nn.py 336.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
44
    'bpr_loss',
X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
62
    'sequence_unpad',
X
Xin Pan 已提交
63 64 65 66 67 68 69 70
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
71
    'sequence_slice',
X
Xin Pan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
89
    'group_norm',
X
Xin Pan 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
103
    'roi_align',
X
Xin Pan 已提交
104 105 106 107
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
108
    'resize_nearest',
X
Xin Pan 已提交
109 110 111 112 113 114
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
115
    'selu',
X
Xin Pan 已提交
116 117 118
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
119
    'margin_rank_loss',
X
Xin Pan 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
163
    'space_to_depth',
W
whs 已提交
164
    'affine_grid',
S
sneaxiy 已提交
165
    'sequence_reverse',
166
    'affine_channel',
B
barrierye 已提交
167
    'similarity_focus',
M
minqiyang 已提交
168
    'hash',
D
dengkaipeng 已提交
169
    'grid_sampler',
G
gmcather 已提交
170 171
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
172
    'bilinear_tensor_product',
C
chengduo 已提交
173 174
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
175
    'lstm',
S
Add  
shippingwang 已提交
176
    'shufflechannel',
177
    'psroi_pool',
Y
Yu Yang 已提交
178 179
]

J
jerrywgz 已提交
180 181
kIgnoreIndex = -100

Y
Yu Yang 已提交
182 183 184 185 186 187 188

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
189
       is_test=False,
190
       name=None):
Y
Yu Yang 已提交
191
    """
192
    **Fully Connected Layer**
Y
Yu Yang 已提交
193

194 195 196 197 198 199 200 201
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
202
    to the output as well.
C
caoying03 已提交
203

C
caoying03 已提交
204
    This process can be formulated as follows:
205 206 207

    .. math::

208
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
209 210 211

    In the above equation:

C
caoying03 已提交
212 213 214 215
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
216
    * :math:`Act`: The activation function.
C
caoying03 已提交
217
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
218 219

    Args:
R
ranqiu 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
235 236
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
237
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
238
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
239
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
240

241
    Returns:
F
fengjiayi 已提交
242
        Variable: The transformation result.
243 244

    Raises:
C
caoying03 已提交
245
        ValueError: If rank of the input tensor is less than 2.
246 247 248 249

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
250
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
251
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
252
    """
C
caoying03 已提交
253

C
caoying03 已提交
254
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
255 256 257 258

    dtype = helper.input_dtype()

    mul_results = []
259 260
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
261 262 263
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
264

Y
Yu Yang 已提交
265
        w = helper.create_parameter(
266
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
267
        tmp = helper.create_variable_for_type_inference(dtype)
268
        helper.append_op(
269 270 271
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
272
            outputs={"Out": tmp},
M
mozga-intel 已提交
273 274
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
275 276 277 278
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
279
    else:
X
Xin Pan 已提交
280
        pre_bias = helper.create_variable_for_type_inference(dtype)
281
        helper.append_op(
282 283 284
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
285
            attrs={"use_mkldnn": False})
286 287 288 289
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
290 291


292 293 294
def embedding(input,
              size,
              is_sparse=False,
295
              is_distributed=False,
296 297 298
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
299
    """
300 301
    **Embedding Layer**

302
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
303 304
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
305 306 307

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
308 309

    Args:
310 311 312 313 314
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
315
        is_distributed(bool): Whether to run lookup table from remote parameter server.
316 317
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
318
            with zeros whenever lookup encounters it in :attr:`input`. If
319
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
320 321
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
322
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
323

324 325 326
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
327

328 329
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
330

C
chengduoZH 已提交
331
          dict_size = len(dataset.ids)
332
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
333
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
334 335 336
    """

    helper = LayerHelper('embedding', **locals())
337 338 339
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
340 341
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
342 343
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
344
    tmp = helper.create_variable_for_type_inference(dtype)
345 346
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
347 348 349 350 351
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
352 353 354
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
355
            'remote_prefetch': remote_prefetch,
356 357
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
358 359 360
    return tmp


W
wopeizl 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
377

W
wopeizl 已提交
378 379 380 381 382 383 384 385 386 387 388
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
389

W
wopeizl 已提交
390 391 392 393
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
394

W
wopeizl 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
481 482


P
phlrain 已提交
483 484 485 486 487 488
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
489
         dropout_prob=0.0,
P
phlrain 已提交
490 491 492 493 494
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
495
    """
P
phlrain 已提交
496
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
497 498 499 500 501

