 12432

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
12433
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
12434 12435 12436 12437 12438

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
Q
Qiao Longfei 已提交
12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
12451 12452 12453 12454 12455


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

        Ouput is LoDTensor:
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
12472 12473

    Args:
12474 12475 12476
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
12477 12478

    Returns:
12479
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
12480 12481 12482 12483 12484 12485 12486 12487

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
12488 12489 12490 12491 12492 12493 12494 12495 12496 12497
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
12498 12499


S
shippingwang 已提交
12500
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
12501
    """
S
shippingwang 已提交
12502 12503 12504 12505 12506 12507
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
12508
    
S
shippingwang 已提交
12509
    .. code-block:: text
12510

S
shippingwang 已提交
12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
12539
    Args: 
S
shippingwang 已提交
12540
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
T
tianshuo78520a 已提交
12541
        group(int): Indicating the counts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
12542 12543

    Returns:
S
shippingwang 已提交
12544 12545
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
12546 12547

    Raises:
S
shippingwang 已提交
12548
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
12549 12550 12551

    Examples:
        .. code-block:: python
12552

12553
            import paddle.fluid as fluid
R
ruri 已提交
12554
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
S
shippingwang 已提交
12555
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
12556 12557 12558
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
12559
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
12560 12561 12562 12563 12564 12565 12566 12567 12568

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
12569
    return out
S
Add  
shippingwang 已提交
12570 12571


12572
@templatedoc()
D
dengkaipeng 已提交
12573
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
12574 12575 12576 12577 12578 12579 12580 12581
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
12582
        shift_ratio(float): ${shift_ratio_comment}
K
Kaipeng Deng 已提交
12583 12584 12585
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
12586 12587 12588

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
K
Kaipeng Deng 已提交
12589
        same shape and same data type as the input.
12590 12591 12592 12593 12594 12595 12596

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

12597
            import paddle.fluid as fluid
K
Kaipeng Deng 已提交
12598
            input = fluid.data(name='input', shape=[None,4,2,2], dtype='float32')
D
dengkaipeng 已提交
12599
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
12612 12613
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
12614 12615 12616
    return out


S
sneaxiy 已提交
12617
class PyFuncRegistry(object):
S
sneaxiy 已提交
12618 12619 12620
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
12621
        if func is None or not callable(func):
S
sneaxiy 已提交
12622 12623 12624
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
12625
        # find named args using reflection
S
sneaxiy 已提交
12626 12627 12628 12629 12630 12631 12632
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
12633 12634 12635
        '''
        Why record self here?

M
minqiyang 已提交
12636 12637
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
12638
           to find the registered function corresponding
M
minqiyang 已提交
12639
           to :code:`idx`.
S
sneaxiy 已提交
12640

M
minqiyang 已提交
12641 12642
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
12643
           whose reference count is 1 would cause
M
minqiyang 已提交
12644
           segmentation fault error in C++ side.
S
sneaxiy 已提交
12645 12646
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
12647
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
12662 12663 12664 12665 12666 12667 12668 12669 12670
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
12671

S
sneaxiy 已提交
12672 12673
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
12674 12675

        ret = []
S
sneaxiy 已提交
12676 12677 12678
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
12679 12680
                continue

S
sneaxiy 已提交
12681 12682
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
12683

S
sneaxiy 已提交
12684 12685 12686
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
12687

S
sneaxiy 已提交
12688
        return tuple(ret)
S
sneaxiy 已提交
12689 12690


S
sneaxiy 已提交
12691 12692 12693
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
12694 12695 12696 12697 12698 12699 12700
    This OP is used to register customized Python OP to Paddle Fluid. The design 
    principe of py_func is that LodTensor and numpy array can be converted to each
    other easily. So you can use Python and numpy API to register a python OP.

    The forward  function of the registered OP is ``func`` and the backward function 
    of that is  ``backward_func``. Paddle will call ``func`` at forward runtime and 
    call ``backward_func`` at backward runtime(if ``backward_func`` is not  None). 
12701
    ``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is 
12702
    the output of ``func``, whose type can be either LoDTensor or numpy array.
12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718

    The input of the backward function ``backward_func`` is ``x``, ``out`` and 
    the gradient of ``out``. If some variables of ``out`` have no gradient, the 
    relevant input variable of ``backward_func`` is None. If some variables of 
    ``x`` do not have a gradient, the user should return None in ``backward_func``.

    The data type and shape of ``out`` should also be set correctly before this 
    API is called, and the data type and shape of the gradient of ``out`` and 
    ``x`` will be inferred automatically.

    This API can also be used to debug the neural network by setting the ``func``
    as a function that only print variables.

