nn.py 446.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
21
import warnings
S
sneaxiy 已提交
22
import six
P
peizhilin 已提交
23
import os
S
sneaxiy 已提交
24
import inspect
Y
Yu Yang 已提交
25
from ..layer_helper import LayerHelper
26
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
27
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
28
from ..dygraph import base
Y
yangyaming 已提交
29
from ..param_attr import ParamAttr
S
sneaxiy 已提交
30
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
31
from .tensor import concat, assign, fill_constant
32
from . import utils
F
fengjiayi 已提交
33
from .. import unique_name
34
from functools import reduce
35
from .. import core
L
lujun 已提交
36
from ..dygraph import layers
Y
Yu Yang 已提交
37 38

__all__ = [
X
Xin Pan 已提交
39 40 41 42 43 44 45 46 47 48
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
49
    'bpr_loss',
X
Xin Pan 已提交
50 51 52 53 54 55 56 57 58 59
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
60 61
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
62
    'batch_norm',
H
heqiaozhi 已提交
63
    'data_norm',
X
Xin Pan 已提交
64 65 66 67 68 69
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
70
    'sequence_unpad',
X
Xin Pan 已提交
71 72 73 74 75 76
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
77 78
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
79 80
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
81
    'sequence_slice',
X
Xin Pan 已提交
82 83 84 85 86 87 88 89 90 91 92 93
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
94
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
95 96 97 98 99
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
100
    'group_norm',
D
dengkaipeng 已提交
101
    'spectral_norm',
X
Xin Pan 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
115
    'roi_align',
X
Xin Pan 已提交
116 117 118 119
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
120
    'resize_nearest',
X
Xin Pan 已提交
121 122 123 124 125 126
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
127
    'selu',
X
Xin Pan 已提交
128 129 130
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
131
    'margin_rank_loss',
X
Xin Pan 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
Z
zhoukunsheng 已提交
158 159
    'elementwise_mod',
    'elementwise_floordiv',
X
Xin Pan 已提交
160 161 162 163 164 165 166
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
Z
zhoukunsheng 已提交
167
    'rank',
X
Xin Pan 已提交
168 169 170 171 172 173 174 175 176 177
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
178
    'space_to_depth',
W
whs 已提交
179
    'affine_grid',
S
sneaxiy 已提交
180
    'sequence_reverse',
181
    'affine_channel',
B
barrierye 已提交
182
    'similarity_focus',
M
minqiyang 已提交
183
    'hash',
D
dengkaipeng 已提交
184
    'grid_sampler',
G
gmcather 已提交
185 186
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
187
    'bilinear_tensor_product',
C
chengduo 已提交
188 189
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
190
    'lstm',
S
shippingwang 已提交
191
    'shuffle_channel',
192
    'temporal_shift',
S
sneaxiy 已提交
193
    'py_func',
194
    'psroi_pool',
H
heqiaozhi 已提交
195
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
196
    'huber_loss',
D
dengkaipeng 已提交
197
    'kldiv_loss',
Z
zhaozhehao 已提交
198
    'tree_conv',
C
ceci3 已提交
199
    'npair_loss',
R
ruri 已提交
200
    'pixel_shuffle',
201
    'fsp_matrix',
H
heqiaozhi 已提交
202
    'continuous_value_model',
Z
zhoukunsheng 已提交
203
    'where',
Z
zhoukunsheng 已提交
204
    'sign',
205
    'deformable_conv',
C
cjt222 已提交
206
    'deformable_roi_pooling',
Y
Yu Yang 已提交
207 208
]

J
jerrywgz 已提交
209 210
kIgnoreIndex = -100

Y
Yu Yang 已提交
211 212 213 214 215 216 217

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
218
       is_test=False,
219
       name=None):
Y
Yu Yang 已提交
220
    """
221
    **Fully Connected Layer**
Y
Yu Yang 已提交
222

223
    This function creates a fully connected layer in the network. It can take
224
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
225
    Args in detail). It creates a variable called weights for each input tensor,
226 227 228 229
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
230
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
231 232
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
233

234
    When the input is single tensor:
C
caoying03 已提交
235

236 237 238 239 240
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
241 242 243

    .. math::

244
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
245 246 247

    In the above equation:

248 249 250
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
251
    * :math:`b`: The bias parameter created by this layer (if needed).
252
    * :math:`Act`: The activation function.
C
caoying03 已提交
253
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
273
    Args:
R
ranqiu 已提交
274 275 276 277 278 279 280 281 282 283
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
284
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
285 286 287 288
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
289 290
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
291
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
292
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
293
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
294

295
    Returns:
F
fengjiayi 已提交
296
        Variable: The transformation result.
297 298

    Raises:
C
caoying03 已提交
299
        ValueError: If rank of the input tensor is less than 2.
300 301 302 303

    Examples:
        .. code-block:: python

304
          import paddle.fluid as fluid
305
          # when input is single tensor
F
fengjiayi 已提交
306
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
307
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
308 309 310 311 312

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
313
    """
C
caoying03 已提交
314
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
315 316 317 318

    dtype = helper.input_dtype()

    mul_results = []
319 320
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
321 322 323
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
324

Y
Yu Yang 已提交
325
        w = helper.create_parameter(
326
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
327
        tmp = helper.create_variable_for_type_inference(dtype)
328
        helper.append_op(
329 330 331
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
332
            outputs={"Out": tmp},
M
mozga-intel 已提交
333 334
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
335 336 337 338
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
339
    else:
X
Xin Pan 已提交
340
        pre_bias = helper.create_variable_for_type_inference(dtype)
341
        helper.append_op(
342 343 344
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
345
            attrs={"use_mkldnn": False})
346 347 348 349
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
350 351


352 353 354
def embedding(input,
              size,
              is_sparse=False,
355
              is_distributed=False,
356 357 358
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
359
    """
360 361
    **Embedding Layer**

362
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
363 364
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
365 366 367

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
368 369

    Args:
370 371 372 373 374
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
375
        is_distributed(bool): Whether to run lookup table from remote parameter server.
376 377
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
378
            with zeros whenever lookup encounters it in :attr:`input`. If
379
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
380 381
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
382
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
383

384 385 386
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
387

388 389
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
390

B
bdzhuxiaoning 已提交
391 392 393
          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.embedding(input=data, size=[128, 64])    
Y
Yu Yang 已提交
394 395 396
    """

    helper = LayerHelper('embedding', **locals())
397
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
398 399
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
400 401
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
402
    tmp = helper.create_variable_for_type_inference(dtype)
403 404
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
405 406 407 408 409
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
410 411 412
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
413
            'remote_prefetch': remote_prefetch,
414 415
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
416 417 418
    return tmp


W
wopeizl 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
435

W
wopeizl 已提交
436 437 438 439 440 441 442 443 444 445 446
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
447

W
wopeizl 已提交
448 449 450 451
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
452

W
wopeizl 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python
489
            
490
            import paddle.fluid as fluid
491 492
            emb_dim = 256
            vocab_size = 10000
W
wopeizl 已提交
493
            hidden_dim = 512
494 495 496 497 498 499
            
            data = fluid.layers.data(name='x', shape=[1],
                         dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)

            forward_proj = fluid.layers.fc(input=emb, size=hidden_dim * 4,
W
wopeizl 已提交
500
                                           bias_attr=False)
501

W
wopeizl 已提交
502 503 504
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
L
lujun 已提交
505
    assert in_dygraph_mode(
506
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
550 551


P
phlrain 已提交
552 553 554 555 556 557
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
558
         dropout_prob=0.0,
P
phlrain 已提交
559 560 561 562 563
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
564
    """
P
phlrain 已提交
565
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
566 567

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
568
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
569 570
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
571
    .. math::
M
minqiyang 已提交
572 573 574 575 576 577 578

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
579
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
580 581 582 583

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
584 585

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
586 587 588 589 590 591
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
592 593 594
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
595
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
596

M
minqiyang 已提交
597
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
598 599 600 601 602
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
603
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
604 605 606 607 608
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
609
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
610 611
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
612 613
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
614 615 616 617 618 619
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
620
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
621

L
liuhongyu 已提交
622 623

    Returns:
M
minqiyang 已提交
624 625
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
626
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
627

H
haowang101779990 已提交
628 629 630 631
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
632
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
633 634
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
635
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
636 637 638 639


    Examples:
        .. code-block:: python
640 641 642 643 644 645
            
            emb_dim = 256
            vocab_size = 10000
            data = fluid.layers.data(name='x', shape=[-1, 100, 1],
                         dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[vocab_size, emb_dim], is_sparse=True)
L
liuhongyu 已提交
646 647 648 649 650 651
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
652 653 654 655 656
            init_h = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            init_c = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0 )
            rnn_out, last_h, last_c = layers.lstm( emb, init_h, init_c, \
                    max_len, hidden_size, num_layers, \
                    dropout_prob=dropout_prob)
L
liuhongyu 已提交
657 658 659 660
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
661 662 663
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
723 724 725 726 727 728 729 730 731 732
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
733
                  proj_activation='tanh',
734
                  dtype='float32',
X
xuezhong 已提交
735 736 737 738 739
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
740 741 742
    """
    **Dynamic LSTMP Layer**

743 744 745 746 747 748
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
749 750 751 752 753

    The formula is as follows:

    .. math::

754
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
755

756
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
757

758
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
759

760
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
761

762
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
763

764
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
765

766
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
767

Y
Yibing Liu 已提交
768 769 770 771 772 773
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
翟飞跃 已提交
774
          we use vectors to represent these diagonal weight matrices.
Y
Yibing Liu 已提交
775
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
776
          bias vector).
Y
Yibing Liu 已提交
777 778 779
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
780
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
781
    * :math:`h`: The hidden state.
782
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
783 784
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
785
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
786
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
787
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
788 789
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
790 791 792 793

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
794

Y
Yibing Liu 已提交
795 796 797 798 799 800 801 802 803 804 805 806
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
807
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
808 809
                               hidden-hidden weight and projection weight.

810 811
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
812 813
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
814 815
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
816
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
817 818 819 820 821

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
822
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
823 824 825 826 827 828
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
829
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
830 831 832
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
833
                                - The shape is (1 x 7D).
C
chengduo 已提交
834 835 836 837 838

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
839 840 841 842 843 844 845 846 847
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
848
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
849 850
                              default "tanh".
        proj_activation(str): The activation for projection output.
851
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
852
                              default "tanh".
Y
Yibing Liu 已提交
853
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
854 855
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
856 857 858 859 860 861 862 863 864 865 866
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
867 868

    Returns:
869 870 871 872
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
873 874

    Examples:
875

Y
Yibing Liu 已提交
876 877
        .. code-block:: python

878
            import paddle.fluid as fluid
879 880 881 882
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
883
            hidden_dim, proj_dim = 512, 256
884
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
885
                                     act=None, bias_attr=None)
886 887 888
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
889 890 891 892
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
893
    """
894

L
lujun 已提交
895
    assert in_dygraph_mode(
896 897
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
898
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
899
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
900
    size = size // 4
Y
Yibing Liu 已提交
901 902 903 904 905 906 907 908 909 910
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
911 912 913 914 915 916
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
932

X
xuezhong 已提交
933 934 935 936 937
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
938 939
    helper.append_op(
        type='lstmp',
940
        inputs=inputs,
Y
Yibing Liu 已提交
941 942 943 944 945 946 947 948 949
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
950 951
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
952 953 954 955 956 957 958 959 960
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
961 962 963 964 965 966 967
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
968 969
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
970
    """
971
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
972

973 974 975
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
976

G
guosheng 已提交
977 978 979 980 981 982 983 984 985
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
986

G
guosheng 已提交
987
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
988

Q
Qiao Longfei 已提交
989 990 991

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
992 993 994 995 996 997 998 999 1000 1001 1002 1003
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
1004
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
1005 1006
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
1007 1008 1009 1010
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
1011
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
1012 1013

    Args:
1014 1015
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
1016
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
1017
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
1018 1019
            is the hidden size.
        size(int): The dimension of the gru cell.
1020
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
1021 1022
            hidden-hidden weight matrix. Note:

1023
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1024
              :math:`D` is the hidden size.
1025
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1026
              The first part are weights of the update gate and reset gate with
1027
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1028
              candidate hidden state with shape :math:`(D \\times D)`.
1029 1030 1031 1032 1033

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1034
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1035
            the bias in the update gate, reset gate and candidate calculations.
1036 1037 1038
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1039 1040
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1041
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1042 1043 1044
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1045
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1046
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1047 1048 1049 1050
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1051 1052

    Returns:
G
guosheng 已提交
1053
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1054
            and sequence length is the same with the input.
1055

G
guosheng 已提交
1056
    Examples:
1057

G
guosheng 已提交
1058 1059
        .. code-block:: python

1060 1061
            import paddle.fluid as fluid

1062 1063 1064 1065
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1066
            hidden_dim = 512
1067
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1068
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1069 1070
    """

L
lujun 已提交
1071
    assert in_dygraph_mode(
1072 1073
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1074 1075 1076 1077 1078 1079 1080
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1081
    batch_size = input.shape[0]
G
guosheng 已提交
1082
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1083
    if h_0:
G
guosheng 已提交
1084
        assert h_0.shape == (
Y
Yancey 已提交
1085 1086 1087
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1088

X
Xin Pan 已提交
1089 1090 1091 1092
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1106 1107
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1108 1109 1110 1111
        })
    return hidden


Y
Yu Yang 已提交
1112 1113 1114
def gru_unit(input,
             hidden,
             size,
1115 1116
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1117
             activation='tanh',
Q
Qiao Longfei 已提交
1118 1119
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1120
    """
1121 1122 1123
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1124
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1125
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1126

1127 1128
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1129

1130
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1131

1132
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1133

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1149 1150

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1151 1152 1153
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1154 1155
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1156 1157
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1158 1159 1160
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1161 1162 1163

    Args:
        input (Variable): The fc transformed input value of current step.
1164
        hidden (Variable): The hidden value of gru unit from previous step.
1165
        size (integer): The input dimension value.
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1180
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1181
            the bias in the update gate, reset gate and candidate calculations.
1182 1183 1184
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1185 1186
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1187 1188 1189 1190
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1191

1192 1193 1194 1195 1196 1197
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1198

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
            import paddle.fluid as fluid

            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            hidden_dim = 512
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.gru_unit(
                input=x, hidden=pre_hidden, size=hidden_dim * 3)
Y
Yu Yang 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1222
    size = size // 3
Y
Yu Yang 已提交
1223 1224

    # create weight
1225 1226
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1227

X
Xin Pan 已提交
1228 1229 1230
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1231
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1232
    # create bias
1233
    if helper.bias_attr:
Y
Yu Yang 已提交
1234 1235 1236
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1237
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1238 1239 1240

    helper.append_op(
        type='gru_unit',
1241
        inputs=inputs,
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1248 1249
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1250 1251 1252 1253 1254
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1255
@templatedoc()
1256
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1257 1258 1259 1260 1261 1262 1263
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1264
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1265 1266 1267 1268
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1269 1270 1271
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1272

J
JesseyXujin 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             emission = fluid.layers.data(name='emission', shape=[1000], dtype='float32')
             target = fluid.layers.data(name='target', shape=[1], dtype='int32')
             crf_cost = fluid.layers.linear_chain_crf(
                 input=emission,
                 label=target,
                 param_attr=fluid.ParamAttr(
                     name='crfw',
                     learning_rate=0.2))

Y
yuyang18 已提交
1286
    """
Y
Yu Yang 已提交
1287 1288 1289 1290 1291 1292
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1293 1294 1295 1296 1297 1298 1299 1300
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1316 1317 1318 1319
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1320

W
wopeizl 已提交
1321 1322
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1323

W
wopeizl 已提交
1324
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1325

W
wopeizl 已提交
1326
        label(${label_type}): ${label_comment}
1327

W
wopeizl 已提交
1328 1329
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1330

W
wopeizl 已提交
1331 1332
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1333

1334
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
1335 1336 1337 1338 1339 1340 1341
           images = fluid.layers.data(name='pixel', shape=[784], dtype='float32')
           label = fluid.layers.data(name='label', shape=[1], dtype='int32')
           hidden = fluid.layers.fc(input=images, size=2)
           crf = fluid.layers.linear_chain_crf(input=hidden, label=label, 
                     param_attr=fluid.ParamAttr(name="crfw"))
           crf_decode = fluid.layers.crf_decoding(input=hidden, 
                     param_attr=fluid.ParamAttr(name="crfw"))
W
wopeizl 已提交
1342 1343 1344 1345 1346 1347 1348 1349
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1350
                "Transition": transition,
W
wopeizl 已提交
1351 1352
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1353

W
wopeizl 已提交
1354
    return viterbi_path
Y
Yu Yang 已提交
1355 1356


Y
yi.wu 已提交
1357
@templatedoc()
F
fengjiayi 已提交
1358
def cos_sim(X, Y):
Y
Yu Yang 已提交
1359
    """
Y
yi.wu 已提交
1360 1361 1362
    ${comment}

    Args:
1363 1364
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1365

Y
yi.wu 已提交
1366
    Returns:
1367
        Variable: the output of cosine(X, Y).
L
lvmengsi 已提交
1368 1369 1370 1371

    Examples:
        .. code-block:: python

1372
            import paddle.fluid as fluid
L
lvmengsi 已提交
1373 1374 1375
            x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
            y = fluid.layers.data(name='y', shape=[1, 7], dtype='float32', append_batch_size=False)
            out = fluid.layers.cos_sim(x, y)
Y
Yu Yang 已提交
1376
    """
F
fengjiayi 已提交
1377
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1378 1379 1380
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1391 1392 1393 1394 1395
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1396
            dropout_implementation="downgrade_in_infer"):
1397 1398 1399 1400 1401
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1402
    training. The dropout operator randomly sets (according to the given dropout
1403 1404 1405
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1406 1407
    dropout op can be removed from the program to make the program more efficient.

1408
    Args:
1409 1410
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1411 1412 1413 1414 1415 1416 1417
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1418 1419
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1420
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1421 1422

                                           - train: out = input * mask
C
ceci3 已提交
1423
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1424 1425 1426

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1427
                                        2. upscale_in_train, upscale the outcome at training time
1428

H
haowang101779990 已提交
1429 1430
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1431

H
haowang101779990 已提交
1432 1433
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1434

M
minqiyang 已提交
1435

1436
    Returns:
1437
        Variable: A tensor variable is the shape with `x`.
1438 1439

    Examples:
1440

1441 1442
        .. code-block:: python

1443
            import paddle.fluid as fluid
1444 1445
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1446 1447
    """

F
fengjiayi 已提交
1448
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1449 1450
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
Z
Zeng Jinle 已提交
1451
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)
C
chengduo 已提交
1452 1453 1454 1455

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1456 1457 1458 1459 1460
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1461 1462 1463 1464
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1465 1466
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1467
        })
1468 1469 1470
    return out


J
jerrywgz 已提交
1471
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1472
    """
Y
Yibing Liu 已提交
1473 1474
    **Cross Entropy Layer**

1475 1476 1477
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1478 1479

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1480
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1481

Y
Yibing Liu 已提交
1482
        .. math::
Y
yangyaming 已提交
1483

Y
Yibing Liu 已提交
1484 1485 1486
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1487 1488
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1489 1490 1491 1492 1493

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1494
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1495 1496 1497
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1498 1499
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1500
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1501

Y
Yibing Liu 已提交
1502
    Args:
Y
yangyaming 已提交
1503
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1504 1505 1506 1507
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1508
        label (Variable|list): the ground truth which is a 2-D tensor. When
1509 1510 1511 1512
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1513
        soft_label (bool): a flag indicating whether to
1514
                                           interpretate the given labels as soft
1515
                                           labels. Default: `False`.
M
minqiyang 已提交
1516 1517
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1518
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1519 1520 1521 1522 1523

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1524 1525 1526
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1527

H
haowang101779990 已提交
1528 1529
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1530

H
haowang101779990 已提交
1531 1532
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1533 1534 1535 1536

    Examples:
        .. code-block:: python

1537
          import paddle.fluid as fluid
L
lvmengsi 已提交
1538 1539 1540 1541
          classdim = 7
          x = fluid.layers.data(name='x', shape=[3, 7], dtype='float32', append_batch_size=False)
          label = fluid.layers.data(name='label', shape=[3, 1], dtype='float32', append_batch_size=False)
          predict = fluid.layers.fc(input=x, size=classdim, act='softmax')
Y
Yibing Liu 已提交
1542
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1543
    """
S
sneaxiy 已提交
1544 1545
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1546
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1547
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1548 1549 1550 1551 1552
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1553 1554
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1555 1556 1557
    return out


S
sneaxiy 已提交
1558 1559 1560 1561
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1562
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1563 1564 1565 1566 1567
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1568
                 'MatchX': [match_x],
S
sneaxiy 已提交
1569 1570 1571 1572 1573
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1574
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1575
    """
1576
    **Bayesian Personalized Ranking Loss Operator**
F
frankwhzhang 已提交
1577

1578
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1579
    The loss at a given point in one session is defined as:
1580 1581 1582