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
541 542
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
543 544 545 546 547 548
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
549
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
550

L
liuhongyu 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
576
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
577 578 579 580 581 582
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
583 584 585
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
645 646 647 648 649 650 651 652 653 654 655
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
656 657
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
658 659 660
    """
    **Dynamic LSTMP Layer**

661 662 663 664 665 666
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
667 668 669 670 671

    The formula is as follows:

    .. math::

672
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
673

674
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
675

676
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
677

678
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
679

680
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
681

682
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
683

684
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
685

Y
Yibing Liu 已提交
686 687 688 689 690 691
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
692
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
693
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
694
          bias vector).
Y
Yibing Liu 已提交
695 696 697
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
698
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
699
    * :math:`h`: The hidden state.
700
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
701 702
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
703
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
704
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
705
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
706 707
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
708 709 710 711

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
712

Y
Yibing Liu 已提交
713 714 715 716 717 718 719 720 721 722 723 724
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
725
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
726 727
                               hidden-hidden weight and projection weight.

728 729
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
730 731
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
732 733
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
734
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
735 736 737 738 739

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
740
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
741 742 743 744 745 746
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
747
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
748 749 750
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
751
                                - The shape is (1 x 7D).
C
chengduo 已提交
752 753 754 755 756

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
757 758 759 760 761 762 763 764 765
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
766
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
767 768
                              default "tanh".
        proj_activation(str): The activation for projection output.
769
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
770 771
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
772 773
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
774 775

    Returns:
776 777 778 779
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
780 781

    Examples:
782

Y
Yibing Liu 已提交
783 784
        .. code-block:: python

785 786 787 788
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
789
            hidden_dim, proj_dim = 512, 256
790
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
791
                                     act=None, bias_attr=None)
792 793 794
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
795 796 797 798
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
799
    """
800

C
chengduo 已提交
801
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
802
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
803
    size = size // 4
Y
Yibing Liu 已提交
804 805 806 807 808 809 810 811 812 813
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
814 815 816 817 818 819
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
848 849 850 851 852 853 854 855 856
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
857
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
858

859
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
860
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
861

G
guosheng 已提交
862 863 864 865 866 867 868 869 870
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
871

G
guosheng 已提交
872
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
873

G
guosheng 已提交
874
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
875 876
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
877 878 879 880
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
881
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
882 883

    Args:
884 885
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
886
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
887
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
888 889
            is the hidden size.
        size(int): The dimension of the gru cell.
890
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
891 892
            hidden-hidden weight matrix. Note:

893
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
894
              :math:`D` is the hidden size.
895
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
896
              The first part are weights of the update gate and reset gate with
897
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
898
              candidate hidden state with shape :math:`(D \\times D)`.
899 900 901 902 903

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
904
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
905
            the bias in the update gate, reset gate and candidate calculations.
906 907 908
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
909 910
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
911
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
912 913 914
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
915
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
916
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
917 918 919 920
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
921 922

    Returns:
G
guosheng 已提交
923
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
924
            and sequence length is the same with the input.
925

G
guosheng 已提交
926
    Examples:
927

G
guosheng 已提交
928 929
        .. code-block:: python

930 931 932 933
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
934
            hidden_dim = 512
935
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
936
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
937 938 939 940 941 942 943 944 945
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
946
    batch_size = input.shape[0]
G
guosheng 已提交
947
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
948
    if h_0:
G
guosheng 已提交
949
        assert h_0.shape == (
Y
Yancey 已提交
950 951 952
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
953

X
Xin Pan 已提交
954 955 956 957
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
976 977 978
def gru_unit(input,
             hidden,
             size,
979 980
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
981
             activation='tanh',
982
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
983
    """
984
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
985

986 987
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
988

989
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
990

991
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
992

993
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
994 995

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
996 997 998
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
999 1000
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1001 1002
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1003 1004 1005
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1006 1007 1008

    Args:
        input (Variable): The fc transformed input value of current step.
1009
        hidden (Variable): The hidden value of gru unit from previous step.
1010
        size (integer): The input dimension value.
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1025
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1026
            the bias in the update gate, reset gate and candidate calculations.
1027 1028 1029
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1030 1031
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1032 1033 1034 1035
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1036

1037 1038 1039 1040 1041 1042
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1043

1044
             # assuming we have x_t_data and prev_hidden of size=10
1045
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1046 1047
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1060
    size = size // 3
Y
Yu Yang 已提交
1061 1062