    Args:
        func (callable): The forward function of the registered OP. When the network
            is running, the forward output ``out`` will be calculated according to this 
12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729
            function and the forward input ``x``. In ``func`` , it's suggested that we 
            actively convert LoDTensor into a numpy array, so that we can use Python and
            numpy API arbitrarily. If not, some operations of numpy may not be compatible.
        x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``. 
            It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or 
            Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
            or list[Variale].
        out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``, 
            it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
            or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``, 
            you must create ``out`` in advance.
12730 12731 12732 12733 12734
        backward_func (callable, optional): The backward function of the registered OP. 
            Its default value is None, which means there is no reverse calculation. If 
            it is not None, ``backward_func`` is called to calculate the gradient of 
            ``x`` when the network is at backward runtime.
        skip_vars_in_backward_input (Variable, optional): It's used to limit the input 
12735 12736 12737 12738 12739
            variable list of ``backward_func``, and it can be Variable|tuple(Variale)|list[Variale]. 
            It must belong to either ``x`` or ``out``. The default  value is None, which means 
            that no variables need to be removed from ``x`` and ``out``. If it is not None, 
            these variables will not be the input of ``backward_func``. This parameter is only 
            useful when ``backward_func`` is not None.
12740 12741
    
    Returns: 
12742
        Variable|tuple(Variale)|list[Variale]: The output ``out`` of the forward function ``func``.
S
sneaxiy 已提交
12743 12744

    Examples:
12745
        .. code-block:: python
12746 12747
	    
            # example 1:
12748 12749 12750
            import paddle.fluid as fluid
            import six

12751 12752
            # Creates a forward function, LodTensor can be input directly without
            # being converted into numpy array.
12753 12754 12755
            def tanh(x):
                return np.tanh(x)

12756 12757 12758
            # Skip x in backward function and return the gradient of x
            # LodTensor must be actively converted to numpy array, otherwise, 
            # operations such as +/- can't be used.
12759 12760
            def tanh_grad(y, dy):
                return np.array(dy) * (1 - np.square(np.array(y)))
12761 12762
            
            # Creates a forward function for debugging running networks(print value)
12763 12764
            def debug_func(x):
                print(x)
12765 12766 12767 12768
            
            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                    name=name, dtype=dtype, shape=shape)
12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781

            def simple_net(img, label):
                hidden = img
                for idx in six.moves.range(4):
                    hidden = fluid.layers.fc(hidden, size=200)
                    new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
                        dtype=hidden.dtype, shape=hidden.shape)

                    # User-defined forward and backward 
                    hidden = fluid.layers.py_func(func=tanh, x=hidden,
                        out=new_hidden, backward_func=tanh_grad,
                        skip_vars_in_backward_input=hidden)

12782
                    # User-defined debug functions that print out the input LodTensor
12783 12784 12785 12786 12787
                    fluid.layers.py_func(func=debug_func, x=hidden, out=None)

                prediction = fluid.layers.fc(hidden, size=10, act='softmax')
                loss = fluid.layers.cross_entropy(input=prediction, label=label)
                return fluid.layers.mean(loss)
12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844

            # example 2: 
            # This example shows how to turn LoDTensor into numpy array and 
            # use numpy API to register an Python OP
            import paddle.fluid as fluid
            import numpy as np

            def element_wise_add(x, y): 
                # LodTensor must be actively converted to numpy array, otherwise, 
                # numpy.shape can't be used.
                x = np.array(x)    
                y = np.array(y)

                if x.shape != y.shape:
                    raise AssertionError("the shape of inputs must be the same!")

                result = np.zeros(x.shape, dtype='int32')
                for i in range(len(x)):
                    for j in range(len(x[0])):
                        result[i][j] = x[i][j] + y[i][j]

                return result

            def create_tmp_var(name, dtype, shape):
                return fluid.default_main_program().current_block().create_var(
                            name=name, dtype=dtype, shape=shape)

            def py_func_demo():
                start_program = fluid.default_startup_program()
                main_program = fluid.default_main_program()

                # Input of the forward function
                x = fluid.data(name='x', shape=[2,3], dtype='int32')
                y = fluid.data(name='y', shape=[2,3], dtype='int32')
                
                # Output of the forward function, name/dtype/shape must be specified
                output = create_tmp_var('output','int32', [3,1])

                # Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
                fluid.layers.py_func(func=element_wise_add, x=[x,y], out=output)

                exe=fluid.Executor(fluid.CPUPlace())
                exe.run(start_program)

                # Feed numpy array to main_program
                input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
                out = exe.run(main_program, 
                            feed={'x':input1, 'y':input2},
                            fetch_list=[output.name])
                print("{0} + {1} = {2}".format(input1, input2, out))

            py_func_demo()

            # Reference output:
            # [[5, 9, 9]   + [[7, 8, 4]  =  [array([[12, 17, 13]
            #  [7, 5, 2]]     [1, 3, 3]]            [8, 8, 5]], dtype=int32)]
S
sneaxiy 已提交
12845
    """
S
sneaxiy 已提交
12846
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
12847 12848 12849
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
12850
        x = [x]
12851 12852 12853
    elif isinstance(x, tuple):
        x = list(x)
    elif not isinstance(x, (list, tuple, Variable)):
S
sneaxiy 已提交
12854
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12855