    .. math::
        Y[i] = 1/(N[i] - 1) * \sum_j{\log(\sigma(X[i, Label[i]]-X[i, j]))}
F
frankwhzhang 已提交
1583 1584

    Learn more details by reading paper <session-based recommendations with recurrent
1585
    neural networks>.
F
frankwhzhang 已提交
1586

1587 1588 1589 1590 1591 1592
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1593 1594
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1595 1596 1597
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1598 1599 1600
    Examples:
        .. code-block:: python

1601 1602 1603 1604 1605 1606 1607
          import paddle.fluid as fluid

          neg_size = 10
          label = fluid.layers.data(
                    name="label", shape=[1], dtype="int64")
          predict = fluid.layers.data(
                    name="predict", shape=[neg_size + 1], dtype="float32")
1608
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1609
    """
1610 1611 1612 1613 1614
    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1615
                'Label': [label]},
1616 1617 1618 1619
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1620
def square_error_cost(input, label):
Y
Yu Yang 已提交
1621
    """
1622 1623
    **Square error cost layer**

1624 1625
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1626

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1640 1641
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1642 1643

    Returns:
G
guosheng 已提交
1644
        Variable: The tensor variable storing the element-wise squared error \
1645
                  difference of input and label.
1646 1647 1648 1649

    Examples:
        .. code-block:: python

1650
          import paddle.fluid as fluid
R
ruri 已提交
1651 1652 1653
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
1654

Y
Yu Yang 已提交
1655
    """
F
fengjiayi 已提交
1656
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1657
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1658 1659 1660 1661 1662 1663
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1664
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1665
    helper.append_op(
F
fengjiayi 已提交
1666 1667
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1668 1669 1670
    return square_out


Y
yi.wu 已提交
1671
@templatedoc()
Y
Yu Yang 已提交
1672 1673 1674 1675
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1676
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1677
    """
Y
yi.wu 已提交
1678
    **Chunk Evaluator**
Y
yi.wu 已提交
1679

Y
yangyaming 已提交
1680
    This function computes and outputs the precision, recall and
1681
    F1-score of chunk detection.
Y
yi.wu 已提交
1682

M
minqiyang 已提交
1683
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1684
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1685 1686 1687 1688 1689 1690

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1691

Y
yi.wu 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1717

Y
yi.wu 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1742
    Args:
1743 1744 1745 1746 1747
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1748

Y
yi.wu 已提交
1749
    Returns:
Y
update  
yi.wu 已提交
1750 1751 1752
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1753

Y
yi.wu 已提交
1754 1755 1756
    Examples:
        .. code-block:: python

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
            import paddle.fluid as fluid

            dict_size = 10000
            label_dict_len = 7
            sequence = fluid.layers.data(
                name='id', shape=[1], lod_level=1, dtype='int64')
            embedding = fluid.layers.embedding(
                input=sequence, size=[dict_size, 512])
            hidden = fluid.layers.fc(input=embedding, size=512)
            label = fluid.layers.data(
                name='label', shape=[1], lod_level=1, dtype='int32')
Y
yi.wu 已提交
1768
            crf = fluid.layers.linear_chain_crf(
1769
                input=hidden, label=label, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1770
            crf_decode = fluid.layers.crf_decoding(
1771
                input=hidden, param_attr=fluid.ParamAttr(name="crfw"))
Y
yi.wu 已提交
1772 1773 1774 1775 1776
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1777
    """
F
fengjiayi 已提交
1778
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1779 1780

    # prepare output
X
Xin Pan 已提交
1781 1782 1783 1784 1785 1786 1787
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1788 1789 1790 1791 1792 1793 1794 1795

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1796 1797 1798 1799
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1800 1801 1802
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1803 1804
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1805
        })
1806 1807
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1808 1809


1810
@templatedoc()
Y
Yu Yang 已提交
1811 1812 1813 1814 1815 1816 1817
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1818 1819
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1820 1821 1822 1823
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1824 1825 1826 1827 1828 1829 1830

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1844

1845 1846
    Returns:
        Variable: output of sequence_conv
B
bdzhuxiaoning 已提交
1847 1848 1849 1850 1851 1852 1853

    Examples:
        .. code-block:: python

             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[10,10], append_batch_size=False, dtype='float32')
             x_conved = fluid.layers.sequence_conv(x,2)
Y
Yu Yang 已提交
1854 1855
    """

L
lujun 已提交
1856
    assert not in_dygraph_mode(), (
1857
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1858 1859 1860 1861 1862
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1863
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1874
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1875 1876 1877 1878 1879 1880
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1881
def sequence_softmax(input, use_cudnn=False, name=None):
1882 1883 1884
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1885
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1902 1903 1904
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1905

1906 1907 1908 1909 1910 1911 1912
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

1913
             import paddle.fluid as fluid
1914 1915 1916 1917
             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
L
lujun 已提交
1918
    assert not in_dygraph_mode(), (
1919
        "sequence layer is not supported in dygraph mode yet.")
1920 1921
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1922
    softmax_out = helper.create_variable_for_type_inference(dtype)
1923 1924 1925 1926 1927 1928 1929 1930
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1931
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1932
    """
1933
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1934
    has the same shape as the input.
Q
qiaolongfei 已提交
1935

D
dengkaipeng 已提交
1936
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1937
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1938
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1939 1940 1941
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1942
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1943
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1944 1945 1946 1947 1948 1949 1950

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1951
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1952 1953 1954 1955 1956 1957 1958 1959

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1960 1961
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1962 1963
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1964 1965 1966
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1967 1968 1969 1970 1971 1972 1973 1974

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

J
JesseyXujin 已提交
1975 1976
             import paddle.fluid as fluid
             x = fluid.layers.data(name='x', shape=[2], dtype='float32')
Q
qiaolongfei 已提交
1977
             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1978
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1979
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1980 1981
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1982 1983

    """
1984 1985
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1986
    softmax_out = helper.create_variable_for_type_inference(dtype)
1987 1988 1989 1990
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1991 1992
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1993 1994 1995
    return softmax_out


Y
Yu Yang 已提交
1996 1997 1998
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1999 2000
           stride=1,
           padding=0,
2001
           dilation=1,
Y
Yu Yang 已提交
2002 2003 2004
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
2005
           use_cudnn=True,
2006 2007
           act=None,
           name=None):
Y
Yu Yang 已提交
2008
    """
C
chengduoZH 已提交
2009
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
2010 2011
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
2012
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
2013 2014 2015 2016 2017 2018 2019
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
2020 2021 2022
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
2023

2024
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
2025

C
chengduoZH 已提交
2026 2027
    .. math::

C
refine  
chengduoZH 已提交
2028
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
2029

T
tensor-tang 已提交
2030
    Where:
C
chengduoZH 已提交
2031

2032 2033 2034 2035 2036
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
2037
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2038 2039 2040

    Example:

2041 2042
        - Input:

W
weixing02 已提交
2043
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
2044

W
weixing02 已提交
2045
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
2046

2047
        - Output:
T
tensor-tang 已提交
2048

W
weixing02 已提交
2049
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
2050

C
chengduoZH 已提交
2051
        Where
2052 2053

        .. math::
C
chengduoZH 已提交
2054

W
weixing02 已提交
2055 2056
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
2057 2058

    Args:
2059
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
2060
        num_filters(int): The number of filter. It is as same as the output
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
2078 2079 2080 2081 2082
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
2083
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
2084 2085 2086 2087 2088
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2089 2090
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2091 2092
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
2093
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2094
            will be named automatically. Default: None
C
chengduoZH 已提交
2095 2096

    Returns:
G
guosheng 已提交
2097
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2098 2099
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2100
    Raises:
2101 2102
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2103

C
chengduoZH 已提交
2104 2105 2106
    Examples:
        .. code-block:: python

2107
          import paddle.fluid as fluid
2108 2109
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2110 2111 2112
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2113
    assert param_attr is not False, "param_attr should not be False here."
2114
    l_type = 'conv2d'
X
xzl 已提交
2115 2116
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2117
        l_type = 'depthwise_conv2d'
2118 2119 2120 2121

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2122 2123 2124 2125 2126
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2127
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2128

C
chengduoZH 已提交
2129 2130 2131
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2132
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2133

C
chengduoZH 已提交
2134 2135
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2136 2137

    input_shape = input.shape
M
minqiyang 已提交
2138
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2139 2140

    def _get_default_param_initializer():
C
chengduo 已提交
2141 2142
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2143 2144 2145 2146 2147 2148 2149 2150
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2151
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2152

2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2167
    helper.append_op(
2168
        type=l_type,
Y
Yu Yang 已提交
2169 2170 2171 2172 2173
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2174 2175 2176
        attrs={
            'strides': stride,
            'paddings': padding,
2177
            'dilations': dilation,
C
chengduoZH 已提交
2178
            'groups': groups,
2179
            'use_cudnn': use_cudnn,
2180
            'use_mkldnn': False,
2181
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2182
        })
Y
Yu Yang 已提交
2183 2184 2185 2186 2187 2188

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2206 2207 2208 2209 2210 2211
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2221 2222
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2223 2224 2225
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2226
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
2249
        num_filters(int): The number of filter. It is as same as the output
C
chengduoZH 已提交
2250 2251
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2252
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2253 2254
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2255
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2256 2257
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2258
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2259 2260
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2261
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2262 2263 2264 2265 2266 2267
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2278 2279
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2280 2281
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2282
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2283
            will be named automatically. Default: None.
C
chengduoZH 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2296
          import paddle.fluid as fluid
2297 2298
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2299 2300 2301
    """

    l_type = 'conv3d'
C
chengduo 已提交
2302
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2313
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2327 2328 2329
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2330 2331 2332 2333 2334 2335 2336 2337
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2338
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2353
            'use_mkldnn': False
C
chengduoZH 已提交
2354 2355
        })

2356
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2357 2358 2359 2360

    return helper.append_activation(pre_act)


2361
def sequence_pool(input, pool_type, is_test=False, pad_value=0.0):
Y
Yu Yang 已提交
2362
    """
Y
yangyaming 已提交
2363 2364 2365
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

2376 2377
       x is a 1-level LoDTensor and **pad_value** = 0.0:
         x.lod = [[2, 3, 2, 0]]
L
Luo Tao 已提交
2378 2379 2380 2381
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
2382
         out.dim = [4, 1]
2383
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2384 2385

       for different pool_type:
2386 2387 2388
         average: out.data = [2, 4, 3, 0.0], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6, 0.0], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24, 0.0], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
2389
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
2390 2391 2392 2393 2394
         max    : out.data = [3, 6, 5, 0.0], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
         last   : out.data = [3, 6, 1, 0.0], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5, 0.0], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

         and all above 0.0 = **pad_value**.
F
fengjiayi 已提交
2395

L
Luo Tao 已提交
2396
    Args:
2397
        input (variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2398
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2399
            It supports average, sum, sqrt and max.
2400 2401
        is_test (bool): Used to distinguish training from scoring mode. Default False.
        pad_value (float): Used to pad the pooling result for empty input sequence.
L
Luo Tao 已提交
2402 2403 2404 2405 2406 2407 2408

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2409

2410 2411
             import paddle.fluid as fluid

Y
yangyaming 已提交
2412
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2413 2414 2415 2416 2417
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2418 2419
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2420
    """
L
lujun 已提交
2421
    assert not in_dygraph_mode(), (
2422
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2423
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2424
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2425 2426
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2427 2428 2429 2430 2431 2432

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
2433 2434 2435 2436 2437
        attrs={
            "pooltype": pool_type.upper(),
            "is_test": is_test,
            "pad_value": pad_value
        })
Y
Yu Yang 已提交
2438

Y
yangyaming 已提交
2439 2440 2441 2442 2443
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2444 2445 2446
    return pool_out


C
add doc  
chengduoZH 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
2463 2464 2465 2466
           import paddle.fluid as fluid
           x = fluid.layers.data(name='x', shape=[10], dtype='float32')
           y = fluid.layers.data(name='y', shape=[10], dtype='float32')
           out = fluid.layers.sequence_concat(input=[x, y])
C
add doc  
chengduoZH 已提交
2467
    """
L
lujun 已提交
2468
    assert not in_dygraph_mode(), (
2469
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2470
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2471
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2472 2473 2474 2475 2476
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2477
def sequence_first_step(input):
L
Luo Tao 已提交
2478
    """
L
Luo Tao 已提交
2479
    This function gets the first step of sequence.
L
Luo Tao 已提交
2480 2481 2482 2483

    .. code-block:: text

       x is a 1-level LoDTensor:
2484
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2485 2486 2487 2488 2489
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2490
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2491
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2492

L
Luo Tao 已提交
2493 2494 2495 2496 2497 2498 2499 2500 2501
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2502

2503
             import paddle.fluid as fluid
Y
yangyaming 已提交
2504
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2505 2506 2507
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2508 2509 2510
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2511
def sequence_last_step(input):
L
Luo Tao 已提交
2512
    """
L
Luo Tao 已提交
2513
    This function gets the last step of sequence.
L
Luo Tao 已提交
2514 2515 2516 2517

    .. code-block:: text

       x is a 1-level LoDTensor:
2518
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2519 2520 2521 2522 2523
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2524
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2525
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2526

L
Luo Tao 已提交
2527 2528 2529 2530 2531 2532 2533 2534 2535
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2536

2537
             import paddle.fluid as fluid
Y
yangyaming 已提交
2538
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2539 2540 2541
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2542 2543 2544
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2545 2546 2547 2548
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2549
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2550 2551 2552 2553 2554
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2555

H
haowang101779990 已提交
2556
              - Case:
Y
Yibing Liu 已提交
2557

2558
            Given the input Variable **input**:
2559

2560 2561 2562
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2563

2564
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2565

2566
            the output Variable will be
2567

2568 2569 2570
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2571

M
minqiyang 已提交
2572
    Note:
H
haowang101779990 已提交
2573
          The first dimension size of **input**, **offset** and **length**
2574
          should be equal. The **offset** should start from 0.
2575

Y
Yibing Liu 已提交
2576
    Args:
2577
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2578
                         sequences.
Y
Yibing Liu 已提交
2579 2580 2581 2582 2583 2584
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2585
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2586 2587 2588 2589 2590

    Examples:

        .. code-block:: python

2591
             import paddle.fluid as fluid
Y
Yibing Liu 已提交
2592 2593 2594 2595 2596
             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2597
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2598 2599
                                                   length=length)
    """
L
lujun 已提交
2600
    assert not in_dygraph_mode(), (
2601
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2602 2603
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2604
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2619
@templatedoc()
Y
Yu Yang 已提交
2620
def pool2d(input,
C
chengduoZH 已提交
2621 2622
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2623 2624
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2625
           global_pooling=False,
C
chengduoZH 已提交
2626
           use_cudnn=True,
2627
           ceil_mode=False,
2628 2629
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2630
    """
F
fengjiayi 已提交
2631
    ${comment}
2632 2633

    Args:
2634 2635 2636
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2637
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2638
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2639 2640
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2641
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2642 2643 2644 2645 2646 2647
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2648 2649 2650
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2651
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2652
                        layer will be named automatically.
2653
        exclusive (bool): Whether to exclude padding points in average pooling
2654
                          mode, default is true
F
fengjiayi 已提交
2655

2656
    Returns:
F
fengjiayi 已提交
2657
        Variable: The pooling result.
F
fengjiayi 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

2668
          import paddle.fluid as fluid
F
fengjiayi 已提交
2669 2670
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2671
          pool2d = fluid.layers.pool2d(
2672 2673 2674 2675
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2676
                            global_pooling=False)
Y
Yu Yang 已提交
2677 2678 2679 2680 2681
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2682

C
chengduoZH 已提交
2683 2684 2685 2686 2687
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2688 2689 2690 2691
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2692 2693
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2694

C
Add doc  
chengduoZH 已提交
2695
    l_type = 'pool2d'
2696 2697

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2698
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2699
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2700 2701

    helper.append_op(
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2713 2714
            "use_mkldnn": False,
            "exclusive": exclusive,
2715 2716 2717 2718 2719
        })

    return pool_out


D
dengkaipeng 已提交
2720
@templatedoc()
2721 2722 2723 2724 2725 2726 2727 2728
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2729 2730
           name=None,
           exclusive=True):
2731
    """
2732
    ${comment}
2733 2734

    Args:
D
dengkaipeng 已提交
2735 2736 2737 2738 2739
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2740 2741 2742 2743 2744
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2745 2746 2747 2748 2749 2750 2751
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2752
        exclusive (bool): Whether to exclude padding points in average pooling
2753
                          mode, default is true
2754

2755
    Returns:
2756
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2757 2758 2759 2760 2761

    Examples:

        .. code-block:: python

2762
          import paddle.fluid as fluid
D
dengkaipeng 已提交
2763 2764 2765 2766 2767 2768 2769 2770
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2771 2772 2773 2774 2775
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2776

C
chengduoZH 已提交
2777 2778 2779 2780 2781
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2782 2783 2784
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2785

C
chengduoZH 已提交
2786 2787
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2788

2789 2790
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2791
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2792
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2793 2794

    helper.append_op(
2795
        type=l_type,
Y
Yu Yang 已提交
2796 2797 2798 2799 2800 2801 2802
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2803
            "paddings": pool_padding,
2804
            "use_cudnn": use_cudnn,
2805
            "ceil_mode": ceil_mode,
2806 2807
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2808 2809 2810 2811 2812
        })

    return pool_out


2813 2814 2815 2816 2817 2818 2819
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2820 2821 2822 2823 2824 2825 2826
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2827

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2841 2842 2843 2844 2845 2846 2847 2848 2849

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2850 2851
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2866
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2867
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2868
          # of input data into m * n grids averagely and performs poolings in each
2869 2870
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2871
          #
2872 2873 2874 2875 2876 2877 2878 2879
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2880
          import paddle.fluid as fluid
2881 2882
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2883
          pool_out = fluid.layers.adaptive_pool2d(
2884 2885
                            input=data,
                            pool_size=[3, 3],
2886
                            pool_type='avg')
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2897
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2923
    return (pool_out, mask) if require_index else pool_out
2924 2925 2926 2927 2928 2929 2930 2931 2932


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2933 2934 2935 2936 2937 2938 2939
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2940

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2958 2959 2960

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2961 2962 2963
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2964
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2965
            it must contain three integers, (Depth, Height, Width).
2966
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2967 2968
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2983 2984
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2985
          # of input data into l * m * n grids averagely and performs poolings in each
2986 2987
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2988
          #
2989 2990 2991 2992 2993 2994 2995 2996 2997
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2998
          #                 output[:, :, i, j, k] =
2999 3000
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
K
Kaipeng Deng 已提交
3001 3002 3003

          import paddle.fluid as fluid

3004
          data = fluid.layers.data(
K
Kaipeng Deng 已提交
3005 3006
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool_out = fluid.layers.adaptive_pool3d(
3007
                            input=data,
D
dengkaipeng 已提交
3008
                            pool_size=[3, 3, 3],
3009
                            pool_type='avg')
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

3020
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
3046
    return (pool_out, mask) if require_index else pool_out
3047 3048


Y
Yu Yang 已提交
3049 3050 3051 3052 3053 3054 3055
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
3056
               data_layout='NCHW',
Y
Yang Yang 已提交
3057
               in_place=False,
3058 3059
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
3060
               moving_variance_name=None,
3061
               do_model_average_for_mean_and_var=False,
3062 3063
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
3064
    """
Q
qiaolongfei 已提交
3065 3066 3067 3068
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
3069

Q
qiaolongfei 已提交
3070
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
3071

Q
qiaolongfei 已提交
3072 3073
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
3074 3075 3076
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
3089

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

3103
    Args:
Q
qingqing01 已提交
3104
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
3105
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
3106 3107 3108 3109 3110 3111 3112 3113 3114
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
3115 3116 3117 3118 3119 3120 3121 3122
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3123
        data_layout(string, default NCHW): NCHW|NHWC
3124
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3125 3126
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
3127 3128 3129
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean. If it 
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm 
            will save global mean with the string.
Q
qiaolongfei 已提交
3130
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
3131 3132
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm 
            will save global variance with the string.
Q
qiaolongfei 已提交
3133
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3134
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3135 3136 3137 3138 3139
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3140 3141

    Returns:
Q
qiaolongfei 已提交
3142
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3143 3144 3145 3146 3147

    Examples:

        .. code-block:: python

3148
            import paddle.fluid as fluid
L
lvmengsi 已提交
3149
            x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
Q
qiaolongfei 已提交
3150 3151
            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3152
    """
C
chengduo 已提交
3153
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3154 3155 3156
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3157 3158 3159 3160
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3179
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3180

3181 3182
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3183 3184 3185
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3186
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3187
        shape=param_shape,
W
Wu Yi 已提交
3188
        dtype=dtype)
3189 3190 3191 3192 3193 3194
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3195
            trainable=False,
W
wanghaoshuang 已提交
3196
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3197
        shape=param_shape,
W
Wu Yi 已提交
3198
        dtype=dtype)
3199
    variance.stop_gradient = True
Y
Yu Yang 已提交
3200 3201 3202 3203 3204 3205

