Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1d936f1d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1d936f1d
编写于
12月 23, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine
上级
e902c36c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
20 addition
and
11 deletion
+20
-11
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+20
-11
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
1d936f1d
...
...
@@ -489,34 +489,40 @@ def conv2d(input,
of the feature, and W is the width of the feature.
The details of convolution layer, please refer UFLDL's `convolution,
<http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_ .
If bias
_attr
and activation type are provided, bias is added to the output of the convolution,
If bias
attribution
and activation type are provided, bias is added to the output of the convolution,
and the corresponding activation function is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W
\a
st X + b)
Out = \sigma (W
\
\
ast X + b)
In the above equation:
In the above equation:
* :math:`X`: Input value, a tensor with NCHW format.
* :math:`W`: Filter value, a tensor with MCHW format.
* :math:`b`: Bias, .
* :math:\sigma : Activation function.
* :math:
\\
ast : Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:
\\
sigma : Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
Input:
-
Input:
Input shape: $(N, C_{in}, H_{in}, W_{in})$
Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
Output:
- Output:
Output shape: $(N, C_{out}, H_{out}, W_{out})$
Where
$$
H_{out}=
\\
frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1
\\
.. math::
H_{out}=
\\
frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1
W_{out}=
\\
frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
All the input variables are passed in as local variables to the LayerHelper
constructor.
...
...
@@ -537,10 +543,13 @@ def conv2d(input,
Variable: The tensor variable storing the convolution and
\
non-linearity activation result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch.
Examples:
.. code-block:: python
data = fluid.layers.data(name='data', shape=[3,32, 32], dtype='float32')
data = fluid.layers.data(name='data', shape=[3,
32, 32], dtype='float32')
conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录