S
sneaxiy 已提交
12856 12857 12858
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
12859
        out_list = [out]
12860 12861
    elif isinstance(out, tuple):
        out_list = list(out)
12862 12863 12864
    elif isinstance(out, list):
        out_list = out
    else:
S
sneaxiy 已提交
12865 12866
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
12867

S
sneaxiy 已提交
12868 12869
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
12870
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
12871 12872

    for each_out in out_list:
S
sneaxiy 已提交
12873 12874
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
12875 12876
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
12877

S
sneaxiy 已提交
12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
12893 12894 12895 12896

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
12897 12898
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
12899 12900 12901
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
12902
        })
S
sneaxiy 已提交
12903
    return out
S
sneaxiy 已提交
12904 12905 12906


# For debug usage
S
sneaxiy 已提交
12907 12908 12909 12910
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

S
SunGaofeng 已提交
12922
    Parameters:
12923
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
12924
        rois (Variable): LoDTensor, ROIs (Regions of Interest) to pool over.It should be
S
SunGaofeng 已提交
12925 12926 12927
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
S
SunGaofeng 已提交
12928 12929
                         right coordinates. The data type is the same as `input`
        output_channels (int): ${output_channels_comment}
12930
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
S
SunGaofeng 已提交
12931 12932 12933 12934 12935
        pooled_height (int): ${pooled_height_comment} Default: 1
        pooled_width (int): ${pooled_width_comment} Default: 1
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
12936 12937

    Returns:
S
SunGaofeng 已提交
12938 12939 12940 12941
        ${out_comment}.

    Return Type:
        Variable
12942 12943 12944 12945

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
12946
            import paddle.fluid as fluid
S
SunGaofeng 已提交
12947 12948
            x = fluid.data(name='x', shape=[100, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
S
SunGaofeng 已提交
12949
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
12975 12976 12977 12978 12979 12980 12981 12982


@templatedoc()
def prroi_pool(input,
               rois,
               spatial_scale=1.0,
               pooled_height=1,
               pooled_width=1,
12983
               batch_roi_nums=None,
12984 12985
               name=None):
    """
12986
    The precise roi pooling implementation for paddle. Reference: https://arxiv.org/pdf/1807.11590.pdf
12987 12988

    Args:
12989
        input (Variable):The input of precise roi pooliing.The shape of input tensor is
12990 12991 12992
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H
                        is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
12993 12994 12995 12996 12997
                        a 2-D LoDTensor or Tensor of shape (num_rois, 4), the lod level
                        is 1 when it is LoDTensor. The LoD include the rois's batch index
                        information. If rois is Tensor, its batch index information should
                        be provided by batch_index.
                        Given as [[x1, y1, x2, y2], ...], (x1, y1) is
12998 12999 13000 13001 13002 13003
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        pooled_height (integer): The pooled output height. Default: 1.
        pooled_width (integer): The pooled output width. Default: 1.
13004
        batch_roi_nums (Variable): The number of roi for each image in batch. It 
T
tianshuo78520a 已提交
13005
                         should be 1-D Tensor, with shape [N] and dtype int64, 
13006 13007
                         where N is the batch size. Default: None. Be note: The lod of input should be
                         empty when batch_roi_nums has values;
13008 13009 13010
        name (str, default None): The name of this operation.

    Returns:
13011
        Variable(Tensor):The shape of the returned Tensor is (N, C, pooled_height, pooled_width), with value type float32,float16. N, C denote batch_size and channels of input respectively.
13012 13013 13014 13015

    Examples:
        .. code-block:: python

13016
            ## prroi_pool without batch_roi_num
13017
            import paddle.fluid as fluid
13018 13019
            x = fluid.data(name='x', shape=[None, 490, 28, 28], dtype='float32')
            rois = fluid.data(name='rois', shape=[None, 4], lod_level=1, dtype='float32')
13020
            pool_out = fluid.layers.prroi_pool(x, rois, 1.0, 7, 7)
13021 13022 13023 13024 13025 13026 13027 13028 13029
            
            ## prroi_pool with batch_roi_num
            batchsize=4
            x2 = fluid.data(name='x2', shape=[batchsize, 490, 28, 28], dtype='float32')
            rois2 = fluid.data(name='rois2', shape=[batchsize, 4], dtype='float32')
            batch_rois_num = fluid.data(name='rois_nums', shape=[batchsize], dtype='int64')
            pool_out2 = fluid.layers.prroi_pool(x2, rois2, 1.0, 7, 7, batch_roi_nums=batch_rois_num)


13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040
    """
    helper = LayerHelper('prroi_pool', **locals())
    # check attrs
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
13041 13042 13043
    inputs_op = {'X': input, 'ROIs': rois}
    if batch_roi_nums is not None:
        inputs_op['BatchRoINums'] = batch_roi_nums
13044 13045
    helper.append_op(
        type='prroi_pool',
13046
        inputs=inputs_op,
13047 13048 13049 13050 13051 13052 13053
        outputs={'Out': out},
        attrs={
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
13054