    # create weight
1063 1064
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1065

X
Xin Pan 已提交
1066 1067 1068
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1069
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1070
    # create bias
1071
    if helper.bias_attr:
Y
Yu Yang 已提交
1072 1073 1074
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1075
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1076 1077 1078

    helper.append_op(
        type='gru_unit',
1079
        inputs=inputs,
Y
Yu Yang 已提交
1080 1081 1082 1083 1084 1085
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1086 1087
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1088 1089 1090 1091 1092
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1093
@templatedoc()
1094
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1095 1096 1097 1098 1099 1100 1101
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1102
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1103 1104 1105 1106
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1107 1108 1109
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1110 1111

    """
Y
Yu Yang 已提交
1112 1113 1114 1115 1116 1117
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1118 1119 1120 1121 1122 1123 1124 1125
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1141 1142 1143 1144
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1145

W
wopeizl 已提交
1146 1147
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1148

W
wopeizl 已提交
1149
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1150

W
wopeizl 已提交
1151
        label(${label_type}): ${label_comment}
1152

W
wopeizl 已提交
1153 1154
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1155

W
wopeizl 已提交
1156 1157
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1158

W
wopeizl 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1169
                "Transition": transition,
W
wopeizl 已提交
1170 1171
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1172

W
wopeizl 已提交
1173
    return viterbi_path
Y
Yu Yang 已提交
1174 1175


Y
yi.wu 已提交
1176
@templatedoc()
F
fengjiayi 已提交
1177
def cos_sim(X, Y):
Y
Yu Yang 已提交
1178
    """
Y
yi.wu 已提交
1179 1180 1181
    ${comment}

    Args:
1182 1183
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1184

Y
yi.wu 已提交
1185
    Returns:
1186
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1187
    """
F
fengjiayi 已提交
1188
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1189 1190 1191
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1202 1203 1204 1205 1206
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1207
            dropout_implementation="downgrade_in_infer"):
1208 1209 1210 1211 1212
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1213
    training. The dropout operator randomly sets (according to the given dropout
1214 1215 1216 1217
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1218 1219
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1220 1221 1222 1223 1224 1225 1226
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1238
                                           dropout op can be removed from the program.
P
phlrain 已提交
1239
                                           the program will be efficient
1240

P
phlrain 已提交
1241

1242 1243

    Returns:
1244
        Variable: A tensor variable is the shape with `x`.
1245 1246

    Examples:
1247

1248 1249
        .. code-block:: python

1250 1251
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1252 1253
    """

F
fengjiayi 已提交
1254
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1255 1256 1257
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1258 1259 1260 1261

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1262 1263 1264 1265 1266
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1267 1268 1269 1270
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1271 1272
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1273
        })
1274 1275 1276
    return out


J
jerrywgz 已提交
1277
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1278
    """
Y
Yibing Liu 已提交
1279 1280
    **Cross Entropy Layer**

1281 1282 1283
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1284 1285

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1286
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1287

Y
Yibing Liu 已提交
1288
        .. math::
Y
yangyaming 已提交
1289

Y
Yibing Liu 已提交
1290 1291 1292
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1293 1294
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1295 1296 1297 1298 1299

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1300
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1301 1302 1303
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1304 1305
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1306
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1307

Y
Yibing Liu 已提交
1308
    Args:
Y
yangyaming 已提交
1309
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1310 1311 1312 1313
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1314
        label (Variable|list): the ground truth which is a 2-D tensor. When
1315 1316 1317 1318
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1319
        soft_label (bool): a flag indicating whether to
1320
                                           interpretate the given labels as soft
1321
                                           labels. Default: `False`.
M
minqiyang 已提交
1322 1323
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1324
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1325 1326 1327 1328 1329

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1330 1331 1332 1333 1334
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1335 1336 1337 1338 1339 1340

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1341
    """
F
fengjiayi 已提交
1342
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1343
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1344 1345 1346 1347 1348
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1349 1350
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1351 1352 1353
    return out


F
frankwhzhang 已提交
1354
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1355 1356 1357
    """
    Bayesian Personalized Ranking Loss Operator.