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3206 3207 3208 3209
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3210

X
Xin Pan 已提交
3211 3212
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3230 3231 3232 3233
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3234
            "data_layout": data_layout,
X
Xin Pan 已提交
3235
            "use_mkldnn": False,
3236 3237
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3238
        })
Y
Yu Yang 已提交
3239 3240 3241 3242

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python
3294 3295
            
            import paddle.fluid as fluid
H
heqiaozhi 已提交
3296

3297 3298
            hidden1 = fluid.layers.data(name="hidden1", shape=[200])
            hidden2 = fluid.layers.data_norm(name="hidden2", input=hidden1)
H
heqiaozhi 已提交
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3364
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3365 3366 3367 3368

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3369
@templatedoc()
G
guosheng 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3380
    ${comment}
G
guosheng 已提交
3381 3382 3383

    The formula is as follows:

Y
yuyang18 已提交
3384
    ..  math::
G
guosheng 已提交
3385 3386 3387 3388 3389 3390 3391

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3392 3393 3394 3395 3396 3397 3398 3399
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3400

G
guosheng 已提交
3401 3402
    Args:
        input(Variable): The input tensor variable.
3403
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3404
            normalization. Default True.
3405
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3406 3407
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3408
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3409
            Default 1.
3410
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3411
            division by zero. Default 1e-05.
G
guosheng 已提交
3412
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3413 3414
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3415 3416
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3417
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3418 3419
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3420
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3421
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3422
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3423 3424 3425
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3426 3427

    Returns:
Y
yuyang18 已提交
3428
        ${y_comment}
G
guosheng 已提交
3429 3430 3431

    Examples:

3432
        >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3433 3434 3435
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3436
    """
L
lujun 已提交
3437
    assert in_dygraph_mode(
L
lujun 已提交
3438
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3453
    if shift:
G
guosheng 已提交
3454 3455 3456 3457 3458 3459
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3460 3461 3462 3463 3464
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3492
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

3514
        >>> import paddle.fluid as fluid
D
Dun 已提交
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3541 3542
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3560
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3561 3562 3563
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3564
    This layer calculates the spectral normalization value of weight parameters of
3565
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3566
    Parameters. Calculations are showed as follows.
3567

D
dengkaipeng 已提交
3568 3569 3570
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3571
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3584
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3585 3586 3587 3588

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3589

D
dengkaipeng 已提交
3590
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3591 3592
                

D
dengkaipeng 已提交
3593 3594 3595 3596
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3597 3598 3599
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3600 3601 3602
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3603
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3604 3605

    Examples:
K
Kaipeng Deng 已提交
3606
       .. code-block:: python
D
dengkaipeng 已提交
3607

K
Kaipeng Deng 已提交
3608 3609 3610 3611 3612
            import paddle.fluid as fluid

            weight = fluid.layers.data(name='weight', shape=[2, 8, 32, 32], 
                                       append_batch_size=False, dtype='float32')
            x = fluid.layers.spectral_norm(weight=weight, dim=1, power_iters=2)
D
dengkaipeng 已提交
3613 3614
    """
    helper = LayerHelper('spectral_norm', **locals())
3615
    dtype = weight.dtype
D
dengkaipeng 已提交
3616 3617 3618

    # create intput and parameters
    inputs = {'Weight': weight}
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3637 3638

    # create output
3639
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3640 3641

    helper.append_op(
3642
        type="spectral_norm",
D
Dun 已提交
3643
        inputs=inputs,
3644 3645 3646 3647 3648 3649
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3650

3651
    return out
D
Dun 已提交
3652 3653


Y
Yu Yang 已提交
3654 3655 3656 3657
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3658 3659 3660
                     padding=0,
                     stride=1,
                     dilation=1,
3661
                     groups=None,
C
caoying03 已提交
3662
                     param_attr=None,
3663
                     bias_attr=None,
C
chengduoZH 已提交
3664
                     use_cudnn=True,
3665
                     act=None,
C
caoying03 已提交
3666
                     name=None):
Y
Yu Yang 已提交
3667
    """
3668 3669 3670 3671 3672 3673 3674 3675
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3676 3677
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3678 3679 3680
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3681 3682 3683 3684 3685

    For each input :math:`X`, the equation is:

    .. math::

3686
        Out = \sigma (W \\ast X + b)
3687

3688
    Where:
3689 3690 3691

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3692 3693 3694 3695
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3696

3697 3698 3699 3700
    Example:

        - Input:

3701
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3702

3703
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3704 3705 3706

        - Output:

3707
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3708 3709

        Where
Y
Yu Yang 已提交
3710

3711 3712
        .. math::

3713 3714
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3715 3716
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3717 3718

    Args:
3719 3720 3721 3722
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3723 3724 3725 3726
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3755
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3756 3757 3758
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3759
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3760
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3761 3762

    Returns:
3763
        Variable: The tensor variable storing the convolution transpose result.
3764 3765

    Raises:
3766 3767
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3768 3769 3770 3771

    Examples:
       .. code-block:: python

3772
          import paddle.fluid as fluid
3773 3774
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3775
    """
C
chengduo 已提交
3776
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3777 3778 3779 3780 3781 3782 3783 3784
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3785 3786 3787
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3788 3789 3790
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3791

C
chengduoZH 已提交
3792 3793
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3794

Y
Yu Yang 已提交
3795 3796 3797 3798 3799
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3800

Y
Yu Yang 已提交
3801 3802
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3803

C
chengduoZH 已提交
3804
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3805
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3806
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3807
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3808
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3809 3810 3811
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3812

3813 3814 3815 3816 3817 3818 3819
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3820
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3821
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3822

Y
Yu Yang 已提交
3823 3824 3825
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3826
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3827
    helper.append_op(
3828
        type=op_type,
Y
Yu Yang 已提交
3829 3830
        inputs={'Input': [input],
                'Filter': [img_filter]},
3831
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3832
        attrs={
3833
            'output_size': output_size,
3834 3835 3836 3837 3838
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3839 3840
        })

3841 3842 3843
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3844 3845


3846
def conv3d_transpose(input,
Y
Yu Yang 已提交
3847 3848 3849
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3850 3851 3852
                     padding=0,
                     stride=1,
                     dilation=1,
3853
                     groups=None,
C
caoying03 已提交
3854
                     param_attr=None,
3855
                     bias_attr=None,
C
chengduoZH 已提交
3856
                     use_cudnn=True,
3857
                     act=None,
C
caoying03 已提交
3858
                     name=None):
Y
Yu Yang 已提交
3859
    """
3860
    **Convlution3D transpose layer**
3861

3862
    The convolution3D transpose layer calculates the output based on the input,
3863
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3864 3865 3866 3867 3868 3869
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3870 3871 3872
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3873 3874 3875 3876 3877

    For each input :math:`X`, the equation is:

    .. math::

3878
        Out = \sigma (W \\ast X + b)
3879 3880 3881

    In the above equation:

3882 3883
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3884 3885 3886 3887
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3888

3889 3890 3891 3892
    Example:

        - Input:

3893
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3894

3895
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3896 3897 3898

        - Output:

3899
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3900 3901

        Where
Y
Yu Yang 已提交
3902

3903 3904
        .. math::

3905 3906 3907
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3908 3909

    Args:
3910
        input(Variable): The input image with [N, C, D, H, W] format.
3911 3912 3913
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3914
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3915 3916
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3917
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3918 3919 3920
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3921 3922
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3923
        stride(int|tuple): The stride size. If stride is a tuple, it must
3924 3925
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3926
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3927 3928 3929
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3930 3931 3932 3933 3934
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3935 3936 3937 3938 3939 3940 3941 3942 3943
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3944 3945
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3946 3947
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3948 3949
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3950 3951

    Returns:
3952
        Variable: The tensor variable storing the convolution transpose result.
3953 3954

    Raises:
3955 3956
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3957 3958 3959 3960

    Examples:
       .. code-block:: python

3961
          import paddle.fluid as fluid
3962 3963
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3964
    """
C
chengduo 已提交
3965
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3966 3967
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3968
    if not isinstance(input, Variable):
3969
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3970 3971
    input_channel = input.shape[1]

3972 3973 3974
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3975

C
chengduoZH 已提交
3976 3977 3978
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3979 3980 3981 3982 3983 3984
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3985 3986 3987
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3988

3989
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3990
                         padding[0] - 1) // dilation[0] + 1
3991
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3992
                         padding[1] - 1) // dilation[1] + 1
3993
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3994
                         padding[2] - 1) // dilation[2] + 1
3995
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3996
    else:
3997 3998
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3999

4000
    groups = 1 if groups is None else groups
M
minqiyang 已提交
4001
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
4002 4003 4004
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
4005
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
4006
    helper.append_op(
4007
        type=l_type,
Y
Yu Yang 已提交
4008 4009
        inputs={'Input': [input],
                'Filter': [img_filter]},
4010
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
4011 4012 4013 4014
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
4015
            'groups': groups,
C
chengduoZH 已提交
4016 4017
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
4018

4019 4020
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
4021
    return out
Y
yangyaming 已提交
4022 4023


Y
yangyaming 已提交
4024
def sequence_expand(x, y, ref_level=-1, name=None):
4025
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
4026 4027 4028 4029
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
4030 4031 4032 4033 4034

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
4035
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
4036
                x.data = [[a], [b], [c], [d]]
4037 4038 4039
                x.dims = [4, 1]

            y is a LoDTensor:
4040 4041
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
4042

Y
yangyaming 已提交
4043
            ref_level: 0
4044

Y
yangyaming 已提交
4045
            then output is a 1-level LoDTensor:
4046
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
4047
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
4048 4049 4050 4051
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
4052
                x.data = [[a], [b], [c]]
4053 4054 4055
                x.dims = [3, 1]

            y is a LoDTensor:
4056
                y.lod = [[2, 0, 3]]
4057

Y
yangyaming 已提交
4058
            ref_level: -1
4059

Y
yangyaming 已提交
4060 4061 4062
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
4063 4064 4065
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
4066 4067
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
4068
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
4069
                        will be named automatically.
4070 4071 4072 4073 4074 4075

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4076
	
4077
            import paddle.fluid as fluid
4078
            import paddle.fluid.layers as layers
4079 4080 4081
            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
4082
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
4083
    """
L
lujun 已提交
4084
    assert not in_dygraph_mode(), (
4085
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
4086
    helper = LayerHelper('sequence_expand', input=x, **locals())
4087
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4088
    tmp = helper.create_variable_for_type_inference(dtype)
4089
    helper.append_op(
Y
yangyaming 已提交
4090 4091 4092 4093 4094
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
4095
    return tmp
4096 4097


C
chengduo 已提交
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python
4146 4147
            
            import paddle.fluid as fluid
4148
            import paddle.fluid.layers as layers
C
chengduo 已提交
4149 4150 4151 4152 4153 4154

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
L
lujun 已提交
4155
    assert not in_dygraph_mode(), (
4156
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4157 4158
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4159
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4160 4161 4162 4163 4164 4165 4166 4167
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4168
@templatedoc()
4169
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4170 4171 4172 4173 4174
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4175 4176 4177
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4178
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4179 4180 4181 4182
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4183 4184 4185
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4186

F
fengjiayi 已提交
4187
    Returns:
M
minqiyang 已提交
4188
        Variable: The padded sequence batch and the original lengths before
4189
                  padding. All sequences has the same length.
M
minqiyang 已提交
4190

F
fengjiayi 已提交
4191 4192 4193
    Examples:
        .. code-block:: python

4194
            import paddle.fluid as fluid
F
fengjiayi 已提交
4195 4196 4197 4198
            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4199
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4200
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4201 4202 4203
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

L
lujun 已提交
4204
    assert not in_dygraph_mode(), (
4205
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4206 4207
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4208 4209
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4210 4211 4212 4213

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4214 4215 4216 4217 4218 4219
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4220 4221
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4222
        attrs={'padded_length': maxlen})
4223
    return out, length
F
fengjiayi 已提交
4224 4225


4226
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4227
    """
4228
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4229

4230 4231
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4241 4242 4243
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4244
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4245 4246 4247 4248 4249 4250

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4251
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4252 4253 4254 4255 4256 4257

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4258 4259
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4260 4261 4262 4263 4264 4265 4266

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

4267
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4268 4269 4270 4271 4272
            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

L
lujun 已提交
4273
    assert not in_dygraph_mode(), (
4274
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4275 4276
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4277
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4289 4290 4291 4292 4293 4294 4295
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4296
                is_accumulated=True,
4297 4298
                name=None,
                return_parent_idx=False):
4299
    """
4300 4301
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4302 4303 4304

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4305 4306

    This layer does the search in beams for one time step. Specifically, it
4307 4308 4309
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4321 4322 4323 4324

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4325

4326
    Args:
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4350 4351
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4352 4353
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4354 4355 4356 4357
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4358

4359
    Returns:
4360 4361 4362 4363
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4364 4365 4366 4367

    Examples:
        .. code-block:: python

4368 4369
            import paddle.fluid as fluid

4370 4371 4372
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
            beam_size = 4
            end_id = 1
            pre_ids = fluid.layers.data(
                name='pre_id', shape=[1], lod_level=2, dtype='int64')
            pre_scores = fluid.layers.data(
                name='pre_scores', shape=[1], lod_level=2, dtype='float32')
            probs = fluid.layers.data(
                name='probs', shape=[10000], dtype='float32')
            topk_scores, topk_indices = fluid.layers.topk(probs, k=beam_size)
            accu_scores = fluid.layers.elementwise_add(
                x=fluid.layers.log(x=topk_scores),
                y=fluid.layers.reshape(pre_scores, shape=[-1]),
4385
                axis=0)
4386
            selected_ids, selected_scores = fluid.layers.beam_search(
4387 4388 4389 4390 4391 4392 4393
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4394
    helper = LayerHelper('beam_search', **locals())
4395 4396 4397 4398 4399 4400
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4401

X
Xin Pan 已提交
4402 4403 4404
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4405 4406 4407 4408 4409
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4410 4411 4412

    helper.append_op(
        type='beam_search',
4413
        inputs=inputs,
Q
Qiao Longfei 已提交
4414 4415 4416
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4417
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4418 4419 4420 4421 4422 4423
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4424
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4425
        })
4426 4427 4428 4429
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4430 4431


4432 4433 4434 4435 4436 4437 4438
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4439

4440 4441 4442 4443 4444 4445 4446 4447 4448
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4449

4450 4451 4452 4453 4454 4455
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4456

4457 4458
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4459

4460 4461
            import paddle.fluid as fluid

4462 4463
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
4464 4465 4466
            ids = fluid.layers.create_array(dtype='int64')
            scores = fluid.layers.create_array(dtype='float32')
            finished_ids, finished_scores = fluid.layers.beam_search_decode(
4467 4468 4469
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4470 4471
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4487 4488 4489 4490
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4491
              param_attr=None,
C
caoying03 已提交
4492 4493
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4494 4495 4496 4497
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4498
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4499

4500
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4501

4502
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4503

4504
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4505 4506 4507

            h_t & = o_t tanh(c_t)

4508 4509 4510 4511 4512 4513
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4514 4515 4516

        .. math::

4517
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4518 4519 4520 4521 4522 4523 4524 4525

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

G
Guo Sheng 已提交
4526
    This layer has two outputs including :math:`h_t` and :math:`c_t`.
Y
yangyaming 已提交
4527 4528

    Args:
Y
yangyaming 已提交
4529 4530 4531 4532 4533 4534
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4535
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4548 4549
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4550 4551

    Returns:
Y
yangyaming 已提交
4552
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4553 4554

    Raises:
4555 4556 4557 4558
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4559 4560 4561 4562 4563

    Examples:

        .. code-block:: python

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
            import paddle.fluid as fluid

            dict_dim, emb_dim, hidden_dim = 128, 64, 512
            data = fluid.layers.data(name='step_data', shape=[1], dtype='int32')
            x = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
            pre_hidden = fluid.layers.data(
                name='pre_hidden', shape=[hidden_dim], dtype='float32')
            pre_cell = fluid.layers.data(
                name='pre_cell', shape=[hidden_dim], dtype='float32')
            hidden = fluid.layers.lstm_unit(
                x_t=x,
                hidden_t_prev=pre_hidden,
                cell_t_prev=pre_cell)
Y
yangyaming 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4591
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4592 4593 4594 4595
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4596 4597
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4598 4599 4600
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4601
    size = cell_t_prev.shape[1]
4602
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4603 4604
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4605
                param_attr=param_attr,
4606
                bias_attr=bias_attr)
Y
yangyaming 已提交
4607
    dtype = x_t.dtype
X
Xin Pan 已提交
4608 4609
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4610 4611 4612 4613 4614 4615 4616 4617 4618

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4619
    return h, c
G
guosheng 已提交
4620 4621


C
caoying03 已提交
4622
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4623
    """
Y
yangyaming 已提交
4624
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4625 4626 4627

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4628
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4629 4630
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4631 4632
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4633
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4634
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4635
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4636 4637
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4638 4639 4640

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4641

G
guosheng 已提交
4642 4643 4644
    Examples:
        .. code-block:: python

4645
            import paddle.fluid as fluid
G
guosheng 已提交
4646 4647 4648
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4649
            # Each example is followed by the corresponding output tensor.
4650
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4651 4652 4653 4654
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4655

4656
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4657 4658
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4659
            # Each example is followed by the corresponding output tensor.
4660 4661 4662
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
4663

G
guosheng 已提交
4664 4665
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4666
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4667 4668
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4669 4670 4671 4672 4673
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4674
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4675 4676 4677 4678
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4679 4680


C
caoying03 已提交
4681
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4682
    """
Y
Yibing Liu 已提交
4683
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4684 4685 4686

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4687 4688 4689
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4690
            must be in the range :math:`[-rank(input), rank(input))`. If
4691
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4692
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4693 4694
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4695
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4696
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4697
                       will be named automatically.
G
guosheng 已提交
4698 4699

    Returns:
Y
Yibing Liu 已提交
4700
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4701

G
guosheng 已提交
4702 4703 4704
    Examples:
        .. code-block:: python

4705
            import paddle.fluid as fluid
G
guosheng 已提交
4706 4707 4708 4709
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4710
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
G
guosheng 已提交
4711 4712 4713
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
4714
            fluid.layers.reduce_mean(x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4715

4716
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4717 4718 4719
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4720 4721 4722
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_mean(y, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(y, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4723 4724
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4725
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4726 4727
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4728 4729 4730 4731 4732
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4733
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4734 4735 4736 4737
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4738 4739


C
caoying03 已提交
4740
def reduce_max(input, dim=None, keep_dim=False, name=None):
4741
    """
Y
yangyaming 已提交
4742
    Computes the maximum of tensor elements over the given dimension.
4743 4744 4745

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4746
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4747 4748 4749
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4750
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4751 4752
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4753
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4754 4755
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4756 4757 4758

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4759

4760 4761 4762
    Examples:
        .. code-block:: python

4763
            import paddle.fluid as fluid
4764 4765 4766 4767
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4768
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4769 4770 4771 4772
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4773

4774
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4775 4776 4777
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4778 4779 4780
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_max(y, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(y, dim=[0, 1]) # [7.0, 8.0]
4781 4782
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4783
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4784 4785
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4786 4787 4788 4789 4790
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4791
            'dim': dim if dim != None else [0],
4792 4793 4794 4795 4796 4797
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4798
def reduce_min(input, dim=None, keep_dim=False, name=None):
4799
    """
Y
yangyaming 已提交
4800
    Computes the minimum of tensor elements over the given dimension.
4801 4802 4803

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4804
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4805 4806 4807
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4808
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4809 4810
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4811
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4812 4813
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4814 4815 4816

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4817

4818 4819 4820
    Examples:
        .. code-block:: python

4821
            import paddle.fluid as fluid
4822 4823 4824 4825
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4826
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4827 4828 4829 4830
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4831

4832
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4833 4834 4835
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4836 4837 4838
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_min(y, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(y, dim=[0, 1]) # [1.0, 2.0]
4839 4840
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4841
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4842 4843
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4844 4845 4846 4847 4848
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4849
            'dim': dim if dim != None else [0],
4850 4851 4852 4853
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4854 4855


4856 4857 4858 4859 4860 4861
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4862
        dim (list|int|None): The dimensions along which the product is performed. If
4863 4864
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4865 4866
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4867 4868 4869
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4870
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4871
            layer will be named automatically.
4872 4873 4874 4875 4876 4877 4878

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

4879
            import paddle.fluid as fluid
4880 4881 4882 4883
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
4884
            x = fluid.layers.data(name='x', shape=[4, 2], dtype='float32')
4885 4886 4887
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4888
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4889
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4890

4891
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
4892 4893 4894
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
4895 4896 4897
            y = fluid.layers.data(name='y', shape=[2, 2, 2], dtype='float32')
            fluid.layers.reduce_prod(y, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(y, dim=[0, 1]) # [105.0, 384.0]
4898 4899
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4900
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4901 4902
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4903 4904 4905 4906 4907
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4908
            'dim': dim if dim != None else [0],
4909 4910 4911 4912 4913 4914
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4915 4916
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4917
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4937
        
