Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c67c54a8
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c67c54a8
编写于
12月 27, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish the doc of cross_entropy
上级
95862a54
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
54 addition
and
1 deletion
+54
-1
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+54
-1
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
c67c54a8
...
...
@@ -270,6 +270,7 @@ def gru_unit(input,
attr
=
helper
.
param_attr
,
shape
=
[
size
,
3
*
size
],
dtype
=
dtype
)
# create bias
if
bias
is
None
:
bias_size
=
[
1
,
3
*
size
]
bias
=
helper
.
create_parameter
(
...
...
@@ -358,7 +359,59 @@ def cos_sim(X, Y, **kwargs):
def
cross_entropy
(
input
,
label
,
**
kwargs
):
"""
This function computes cross_entropy using the input and label.
**Cross Entropy Layer**
This layer computes the cross entropy between `input` and `label`. It supports
both standard cross-entropy and soft-label cross-entropy loss computation.
1) One-hot cross-entropy:
`soft_label = false`, `Label[i, 0]` indicates the class index for sample i:
.. math::
Y[i] = -\log(X[i, Label[i]])
2) Soft-label cross-entropy:
`soft_label = true`, `Label[i, j]` indicates the soft label of class j
for sample i:
.. math::
Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}
Please make sure that in this case the summuation of each row of `label`
equals one.
3) One-hot cross-entropy with vecterized `label`:
As a special case of 2), when each row of 'label' has only one
non-zero element (equals 1), soft-label cross-entropy degenerates to a
one-hot cross-entropy with one-hot label representation.
Args:
input (Variable|list): a 2-D tensor with shape N x D, where N is the
batch size and D is the number of classes. This input is a probability
computed by the previous operator, which is almost always the result
of a softmax operator.
label (Variable|list): the ground truth which is a 2-D tensor. When
`soft_label` is set to `false`, `label` is a tensor<int64> with shape
[N x 1]. When `soft_label` is set to `true`, `label` is a
tensor<float/double> with shape [N x K].
soft_label (bool, via `**kwargs`): a flag indicating whether to interpretate
the given labels as soft labels, default `false`.
Returns:
A 2-D tensor with shape [N x 1], the cross entropy loss.
Raises:
`ValueError`: 1) If the 1st dimension of `input` and `label` are not equal; 2) If
`soft_label == true`, and the 2nd dimension of `input` and `label` are not
equal; 3) If `soft_label == false`, and the 2nd dimension of `label` is not 1.
Examples:
.. code-block:: python
predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
cost = fluid.layers.cross_entropy(input=predict, label=label)
"""
helper
=
LayerHelper
(
'cross_entropy'
,
**
kwargs
)
out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录