M
minqiyang 已提交
13055

R
ruri 已提交
13056 13057 13058
def pixel_shuffle(x, upscale_factor):
    """

R
ruri 已提交
13059
    This op rearranges elements in a tensor of shape [N, C, H, W]
R
ruri 已提交
13060 13061 13062 13063 13064 13065 13066
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

R
ruri 已提交
13067
    Parameters:
R
ruri 已提交
13068

R
ruri 已提交
13069 13070
        x(Variable): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
R
ruri 已提交
13071 13072

    Returns:
13073
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
13074 13075 13076 13077 13078 13079 13080

    Raises:
        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:
        .. code-block:: python

R
ruri 已提交
13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097
	    # declarative mode
	    import paddle.fluid as fluid
	    import numpy as np
	    input = fluid.data(name="input", shape=[2,9,4,4])
	    output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())
 
	    input_data = np.random.rand(2,9,4,4).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
 
 	    # print(output.shape)
	    # (2L, 1L, 12L, 12L)
R
ruri 已提交
13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


13116 13117 13118 13119 13120
def fsp_matrix(x, y):
    """

    **FSP matrix op**

13121
    This op is used to calculate the flow of solution procedure (FSP) matrix of two 4-D Tensor feature maps.
13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

13133 13134 13135
        x (Variable): A 4-D Tensor feature map with shape [batch_size, x_channel, height, width].
                      A Tensor with type float32, float64.
        y (Variable): A 4-D Tensor feature map with shape [batch_size, y_channel, height, width].
13136
                      The y_channel can be different with the x_channel of Input(X)
13137 13138
                      while the other dimensions must be the same with Input(X)'s. A Tensor with
                      type float32, float64.
13139 13140 13141 13142

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
13143 13144
        The x_channel is the channel of x and the y_channel is the channel of y. A Tensor with
        type float32, float64.
13145 13146 13147 13148 13149

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
13150
            import paddle.fluid as fluid
B
Bai Yifan 已提交
13151
            data = fluid.data(name='data', shape=[None, 3, 32, 32])
B
Bai Yifan 已提交
13152 13153 13154 13155
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
13156 13157 13158 13159 13160 13161 13162 13163
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
13164 13165 13166 13167


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
13168

H
heqiaozhi 已提交
13169
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
13170

Z
zhoushiyu 已提交
13171
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
13172

Z
zhoushiyu 已提交
13173 13174
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
13175
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
13176 13177
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
13178

Z
zhoushiyu 已提交
13179 13180 13181 13182 13183 13184 13185
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
13186

H
heqiaozhi 已提交
13187
    Returns:
H
fix doc  
heqiaozhi 已提交
13188

Z
zhoushiyu 已提交
13189 13190
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
13191

H
heqiaozhi 已提交
13192
    Examples:
H
fix doc  
heqiaozhi 已提交
13193

H
heqiaozhi 已提交
13194
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
13195

13196
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
13197 13198
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
13199 13200 13201 13202 13203 13204 13205 13206
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
13207

H
heqiaozhi 已提交
13208 13209 13210 13211 13212 13213 13214 13215 13216
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
13217
    return out
Z
zhoukunsheng 已提交
13218 13219 13220 13221 13222 13223 13224


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Args:
13225
        condition(Variable): A bool tensor with rank at least 1, the data type is bool.
Z
zhoukunsheng 已提交
13226 13227

    Returns:
13228
        Variable, the output data type is int64. : The tensor variable storing a 2-D tensor, which involves all coordinate. 
Z
zhoukunsheng 已提交
13229 13230 13231 13232

    Examples:
        .. code-block:: python

13233
             import paddle.fluid as fluid
13234 13235 13236
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
13237
             # condition is a tensor [True, False, True]
13238 13239 13240
             condition = layers.assign(np.array([1, 0, 1], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0], [2]]
Z
zhoukunsheng 已提交
13241 13242

             # condition is a tensor [[True, False], [False, True]]
13243 13244 13245
             condition = layers.assign(np.array([[1, 0], [0, 1]], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[0, 0], [1, 1]]
Z
zhoukunsheng 已提交
13246 13247

             # condition is a tensor [False, False, False]
13248 13249 13250 13251
             condition = layers.assign(np.array([0, 0, 0], dtype='int32'))
             condition = layers.cast(condition, 'bool')
             out = layers.where(condition) # [[]]

Z
zhoukunsheng 已提交
13252
    """
13253
    helper = LayerHelper("where_index", **locals())
Z
zhoukunsheng 已提交
13254 13255 13256 13257 13258

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
13259 13260 13261
        type='where_index',
        inputs={'Condition': condition},
        outputs={'Out': [out]})
Z
zhoukunsheng 已提交
13262
    return out
Z
zhoukunsheng 已提交
13263 13264 13265 13266


def sign(x):
    """
13267
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.
Z
zhoukunsheng 已提交
13268 13269

    Args:
13270 13271
        x(Variable|numpy.ndarray): The input variable could be N-D tensor or N-D numpy array, \
            the input data type is float32 or float64.
Z
zhoukunsheng 已提交
13272 13273