4938 4939 4940 4941
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4971
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4991

4992 4993 4994 4995
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

Z
zhoukunsheng 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
5018 5019 5020 5021 5022
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
5023
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
5024
    """
C
caoying03 已提交
5025
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
5026 5027 5028

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
5029 5030 5031 5032 5033
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
5034
            :attr:`dim` dimension orderly.
C
caoying03 已提交
5035
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
5036
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
5037 5038
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
5039 5040

    Returns:
D
dzhwinter 已提交
5041
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
5042 5043 5044 5045

    Examples:
        .. code-block:: python

5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
            import paddle.fluid as fluid

            # input is a variable which shape is [-1, 3, 9, 5]
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")

            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 3, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 3, 5]

            x0, x1, x2 = fluid.layers.split(input, num_or_sections=3, dim=2)
            # x0.shape [-1, 3, 2, 5]
            # x1.shape [-1, 3, 3, 5]
            # x2.shape [-1, 3, 4, 5]
G
guosheng 已提交
5061 5062 5063 5064 5065 5066 5067 5068
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
T
tink2123 已提交
5069
        assert len(num_or_sections) <= input_shape[
G
guosheng 已提交
5070 5071 5072
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
5073
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
5087 5088 5089 5090 5091 5092 5093 5094 5095


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

5096
    .. math::
5097 5098

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
5099 5100 5101 5102 5103

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
5104
        x(Variable|list): The input tensor to l2_normalize layer.
5105
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
5106 5107
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
5108
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
5109
            the default value is 1e-12.
5110
        name(str|None): A name for this layer(optional). If set None, the layer \
5111
            will be named automatically.
C
caoying03 已提交
5112 5113

    Returns:
5114
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
5115 5116

    Examples:
5117

C
caoying03 已提交
5118 5119
        .. code-block:: python

5120
            import paddle.fluid as fluid
5121 5122 5123 5124
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
5125 5126
    """

F
fengjiayi 已提交
5127 5128
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
5129 5130
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
5131 5132
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5133
    helper.append_op(
5134 5135 5136 5137
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
5138
        attrs={
5139 5140
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
5141 5142
        })
    return out
5143 5144


S
sneaxiy 已提交
5145
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
5146
    """
Y
ying 已提交
5147 5148 5149 5150
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
5151

C
chengduoZH 已提交
5152
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
5153
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
5154

5155 5156 5157 5158 5159
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
5160
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
5161

C
chengduoZH 已提交
5162
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
5163
      performs in the following way.
G
guosheng 已提交
5164

5165
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
5166
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
5167
        last two dimensions and a batched matrix multiply supporting broadcast
5168
        applies on the two tensors.
G
guosheng 已提交
5169

Y
ying 已提交
5170 5171
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
5172
    removed after matrix multiplication.
G
guosheng 已提交
5173 5174 5175

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
5176 5177 5178
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
5179
        alpha (float): The scale of output. Default 1.0.
5180
        name(str|None): A name for this layer(optional). If set None, the layer
5181
            will be named automatically.
G
guosheng 已提交
5182 5183

    Returns:
5184
        Variable: The product Tensor variable.
G
guosheng 已提交
5185

G
guosheng 已提交
5186 5187 5188
    Examples:
        .. code-block:: python

5189
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
5190
            # x: [B, ..., M, K], y: [B, ..., K, N]
5191
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
5192

5193
            # x: [B, M, K], y: [B, K, N]
5194
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5195

5196
            # x: [B, M, K], y: [K, N]
5197
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
5198

5199
            # x: [M, K], y: [K, N]
5200
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
5201 5202

            # x: [B, M, K], y: [K]
5203
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
5204

5205
            # x: [K], y: [K]
5206
            # fluid.layers.matmul(x, y)  # out: [1]
5207

Y
ying 已提交
5208
            # x: [M], y: [N]
5209 5210
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

5211
            import paddle.fluid as fluid
5212 5213 5214
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
5215
    """
Y
ying 已提交
5216 5217 5218 5219 5220 5221 5222

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
5223
            y_shape = y_shape + [1]
Y
ying 已提交
5224 5225 5226 5227 5228 5229 5230

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5231 5232
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5233

C
chengduo 已提交
5234
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5235
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5236 5237 5238
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5239
                if dim_x != y_shape[i]:
C
chengduo 已提交
5240 5241
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5242 5243 5244

    __check_input(x, y)

5245
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5246
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5247
    helper.append_op(
5248 5249 5250 5251
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5252 5253 5254
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5255
            'alpha': float(alpha),
S
sneaxiy 已提交
5256
        })
5257
    return out
5258 5259


5260
def topk(input, k, name=None):
Q
qingqing01 已提交
5261 5262 5263 5264
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5265
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5266 5267 5268 5269 5270 5271
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5293 5294 5295
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5296
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5297
                 of input.
5298
        name(str|None): A name for this layer(optional). If set None, the layer
5299
                       will be named automatically.
F
fengjiayi 已提交
5300
                       Default: None
Q
qingqing01 已提交
5301 5302

    Returns:
5303 5304 5305
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5306
        within the last dimension of input.
Q
qingqing01 已提交
5307

F
fengjiayi 已提交
5308 5309
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5310 5311 5312 5313

    Examples:
        .. code-block:: python

5314
            import paddle.fluid as fluid
5315 5316
            import paddle.fluid.layers as layers
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
Q
qingqing01 已提交
5317 5318 5319
            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5320 5321
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5322 5323 5324 5325 5326 5327
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5328 5329
    helper.append_op(
        type="top_k",
W
whs 已提交
5330
        inputs=inputs,
Q
qingqing01 已提交
5331 5332
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5333
        attrs=attrs)
Q
qingqing01 已提交
5334 5335 5336 5337 5338
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5339
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5340
    """
5341
    Edit distance operator computes the edit distances between a batch of
Y
ying 已提交
5342 5343 5344 5345 5346 5347 5348 5349
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5350

Y
ying 已提交
5351
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5352

5353
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5354 5355
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5356
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5357

5358
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5359 5360
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5361

5362 5363 5364
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5365
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5366
                          the length of reference string.
5367
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5368
                                     calculating edit distance.
5369
        name (str): The name of this layer. It is optional.
5370

W
wanghaoshuang 已提交
5371
    Returns:
W
wanghaoshuang 已提交
5372
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5373 5374 5375 5376

    Examples:
        .. code-block:: python

5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[1], dtype='int64')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost, _ = fluid.layers.edit_distance(input=x, label=y)

            cpu = fluid.core.CPUPlace()
            exe = fluid.Executor(cpu)
            exe.run(fluid.default_startup_program())

            import numpy
            x_ = numpy.random.randint(5, size=(2, 1)).astype('int64')
            y_ = numpy.random.randint(5, size=(2, 1)).astype('int64')

            print(x_)
            print(y_)

            x = fluid.create_lod_tensor(x_, [[2]], cpu)
            y = fluid.create_lod_tensor(y_, [[2]], cpu)

            outs = exe.run(feed={'x':x, 'y':y}, fetch_list=[cost.name])

            print(outs)
5399
    """
5400
    helper = LayerHelper("edit_distance", **locals())
5401

5402
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5403
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5404 5405
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5406 5407 5408 5409 5410

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5411
            attrs={"tokens": ignored_tokens})
5412 5413 5414 5415 5416
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5417
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5418
            attrs={"tokens": ignored_tokens})
5419 5420
        label = erased_label

5421
    # edit distance op
X
Xin Pan 已提交
5422 5423
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5424 5425 5426 5427
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5428 5429
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5430 5431
        attrs={"normalized": normalized})

5432
    return edit_distance_out, sequence_num
5433 5434 5435 5436 5437


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5438

Y
ying 已提交
5439 5440 5441 5442
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5460
        input.lod = [[4, 4]]
M
minqiyang 已提交
5461

W
whs 已提交
5462
        Computation:
5463

W
whs 已提交
5464 5465 5466 5467 5468 5469
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5470 5471 5472 5473 5474

        output.data = [[2],
                       [1],
                       [3]]

5475
        output.lod = [[2, 1]]
5476

W
whs 已提交
5477

5478 5479
    Args:

Y
ying 已提交
5480 5481 5482 5483 5484 5485 5486 5487 5488
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5489
        name (str): The name of this layer. It is optional.
5490 5491

    Returns:
H
haowang101779990 已提交
5492 5493 5494
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5495
                  LoD [[]] and dims [1, 1].
5496 5497 5498 5499

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5500
            import paddle.fluid as fluid
5501 5502
            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5503
    """
5504
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5505
    _, topk_indices = topk(input, k=1)
5506 5507

    # ctc align op
X
Xin Pan 已提交
5508
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5509 5510 5511
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5512
        outputs={"Output": [ctc_out]},
5513 5514
        attrs={"merge_repeated": True,
               "blank": blank})
5515
    return ctc_out
5516 5517


W
Wu Yi 已提交
5518
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5519
    """
5520 5521
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5522
    to compute Connectionist Temporal Classification (CTC) loss.
5523 5524
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5525 5526 5527
    input tensor.

    Args:
5528
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5529 5530 5531 5532
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5533
       label (Variable): The ground truth of variable-length sequence,
5534 5535 5536
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5537 5538
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5539 5540 5541
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5542
         follewed by a mean_op.
W
Wu Yi 已提交
5543
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5544 5545

    Returns:
5546 5547
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5548 5549

    Examples:
5550

W
wanghaoshuang 已提交
5551
        .. code-block:: python
5552

B
Bai Yifan 已提交
5553 5554 5555 5556 5557
            import paddle.fluid as fluid
            label = fluid.layers.data(name='label', shape=[11, 8],
                                      dtype='float32', lod_level=1)
            predict = fluid.layers.data(name='predict', shape=[11, 1],
                                        dtype='float32')
5558
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5559 5560

    """
F
fengjiayi 已提交
5561
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5562 5563
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5564 5565 5566 5567 5568 5569
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5570 5571 5572 5573 5574
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5575
    return loss_out
5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5591 5592 5593
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5594 5595 5596 5597 5598
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5599

5600
            out.lod  = [[0, 1, 3]]
5601 5602 5603 5604

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5605 5606 5607 5608 5609 5610 5611
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5612 5613 5614

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5615 5616

    Returns:
5617

5618 5619 5620 5621 5622
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

B
bdzhuxiaoning 已提交
5623 5624 5625
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], append_batch_size=False, dtype='float32', lod_level=1)
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=4)
5626
    """
L
lujun 已提交
5627
    assert not in_dygraph_mode(), (
5628
        "sequence layer is not supported in dygraph mode yet.")
5629
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5630
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5631 5632 5633 5634 5635 5636
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5637 5638


5639 5640 5641 5642
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5643 5644 5645 5646 5647 5648
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5649
        num_neg_samples=None,
5650 5651 5652
        name=None,
        sampler="uniform",
        custom_dist=None,
5653 5654
        seed=0,
        is_sparse=False):
5655 5656 5657 5658 5659 5660 5661
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5662 5663
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5664
            sample is 1.0.
C
chengduo 已提交
5665 5666 5667 5668 5669 5670 5671 5672 5673
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5674
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5675 5676
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5677 5678 5679
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5680
        custom_dist (float[]): A float[] with size=num_total_classes.
5681 5682 5683 5684
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5685
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5686

5687
    Returns:
Y
Yibing Liu 已提交
5688 5689 5690 5691 5692 5693
        Variable: The output nce loss.

    Examples:
        .. code-block:: python


5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
            import paddle.fluid as fluid
            import numpy as np

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(fluid.layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
                                   param_attr='embed', is_sparse=True)
                embs.append(emb)

            embs = fluid.layers.concat(input=embs, axis=1)
            loss = fluid.layers.nce(input=embs, label=words[label_word],
                      num_total_classes=dict_size, param_attr='nce.w_0',
                      bias_attr='nce.b_0')

             #or use custom distribution
             dist = np.array([0.05,0.5,0.1,0.3,0.05])
             loss = fluid.layers.nce(input=embs, label=words[label_word],
                       num_total_classes=5, param_attr='nce.w_1',
                       bias_attr='nce.b_1',
                       num_neg_samples=3,
                       sampler="custom_dist",
                       custom_dist=dist)
5728
    """
Y
Yang Yu 已提交
5729 5730 5731
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5732 5733

    dim = input.shape[1]
Y
Yang Yu 已提交
5734 5735 5736 5737 5738 5739
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5740
    inputs = {}
C
chengduo 已提交
5741 5742 5743 5744 5745 5746 5747
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5748 5749 5750
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5751

5752 5753 5754 5755
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5756 5757 5758 5759 5760 5761 5762

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5763 5764
        # assert isinstance(custom_dist, Variable)

Y
Yibing Liu 已提交
5765
        custom_dist_len = num_total_classes
5766 5767 5768 5769 5770 5771
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5772
            if normal_prob - 1.0 > 0:
5773
                bigs.append((i, normal_prob))
5774
            elif 1.0 - normal_prob > 0:
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5790
            if big_left - 1.0 > 0:
5791
                bigs.append((big_idx, big_left))
5792
            elif 1.0 - big_left > 0:
5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5822 5823 5824 5825
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5826 5827 5828 5829 5830
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5831 5832 5833 5834
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5835

Y
Yang Yu 已提交
5836 5837
    attrs = {
        'num_total_classes': int(num_total_classes),
5838 5839
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5840
        'sampler': sampler,
5841 5842
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5843
    }
Y
Yang Yu 已提交
5844 5845 5846

    helper.append_op(
        type='nce',
C
chengduo 已提交
5847
        inputs=inputs,
Y
Yang Yu 已提交
5848 5849 5850 5851 5852 5853
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5854
    return cost / (num_neg_samples + 1)
5855 5856


C
chengduo 已提交
5857 5858
def hsigmoid(input,
             label,
5859
             num_classes,
C
chengduo 已提交
5860 5861
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5862
             name=None,
5863 5864 5865
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5866
             is_sparse=False):
W
weixing02 已提交
5867 5868
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5869
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5870
    complete binary tree, or you can use is_custom to pass your own tree to
5871
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5872 5873 5874 5875 5876 5877
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5878
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5879
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5880

5881 5882
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5883 5884 5885 5886
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5887
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5888
       related to the same batch of inputs.
5889

W
weixing02 已提交
5890
    Args:
M
minqiyang 已提交
5891
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5892 5893 5894 5895
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5896 5897
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5898
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5910
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5911
            it should be in leaf -> root order
M
minqiyang 已提交
5912 5913 5914
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5915
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5916
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5917
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5918
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5919
             of W and input will be sparse.
W
weixing02 已提交
5920 5921

    Returns:
J
JiabinYang 已提交
5922
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5923 5924 5925 5926 5927

    Examples:

        .. code-block:: python

5928
            import paddle.fluid as fluid
G
guosheng 已提交
5929 5930 5931
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5932 5933 5934 5935
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5936 5937
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5938
    dim = input.shape[1]
5939
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5940 5941 5942
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5943 5944 5945 5946 5947 5948 5949 5950 5951
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5952
    if (is_custom) and (path_code is None):
5953
        raise ValueError("path_code should not be None with custom tree")
5954
    elif (is_custom) and (path_table is None):
5955
        raise ValueError("path_table should not be None with custom tree")
5956
    elif (is_custom) and (num_classes is None):
5957
        raise ValueError("num_classes should not be None with custom tree")
5958 5959 5960
    else:
        pass

J
JiabinYang 已提交
5961
    weights = None
5962 5963 5964 5965
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5966
    if not is_custom:
J
JiabinYang 已提交
5967 5968 5969 5970 5971 5972 5973 5974
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5975
            shape=[num_classes, dim],
J
JiabinYang 已提交
5976 5977
            is_bias=False,
            dtype=input.dtype)
5978 5979 5980
    inputs = {
        "X": input,
        "W": weights,
5981
        "PathTable": path_table,
5982
        "PathCode": path_code,
5983 5984
        "Label": label
    }
W
weixing02 已提交
5985
    if helper.bias_attr:
5986
        if not is_custom:
J
JiabinYang 已提交
5987 5988
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5989
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5990 5991 5992 5993 5994 5995
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5996
                shape=[num_classes, 1],
J
JiabinYang 已提交
5997 5998 5999
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
6000 6001
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
6002
        inputs=inputs,
W
weixing02 已提交
6003
        outputs={"Out": out,
6004 6005 6006 6007 6008 6009 6010
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
6011 6012 6013
    return out


Y
fix ci.  
ying 已提交
6014
def transpose(x, perm, name=None):
Y
ying 已提交
6015 6016 6017 6018 6019 6020 6021
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
6022 6023 6024
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
6025 6026 6027 6028 6029 6030 6031

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

6032
            # use append_batch_size=False to avoid prepending extra
6033
            # batch size in shape
6034
            import paddle.fluid as fluid
6035
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
6036
                            dtype='float32', append_batch_size=False)
6037
            x_transposed = fluid.layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
6038 6039
    """

Y
fix ci.  
ying 已提交
6040
    if len(perm) != len(x.shape):
Y
ying 已提交
6041 6042
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
6043
            "Its length should be equal to Input(input)'s rank.")
Y
ying 已提交
6044 6045 6046 6047 6048 6049
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
6050 6051

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
6052 6053
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
6054
    helper.append_op(
6055
        type='transpose2',
Y
fix ci.  
ying 已提交
6056
        inputs={'X': [x]},
6057 6058
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
6059 6060
        attrs={'axis': perm})
    return out
6061 6062


6063 6064 6065 6066 6067 6068 6069
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
6070
    """
6071 6072 6073 6074 6075 6076 6077
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

6106 6107 6108 6109 6110 6111 6112 6113 6114
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

6115 6116 6117
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
6118 6119 6120 6121 6122
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
6150 6151 6152
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

6165
            output.dims = {8, 8}
6166

6167
            output.lod = [[4, 4]]
6168

T
Tink_Y 已提交
6169
    Examples:
6170 6171 6172

        .. code-block:: python

B
Bai Yifan 已提交
6173 6174 6175
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
6176
            output = fluid.layers.im2sequence(
B
Bai Yifan 已提交
6177 6178
                input=data, stride=[1, 1], filter_size=[2, 2])

6179 6180

    """
L
lujun 已提交
6181
    assert not in_dygraph_mode(), (
6182
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
6193
    inputs = {"X": input}
6194
    attrs = {"kernels": filter_size, "strides": stride, "paddings": padding}
6195 6196 6197 6198 6199
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
6200
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
6201
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
6202
    helper.append_op(
6203
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
6204
    return out
6205 6206


Y
yuyang18 已提交
6207
@templatedoc()
6208
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
6209 6210
    """
    ${comment}
6211 6212

    Args:
Y
yuyang18 已提交
6213
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
6214 6215
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
6216 6217 6218 6219 6220
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
6221
        ${out_comment}.
6222 6223

    Examples:
Y
yuyang18 已提交
6224 6225 6226 6227
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
6228 6229 6230 6231 6232 6233
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
6234
    out = helper.create_variable_for_type_inference(dtype)
6235 6236 6237 6238 6239
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
6240
    return helper.append_activation(out)
6241 6242


Y
yuyang18 已提交
6243
@templatedoc()
6244 6245
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
6246 6247
    ${comment}

L
lujun 已提交
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
6291 6292

    Args:
Y
yuyang18 已提交
6293 6294
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
6295 6296

    Returns:
Y
yuyang18 已提交
6297
        ${out_comment}.
6298 6299
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
6300 6301 6302 6303 6304

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
6305
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
6306 6307 6308 6309 6310 6311
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
6312 6313


6314 6315 6316
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6317
                               ignore_index=kIgnoreIndex,
6318
                               numeric_stable_mode=True,
6319 6320
                               return_softmax=False,
                               axis=-1):
6321 6322
    """
    **Softmax With Cross Entropy Operator.**
6323

6324
    Cross entropy loss with softmax is used as the output layer extensively. This
6325 6326 6327
    operator computes the softmax normalized values for dimension :attr:`axis` of 
    the input tensor, after which cross-entropy loss is computed. This provides 
    a more numerically stable gradient.
6328

6329 6330 6331
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6332

6333 6334 6335 6336
    When the attribute :attr:`soft_label` is set :attr:`False`, this operators 
    expects mutually exclusive hard labels, each sample in a batch is in exactly 
    one class with a probability of 1.0. Each sample in the batch will have a 
    single label.
6337

6338
    The equation is as follows:
6339

6340
    1) Hard label (one-hot label, so every sample has exactly one class)
6341

6342 6343 6344 6345
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6346

6347 6348 6349
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6350

6351 6352 6353 6354
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

6355 6356
    3) If :attr:`numeric_stable_mode` is :attr:`True`, softmax is calculated 
    first by:
S
sneaxiy 已提交
6357 6358

    .. math::
6359

H
haowang101779990 已提交
6360
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6361

H
haowang101779990 已提交
6362
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6363

H
haowang101779990 已提交
6364
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6365 6366 6367

    and then cross entropy loss is calculated by softmax and label.