1358
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1359 1360 1361 1362 1363 1364
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1365 1366 1367 1368 1369 1370
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1371 1372
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1373 1374 1375
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1376 1377 1378
    Examples:
        .. code-block:: python

1379
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1380
    """
1381 1382 1383 1384 1385 1386

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1387
                'Label': [label]},
1388 1389 1390 1391
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1392
def square_error_cost(input, label):
Y
Yu Yang 已提交
1393
    """
1394 1395
    **Square error cost layer**

1396 1397
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1412 1413
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1414 1415

    Returns:
G
guosheng 已提交
1416
        Variable: The tensor variable storing the element-wise squared error \
1417
                  difference of input and label.
1418 1419 1420 1421 1422 1423 1424 1425

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1426
    """
F
fengjiayi 已提交
1427
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1428
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1429 1430 1431 1432 1433 1434
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1435
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1436
    helper.append_op(
F
fengjiayi 已提交
1437 1438
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1439 1440 1441
    return square_out


Y
yi.wu 已提交
1442
@templatedoc()
Y
Yu Yang 已提交
1443 1444 1445 1446
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1447
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1448
    """
Y
yi.wu 已提交
1449
    **Chunk Evaluator**
Y
yi.wu 已提交
1450

Y
yangyaming 已提交
1451
    This function computes and outputs the precision, recall and
1452
    F1-score of chunk detection.
Y
yi.wu 已提交
1453

Y
yi.wu 已提交
1454 1455 1456 1457 1458 1459 1460 1461
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1462

Y
yi.wu 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1488

Y
yi.wu 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1513
    Args:
1514 1515 1516 1517 1518
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1519

Y
yi.wu 已提交
1520
    Returns:
Y
update  
yi.wu 已提交
1521 1522 1523
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1524

Y
yi.wu 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1537
    """
F
fengjiayi 已提交
1538
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1539 1540

    # prepare output
X
Xin Pan 已提交
1541 1542 1543 1544 1545 1546 1547
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1548 1549 1550 1551 1552 1553 1554 1555

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1556 1557 1558 1559
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1560 1561 1562
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1563 1564
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1565
        })
1566 1567
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1568 1569


1570
@templatedoc()
Y
Yu Yang 已提交
1571 1572 1573 1574 1575 1576 1577
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1578 1579
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1580 1581 1582 1583
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1584 1585 1586 1587 1588 1589 1590

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1604

1605 1606
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1607 1608 1609 1610 1611 1612 1613
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1614
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1625
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1626 1627 1628 1629 1630 1631
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1632
def sequence_softmax(input, use_cudnn=False, name=None):
1633 1634 1635
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1636
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1653 1654 1655
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1656

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1668 1669
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1670
    softmax_out = helper.create_variable_for_type_inference(dtype)
1671 1672 1673 1674 1675 1676 1677 1678
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1679
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1680
    """
1681
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1682
    has the same shape as the input.
Q
qiaolongfei 已提交
1683

1684 1685 1686 1687 1688 1689
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1690
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1691 1692 1693 1694 1695 1696 1697

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1698
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1699 1700 1701 1702 1703 1704 1705 1706

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1707 1708 1709
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1722 1723
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1724
    softmax_out = helper.create_variable_for_type_inference(dtype)
1725 1726 1727 1728 1729 1730 1731 1732
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1733 1734 1735
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1736 1737
           stride=1,
           padding=0,
1738
           dilation=1,
Y
Yu Yang 已提交
1739 1740 1741
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1742
           use_cudnn=True,
1743 1744
           act=None,
           name=None):
Y
Yu Yang 已提交
1745
    """
C
chengduoZH 已提交
1746
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1747 1748
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1749
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1750 1751 1752 1753 1754 1755 1756
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1757 1758 1759
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1760

1761
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1762

C
chengduoZH 已提交
1763 1764
    .. math::

C
refine  
chengduoZH 已提交
1765
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1766

T
tensor-tang 已提交
1767
    Where:
C
chengduoZH 已提交
1768

1769 1770 1771 1772 1773
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1774
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1775 1776 1777

    Example:

1778 1779
        - Input:

W
weixing02 已提交
1780
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1781

W
weixing02 已提交
1782
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1783

1784
        - Output:
T
tensor-tang 已提交
1785

W
weixing02 已提交
1786
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1787

C
chengduoZH 已提交
1788
        Where
1789 1790

        .. math::
C
chengduoZH 已提交
1791

W
weixing02 已提交
1792 1793
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1794 1795

    Args:
1796
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1797
        num_filters(int): The number of filter. It is as same as the output
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1826 1827
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1828 1829
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1830
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1831
            will be named automatically. Default: None
C
chengduoZH 已提交
1832 1833

    Returns:
G
guosheng 已提交
1834
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1835 1836
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1837
    Raises:
1838 1839
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1840