    Returns:
13274
        Variable, the output data type is the same as input data type. : The output sign tensor with identical shape to input :attr:`x`.
Z
zhoukunsheng 已提交
13275 13276 13277 13278

    Examples:
        .. code-block:: python

13279 13280 13281
          import paddle.fluid as fluid
          import numpy as np

13282 13283
          # [1.0, 0.0, -1.0]
          data = fluid.layers.sign(np.array([3.0, 0.0, -2.0], dtype='float32')) 
Z
zhoukunsheng 已提交
13284 13285 13286
    """

    helper = LayerHelper("sign", **locals())
13287 13288 13289 13290
    check_type(x, 'x', (Variable, np.ndarray), 'sign')
    if isinstance(x, np.ndarray):
        x = assign(x)
    check_dtype(x.dtype, 'x', ['float16', 'float32', 'float64'], 'sign')
Z
zhoukunsheng 已提交
13291 13292 13293 13294 13295
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
13296 13297


Z
zhoukunsheng 已提交
13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336
def unique(x, dtype='int32'):
    """
    **unique** 

    Return a unique tensor for `x` and an index tensor pointing to this unique tensor.

    Args:
        x(Variable): A 1-D input tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of index tensor: int32, int64.

    Returns:
        tuple: (out, index). `out` is the unique tensor for `x`, with identical dtype to `x`, and \
            `index` is an index tensor pointing to `out`, by which user can recover the original `x` tensor.

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index = fluid.layers.unique(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
    """

    helper = LayerHelper("unique", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index]})

    return out, index


13337 13338
def unique_with_counts(x, dtype='int32'):
    """
T
tianshuo78520a 已提交
13339
    This OP return a unique tensor for `x` , and count tensor that the count of unique result in raw input, \
13340
    and an index tensor pointing to this unique tensor. 
13341

13342
    **NOTICE**: This op support the variable type of Tensor only.
13343 13344

    Args:
13345 13346
        x(Variable): A 1-D input tensor with input shape of :math:`[N]` , the input data type is float32, float64, int32, int64.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of count and index tensor, it could be int32, int64. Defalut value is int32.
13347

13348 13349 13350 13351
    Returns: 
        tuple, the variable type in tuple is Tensor, the output :attr:`out` data type is the same as input :attr:`x`, \
        and data type of output :attr:`index` and :attr:`count` will be int32 or int64.: The :attr:`out` is unique tensor for input :attr:`x`,\
        the data shape is :math:`[K]`, the `K` may be different to the `N` in shape of :attr:`x`. :attr:`index` is an index tensor pointing\
T
tianshuo78520a 已提交
13352
        to :attr:`out`, the data shape is :math:`[N]` , the data shape is the same as input :attr:`x`. :attr:`count` is count of unique element in\
13353
        the :attr:`x`, the data shape is :math:`[K]`, the data shape is the same as output :attr:`out`.
13354 13355 13356 13357 13358 13359 13360 13361 13362

    Examples:
        .. code-block:: python

             import numpy as np
             import paddle.fluid as fluid
             x = fluid.layers.assign(np.array([2, 3, 3, 1, 5, 3], dtype='int32'))
             out, index, count = fluid.layers.unique_with_counts(x) # out is [2, 3, 1, 5]; index is [0, 1, 1, 2, 3, 1]
                                                        # count is [1, 3, 1, 1]
13363
            # x.shape=(6,) out.shape=(4,), index.shape=(6,), count.shape=(4,)
13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392
    """
    if not (dtype == 'int32' or dtype == 'int64'):
        raise TypeError(
            "Op unique_with_counts, index dtype must be int32 or int64")

    if x is None or len(x.shape) != 1:
        raise ValueError(
            "Op unique_with_counts, x must not be null and size of dim must be 1"
        )

    helper = LayerHelper("unique_with_counts", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    index = helper.create_variable_for_type_inference(dtype)

    count = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='unique_with_counts',
        inputs={'X': x},
        attrs={'dtype': convert_np_dtype_to_dtype_(dtype)},
        outputs={'Out': [out],
                 'Index': [index],
                 'Count': [count]})

    return out, index, count


13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405
def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
13406
                    modulated=True,
13407 13408
                    name=None):
    """
13409
    **Deformable Convolution op**
13410 13411 13412

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
13413 13414 13415
   
    
    Deformable Convolution v2: 
13416 13417 13418 13419
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
13420 13421