6368
    Args:
6369 6370 6371 6372 6373 6374
        logits (Variable): The input tensor of unscaled log probabilities.
        label (Variable): The ground truth  tensor. If :attr:`soft_label`
            is set to :attr:`True`, Label is a Tensor<float/double> in the 
            same shape with :attr:`logits`. If :attr:`soft_label` is set to 
            :attr:`True`, Label is a Tensor<int64> in the same shape with 
            :attr:`logits` expect shape in dimension :attr:`axis` as 1.
6375
        soft_label (bool): A flag to indicate whether to interpretate the given
6376
            labels as soft labels. Default False.
M
minqiyang 已提交
6377 6378
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
6379 6380
                            if :attr:`soft_label` is set to :attr:`False`. 
                            Default: kIgnoreIndex
S
sneaxiy 已提交
6381 6382
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
6383 6384 6385 6386
                                    when :attr:`soft_label` is :attr:`False` 
                                    and GPU is used. When :attr:`soft_label` 
                                    is :attr:`True` or CPU is used, the 
                                    algorithm is always numerically stable.
6387
                                    Note that the speed may be slower when use
6388
                                    stable algorithm. Default: True
6389
        return_softmax (bool): A flag indicating whether to return the softmax
6390
                               along with the cross entropy loss. Default: False
6391 6392 6393
        axis (int): The index of dimension to perform softmax calculations. It 
                    should be in range :math:`[-1, rank - 1]`, while :math:`rank`
                    is the rank of input :attr:`logits`. Default: -1.
6394

6395
    Returns:
H
haowang101779990 已提交
6396 6397
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
6398 6399 6400 6401
                                            (loss, softmax), softmax is in the same shape \
                                            with input logits and cross entropy loss is in \
                                            the same shape with input logits except shape \
                                            in dimension :attr:`axis` as 1.
6402 6403 6404 6405 6406 6407 6408

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6409 6410
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6411 6412
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6413 6414
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6415 6416 6417 6418 6419 6420
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6421 6422 6423
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
6424 6425
            'numeric_stable_mode': numeric_stable_mode,
            'axis': axis
S
sneaxiy 已提交
6426
        })
6427 6428 6429 6430

    if return_softmax:
        return loss, softmax

6431 6432 6433
    return loss


6434 6435 6436
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6437
                                       num_true=1,
6438
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6439 6440 6441
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6442
                                       seed=0):
X
xuezhong 已提交
6443 6444 6445 6446 6447
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6448
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6449 6450 6451 6452 6453 6454 6455 6456
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6457
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6458 6459 6460 6461 6462 6463 6464 6465
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6466
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6478
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6479 6480 6481 6482 6483
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6484
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6485
            logits.
X
xuezhong 已提交
6486 6487 6488 6489 6490
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6491 6492 6493
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6494 6495 6496 6497 6498 6499 6500
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

6501 6502 6503
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[256], dtype='float32')
X
xuezhong 已提交
6504
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
6505
            fc = fluid.layers.fc(input=input, size=100)
X
xuezhong 已提交
6506
            out = fluid.layers.sampled_softmax_with_cross_entropy(
6507
                      logits=fc, label=label, num_samples=25)
X
xuezhong 已提交
6508 6509 6510 6511 6512 6513 6514 6515
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6516 6517
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6518 6519
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6520 6521 6522 6523 6524

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6525
            'Labels': label,
X
xuezhong 已提交
6526 6527
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6528 6529 6530 6531
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6532
            'SampledLabels': sampled_label,
6533 6534 6535
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6536 6537
        },
        attrs={
X
xuezhong 已提交
6538
            'use_customized_samples': use_customized_samples,
6539
            'uniq': True,
X
xuezhong 已提交
6540 6541 6542 6543
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6544 6545
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6546 6547 6548 6549 6550 6551
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6552 6553
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6554
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6555
                'Label': sampled_softlabel},
X
xuezhong 已提交
6556 6557 6558
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6559
            'soft_label': True,
X
xuezhong 已提交
6560 6561 6562
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6563
    return loss / num_true
X
xuezhong 已提交
6564 6565


6566 6567
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6568 6569
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6570
    For each instance, it computes the smooth L1 loss element by element first
6571
    and then sums all the losses. So the shape of ouput Variable is
6572
    [batch_size, 1].
6573

6574 6575
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6576
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6577
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6578
            L1 loss op with same shape as :attr:`x`.
6579
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6580 6581
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6582
            by this tensor element by element.
6583
        outside_weight (Variable|None): A tensor with rank at least 2. This
6584 6585
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6586
            element by element.
6587
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6588 6589
           scalar with default value 1.0.

6590
    Returns:
6591
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6592 6593 6594 6595

    Examples:
        .. code-block:: python

6596
            import paddle.fluid as fluid
6597
            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6598 6599
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6600
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6601
            out = fluid.layers.smooth_l1(x=fc, y=label)
6602
    """
6603

6604
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6605 6606
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6617
        attrs={'sigma': sigma if sigma is not None else 1.0})
6618
    return loss
6619 6620 6621 6622


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6623
    This layer creates the one-hot representations for input indices.
6624 6625

    Args:
Y
Yibing Liu 已提交
6626 6627
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6628 6629

    Returns:
Y
Yibing Liu 已提交
6630
        Variable: The one-hot representations of input.
6631 6632

    Examples:
C
caoying03 已提交
6633
        .. code-block:: python
6634

6635
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
6636 6637
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=10)
6638 6639
    """
    helper = LayerHelper("one_hot", **locals())
6640

X
Xin Pan 已提交
6641
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651

    if in_dygraph_mode():
        inputs = {'X': input}
        attrs = {'depth': depth}
    else:
        if not isinstance(depth, Variable):
            # user attribute 
            inputs = {'X': input}
            attrs = {'depth': depth}
        else:
H
Hongyu Liu 已提交
6652
            depth.stop_gradient = True
6653 6654
            inputs = {'X': input, 'depth_tensor': depth}
            attrs = {}
6655 6656
    helper.append_op(
        type="one_hot",
6657 6658
        inputs=inputs,
        attrs=attrs,
6659 6660
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6661
    return one_hot_out
Y
Yu Yang 已提交
6662 6663


Y
Yu Yang 已提交
6664
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6665
    """
Y
yi.wu 已提交
6666 6667 6668
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6669 6670 6671 6672 6673 6674

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6675 6676
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6677 6678 6679 6680

    Examples:
        .. code-block:: python

6681
           import paddle.fluid as fluid
Y
yi.wu 已提交
6682
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
6683
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
6684 6685
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6686 6687
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6688 6689 6690 6691 6692
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6693
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6694
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6695 6696
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6697
            outputs={'Out': [counter]},
M
minqiyang 已提交
6698 6699
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6700 6701 6702
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6703 6704


6705
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6706
    """
C
caoying03 已提交
6707 6708
    Gives a new shape to the input Tensor without changing its data.

6709 6710 6711 6712 6713
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6714

6715
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6716

6717 6718 6719 6720
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6721
    2. 0 means the actual dimension value is going to be copied from the
6722 6723 6724 6725
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6726 6727

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6728
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6729
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6730

6731
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6732 6733
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6734 6735
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6736
    dimensions.
C
caoying03 已提交
6737

6738
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6739 6740 6741 6742
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6743 6744

    Args:
6745
        x(variable): The input tensor.
C
caoying03 已提交
6746 6747
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6748 6749 6750 6751 6752
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6753 6754
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6755 6756 6757
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6758
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6759
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6760

6761
    Returns:
G
guosheng 已提交
6762 6763 6764 6765
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6766

X
Xin Pan 已提交
6767 6768 6769
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6770 6771
    Examples:
        .. code-block:: python
G
guosheng 已提交
6772

6773
            import paddle.fluid as fluid
6774
            data = fluid.layers.data(
6775
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6776
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6777
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6778 6779 6780
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6781
        raise ValueError("Input shape must be a python list or tuple.")
6782

X
Xin Pan 已提交
6783 6784 6785 6786 6787
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6788

6789 6790
    # Validate the shape
    unk_dim_idx = -1
6791
    contain_var = False
6792
    for dim_idx, dim_size in enumerate(shape):
6793 6794 6795 6796
        if isinstance(dim_size, Variable):
            contain_var = True
            continue

6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6809
    helper = LayerHelper("reshape2", **locals())
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831
    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'shape': shape}
    else:
        if contain_var:
            new_shape_tensor = []
            for dim in shape:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_shape_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = helper.create_variable_for_type_inference(
                        'int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_shape_tensor.append(temp_out)
            inputs['ShapeTensor'] = new_shape_tensor
            attrs = {}

        else:
            attrs = {'shape': shape}
6832 6833
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6834
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6835
    helper.append_op(
6836
        type="reshape2",
X
Xin Pan 已提交
6837
        inputs=inputs,
6838
        attrs=attrs,
6839 6840
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6841

D
dzhwinter 已提交
6842
    return helper.append_activation(out)
6843

6844

6845
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6846
    """
M
minqiyang 已提交
6847 6848 6849
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6850
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6851

H
haowang101779990 已提交
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6873

Y
Yibing Liu 已提交
6874
    Args:
6875
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6876
        axes (list): List of integers, indicating the dimensions to be squeezed.
6877
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6878 6879 6880 6881 6882 6883 6884

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

6885
            import paddle.fluid as fluid
6886
            import paddle.fluid.layers as layers
Y
Yibing Liu 已提交
6887
            x = layers.data(name='x', shape=[5, 1, 10])
6888
            y = layers.squeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6889
    """
L
lujun 已提交
6890
    assert not in_dygraph_mode(), (
L
lujun 已提交
6891
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6892
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6893 6894
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6895
    helper.append_op(
6896
        type="squeeze2",
6897
        inputs={"X": input},
Y
Yibing Liu 已提交
6898
        attrs={"axes": axes},
6899 6900
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6901

6902 6903 6904
    return out


6905
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6906
    """
M
minqiyang 已提交
6907 6908 6909
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6910

M
minqiyang 已提交
6911
    For example:
H
haowang101779990 已提交
6912 6913 6914

    .. code-block:: text

M
minqiyang 已提交
6915
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6916
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6917

Y
Yibing Liu 已提交
6918
    Args:
6919
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6920
        axes (list): List of integers, indicating the dimensions to be inserted.
6921
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6922 6923 6924 6925 6926 6927 6928

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

6929 6930 6931
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6932 6933
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6934 6935
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6936
    helper.append_op(
6937
        type="unsqueeze2",
6938
        inputs={"X": input},
Y
Yibing Liu 已提交
6939
        attrs={"axes": axes},
6940 6941
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6942

6943 6944
    return out

6945

Y
yangyaming 已提交
6946
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6947
    """
Y
Yibing Liu 已提交
6948
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6949 6950 6951 6952
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6953
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6954 6955 6956 6957 6958 6959

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6960
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6961 6962 6963
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6964
            target_lod: [4, 2]
Y
yangyaming 已提交
6965 6966

            then we get a 1-level LoDTensor:
6967
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6968 6969 6970 6971 6972 6973
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6974
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6975 6976 6977 6978
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6979
                y.data = [[2, 4]]
Y
yangyaming 已提交
6980 6981 6982
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6983
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6984 6985 6986 6987 6988 6989
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6990
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6991 6992 6993 6994
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6995
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6996 6997 6998 6999
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
7000
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
7001 7002 7003 7004 7005
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
7006
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
7007
                           from :attr:`y`.
Y
yangyaming 已提交
7008
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
7009
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
7010 7011

    Returns:
Y
Yibing Liu 已提交
7012
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
7013 7014

    Raises:
Y
Yibing Liu 已提交
7015
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
7016 7017 7018 7019

    Examples:
        .. code-block:: python

7020
            import paddle.fluid as fluid
7021 7022 7023
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
7024 7025
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
7026
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

X
xiaoting 已提交
7052
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C-1, i + n/2)}_{j = \\max(0, i - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

7081
          import paddle.fluid as fluid
F
stash  
fengjiayi 已提交
7082 7083
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
7096 7097 7098
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
7112 7113 7114 7115


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
7116
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
7117
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
7118

G
guosheng 已提交
7119 7120 7121 7122
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
7145
                         The length of :attr:paddings must be
G
guosheng 已提交
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
7156

G
guosheng 已提交
7157
            # x is a rank 2 tensor variable.
S
SunGaofeng 已提交
7158 7159
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape=[224], dtype='float32')
G
guosheng 已提交
7160 7161 7162 7163 7164
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7165
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
7166 7167 7168 7169 7170 7171 7172
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
7173 7174


C
chengduo 已提交
7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
7206 7207
		And
            pad_value = -1,
C
chengduo 已提交
7208

T
Tink_Y 已提交
7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
S
SunGaofeng 已提交
7239 7240 7241
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2,3,2,3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1,3,1,3], dtype='float32')
C
chengduo 已提交
7242 7243 7244 7245 7246
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7247
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
7248 7249 7250 7251 7252 7253 7254 7255 7256
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


7257 7258 7259 7260 7261 7262 7263
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
7264 7265
    called label-smoothing regularization (LSR).

7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
7289
                              be :math:`(1, class\_num)`.
7290 7291
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
7292
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
7293 7294 7295 7296 7297 7298 7299 7300 7301
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python
7302
            
7303
            import paddle.fluid as fluid
7304
            import paddle.fluid.layers as layers
7305 7306 7307 7308 7309 7310 7311 7312 7313 7314

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
7315
    smooth_label = helper.create_variable_for_type_inference(dtype)
7316 7317 7318 7319 7320 7321 7322
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
7323 7324


W
wopeizl 已提交
7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355
            import paddle.fluid as fluid

            x = fluid.layers.data(
                name='x', shape=[8, 112, 112], dtype='float32')
            rois = fluid.layers.data(
                name='roi', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.roi_pool(
                input=x,
                rois=rois,
                pooled_height=7,
                pooled_width=7,
                spatial_scale=1.0)

W
wopeizl 已提交
7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
7373 7374


J
jerrywgz 已提交
7375 7376 7377 7378 7379 7380
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
7381 7382
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

7399
            import paddle.fluid as fluid
J
jerrywgz 已提交
7400 7401 7402 7403
            x = fluid.layers.data(
                name='data', shape=[256, 32, 32], dtype='float32')
            rois = fluid.layers.data(
                name='rois', shape=[4], dtype='float32')
7404 7405 7406
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
7407 7408 7409 7410 7411 7412
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7413
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7454 7455
        .. code-block:: python

S
SunGaofeng 已提交
7456 7457 7458
            import paddle.fluid as fluid
            x = fluid.layers.data(name='data', shape = [3, 224, 224, 2], dtype='float32')
            label = fluid.layers.data(name='label', shape=[3, 224, 224, 1], dtype='float32')
W
whs 已提交
7459
            predictions = fluid.layers.softmax(x)
S
SunGaofeng 已提交
7460
            loss = fluid.layers.dice_loss(input=predictions, label=label)
W
whs 已提交
7461 7462
    """
    label = one_hot(label, depth=input.shape[-1])
7463
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7464 7465 7466 7467 7468 7469
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7470 7471


7472 7473 7474 7475
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7476
                 resample='BILINEAR',
7477 7478
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7479
                 align_mode=1):
7480
    """
Q
qiaolongfei 已提交
7481
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7482

7483
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7484 7485 7486
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7487

7488
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7489

7490
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7491

7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7502
    Align_corners and align_mode are optinal parameters,the calculation method 
7503 7504 7505 7506
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7507
    .. code-block:: text
7508

T
Tink_Y 已提交
7509
        For scale:
7510
          
T
Tink_Y 已提交
7511
            if align_corners = True && out_size > 1 :
7512

T
Tink_Y 已提交
7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7524

T
Tink_Y 已提交
7525 7526
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7527

T
Tink_Y 已提交
7528 7529
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7530

T
Tink_Y 已提交
7531 7532
          else:
              align_corners = True
7533

T
Tink_Y 已提交
7534 7535
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7536

T
Tink_Y 已提交
7537 7538
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7539

T
Tink_Y 已提交
7540 7541 7542 7543 7544 7545 7546 7547 7548 7549
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7550

T
Tink_Y 已提交
7551 7552 7553 7554
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7555

T
Tink_Y 已提交
7556 7557
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7558 7559 7560 7561 7562 7563 7564 7565 7566

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7567
    Args:
7568
        input (Variable): The input tensor of image resize layer,
7569 7570
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7571
        out_shape(list|tuple|Variable|None): Output shape of image resize
7572 7573
                                    layer, the shape is (out_h, out_w).
                                    Default: None
D
dengkaipeng 已提交
7574
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7575
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7576
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7577
             Default: None.
7578 7579
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7580
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7581
                       currently.
7582
                       Default: 'BILINEAR'
7583 7584 7585
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7586
                                :attr:`out_shape` and :attr:`scale` specifying
7587 7588 7589 7590 7591 7592 7593
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7594 7595
                                constructing stage.
                                Default: None
7596 7597 7598 7599
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7600
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7601 7602
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7603 7604

    Returns:
Q
update  
qiaolongfei 已提交
7605 7606
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7607

7608 7609 7610
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7611
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7612 7613 7614
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
D
dengkaipeng 已提交
7615
        ValueError: scale should be greater than zero.
7616 7617
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7618

7619 7620 7621
    Examples:
        .. code-block:: python

7622
            import paddle.fluid as fluid
R
ruri 已提交
7623
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7624
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7625
    """
7626 7627 7628 7629
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7630 7631
    if resample not in resample_methods:
        raise ValueError(
7632
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7633
        )
7634
    resample_type = resample_methods[resample]
7635 7636 7637 7638 7639 7640

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7641
    if out_shape is None and scale is None:
7642
        raise ValueError("One of out_shape and scale must not be None.")
7643
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7644
    dtype = helper.input_dtype()
7645 7646 7647 7648

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7649
    inputs = {"X": input}
D
dengkaipeng 已提交
7650
    attrs = {
D
dengkaipeng 已提交
7651 7652
        "out_h": 0,
        "out_w": 0,
D
dengkaipeng 已提交
7653 7654 7655 7656 7657
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode
    }

7658
    if out_shape is not None:
7659 7660 7661 7662
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7663
            inputs['OutSize'] = out_shape
7664 7665
        else:
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
7666 7667
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
7668 7669 7670 7671 7672 7673 7674
            if len(out_shape) != 2:
                raise ValueError("out_shape length should be 2.")

            out_shape = list(map(int, out_shape))
            attrs['out_h'] = out_shape[0]
            attrs['out_w'] = out_shape[1]

7675
    else:
D
dengkaipeng 已提交
7676 7677
        if scale <= 0:
            raise ValueError("scale should be greater than zero.")
D
dengkaipeng 已提交
7678
        attrs['scale'] = float(scale)
7679

7680 7681 7682 7683 7684
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7685
    out = helper.create_variable_for_type_inference(dtype)
7686
    helper.append_op(
7687
        type='{}_interp'.format(resample_type),
7688
        inputs=inputs,
7689
        outputs={"Out": out},
D
dengkaipeng 已提交
7690
        attrs=attrs)
7691
    return out
F
stash  
fengjiayi 已提交
7692 7693


7694
@templatedoc(op_type="bilinear_interp")
7695 7696 7697 7698
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7699 7700
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7701
                    align_mode=1):
7702
    """
7703 7704
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7705 7706
    in priority order.

7707 7708 7709 7710
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7711 7712
    again in the other direction.

7713
    For details of bilinear interpolation, please refer to Wikipedia:
7714
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7715

T
tink2123 已提交
7716
    Align_corners and align_mode are optinal parameters,the calculation 
7717 7718 7719 7720
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7721
    .. code-block:: text
7722

T
Tink_Y 已提交
7723
        For scale:
7724
          
T
Tink_Y 已提交
7725
            if align_corners = True && out_size > 1 :
7726

T
Tink_Y 已提交
7727 7728 7729 7730 7731
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7732

T
Tink_Y 已提交
7733 7734 7735 7736 7737 7738 7739 7740 7741 7742
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7743 7744


T
Tink_Y 已提交
7745
          else:
T
tink2123 已提交
7746

T
Tink_Y 已提交
7747 7748
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7749

T
Tink_Y 已提交
7750 7751
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7752 7753 7754



Y
yuyang18 已提交
7755 7756 7757
    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7758 7759 7760
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7761

Y
yuyang18 已提交
7762
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7763
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7764
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7765
             Default: None.
Y
yuyang18 已提交
7766 7767

        name(str|None): The output variable name.
7768 7769 7770
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7771
                                :attr:`out_shape` and :attr:`scale` specifying
7772 7773 7774 7775 7776 7777 7778
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7779 7780
                                constructing stage.
                                Default: None
7781 7782
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7783 7784 7785

    Returns:
        ${out_comment}.
7786 7787 7788 7789

    Examples:
        .. code-block:: python

7790
            import paddle.fluid as fluid
R
ruri 已提交
7791
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7792
            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7793 7794
    """

7795 7796
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7797 7798


7799
@templatedoc(op_type="nearest_interp")
7800 7801 7802 7803
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7804 7805
                   actual_shape=None,
                   align_corners=True):
7806
    """
7807
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7808 7809
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7810 7811
    out_shape and scale in priority order.