C
chengduoZH 已提交
1841 1842 1843
    Examples:
        .. code-block:: python

1844 1845
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1846 1847 1848
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1849
    assert param_attr is not False, "param_attr should not be False here."
1850
    l_type = 'conv2d'
X
xzl 已提交
1851 1852
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1853
        l_type = 'depthwise_conv2d'
1854 1855 1856 1857

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1858 1859 1860 1861 1862
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1863
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1864

C
chengduoZH 已提交
1865 1866 1867
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1868
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1869

C
chengduoZH 已提交
1870 1871
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1872 1873

    input_shape = input.shape
M
minqiyang 已提交
1874
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1875 1876

    def _get_default_param_initializer():
C
chengduo 已提交
1877 1878
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1879 1880 1881 1882 1883 1884 1885 1886
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1887
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1903
    helper.append_op(
1904
        type=l_type,
Y
Yu Yang 已提交
1905 1906 1907 1908 1909
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1910 1911 1912
        attrs={
            'strides': stride,
            'paddings': padding,
1913
            'dilations': dilation,
C
chengduoZH 已提交
1914
            'groups': groups,
1915
            'use_cudnn': use_cudnn,
1916
            'use_mkldnn': False,
C
chengduoZH 已提交
1917
        })
Y
Yu Yang 已提交
1918 1919 1920 1921 1922 1923

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1941 1942 1943 1944 1945 1946
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1956 1957
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1958 1959 1960
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1961
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1987
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1988 1989
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1990
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1991 1992
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1993
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1994 1995
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1996
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1997 1998 1999 2000 2001 2002
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2013 2014
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2015 2016
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2017
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2018
            will be named automatically. Default: None.
C
chengduoZH 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2031 2032
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2033 2034 2035
    """

    l_type = 'conv3d'
C
chengduo 已提交
2036
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2047
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2061 2062 2063
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2064 2065 2066 2067 2068 2069 2070 2071
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2072
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2087
            'use_mkldnn': False
C
chengduoZH 已提交
2088 2089
        })

2090
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2091 2092 2093 2094

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2095
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2096
    """
Y
yangyaming 已提交
2097 2098 2099
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2111
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2112 2113 2114 2115 2116
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2117
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2118 2119 2120 2121 2122 2123 2124

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2125 2126
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2127

L
Luo Tao 已提交
2128 2129
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2130
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2131
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2132
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2133 2134 2135 2136 2137 2138 2139

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2140

Y
yangyaming 已提交
2141
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2142 2143 2144 2145 2146
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2147 2148
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2149
    """
F
fengjiayi 已提交
2150
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2151
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2152 2153
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2154 2155 2156 2157 2158 2159

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2160 2161
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2162

Y
yangyaming 已提交
2163 2164 2165 2166 2167
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2168 2169 2170
    return pool_out


C
add doc  
chengduoZH 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2190
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2191 2192 2193 2194 2195
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2196
def sequence_first_step(input):
L
Luo Tao 已提交
2197
    """
L
Luo Tao 已提交
2198
    This function gets the first step of sequence.
L
Luo Tao 已提交
2199 2200 2201 2202

    .. code-block:: text

       x is a 1-level LoDTensor:
2203
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2204 2205 2206 2207 2208
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2209
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2210
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2211

L
Luo Tao 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2221

Y
yangyaming 已提交
2222
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2223 2224 2225
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2226 2227 2228
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2229
def sequence_last_step(input):
L
Luo Tao 已提交
2230
    """
L
Luo Tao 已提交
2231
    This function gets the last step of sequence.
L
Luo Tao 已提交
2232 2233 2234 2235

    .. code-block:: text

       x is a 1-level LoDTensor:
2236
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2237 2238 2239 2240 2241
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2242
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2243
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2244

L
Luo Tao 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2254

Y
yangyaming 已提交
2255
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2256 2257 2258
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2259 2260 2261
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2262 2263 2264 2265
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2266
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2267 2268 2269 2270 2271
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2272

Y
Yibing Liu 已提交
2273 2274
	- Case:

2275
            Given the input Variable **input**:
2276

2277 2278 2279
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2280

2281
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2282

2283
            the output Variable will be
2284

2285 2286 2287
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2288 2289

    NOTE: The first dimension size of **input**, **offset** and **length**
2290
          should be equal. The **offset** should start from 0.
2291