    Deformable Convolution v1:
13422
    
13423 13424 13425 13426 13427
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k)}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, 
13428
    Which :math:`\Delta m_k` is one in deformable convolution v1. Please refer to `Deformable ConvNets v2: More Deformable, Better Results
13429
    <https://arxiv.org/abs/1811.11168v2>`_ and `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_.
13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
13454 13455
        input (Variable): The input image with [N, C, H, W] format. A Tensor with type
            float32, float64.
13456
        offset (Variable): The input coordinate offset of deformable convolution layer.
13457
            A Tensor with type float32, float64.
13458 13459 13460
        Mask (Variable, Optional): The input mask of deformable convolution layer.
            A Tensor with type float32, float64. It should be None when you use
            deformable convolution v1.
13461 13462
        num_filters(int): The number of filter. It is as same as the output
            image channel.
13463
        filter_size (int|tuple): The filter size. If filter_size is a tuple,
13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
T
tianshuo78520a 已提交
13483
            The total batch size should be devisable by this value or smaller
13484 13485 13486
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
13487
        param_attr (ParamAttr, Optional): The parameter attribute for learnable parameters/weights
13488 13489 13490 13491 13492
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
13493
        bias_attr (ParamAttr|bool, Optional): The parameter attribute for the bias of
13494 13495 13496 13497
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
13498 13499
        modulated (bool): Make sure which version should be used between v1 and v2, where v2 is \
            used while True. Default: True.
13500 13501
        name(str, Optional): For details, please refer to :ref:`api_guide_Name`.
                        Generally, no setting is required. Default: None.
13502 13503
    Returns:
        Variable: The tensor variable storing the deformable convolution \
13504
                  result. A Tensor with type float32, float64.
13505 13506 13507 13508 13509 13510
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

13511 13512
          #deformable conv v2:
         
13513
          import paddle.fluid as fluid
13514 13515
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13516 13517 13518
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
          mask = fluid.data(name='mask', shape=[None, deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13519
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
13520
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=True)
13521 13522 13523 13524

          #deformable conv v1:

          import paddle.fluid as fluid
13525 13526
          C_in, H_in, W_in = 3, 32, 32
          filter_size, deformable_groups = 3, 1
B
Bai Yifan 已提交
13527 13528
          data = fluid.data(name='data', shape=[None, C_in, H_in, W_in], dtype='float32')
          offset = fluid.data(name='offset', shape=[None, 2*deformable_groups*filter_size**2, H_in, W_in], dtype='float32')
13529
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=None,
13530
                                             num_filters=2, filter_size=filter_size, padding=1, modulated=False)
13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607
    if modulated:
        helper.append_op(
            type='deformable_conv',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
                'Mask': mask,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })

    else:
        helper.append_op(
            type='deformable_conv_v1',
            inputs={
                'Input': input,
                'Filter': filter_param,
                'Offset': offset,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': stride,
                'paddings': padding,
                'dilations': dilation,
                'groups': groups,
                'deformable_groups': deformable_groups,
                'im2col_step': im2col_step,
            })
13608 13609 13610

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
13611 13612 13613 13614 13615


def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    """

S
SunGaofeng 已提交
13616
    This op returns a col buffer of sliding local blocks of input x, also known
13617
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
13618
    all element will be rearranged as a column. While the convolution filter sliding over
13619 13620
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
13621
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \\times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \\times (kernel\_sizes[1] - 1) + 1

        hout &= \\frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \\frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \\times kernel\_sizes[0] \\times kernel\_sizes[1]

        Lout &= hout \\times wout


S
SunGaofeng 已提交
13639 13640 13641
    Parameters:
        x(Varaible):              4-D Tensor, input tensor of format [N, C, H, W], 
                                  data type can be float32 or float64
13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
13654
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
13655
                                  [dilation_h, dilation_w], or an integer dilation treated as
13656
                                  [dilation, dilation]. For default, it will be [1, 1].
S
SunGaofeng 已提交
13657 13658 13659
        name(str, optional): The default value is None.  
                             Normally there is no need for user to set this property.  
                             For more information, please refer to :ref:`api_guide_Name`
13660 13661 13662

    
    Returns:
S
SunGaofeng 已提交
13663
        The tensor variable corresponding to the sliding local blocks. 
T
tianshuo78520a 已提交
13664
        The output shape is [N, Cout, Lout] as decriabled above. 
S
SunGaofeng 已提交
13665 13666 13667 13668 13669 13670
        Cout is the  total number of values within each block, 
        and Lout is the total number of such blocks. 
        The data type of output is the same as the input :math:`x`

    Return Type:
        Variable
13671 13672 13673 13674 13675 13676

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
S
SunGaofeng 已提交
13677
            x = fluid.data(name = 'data', shape = [100, 3, 224, 224], dtype = 'float32')
13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731
            y = fluid.layers.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations
        })
    return out
C
cjt222 已提交
13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
13748 13749 13750 13751 13752 13753 13754
    Deformable ROI Pooling Layer
  
    Performs deformable region-of-interest pooling on inputs. As described
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after 
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
  
    The operation has three steps:
C
cjt222 已提交
13755
    
13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
  
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
     
    3. Sample several points in each bin to get average values as output.
  
  
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where 
                          N is number of ROIs, C is number of channels, which indicate the offset distance 
                          in the x and y directions, H is pooled height, and W is pooled width. 
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels 
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
13782
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
13783 13784 13785 13786 13787 13788 13789
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
13790
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
13791 13792 13793 13794
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
13795 13796 13797 13798