7812 7813
    Example:

T
Tink_Y 已提交
7814 7815 7816 7817 7818
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7819

T
Tink_Y 已提交
7820 7821 7822 7823 7824 7825 7826 7827
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7828
          
T
Tink_Y 已提交
7829 7830
          if:
              align_corners = False
7831

T
Tink_Y 已提交
7832 7833
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7834

T
Tink_Y 已提交
7835 7836
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7837

T
Tink_Y 已提交
7838 7839
          else:
              align_corners = True
7840

T
Tink_Y 已提交
7841 7842
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7843

T
Tink_Y 已提交
7844 7845
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7846 7847


7848
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7849
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7850 7851 7852 7853

    Args:
        input(${x_type}): ${x_comment}.

D
dengkaipeng 已提交
7854 7855 7856
        out_shape(list|tuple|Variable|None): Output shape of resize nearest
                                    layer, the shape is (out_h, out_w).
                                    Default: None
7857

Y
yuyang18 已提交
7858
        scale(float|None): The multiplier for the input height or width. At
D
dengkaipeng 已提交
7859
             least one of :attr:`out_shape` or :attr:`scale` must be set. 
D
dengkaipeng 已提交
7860
             And :attr:`out_shape` has a higher priority than :attr:`scale`. 
D
dengkaipeng 已提交
7861
             Default: None.
Y
yuyang18 已提交
7862 7863

        name(str|None): The output variable name.
7864 7865 7866
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7867
                                :attr:`out_shape` and :attr:`scale` specifying
7868 7869 7870 7871 7872 7873 7874
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7875 7876
                                constructing stage.
                                Default: None
7877
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7878 7879 7880

    Returns:
        ${out_comment}.
7881 7882 7883 7884

    Examples:
        .. code-block:: python

7885
            import paddle.fluid as fluid
R
ruri 已提交
7886
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
7887
            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7888 7889
    """

7890 7891
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7892 7893 7894 7895


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7896 7897 7898
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7899 7900 7901 7902 7903 7904 7905
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7906
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7907

7908
    Returns:
Q
update  
qiaolongfei 已提交
7909
        Variable: The output is a 4-D tensor of the shape
7910
        (num_batches, channls, out_h, out_w).
R
ruri 已提交
7911 7912 7913 7914

    Examples:
        .. code-block:: python

7915
            import paddle.fluid as fluid
R
ruri 已提交
7916 7917
            input = fluid.layers.data(name="input", shape=[3,6,9], dtype="float32")
            out = fluid.layers.image_resize_short(input, out_short_len=3)
7918 7919 7920 7921 7922 7923 7924 7925 7926 7927
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7928 7929 7930
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7931 7932 7933
    return image_resize(input=input, out_shape=out_shape, resample=resample)


7934
def gather(input, index, overwrite=True):
W
whs 已提交
7935
    """
Q
qiaolongfei 已提交
7936 7937
    **Gather Layer**

7938
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7939 7940 7941 7942
    of X indexed by `index` and concatenate them together.

    .. math::

7943
        Out = X[Index]
W
whs 已提交
7944 7945 7946 7947 7948 7949 7950


    .. code-block:: text


                Given:

7951 7952
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7953 7954 7955 7956 7957 7958 7959 7960 7961 7962
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7963
        input (Variable): The source input with rank>=1.
W
whs 已提交
7964
        index (Variable): The index input with rank=1.
7965 7966 7967 7968 7969 7970
        overwrite (bool): The mode that updating the grad when has same index.
            If True, use the overwrite mode to update the grad of the same index,
	    if False, use the accumulate mode to update the grad of the same index. 
	    Default value is True.
	    

W
whs 已提交
7971 7972 7973 7974 7975

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7976

W
whs 已提交
7977 7978
        .. code-block:: python

7979
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
7980 7981
            x = fluid.layers.data(name='x', shape=[-1, 5], dtype='float32')
            index = fluid.layers.data(name='index', shape=[-1, 1], dtype='int32')
W
whs 已提交
7982 7983 7984 7985
            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7986
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7987 7988 7989 7990
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
7991 7992
        outputs={"Out": out},
        attrs={'overwrite': overwrite})
W
whs 已提交
7993 7994 7995
    return out


7996
def scatter(input, index, updates, name=None, overwrite=True):
7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.
8014 8015 8016 8017
        overwrite (bool): The mode that updating the output when has same index.
            If True, use the overwrite mode to update the output of the same index,
	    if False, use the accumulate mode to update the output of the same index. 
	    Default value is True.You can set overwrite=False to implement scatter_add.
8018 8019 8020 8021 8022 8023 8024 8025

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

8026 8027 8028 8029 8030
            import paddle.fluid as fluid

            input = fluid.layers.data(name='data', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
            index = fluid.layers.data(name='index', shape=[3], dtype='int64', append_batch_size=False)
            updates = fluid.layers.data(name='update', shape=[3, 5, 9], dtype='float32', append_batch_size=False)
8031

8032
            output = fluid.layers.scatter(input, index, updates)
8033 8034 8035
    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8036
    out = helper.create_variable_for_type_inference(dtype)
8037 8038 8039 8040 8041
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
8042
        attrs={'overwrite': overwrite},
8043 8044 8045 8046
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
8047 8048 8049 8050 8051 8052 8053 8054 8055
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
8056

Q
Qingsheng Li 已提交
8057
    Given the following input:
H
haowang101779990 已提交
8058

Q
Qingsheng Li 已提交
8059
    .. code-block:: text
H
haowang101779990 已提交
8060

Q
Qingsheng Li 已提交
8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
8073

Q
Qingsheng Li 已提交
8074
    .. code-block:: text
H
haowang101779990 已提交
8075

Q
Qingsheng Li 已提交
8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
8091
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
8092 8093 8094 8095

    Examples:

        .. code-block:: python
8096
	
8097
            import paddle.fluid as fluid
8098
            import paddle.fluid.layers as layers
Q
Qingsheng Li 已提交
8099

8100 8101 8102
            input = layers.data( name="x", shape=[3, 6], append_batch_size=False, dtype='float32' )
            index = layers.data( name='index', shape=[1], dtype='int32')
            updates = layers.data( name='updates', shape=[1], dtype='float32')
Q
Qingsheng Li 已提交
8103 8104 8105
            output = fluid.layers.sequence_scatter(input, index, updates)

    """
L
lujun 已提交
8106
    assert not in_dygraph_mode(), (
8107
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
8108 8109
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8110
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
8111 8112 8113 8114 8115 8116 8117 8118 8119
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
8133

8134
    Examples:
8135
        >>> import paddle.fluid as fluid
8136 8137
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
8138
    """
F
stash  
fengjiayi 已提交
8139
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
8140
    dtype = x.dtype
X
Xin Pan 已提交
8141
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
8142
    if seed is None:
8143
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
8144
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
8145
    if isinstance(seed, int):
F
fengjiayi 已提交
8146 8147 8148 8149 8150
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
8151 8152 8153 8154
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
8155
        inputs={"X": x,
F
stash  
fengjiayi 已提交
8156 8157
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
8158 8159
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
8160
    return out
W
whs 已提交
8161 8162


8163
def log(x, name=None):
W
wanghaoshuang 已提交
8164 8165 8166 8167 8168
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

8169
        Out = \\ln(x)
W
wanghaoshuang 已提交
8170 8171

    Args:
8172
        x (Variable): Input tensor.
8173 8174
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8175 8176 8177 8178 8179 8180 8181 8182

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

8183
            import paddle.fluid as fluid
8184
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8185
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
8186 8187
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
8188
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8189
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
8190
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
8191 8192 8193
    return out


8194
def relu(x, name=None):
W
wanghaoshuang 已提交
8195 8196
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
8197
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
8198 8199 8200 8201
    the tensor elementwise.

    .. math::

8202
        Out = \\max(0, x)
W
wanghaoshuang 已提交
8203 8204

    Args:
8205
        x (Variable): The input tensor.
8206 8207
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
8208 8209 8210 8211 8212 8213 8214 8215

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

8216
            import paddle.fluid as fluid
8217
            x = fluid.layers.data(name="x", shape=[3, 4], dtype="float32")
8218
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
8219 8220
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
8221
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8222
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
8223 8224
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
8225
    return out
8226 8227


C
chengduo 已提交
8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python
8252 8253 8254 8255 8256 8257
             
            import paddle.fluid as fluid
          
            input = fluid.layers.data(
                 name="input", shape=[3, 9, 5], dtype="float32")
            output = fluid.layers.selu(input)
C
chengduo 已提交
8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
8273 8274 8275
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
8276 8277 8278 8279
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
8280
    .. math::
8281

H
haowang101779990 已提交
8282
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
8283

8284
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
8285 8286 8287 8288 8289
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
8290
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
8291
                           Its shape should be the same as input.
8292
        num_classes (int): The possible number of labels.
W
whs 已提交
8293 8294

    Returns:
M
minqiyang 已提交
8295 8296
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
8297
                     Three variables:
M
minqiyang 已提交
8298

H
haowang101779990 已提交
8299 8300 8301
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
8302 8303 8304 8305

    Examples:

        .. code-block:: python
8306

B
Bai Yifan 已提交
8307 8308 8309 8310 8311
            import paddle.fluid as fluid
            predict = fluid.layers.data(name='predict', shape=[3, 32, 32])
            label = fluid.layers.data(name='label', shape=[1])
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label,
                                                          num_classes=5)
W
whs 已提交
8312 8313 8314
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
8315 8316 8317
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
8318 8319
    helper.append_op(
        type="mean_iou",
W
whs 已提交
8320 8321
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
8322
        outputs={
W
whs 已提交
8323 8324 8325
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
8326 8327 8328
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
S
SunGaofeng 已提交
8371
        offsets (Variable|list/tuple of integer|None): Specifies the cropping
8372
            offsets at each dimension. It can be a Variable or or a list/tupe
S
SunGaofeng 已提交
8373
            of integers. If a tensor Variable, it's rank must be the same as `x`.
8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

S
SunGaofeng 已提交
8391
            import paddle.fluid as fluid
8392 8393 8394 8395 8396 8397
            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
8398
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
8399 8400 8401 8402 8403

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
8404
            isinstance(shape, Variable)):
8405 8406 8407 8408 8409
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
8410
    out = helper.create_variable_for_type_inference(x.dtype)
8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
8428 8429


W
whs 已提交
8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
8447

W
whs 已提交
8448
              out_shape = [2, 3, 5, 5]
8449

W
whs 已提交
8450
          Step 1:
8451

W
whs 已提交
8452 8453 8454
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
8455

W
whs 已提交
8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8501
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8502
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8515

S
SunGaofeng 已提交
8516
            import paddle.fluid as fluid
W
whs 已提交
8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8528
            isinstance(out_shape, Variable)):
W
whs 已提交
8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8550 8551
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8552

8553 8554
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8555
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8556 8557 8558
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8559

8560 8561
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8562

H
haowang101779990 已提交
8563 8564
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8565 8566
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8567

H
haowang101779990 已提交
8568 8569 8570 8571 8572 8573 8574 8575
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8576 8577 8578

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

8596
            import paddle.fluid as fluid
8597 8598 8599
            label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8614
    out = helper.create_variable_for_type_inference("float32")
8615 8616 8617 8618 8619 8620 8621 8622

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8623 8624


M
minqiyang 已提交
8625 8626
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8627
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8628
    which compares left score and right score passed in.
M
minqiyang 已提交
8629
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8630 8631 8632

    .. math::

H
haowang101779990 已提交
8633
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8634 8635

    Args:
M
minqiyang 已提交
8636
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8637 8638
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8639
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8640 8641
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8642

M
minqiyang 已提交
8643
    Returns:
M
minqiyang 已提交
8644
       Variable: The ranking loss.
H
haowang101779990 已提交
8645

M
minqiyang 已提交
8646
    Raises:
M
minqiyang 已提交
8647
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8648

M
minqiyang 已提交
8649
    Examples:
H
haowang101779990 已提交
8650

M
minqiyang 已提交
8651
        .. code-block:: python
H
haowang101779990 已提交
8652

8653
           import paddle.fluid as fluid
Y
Yibing Liu 已提交
8654 8655 8656
           label = fluid.layers.data(name="label", shape=[-1, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[-1, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[-1, 1], dtype="float32")
M
minqiyang 已提交
8657 8658
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8659
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8660 8661 8662 8663 8664 8665
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8666 8667
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8691
        .. code-block:: text
W
whs 已提交
8692

T
Tink_Y 已提交
8693
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8694

T
Tink_Y 已提交
8695 8696
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8697

T
Tink_Y 已提交
8698
	      Case 0:
M
minqiyang 已提交
8699

T
Tink_Y 已提交
8700 8701 8702
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8703

T
Tink_Y 已提交
8704 8705 8706
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8707

T
Tink_Y 已提交
8708
	      Case 1:
M
minqiyang 已提交
8709

T
Tink_Y 已提交
8710 8711
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8712

T
Tink_Y 已提交
8713 8714 8715
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8716

T
Tink_Y 已提交
8717
	      Case 2:
M
minqiyang 已提交
8718

T
Tink_Y 已提交
8719 8720
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8721

T
Tink_Y 已提交
8722 8723 8724
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8725 8726


W
whs 已提交
8727 8728
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8729
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

B
Bai Yifan 已提交
8747 8748 8749 8750 8751
          import paddle.fluid as fluid
          data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                   dtype='float32')
          result = fluid.layers.pad2d(input=data, paddings=[1, 2, 3, 4],
                                      mode='reflect')
W
whs 已提交
8752 8753 8754 8755
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8756
    out = helper.create_variable_for_type_inference(dtype)
8757 8758 8759 8760 8761 8762 8763 8764 8765
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8766
    helper.append_op(
8767
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8768 8769 8770 8771

    return out


8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8784 8785 8786 8787 8788

    Examples:

        .. code-block:: python

8789
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8790 8791
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8792 8793
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8794
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8815 8816 8817 8818 8819

    Examples:

        .. code-block:: python

8820
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8821 8822
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8823 8824
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8825
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8846 8847 8848 8849 8850

    Examples:

        .. code-block:: python

8851
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8852 8853
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8854 8855
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8856
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8878 8879 8880 8881 8882

    Examples:

        .. code-block:: python

8883
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8884
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8885
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8886 8887
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8888
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8911 8912 8913 8914 8915

    Examples:

        .. code-block:: python

8916
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8917 8918
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8919 8920
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8921
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8943 8944 8945 8946 8947

    Examples:

        .. code-block:: python

8948
            import paddle.fluid as fluid
Z
ZhenWang 已提交
8949 8950
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8951 8952
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8953
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8954 8955 8956 8957 8958 8959 8960 8961
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8962 8963 8964 8965
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8966 8967
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8968

J
jerrywgz 已提交
8969 8970 8971 8972 8973 8974 8975 8976
    There are three modes for the activation:

    .. code-block:: text

        all: All elements share same alpha.
        channel: Elements in same channel share same alpha.
        element: All elements do not share alpha. Each element has its own alpha.

J
jerrywgz 已提交
8977 8978
    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8979
        mode (string): The mode for weight sharing. 
J
jerrywgz 已提交
8980
        param_attr(ParamAttr|None): The parameter attribute for the learnable
J
jerrywgz 已提交
8981
          weight (alpha), it can be create by ParamAttr.
J
jerrywgz 已提交
8982
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8983
          will be named automatically.
J
jerrywgz 已提交
8984 8985 8986 8987 8988 8989 8990 8991

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8992 8993 8994
            import paddle.fluid as fluid
            from paddle.fluid.param_attr import ParamAttr
            x = fluid.layers.data(name="x", shape=[5,10,10], dtype="float32")
J
jerrywgz 已提交
8995
            mode = 'channel'
J
jerrywgz 已提交
8996 8997 8998
            output = fluid.layers.prelu(
                     x,mode,param_attr=ParamAttr(name='alpha'))

J
jerrywgz 已提交
8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
9010
        attr=helper.param_attr,
J
jerrywgz 已提交
9011 9012 9013 9014
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
9015
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
9016 9017 9018 9019 9020 9021 9022 9023 9024
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


9025 9026 9027 9028 9029 9030 9031 9032 9033 9034
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9035
    Returns:
9036
        output(${out_type}): ${out_comment}
9037 9038 9039

    Examples:

9040
    .. code-block:: python
9041

9042
            import paddle.fluid as fluid
H
haowang101779990 已提交
9043 9044
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
9045 9046
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
9047
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9066
    Returns:
9067
        output(${out_type}): ${out_comment}
9068 9069 9070 9071 9072

    Examples:

        .. code-block:: python

9073
            import paddle.fluid as fluid
H
haowang101779990 已提交
9074 9075
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
9076 9077
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
9078
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
9096
    Returns:
9097
        output(${out_type}): ${out_comment}
9098 9099 9100

    Examples:

9101 9102 9103 9104 9105
        .. code-block:: python 
 
            import paddle.fluid as fluid
   
            x = fluid.layers.data(name="x", shape=[3,16,16], dtype="float32")
H
haowang101779990 已提交
9106
            y = fluid.layers.soft_relu(x, threshold=20.0)
9107 9108
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
9109
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
9110 9111 9112 9113 9114 9115 9116 9117
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


9118 9119 9120 9121
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
9122

H
haowang101779990 已提交
9123
    For Example:
M
minqiyang 已提交
9124

H
haowang101779990 已提交
9125
    .. code-block:: text
9126

H
haowang101779990 已提交
9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
9148 9149 9150

    Args:
        x (Variable): A tensor of rank >= axis.
9151 9152
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
9153 9154 9155 9156 9157 9158 9159 9160
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
9161 9162 9163
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
9164 9165 9166 9167
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
9168
        ValueError: If axis is not in range [0, rank(x)].
9169 9170 9171 9172 9173

    Examples:

        .. code-block:: python

9174
            import paddle.fluid as fluid
9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185
            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
9186 9187
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
9188
    helper.append_op(
9189
        type='flatten2',
9190
        inputs={"X": x},
9191 9192
        outputs={'Out': out,
                 'XShape': x_shape},
9193 9194
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
9195 9196


C
chenweihang 已提交
9197
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
9198
    """
C
chenweihang 已提交
9199
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
9200
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
9201 9202
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
9203

H
haowang101779990 已提交
9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
9221 9222

    Args:
C
chenweihang 已提交
9223 9224 9225
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
9226 9227 9228 9229 9230 9231 9232

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

9233
            x = fluid.layers.data(shape[-1, 1], dtype='int32', lod_level=1)
C
chenweihang 已提交
9234 9235
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
L
lujun 已提交
9236
    assert not in_dygraph_mode(), (
9237
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
9238
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
9239 9240
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
9241 9242 9243 9244 9245 9246
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
9247
    return out
9248

9249

S
sneaxiy 已提交
9250 9251 9252 9253 9254 9255 9256 9257 9258
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
9259

S
sneaxiy 已提交
9260
    .. math::
9261

S
sneaxiy 已提交
9262 9263 9264
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
9265
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
9266 9267 9268 9269
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
9270 9271 9272
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
9273 9274
    Returns:
        Variable: The output sequence mask.
9275

9276 9277 9278
    Examples:
        .. code-block:: python
	
9279
            import paddle.fluid as fluid
9280 9281 9282 9283 9284
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1)
            mask = layers.sequence_mask(x=x)

S
sneaxiy 已提交
9285
    """
L
lujun 已提交
9286
    assert not in_dygraph_mode(), (
9287
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9288

Q
qingqing01 已提交
9289
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
9290
    if name is None:
X
Xin Pan 已提交
9291
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
9292
    else:
X
Xin Pan 已提交
9293
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
9294

9295 9296 9297 9298 9299 9300 9301 9302
    inputs = {'X': [x]}
    attrs = {'out_dtype': out.dtype}
    if maxlen is not None:
        if isinstance(maxlen, Variable):
            inputs['MaxLenTensor'] = maxlen
        else:
            attrs['maxlen'] = maxlen

Q
qingqing01 已提交
9303
    helper.append_op(
9304 9305 9306
        type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)

    out.stop_gradient = True
S
sneaxiy 已提交
9307
    return out
S
sneaxiy 已提交
9308 9309


X
Xin Pan 已提交
9310
def stack(x, axis=0):
S
sneaxiy 已提交
9311 9312 9313 9314
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
9315 9316 9317 9318 9319 9320 9321

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
9322
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
9323
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
9324

C
chengduozh 已提交
9325 9326
    For Example:

C
chengduozh 已提交
9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
9365
    Args:
9366
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
9367
        axis (int|None): The axis along which all inputs are stacked.
9368

S
sneaxiy 已提交
9369 9370
    Returns:
        Variable: The stacked variable.
9371

9372 9373 9374
    Examples:
        .. code-block:: python

9375
            import paddle.fluid as fluid
9376
            import paddle.fluid.layers as layers
9377 9378
            x1 = layers.data(name='x1', shape=[1, 2], dtype='int32')
            x2 = layers.data(name='x2', shape=[1, 2], dtype='int32')
9379 9380
            data = layers.stack([x1,x2])