    Examples:
      .. code-block:: python

13799 13800
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=True)
13823 13824
  
        # position_sensitive=False
13825
        import paddle.fluid as fluid
C
chengjuntao 已提交
13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847
        input = fluid.data(name="input",
                           shape=[2, 192, 64, 64], 
                           dtype='float32')                   
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
                          dtype='float32', 
                          lod_level=1)
        trans = fluid.data(name="trans",
                           shape=[2, 384, 64, 64], 
                           dtype='float32') 
        x = fluid.layers.deformable_roi_pooling(input=input, 
                                                rois=rois, 
                                                trans=trans, 
                                                no_trans=False,
                                                spatial_scale=1.0, 
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
                                                sample_per_part=4, 
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output
13885 13886 13887 13888


def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
13889
    This operator recomputes the `input` indices according to the offset of the
13890 13891 13892 13893 13894
    shard. The length of the indices is evenly divided into N shards, and if
    the `shard_id` matches the shard with the input index inside, the index is
    recomputed on the basis of the shard offset, elsewise it is set to
    `ignore_value`. The detail is as follows:
    :: 
13895
        
13896 13897
        shard_size = (index_num + nshards - 1) // nshards
        y = x % shard_size if x // shard_size == shard_id else ignore_value
13898

13899 13900
    NOTE: If the length of indices cannot be evely divided by the shard number,
    the size of the last shard will be less than the calculated `shard_size`
13901 13902

    Examples:
13903
    ::
13904
    
13905
        Input:
13906 13907
          X.shape = [4, 1]
          X.data = [[1], [6], [12], [19]]
13908 13909 13910
          index_num = 20
          nshards = 2
          ignore_value = -1
13911
        
13912
        if shard_id == 0, we get:
13913 13914 13915
          Out.shape = [4, 1]
          Out.data = [[1], [6], [-1], [-1]]
        
13916
        if shard_id == 1, we get:
13917 13918 13919 13920
          Out.shape = [4, 1]
          Out.data = [[-1], [-1], [2], [9]]
    
    Args:
13921
        - **input** (Variable): Input indices, last dimension must be 1.
T
tianshuo78520a 已提交
13922
        - **index_num** (scalar): An integer defining the range of the index.
13923 13924
        - **nshards** (scalar): The number of shards
        - **shard_id** (scalar): The index of the current shard
T
tianshuo78520a 已提交
13925
        - **ignore_value** (scalar): An integer value out of sharded index range
13926 13927

    Returns:
13928
        Variable: The sharded index of input.
13929 13930 13931 13932 13933

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
13934 13935
            batch_size = 32
            label = fluid.data(name="label", shape=[batch_size, 1], dtype="int64")
13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959
            shard_label = fluid.layers.shard_index(input=label,
                                                   index_num=20,
                                                   nshards=2,
                                                   shard_id=0)
    """
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
        raise ValueError('The shard_id(%d) should be in [0, %d)' %
                         (shard_id, nshards))

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value
        },
        stop_gradient=True)
    return out
H
huangjun12 已提交
13960 13961 13962 13963 13964


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
    """
13965 13966 13967
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
13968

13969
    The formula is as follows:
H
huangjun12 已提交
13970

13971
    .. math::
H
huangjun12 已提交
13972

13973
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
13974

13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` 
        
    Returns:
        Variable: The output tensor with the same shape and data type as input.
    
    
    Examples:
    
    .. code-block:: python
    
        import paddle.fluid as fluid
        import numpy as np
    
        DATATYPE='float32'
    
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
    
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
    
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019
    """
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold,
               'scale': scale,
               'offset': offset})
    return out
R
ruri 已提交
14020 14021


G
Guo Sheng 已提交
14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096
def gather_tree(ids, parents):
    """
    To be used after beam search. After beam search, we get selected ids at
    each time step and the corresponding parents in the search tree. Both ids
    and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then
    :attr:`gather_tree` is used to backtrace from the last time step and
    generate the full sequences by collecting selected ids.

    Here is an example:

    .. code-block:: text

            Given:
                ids = [[[2 2]
                        [6 1]]
                       [[3 9]
                        [6 1]]
                       [[0 1]
                        [9 0]]]
                parents = [[[0 0]
                            [1 1]]
                           [[1 0]
                            [1 0]]
                           [[0 0]
                            [0 1]]]

            Then:                
                gather_tree(ids, parents)  
                         = [[[2 2]
                             [1 6]]
                            [[3 3]
                             [6 1]]
                            [[0 1]
                             [9 0]]]

    Args:
        ids(Variable): A Tensor with shape :attr:`[length, batch_size, beam_size]`
            and data type :attr:`int32` or :attr:`int64`. It contains the selected
            ids of all time steps.
        parents(Variable): A Tensor with the same shape and data type as :attr:`ids`,
            It contains the parents corresponding to selected ids when searching
            among beams.

    Returns:
        Variable: A Tensor with the same shape and data type as :attr:`ids`. \
            It contains the full sequences. The sequences are collected from \
            :attr:`ids` by backtracing according to :attr:`parents`.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            ids = fluid.layers.data(name='ids',
                                    shape=[5, 2, 2],
                                    dtype='int64',
                                    append_batch_size=False)
            parents = fluid.layers.data(name='parents',
                                        shape=[5, 2, 2],
                                        dtype='int64',
                                        append_batch_size=False)
            final_sequences = fluid.layers.gather_tree(ids, parents)
    """
    helper = LayerHelper('gather_tree', **locals())
    out = helper.create_variable_for_type_inference(dtype=ids.dtype)

    helper.append_op(
        type="gather_tree",
        inputs={"Ids": ids,
                "Parents": parents},
        outputs={"Out": out})

    return out


14097 14098 14099
@templatedoc()
def uniform_random(shape, dtype='float32', min=-1.0, max=1.0, seed=0):
    """
14100 14101
    This OP initializes a variable with random values sampled from a
    uniform distribution in the range [min, max).
14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112

    Examples:
    ::
    
        Input:
          shape = [1, 2]
        
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
14113 14114
        shape (list|tuple|Variable): The shape of the output Tensor,  if the shape is a list or tuple, 
                                     its elements can be an integer
14115 14116
                                     or a Tensor with the shape [1], and the type of the Tensor must be int32 or int64. 
                                     If the shape is a Variable, it is a 1-D Tensor, and the type of the Tensor must be int32 or int64.
14117
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The type of the output Tensor. Supported data types: float32, float64.
14118
                                                  Default: float32.
14119 14120
        min (float, optional): The lower bound on the range of random values to generate, the min is included in the range. Default -1.0.
        max (float, optional): The upper bound on the range of random values to generate, the max is excluded in the range. Default 1.0.
14121 14122 14123 14124 14125
        seed (int, optional): Random seed used for generating samples. 0 means use a
            seed generated by the system. Note that if seed is not 0, this
            operator will always generate the same random numbers every time.
            Default 0.

14126 14127
    Returns: 
        Variable: A Tensor of the specified shape filled with uniform_random values.
14128

14129
    Raises:
T
tianshuo78520a 已提交
14130
        TypeError: The shape type should be list or tuple or variable.
14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143
    
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            # example 1:
            # attr shape is a list which doesn't contain tensor Variable.
            result_1 = fluid.layers.uniform_random(shape=[3, 4])

            # example 2:
            # attr shape is a list which contains tensor Variable.
            dim_1 = fluid.layers.fill_constant([1],"int64",3)
14144 14145
            dim_2 = fluid.layers.fill_constant([1],"int32",5)
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
14146 14147

            # example 3:
14148
            # attr shape is a Variable, the data type must be int64 or int32.
14149
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
14150
            result_3 = fluid.layers.uniform_random(var_shape)
14151 14152 14153 14154
            var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
            result_4 = fluid.layers.uniform_random(var_shape_int32)
             

14155 14156

    """
14157
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random')
14158 14159
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
14160
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'uniform_random')
14161

14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183
    def get_new_shape_tensor(list_shape):
        new_shape_tensor = []
        for dim in list_shape:
            if isinstance(dim, Variable):
                dim.stop_gradient = True
                new_shape_tensor.append(dim)
            else:
                assert (isinstance(dim, int))
                temp_out = helper.create_variable_for_type_inference('int64')
                fill_constant([1], 'int64', dim, force_cpu=True, out=temp_out)
                new_shape_tensor.append(temp_out)
        return new_shape_tensor

    def get_attr_shape(list_shape):
        unk_dim_idx = -1
        attrs_shape = []
        for dim_idx, dim_size in enumerate(list_shape):
            if isinstance(dim_size, Variable):
                attrs_shape.append(-1)
            else:
                attrs_shape.append(dim_size)
                assert dim_size > 0, (
T
tianshuo78520a 已提交
14184
                    "Each dimension size given in shape must not be negative "
14185 14186 14187 14188 14189
                    "except one unknown dimension.")
        return attrs_shape

    helper = LayerHelper("uniform_random", **locals())
    inputs = dict()
14190
    attrs = {'seed': seed, 'min': min, 'max': max}
14191
    if in_dygraph_mode():
H
hong 已提交
14192
        attrs['shape'] = shape
14193 14194 14195 14196 14197 14198 14199 14200
    else:
        if isinstance(shape, Variable):
            shape.stop_gradient = True
            inputs["ShapeTensor"] = shape
        elif isinstance(shape, (list, tuple)):
            assert len(shape) > 0, (
                "The size of argument(shape) can't be zero.")
            attrs["shape"] = get_attr_shape(shape)
L
Leo Chen 已提交
14201
            if utils._contain_var(shape):
14202 14203 14204 14205 14206 14207 14208 14209
                inputs['ShapeTensorList'] = get_new_shape_tensor(shape)

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs,
        outputs={"Out": out})

    return helper.append_activation(out)