S
sneaxiy 已提交
9381 9382
    """

X
Xin Pan 已提交
9383 9384 9385 9386 9387 9388
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
9389
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
9390
    helper.append_op(
S
sneaxiy 已提交
9391 9392
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
9393

X
Xin Pan 已提交
9394
    return out
D
dzhwinter 已提交
9395 9396 9397 9398 9399 9400 9401


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
9402

D
dzhwinter 已提交
9403 9404 9405
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
9406
    raised.
D
dzhwinter 已提交
9407 9408

    Args:
M
minqiyang 已提交
9409
        x (Variable): Input variable.
D
dzhwinter 已提交
9410 9411
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
9412

D
dzhwinter 已提交
9413 9414
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
9415

9416 9417 9418 9419 9420 9421
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10], dtype='float32')
            y = fluid.layers.unstack(x, axis=1)
D
dzhwinter 已提交
9422 9423 9424 9425 9426 9427 9428 9429 9430 9431
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
9432
    for _ in range(num):
X
Xin Pan 已提交
9433
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
9434 9435 9436 9437 9438 9439 9440 9441

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
9454

W
whs 已提交
9455 9456 9457 9458
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
9459

W
whs 已提交
9460
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
9461

W
whs 已提交
9462
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
9463

W
whs 已提交
9464 9465 9466 9467
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
9468

W
whs 已提交
9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
9485
    out = helper.create_variable_for_type_inference(dtype)
9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502
    # check expand_times have tensor

    if in_dygraph_mode():
        inputs = {'X': x}
        attrs = {'expand_times': expand_times}
    else:

        def contain_tensor(expand_times):
            for ele in expand_times:
                if isinstance(ele, Variable):
                    return True
            return False

        if contain_tensor(expand_times):
            new_expand_times = []
            for ele in expand_times:
                if isinstance(ele, Variable):
H
Hongyu Liu 已提交
9503
                    ele.stop_gradient = True
9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516
                    new_expand_times.append(ele)
                else:
                    assert (isinstance(ele, int))
                    temp_out = helper.create_variable_for_type_inference(dtype)
                    fill_constant(
                        [1], 'int32', ele, force_cpu=True, out=temp_out)
                    new_expand_times.append(temp_out)
            inputs = {'X': x, 'expand_times_tensor': new_expand_times}
            attrs = {}
        else:
            inputs = {'X': x}
            attrs = {'expand_times': expand_times}

W
whs 已提交
9517
    helper.append_op(
9518
        type='expand', inputs=inputs, outputs={'Out': out}, attrs=attrs)
W
whs 已提交
9519
    return out
S
sneaxiy 已提交
9520 9521


G
fix  
gongweibao 已提交
9522 9523 9524
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
9525
@templatedoc()
G
fix  
gongweibao 已提交
9526 9527 9528 9529 9530 9531 9532 9533 9534
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
9535
    ${comment}
G
fix  
gongweibao 已提交
9536 9537

    Args:
G
gongweibao 已提交
9538 9539 9540
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9541
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
9542 9543 9544
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9545 9546
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
9547
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9548

9549 9550 9551
    Examples:
        .. code-block:: python

9552
            import paddle.fluid as fluid
9553 9554
            import paddle.fluid.layers as layers 

9555 9556
            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
9557 9558 9559
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
9560
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9577 9578


G
gongweibao 已提交
9579
@templatedoc()
X
Xin Pan 已提交
9580
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9581
    """
G
gongweibao 已提交
9582
    ${comment}
G
fix  
gongweibao 已提交
9583 9584

    Args:
G
gongweibao 已提交
9585 9586 9587 9588
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9589 9590 9591
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9592
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9593

9594 9595 9596
    Examples:
        .. code-block:: python

9597
            import paddle.fluid as fluid
J
JesseyXujin 已提交
9598
            import paddle.fluid.layers as layers
9599
            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9600 9601 9602
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9603
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9604 9605 9606 9607 9608 9609 9610 9611 9612 9613
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9614
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9615 9616 9617 9618 9619
        })

    return out


G
gongweibao 已提交
9620
@templatedoc()
G
fix  
gongweibao 已提交
9621
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9622
    """
G
gongweibao 已提交
9623
    ${comment}
G
fix  
gongweibao 已提交
9624 9625

    Args:
G
gongweibao 已提交
9626 9627 9628 9629
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9630
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9631 9632

    Returns:
G
gongweibao 已提交
9633
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9634

9635 9636 9637
    Examples:
        .. code-block:: python

9638
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9639
            x = fluid.layers.data(
9640 9641 9642 9643 9644
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

Y
Yibing Liu 已提交
9645
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
9646 9647 9648
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9649
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9661
@templatedoc()
G
fix  
gongweibao 已提交
9662 9663 9664 9665 9666 9667 9668 9669 9670
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9671
    ${comment}
G
fix  
gongweibao 已提交
9672 9673

    Args:
G
gongweibao 已提交
9674 9675
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9676
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9677 9678 9679 9680
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9681
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9682 9683

    Returns:
G
gongweibao 已提交
9684
        out (Variable): ${out_comment}
9685 9686 9687 9688

    Examples:
        .. code-block:: python

9689
            import paddle.fluid as fluid
Y
Yibing Liu 已提交
9690
            input = fluid.layers.data(name="input", shape=[13, 11], dtype='float32')
9691

Y
Yibing Liu 已提交
9692
            out = fluid.layers.gaussian_random_batch_size_like(
9693
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9694 9695 9696
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9697
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9716
@templatedoc()
X
Xin Pan 已提交
9717
def sum(x):
G
fix  
gongweibao 已提交
9718
    """
G
gongweibao 已提交
9719
    ${comment}
G
fix  
gongweibao 已提交
9720 9721

    Args:
G
gongweibao 已提交
9722
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9723 9724

    Returns:
G
gongweibao 已提交
9725
        out (Variable): ${out_comment}
9726 9727 9728 9729

    Examples:
        .. code-block:: python

9730
            import paddle.fluid as fluid
9731 9732 9733 9734
            import paddle.fluid.layers as layers
            input0 = layers.data(name="input0", shape=[13, 11], dtype='float32')
            input1 = layers.data(name="input1", shape=[13, 11], dtype='float32')
            out = layers.sum([input0,input1])
G
fix  
gongweibao 已提交
9735 9736 9737
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9738 9739
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9740 9741 9742 9743
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9744
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9745 9746 9747 9748

    return out


G
gongweibao 已提交
9749
@templatedoc()
G
fix  
gongweibao 已提交
9750 9751
def slice(input, axes, starts, ends):
    """
9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766
    Slice Operator.

    Produces a slice of the input tensor along multiple axes. Similar to numpy:
    https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
    Slice uses `axes`, `starts` and `ends` attributes to specify the start and
    end dimension for each axis in the list of axes, it uses this information
    to slice the input data tensor. If a negative value is passed for any of
    the start or end indices, it represents number of elements before the end
    of that dimension. If the value passed to start or end is larger than
    the n (the number of elements in this dimension), it represents n.
    For slicing to the end of a dimension with unknown size, it is recommended
    to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
    Following examples will explain how slice works:

    .. code-block:: text
G
fix  
gongweibao 已提交
9767

9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784
        Case1:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [1, 0]
                ends = [2, 3]
            Then:
                result = [ [5, 6, 7], ]
        
        Case2:
            Given:
                data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
                axes = [0, 1]
                starts = [0, 1]
                ends = [-1, 1000]
            Then:
                result = [ [2, 3, 4], ]
G
fix  
gongweibao 已提交
9785
    Args:
G
gongweibao 已提交
9786 9787 9788 9789
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9790 9791

    Returns:
G
gongweibao 已提交
9792
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9793

9794 9795 9796
    Examples:
        .. code-block:: python

9797 9798
            import paddle.fluid as fluid
 
9799 9800 9801 9802
            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

9803
            input = fluid.layers.data(
9804 9805
                name="input", shape=[3, 4, 5, 6], dtype='float32')

9806
            out = fluid.layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9807 9808 9809
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9810 9811
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9825 9826
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9827
    Get the shape of the input.
G
fix  
gongweibao 已提交
9828 9829

    Args:
C
chengduozh 已提交
9830
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9831 9832

    Returns:
C
fix doc  
chengduozh 已提交
9833
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9834

9835 9836 9837
    Examples:
        .. code-block:: python

9838 9839 9840
            import paddle.fluid as fluid

            input = fluid.layers.data(
9841
                name="input", shape=[3, 100, 100], dtype="float32")
9842
            out = fluid.layers.shape(input)
G
fix  
gongweibao 已提交
9843 9844 9845
    """

    helper = LayerHelper('shape', **locals())
9846
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9847
    helper.append_op(
G
fix  
gongweibao 已提交
9848
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9849 9850

    return out
G
merge  
gongweibao 已提交
9851 9852


Z
zhoukunsheng 已提交
9853 9854 9855 9856
def rank(input):
    """
    **Rank Layer**

Z
zhoukunsheng 已提交
9857
    Returns the number of dimensions for a tensor, which is a 0-D int32 Tensor.
Z
zhoukunsheng 已提交
9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878

    Args:
        input (Variable): The input variable.

    Returns:
        Variable: The rank of the input variable.

    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            rank = layers.rank(input) # 4
    """

    ndims = len(input.shape)
    out = assign(np.array(ndims, 'int32'))

    return out


S
sneaxiy 已提交
9879 9880 9881 9882
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9883
    if in_dygraph_mode():
X
Xin Pan 已提交
9884 9885 9886
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9887 9888 9889 9890
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9891 9892
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9893
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9894 9895 9896
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9897

S
sneaxiy 已提交
9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9909
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9910 9911 9912 9913 9914 9915 9916 9917
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9918
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9919
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9920 9921 9922

    Returns:
        out(${out_type}): ${out_comment}
9923 9924 9925 9926 9927 9928 9929 9930

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            x = fluid.layers.data(name="X", shape=[1, 2, 5, 5], dtype='float32')
            y = fluid.layers.scale(x, scale = 2.0, bias = 1.0)
S
sneaxiy 已提交
9931 9932 9933
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9934
    if name is None:
X
Xin Pan 已提交
9935
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9936 9937 9938
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9939 9940 9941 9942 9943 9944 9945 9946 9947 9948

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9949
    return helper.append_activation(out)
S
sneaxiy 已提交
9950 9951


X
Xin Pan 已提交
9952
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9953 9954 9955
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9956
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9957 9958 9959
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9960
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9961 9962 9963
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9964
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9965 9966 9967
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9968
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9969 9970 9971
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9972
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9973 9974 9975
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9976
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9977 9978 9979
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9980 9981 9982 9983 9984 9985 9986 9987
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9988
for func in [
9989 9990 9991 9992 9993 9994 9995 9996 9997
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9998 9999 10000 10001 10002
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
10003 10004
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
10005
        ])
10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042
    func.__doc__ = func.__doc__ + """

Examples:
  .. code-block:: python
    
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
    """ % (func.__name__, func.__name__, func.__name__, func.__name__,
           func.__name__, func.__name__)
M
minqiyang 已提交
10043 10044


10045
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
10046 10047
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
10048 10049
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
10050 10051 10052

    if out is None:
        if name is None:
X
Xin Pan 已提交
10053
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
10069
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10081 10082 10083 10084

    Examples:
        .. code-block:: python

10085
            import paddle.fluid as fluid
10086 10087 10088 10089 10090
            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
10091 10092 10093 10094 10095 10096 10097
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10098
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10110 10111 10112 10113

    Examples:
        .. code-block:: python

10114
            import paddle.fluid as fluid
10115 10116 10117 10118 10119
            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
10120 10121 10122 10123 10124 10125 10126
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10127
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10139 10140 10141 10142

    Examples:
        .. code-block:: python

10143
            import paddle.fluid as fluid
10144 10145 10146 10147 10148
            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
10149 10150 10151 10152 10153 10154 10155
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
10156
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
10157 10158 10159 10160 10161 10162 10163 10164 10165 10166
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10167 10168 10169 10170

    Examples:
        .. code-block:: python

10171
            import paddle.fluid as fluid
10172 10173 10174
            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
10175 10176 10177 10178
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10194 10195 10196 10197

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
10198
            import paddle.fluid as fluid
10199 10200 10201
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
10202 10203 10204 10205 10206
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
10207 10208
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10209 10210 10211

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10235 10236 10237 10238

    Examples:
        .. code-block:: python

10239
            import paddle.fluid as fluid
10240 10241 10242
            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
10243 10244 10245 10246 10247
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
10248 10249
        name = unique_name.generate_with_ignorable_key(".".join(
            [helper.name, 'tmp']))
S
sneaxiy 已提交
10250 10251 10252

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
10253 10254 10255 10256 10257 10258 10259 10260

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10274 10275 10276 10277

    Examples:
        .. code-block:: python

10278
            import paddle.fluid as fluid
10279 10280 10281
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
            mean = fluid.layers.mean(input)
X
Xin Pan 已提交
10282 10283 10284 10285 10286
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
10287
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10288 10289 10290 10291 10292 10293 10294 10295 10296 10297
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10309 10310 10311 10312

    Examples:
        .. code-block:: python

10313
            import paddle.fluid as fluid
10314 10315 10316 10317 10318
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
            

X
Xin Pan 已提交
10357 10358 10359 10360 10361
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
10362
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10363 10364 10365 10366 10367 10368 10369 10370 10371
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
10372 10373
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
10374 10375 10376 10377 10378 10379
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
10380 10381 10382
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
10383 10384
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
10385 10386 10387 10388 10389 10390
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
10391
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
10392
        name(basestring|None): Name of the output.
10393 10394
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
10395 10396 10397

    Returns:
        out(${out_type}): ${out_comment}
10398 10399 10400 10401

    Examples:
        .. code-block:: python

10402
            import paddle.fluid as fluid
10403 10404 10405 10406 10407 10408 10409 10410 10411 10412
            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
10413 10414 10415 10416 10417
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
10418
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10419 10420 10421 10422 10423 10424 10425 10426
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
10427 10428
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
J
jerrywgz 已提交
10445 10446 10447 10448

    Examples:
        .. code-block:: python

10449
            import paddle.fluid as fluid
J
jerrywgz 已提交
10450 10451 10452 10453 10454
            input = fluid.layers.data(
                name='data', 
                shape=[256, 32, 32], 
                dtype='float32')
            out = fluid.layers.maxout(input, groups=2)
X
Xin Pan 已提交
10455 10456 10457 10458
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
10459
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
10460 10461 10462 10463 10464 10465 10466 10467 10468 10469
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
10470 10471


J
JiabinYang 已提交
10472
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
10473
    """
J
JiabinYang 已提交
10474
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
10475 10476 10477

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
10478
    The attr blocksize indicates the input block size.
10479 10480

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
10481
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
10482 10483

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
10484
    (but keeping all data)
J
JiabinYang 已提交
10485

J
JiabinYang 已提交
10486
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
10487
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
10488 10489 10490 10491 10492
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
10493
    Args:
J
JiabinYang 已提交
10494
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
10495
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
10496 10497

    Returns:
J
JiabinYang 已提交
10498
        Variable: The output LoDtensor.
J
JiabinYang 已提交
10499 10500

    Raises:
J
JiabinYang 已提交
10501
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
10502 10503 10504

    Examples:
        .. code-block:: python
10505 10506 10507
	
            import paddle.fluid as fluid
            import numpy as np
J
JiabinYang 已提交
10508 10509

            data = fluid.layers.data(
10510
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
10511
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
10512
                x=data, blocksize=2)
10513 10514 10515 10516 10517 10518

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
10519

J
JiabinYang 已提交
10520 10521
    """

J
JiabinYang 已提交
10522
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
10523

J
JiabinYang 已提交
10524 10525
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
10526 10527

    if name is None:
J
JiabinYang 已提交
10528 10529
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
10530 10531 10532 10533 10534
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
10535
        type="space_to_depth",
J
JiabinYang 已提交
10536
        inputs={"X": x},
J
JiabinYang 已提交
10537
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
10538
        outputs={"Out": out})
J
JiabinYang 已提交
10539 10540
    return out

J
JiabinYang 已提交
10541

S
sneaxiy 已提交
10542 10543
@templatedoc()
def sequence_reverse(x, name=None):
10544
    """
S
sneaxiy 已提交
10545 10546 10547 10548 10549 10550 10551 10552
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
B
bdzhuxiaoning 已提交
10553 10554 10555 10556 10557 10558 10559

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[2, 6], dtype='float32')
            x_reversed = fluid.layers.sequence_reverse(x)
S
sneaxiy 已提交
10560
    """
L
lujun 已提交
10561
    assert not in_dygraph_mode(), (
10562
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
10563 10564
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
10565
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
10566 10567 10568 10569 10570 10571 10572 10573 10574 10575
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
10576 10577


10578 10579 10580 10581 10582 10583
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
10584 10585 10586 10587 10588
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
10589

10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
10602
        act (str, default None): Activation to be applied to the output of this layer.
10603 10604 10605

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
B
Bai Yifan 已提交
10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32],
                                     dtype='float32')
            input_scale = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            input_bias = fluid.layers.create_parameter(shape=[3],
                                     dtype="float32")
            out = fluid.layers.affine_channel(data,scale=input_scale,
                                     bias=input_bias)

10620 10621 10622 10623
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
10624
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
10636
    return helper.append_activation(out)
10637 10638


B
barrierye 已提交
10639
def similarity_focus(input, axis, indexes, name=None):
10640
    """
B
barrierye 已提交
10641
    SimilarityFocus Operator
B
barrierye 已提交
10642 10643

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
10644

10645 10646 10647
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
10648
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
10649 10650 10651 10652 10653 10654 10655
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
10656
       each index.
B
barrierye 已提交
10657 10658 10659 10660
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
10710
    Args:
10711
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
10712
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
10713
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
10714
            1, 2 or 3.
B
barrierye 已提交
10715
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
10716 10717

    Returns:
H
haowang101779990 已提交
10718 10719
        Variable: A tensor variable with the same shape and same type \
                  as the input.
10720

B
barrierye 已提交
10721 10722
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
10723

10724
            import paddle.fluid as fluid
B
barrierye 已提交
10725
            data = fluid.layers.data(
Y
Yibing Liu 已提交
10726 10727
                name='data', shape=[-1, 3, 2, 2], dtype='float32')
            fluid.layers.similarity_focus(input=data, axis=1, indexes=[0])
B
barrierye 已提交
10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
10740 10741 10742 10743 10744
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
10745 10746 10747 10748 10749 10750 10751
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
10752 10753


M
minqiyang 已提交
10754 10755
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
10756 10757
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
10758 10759
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
10760 10761 10762 10763 10764 10765 10766 10767 10768

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
10769 10770
            [[1, 2],
             [3, 4]],
M
minqiyang 已提交
10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
10787 10788
            [[9662, 9217, 1129, 8487],
             [8310, 1327, 1654, 4567]],
M
minqiyang 已提交
10789 10790 10791 10792 10793 10794 10795 10796 10797
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10798
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10799
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10800 10801 10802 10803 10804 10805

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10806

10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824
            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            import numpy as np

            titles = fluid.layers.data(name='titles', shape=[1], dtype='int32', lod_level=1)
            hash_r = fluid.layers.hash(name='hash_x', input=titles, num_hash=1, hash_size=1000)

            place = fluid.core.CPUPlace()
            exece = fluid.Executor(place)
            exece.run(fluid.default_startup_program()) 

            # Init Tensor
            tensor = fluid.core.LoDTensor() 
            tensor.set(np.random.randint(0, 10, (3, 1)).astype("int32"), place)
            # Set LoD
            tensor.set_recursive_sequence_lengths([[1, 1, 1]])

            out = exece.run(feed={'titles': tensor}, fetch_list=[hash_r], return_numpy=False)
M
minqiyang 已提交
10825 10826
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10827 10828
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10829 10830 10831 10832 10833 10834 10835
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10836 10837


D
dengkaipeng 已提交
10838
@templatedoc()
10839 10840
def grid_sampler(x, grid, name=None):
    """
10841
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10842
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10843 10844 10845 10846
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10847
    interpolation value of 4 nearest corner points.
10848

H
haowang101779990 已提交
10849
    .. code-block:: text
10850

H
haowang101779990 已提交
10851 10852
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10853

H
haowang101779990 已提交
10854 10855
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10856

H
haowang101779990 已提交
10857 10858 10859
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10860

H
haowang101779990 已提交
10861 10862 10863 10864 10865 10866 10867 10868 10869
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10870

H
haowang101779990 已提交
10871 10872 10873 10874
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10875

H
haowang101779990 已提交
10876 10877 10878 10879
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10880

H
haowang101779990 已提交
10881 10882 10883 10884
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10885

H
haowang101779990 已提交
10886 10887
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10888 10889

    Args:
10890 10891 10892
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10893 10894

    Returns:
H
haowang101779990 已提交
10895
        Variable: Output of shape [N, C, H, W] data samples input X
10896 10897
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10898 10899 10900 10901
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
10902 10903 10904 10905 10906
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
10907
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10908

D
dengkaipeng 已提交
10909 10910 10911 10912 10913 10914 10915 10916 10917
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10918
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10919 10920
    ipts = {'X': x, 'Grid': grid}

10921
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10922 10923 10924
    return out


G
gmcather 已提交
10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

10952
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
10953 10954
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          prob = fluid.layers.data(name='prob', shape=[10], dtype='float32')
G
gmcather 已提交
10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10993
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10994 10995 10996 10997 10998 10999 11000
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
11001 11002
          
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11003

11004 11005 11006 11007 11008
          batch_size = 64
          label = fluid.layers.data(
                    name="label", shape=[batch_size, 1], dtype="int64", append_batch_size=False)
          similarity = fluid.layers.data(
                    name="similarity", shape=[batch_size, 1], dtype="float32", append_batch_size=False)
H
heqiaozhi 已提交
11009
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
11010

H
heqiaozhi 已提交
11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
11024 11025 11026 11027
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
11028
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
11029 11030
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
11031
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
11032 11033

    .. math::
H
haowang101779990 已提交
11034 11035 11036
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
11037 11038

    Where:
H
haowang101779990 已提交
11039 11040
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

11054 11055 11056 11057 11058 11059 11060 11061 11062
          import paddle.fluid as fluid

          tensor = fluid.layers.data(
              name='tensor',
              shape=[32, 64, 512],
              dtype='float32',
              append_batch_size=False)
          position_tensor = fluid.layers.add_position_encoding(
              input=tensor, alpha=1.0, beta=1.0)
H
haowang101779990 已提交
11063

G
gmcather 已提交
11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
11080 11081 11082 11083 11084 11085 11086 11087 11088 11089


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
11090
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
11091

Q
Qiao Longfei 已提交
11092
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
11093 11094 11095
    For example:

    .. math::
H
haowang101779990 已提交
11096
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
11097

Q
Qiao Longfei 已提交
11098
    In this formula:
11099 11100
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
11101
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
11102
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
11103 11104 11105
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
11106 11107
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
11108 11109 11110
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
11111
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
11112
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
11113
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
11114 11115 11116 11117
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
11118
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
11119 11120 11121 11122

    Examples:
        .. code-block:: python

11123
          import paddle.fluid as fluid
Y
Yibing Liu 已提交
11124 11125 11126
          layer1 = fluid.layers.data("t1", shape=[-1, 5], dtype="float32")
          layer2 = fluid.layers.data("t2", shape=[-1, 4], dtype="float32")
          tensor = fluid.layers.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
11127 11128
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
11129
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
11130 11131 11132 11133

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
11134
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
B
bdzhuxiaoning 已提交
11165 11166 11167 11168 11169 11170 11171 11172

    Examples:
        .. code-block:: python
	    
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
11173 11174 11175 11176 11177 11178 11179 11180 11181 11182
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
11183 11184


S
shippingwang 已提交
11185
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
11186 11187
    """
    **Shuffle Channel Operator**
11188

S
shippingwang 已提交
11189 11190 11191 11192 11193 11194
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
11195
    
S
shippingwang 已提交
11196
    .. code-block:: text
11197

S
shippingwang 已提交
11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
11226
    Args: 
S
shippingwang 已提交
11227 11228
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
11229 11230

    Returns:
S
shippingwang 已提交
11231 11232
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
11233 11234

    Raises:
S
shippingwang 已提交
11235
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
11236 11237 11238

    Examples:
        .. code-block:: python
11239

11240
            import paddle.fluid as fluid
11241
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
11242
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
11243 11244 11245
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
11246
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
11247 11248 11249 11250 11251 11252 11253 11254 11255

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
11256
    return out
S
Add  
shippingwang 已提交
11257 11258


11259
@templatedoc()
D
dengkaipeng 已提交
11260
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
11261 11262 11263 11264 11265 11266 11267 11268
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
11269
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
11270
        name (str, default None): The name of this layer.
11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

11282
            import paddle.fluid as fluid
11283
            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
11284
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
11297 11298
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
11299 11300 11301
    return out


S
sneaxiy 已提交
11302
class PyFuncRegistry(object):
S
sneaxiy 已提交
11303 11304 11305
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
11306
        if func is None or not callable(func):
S
sneaxiy 已提交
11307 11308 11309
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
11310
        # find named args using reflection
S
sneaxiy 已提交
11311 11312 11313 11314 11315 11316 11317
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
11318 11319 11320
        '''
        Why record self here?

M
minqiyang 已提交
11321 11322
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
11323
           to find the registered function corresponding
M
minqiyang 已提交
11324
           to :code:`idx`.
S
sneaxiy 已提交
11325

M
minqiyang 已提交
11326 11327
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
11328
           whose reference count is 1 would cause
M
minqiyang 已提交
11329
           segmentation fault error in C++ side.
S
sneaxiy 已提交
11330 11331
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
11332
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
11347 11348 11349 11350 11351 11352 11353 11354 11355
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
11356

S
sneaxiy 已提交
11357 11358
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
11359 11360

        ret = []
S
sneaxiy 已提交
11361 11362 11363
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
11364 11365
                continue

S
sneaxiy 已提交
11366 11367
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
11368

S
sneaxiy 已提交
11369 11370 11371
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
11372

S
sneaxiy 已提交
11373
        return tuple(ret)
S
sneaxiy 已提交
11374 11375


S
sneaxiy 已提交
11376 11377 11378 11379
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
11380

S
sneaxiy 已提交
11381 11382 11383 11384 11385 11386 11387 11388
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
11389
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
11390

S
sneaxiy 已提交
11391 11392
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
11393 11394 11395 11396
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
11397
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
11398
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
11399 11400
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
11401 11402 11403 11404 11405
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
11406
            should create :code:`out` beforehand.
S
sneaxiy 已提交
11407
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
11408
                                       None means no backward. Default None.
S
sneaxiy 已提交
11409
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
11410
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
11411 11412
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
11413
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
11414 11415 11416

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
11417 11418

    Examples:
M
minqiyang 已提交
11419

S
sneaxiy 已提交
11420 11421 11422 11423 11424
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
11425
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
11426 11427
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
11428
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
11429 11430 11431
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
11432
        >>>
S
sneaxiy 已提交
11433 11434 11435 11436 11437
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
11438
        >>>     print(x)
S
sneaxiy 已提交
11439 11440 11441 11442 11443 11444
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
11445
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
11446 11447
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
11448 11449
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
11450 11451 11452 11453 11454 11455 11456 11457
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
11458
    """
S
sneaxiy 已提交
11459
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
11460 11461 11462
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
11463
        x = [x]
S
sneaxiy 已提交
11464 11465
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11466

S
sneaxiy 已提交
11467 11468 11469
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
11470
        out_list = [out]
S
sneaxiy 已提交
11471
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
11472
        out_list = out
S
sneaxiy 已提交
11473 11474 11475
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
11476

S
sneaxiy 已提交
11477 11478
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
11479
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
11480 11481

    for each_out in out_list:
S
sneaxiy 已提交
11482 11483
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
11484 11485
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
11486

S
sneaxiy 已提交
11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
11502 11503 11504 11505

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
11506 11507
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
11508 11509 11510
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
11511
        })
S
sneaxiy 已提交
11512
    return out
S
sneaxiy 已提交
11513 11514 11515


# For debug usage
S
sneaxiy 已提交
11516 11517 11518 11519
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
S
SunGaofeng 已提交
11533 11534 11535 11536 11537
        rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                         a 2-D LoDTensor of shape (num_rois, 4), the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates.
11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
11550 11551 11552 11553
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[490, 28, 28], dtype='float32')
            rois = fluid.layers.data(name='rois', shape=[4], lod_level=1, dtype='float32')
            pool_out = fluid.layers.psroi_pool(x, rois, 10, 1.0, 7, 7)
11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
11579

M
minqiyang 已提交
11580

M
minqiyang 已提交
11581
def huber_loss(input, label, delta):
11582
    """
M
minqiyang 已提交
11583 11584 11585
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
11586 11587 11588 11589

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
11590
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
11591 11592 11593 11594

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
11595
        huber\_loss = 0.5 * (label - input) * (label - input)
11596 11597 11598 11599 11600 11601 11602


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
11603
        delta (float): The parameter of huber loss, which controls
11604 11605 11606
                       the range of outliers

    Returns:
M
minqiyang 已提交
11607
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
11608 11609 11610 11611

    Examples:
        .. code-block:: python

11612 11613 11614 11615 11616 11617 11618 11619 11620
            import paddle.fluid as fluid

            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            predict = fluid.layers.fc(input=x, size=1)
            label = fluid.layers.data(
                name='label', shape=[1], dtype='float32')
            loss = fluid.layers.huber_loss(
                input=predict, label=label, delta=1.0)

11621
    """
M
minqiyang 已提交
11622
    helper = LayerHelper('huber_loss', **locals())
11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
11634 11635


D
dengkaipeng 已提交
11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

11653
            import paddle.fluid as fluid
D
dengkaipeng 已提交
11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668
            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

11699
          import paddle.fluid as fluid
T
Tao Luo 已提交
11700 11701 11702
          # 10 for max_node_size of dataset, 5 for vector width
          nodes_vector = fluid.layers.data(name='vectors', shape=[10, 5], dtype='float32')
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
Z
zhaozhehao 已提交
11703
          # edges must be directional
T
Tao Luo 已提交
11704 11705 11706 11707
          edge_set = fluid.layers.data(name='edge_set', shape=[10, 2], dtype='float32')
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
Z
zhaozhehao 已提交
11708
          # After reshape, output tensor could be nodes_vector for next tree convolution
T
Tao Luo 已提交
11709 11710
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
Z
zhaozhehao 已提交
11711
          # also output tensor could be pooling(the pooling in paper called global pooling)
T
Tao Luo 已提交
11712
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
Z
zhaozhehao 已提交
11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
11736 11737


C
ceci3 已提交
11738
from .ops import square
C
ceci3 已提交
11739
from .control_flow import equal
C
ceci3 已提交
11740 11741


C
ceci3 已提交
11742 11743 11744
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
11745

C
ceci3 已提交
11746
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
11747 11748

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
11749
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
11750 11751 11752 11753 11754
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
11755 11756
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
11757 11758 11759 11760 11761 11762 11763

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

11764
       import paddle.fluid as fluid
C
ceci3 已提交
11765 11766 11767 11768 11769 11770 11771 11772
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
11773 11774 11775 11776 11777 11778 11779
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
11780
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
11781 11782
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
11783 11784
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
11785 11786 11787 11788
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
11789 11790 11791
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
11792 11793 11794
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
11795 11796


R
ruri 已提交
11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

11826
        Out(Variable): Reshaped tensor according to the new dimension.
R
ruri 已提交
11827 11828 11829 11830 11831 11832 11833 11834 11835

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

11836
            import paddle.fluid as fluid
R
ruri 已提交
11837
            input = fluid.layers.data(name="input", shape=[9,4,4])
R
ruri 已提交
11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

B
Bai Yifan 已提交
11888 11889 11890 11891 11892 11893
            import paddle.fluid as fluid
            data = fluid.layers.data(name='data', shape=[3, 32, 32])
            feature_map_0 = fluid.layers.conv2d(data, num_filters=2,
                                                filter_size=3)
            feature_map_1 = fluid.layers.conv2d(feature_map_0, num_filters=2,
                                                filter_size=1)
11894 11895 11896 11897 11898 11899 11900 11901
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11902 11903 11904 11905


def continuous_value_model(input, cvm, use_cvm=True):
    """
H
fix doc  
heqiaozhi 已提交
11906

H
heqiaozhi 已提交
11907
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
11908

H
fix doc  
heqiaozhi 已提交
11909
    continuous value model(cvm). Now, it only considers show and click value in CTR project.
H
fix doc  
heqiaozhi 已提交
11910 11911 11912
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
H
heqiaozhi 已提交
11913
    
H
fix doc  
heqiaozhi 已提交
11914
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.
H
fix doc  
heqiaozhi 已提交
11915

H
heqiaozhi 已提交
11916
    Args:
H
fix doc  
heqiaozhi 已提交
11917 11918

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
H
heqiaozhi 已提交
11919 11920
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
H
fix doc  
heqiaozhi 已提交
11921
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
11922
                          (cvm op is a customized op, which input is a sequence has embed_with_cvm default, so we need an op named cvm to decided whever use it or not.)
H
fix doc  
heqiaozhi 已提交
11923

H
heqiaozhi 已提交
11924
    Returns:
H
fix doc  
heqiaozhi 已提交
11925 11926 11927

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

H
heqiaozhi 已提交
11928
    Examples:
H
fix doc  
heqiaozhi 已提交
11929

H
heqiaozhi 已提交
11930
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
11931

11932
          import paddle.fluid as fluid
H
heqiaozhi 已提交
11933 11934 11935 11936 11937 11938 11939 11940 11941 11942
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
11943

H
heqiaozhi 已提交
11944 11945 11946 11947 11948 11949 11950 11951 11952
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
H
heqiaozhi 已提交
11953
    return out
Z
zhoukunsheng 已提交
11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971


def where(condition):
    """
    Return an int64 tensor with rank 2, specifying the coordinate of true element in `condition`.

    Output's first dimension is the number of true element, second dimension is rank(number of dimension) of `condition`.
    If there is zero true element, then an empty tensor will be generated.  

    Args:
        condition(Variable): A bool tensor with rank at least 1.

    Returns:
        Variable: The tensor variable storing a 2-D tensor. 

    Examples:
        .. code-block:: python

11972 11973 11974 11975
             import paddle.fluid as fluid
             import paddle.fluid.layers as layers
             import numpy as np

Z
zhoukunsheng 已提交
11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992
             # condition is a tensor [True, False, True]
             out = fluid.layers.where(condition) # [[0], [2]]

             # condition is a tensor [[True, False], [False, True]]
             out = fluid.layers.where(condition) # [[0, 0], [1, 1]]

             # condition is a tensor [False, False, False]
             out = fluid.layers.where(condition) # [[]]
    """
    helper = LayerHelper("where", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=core.VarDesc.VarType.INT64)

    helper.append_op(
        type='where', inputs={'Condition': condition}, outputs={'Out': [out]})
    return out
Z
zhoukunsheng 已提交
11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023


def sign(x):
    """
    **sign**

    This function returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Variable|numpy.ndarray): The input tensor.

    Returns:
        Variable: The output sign tensor with identical shape and dtype to `x`.

    Examples:
        .. code-block:: python

          # [1, 0, -1]
          data = fluid.layers.sign(np.array([3, 0, -2])) 
    """

    helper = LayerHelper("sign", **locals())

    if not isinstance(x, Variable):
        x = assign(x)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out
12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127


def deformable_conv(input,
                    offset,
                    mask,
                    num_filters,
                    filter_size,
                    stride=1,
                    padding=0,
                    dilation=1,
                    groups=None,
                    deformable_groups=None,
                    im2col_step=None,
                    param_attr=None,
                    bias_attr=None,
                    name=None):
    """
    **Deformable Convolution Layer**

    Compute 2-D deformable convolution on 4-D input.
    Given input image x, output feature map y, the deformable convolution operation can be expressed as follow:
    
    .. math::

        y(p) = \sum_{k=1}^{K}{w_k * x(p + p_k + \Delta p_k) * \Delta m_k}
    
    Where :math:`\Delta p_k` and :math:`\Delta m_k` are the learnable offset and modulation scalar for the k-th location, respectively.
    Refer to `Deformable ConvNets v2: More Deformable, Better Results
    <https://arxiv.org/abs/1811.11168v2>`_ .
    
    Example:
        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

          Offset shape: :math:`(N, 2 * deformable\_groups * H_f * H_w, H_{in}, W_{in})`

          Mask shape: :math:`(N, deformable\_groups * H_f * H_w, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
        input (Variable): The input image with [N, C, H, W] format.
        offset (Variable): The input coord offset of deformable convolution layer.
        Mask (Variable): The input mask of deformable covolution layer.
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the deformable conv layer. According to
            grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        deformable_groups (int): The number of deformable group partitions.
            Default: deformable_groups = 1.
        im2col_step (int): Maximum number of images per im2col computation; 
            The total batch size should be divisable by this value or smaller
            than this value; if you face out of memory problem, you can try
            to use a smaller value here.
            Default: im2col_step = 64.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of deformable conv. If it is set to None or one attribute of ParamAttr,
            deformable conv will create ParamAttr as param_attr.
            If the Initializer of the param_attr is not set, the parameter is
            initialized with :math:`Normal(0.0, std)`, and the 
            :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of
            deformable conv layer. If it is set to False, no bias will be added
            to the output units. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the deformable convolution \
                  result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python

12128
          import paddle.fluid as fluid
12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          offset = fluid.layers.data(name='offset', shape=[18, 32, 32], dtype='float32')
          mask = fluid.layers.data(name='mask', shape=[9, 32, 32], dtype='float32')
          out = fluid.layers.deformable_conv(input=data, offset=offset, mask=mask,
                                             num_filters=2, filter_size=3, padding=1)
    """

    num_channels = input.shape[1]
    assert param_attr is not False, "param_attr should not be False here."

    helper = LayerHelper('deformable_conv', **locals())
    dtype = helper.input_dtype()

    if not isinstance(input, Variable):
        raise TypeError("Input of deformable_conv must be Variable")
    if not isinstance(offset, Variable):
        raise TypeError("Input Offset of deformable_conv must be Variable")
    if not isinstance(mask, Variable):
        raise TypeError("Input Mask of deformable_conv must be Variable")

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        num_filter_channels = num_channels // groups

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')

    input_shape = input.shape
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size

    def _get_default_param_initializer():
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_variable_for_type_inference(dtype)

    helper.append_op(
        type='deformable_conv',
        inputs={
            'Input': input,
            'Filter': filter_param,
            'Offset': offset,
            'Mask': mask,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'deformable_groups': deformable_groups,
            'im2col_step': im2col_step,
        })

    output = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return output
C
cjt222 已提交
12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249


def deformable_roi_pooling(input,
                           rois,
                           trans,
                           no_trans=False,
                           spatial_scale=1.0,
                           group_size=[1, 1],
                           pooled_height=1,
                           pooled_width=1,
                           part_size=None,
                           sample_per_part=1,
                           trans_std=0.1,
                           position_sensitive=False,
                           name=None):
    """
    Deformable PSROI Pooling Layer
    
    Args:
       input (Variable):The input of Deformable PSROIPooling.The shape of input tensor is 
                        [N,C,H,W]. Where N is batch size,C is number of input channels,H 
                        is height of the feature, and W is the width of the feature.
       rois (Variable): ROIs (Regions of Interest) to pool over.It should be
                        a 2-D LoDTensor of shape (num_rois, 4), the lod level
                        is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                        the top left coordinates, and (x2, y2) is the bottom
                        right coordinates.
       trans (Variable): Offset of features on ROIs while pooling.The format is NCHW, where 
                         N is number of ROIs, C is number of channels, which indicate the offset distance 
                         in the x and y directions, H is pooled height, and W is pooled width.
       no_trans (bool): Whether to add offset to get new value or not while roi pooling, which 
                          value is True or False. Default: False.
       spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width).
                             Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
       group_size (list|tuple): The number of groups which input channels are divided.(eg.number of input channels 
                         is k1*k2*(C+1), which k1 and k2 are group width and height and C+1 is number of output
                         chanels. eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
       pooled_height (integer): The pooled output height. Default: 1.
       pooled_width (integer): The pooled output width. Default: 1.
       part_size (list|tuple): The height and width of offset, eg.(4, 6), which height is 4 and width is 6, Default: 
                        if None, default value is [pooled_height, pooled_width].
       sample_per_part (integer): The number of samples in each bin. Default: 1.
       trans_std (float): Coefficient of offset. Default: 0.1.
       position_sensitive (bool): Whether to choose deformable psroi pooling mode or not. Default: False.
       name (str): Name of layer. Default: None.
    Returns:
        Variable: The tensor variable storing the deformable psroi pooling \
                  result.


    Examples:
      .. code-block:: python

12250
        import paddle.fluid as fluid
C
cjt222 已提交
12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311
        input = fluid.layers.data(name="input",
                                  shape=[2, 192, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False)                   
        rois = fluid.layers.data(name="rois",
                                 shape=[4],
                                 dtype='float32', 
                                 lod_level=1)
        trans = fluid.layers.data(name="trans",
                                  shape=[2, 384, 64, 64], 
                                  dtype='float32', 
                                  append_batch_size=False) 
        x = fluid.layers.nn.deformable_roi_pooling(input=input, 
                                                     rois=rois, 
                                                     trans=trans, 
                                                     no_trans=False,
                                                     spatial_scale=1.0, 
                                                     group_size=(1, 1),
                                                     pooled_height=8,
                                                     pooled_width=8,
                                                     part_size=(8, 8),
                                                     sample_per_part=4, 
                                                     trans_std=0.1,
                                                     position_sensitive=False)
    """

    input_channels = input.shape[1]
    if position_sensitive == False:
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input,
                "ROIs": rois,
                "Trans": trans},
        outputs={"Output": output,
                 "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std
        })
    return output