Y
Yibing Liu 已提交
2292
    Args:
2293
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2294
                         sequences.
Y
Yibing Liu 已提交
2295 2296 2297 2298 2299 2300
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2301
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2312
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2313 2314 2315 2316
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2317
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2332
@templatedoc()
Y
Yu Yang 已提交
2333
def pool2d(input,
C
chengduoZH 已提交
2334 2335
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2336 2337
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2338
           global_pooling=False,
C
chengduoZH 已提交
2339
           use_cudnn=True,
2340
           ceil_mode=False,
2341 2342
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2343
    """
F
fengjiayi 已提交
2344
    ${comment}
2345 2346

    Args:
2347 2348 2349
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2350
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2351
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2352 2353
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2354
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2355 2356 2357 2358 2359 2360
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2361 2362 2363
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2364
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2365
                        layer will be named automatically.
2366
        exclusive (bool): Whether to exclude padding points in average pooling
2367
                          mode, default is true
F
fengjiayi 已提交
2368

2369
    Returns:
F
fengjiayi 已提交
2370
        Variable: The pooling result.
F
fengjiayi 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2384 2385 2386 2387
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2388
                            global_pooling=False)
Y
Yu Yang 已提交
2389 2390 2391 2392 2393
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2394

C
chengduoZH 已提交
2395 2396 2397 2398 2399
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2400 2401 2402 2403
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2404 2405
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2406

C
Add doc  
chengduoZH 已提交
2407
    l_type = 'pool2d'
2408 2409

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2410
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2411
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2412 2413

    helper.append_op(
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2425 2426
            "use_mkldnn": False,
            "exclusive": exclusive,
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2440 2441
           name=None,
           exclusive=True):
2442 2443
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2444
    pooling configurations mentioned in input parameters.
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2457
        exclusive (bool): Whether to exclude padding points in average pooling
2458
                          mode, default is true
2459

2460
    Returns:
2461
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2462 2463 2464 2465 2466
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2467

C
chengduoZH 已提交
2468 2469 2470 2471 2472
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2473 2474 2475
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2476

C
chengduoZH 已提交
2477 2478
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2479

2480 2481
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2482
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2483
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2484 2485

    helper.append_op(
2486
        type=l_type,
Y
Yu Yang 已提交
2487 2488 2489 2490 2491 2492 2493
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2494
            "paddings": pool_padding,
2495
            "use_cudnn": use_cudnn,
2496
            "ceil_mode": ceil_mode,
2497 2498
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2499 2500 2501 2502 2503
        })

    return pool_out


2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n], 
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
          # of input data into m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2551 2552
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2553
          pool_out = fluid.layers.adaptive_pool2d(
2554 2555
                            input=data,
                            pool_size=[3, 3],
2556
                            pool_type='avg')
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 2:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 2.")

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2598
    return (pool_out, mask) if require_index else pool_out
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
          # of input data into l * m * n grids averagely and performs poolings in each 
          # grid to get output.
          # adaptive average pool performs calculations as follow:
          # 
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
          #                 output[:, :, i, j, k] = 
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2652 2653
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2654
          pool_out, mask = fluid.layers.adaptive_pool3d(
2655 2656
                            input=data,
                            pool_size=[3, 3],
2657
                            pool_type='avg')
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 3:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 3.")

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2699
    return (pool_out, mask) if require_index else pool_out
2700 2701


Y
Yu Yang 已提交
2702 2703 2704 2705 2706 2707 2708
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2709
               data_layout='NCHW',
Y
Yang Yang 已提交
2710
               in_place=False,
2711 2712
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2713
               moving_variance_name=None,
2714
               do_model_average_for_mean_and_var=False,
2715 2716
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2717
    """
Q
qiaolongfei 已提交
2718 2719 2720 2721
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2722

Q
qiaolongfei 已提交
2723
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2724

Q
qiaolongfei 已提交
2725 2726
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2727 2728 2729
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2742

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2756
    Args:
Q
qiaolongfei 已提交
2757
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2758 2759 2760 2761
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2762 2763 2764 2765 2766 2767 2768 2769
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2770
        data_layout(string, default NCHW): NCHW|NHWC
2771
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2772 2773 2774 2775
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2776
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2777
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2778 2779 2780 2781 2782
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2783 2784

    Returns:
Q
qiaolongfei 已提交
2785
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2786 2787 2788 2789 2790 2791 2792

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2793
    """
C
chengduo 已提交
2794
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2815 2816 2817
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2818 2819

    bias = helper.create_parameter(
2820
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2821 2822 2823
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2824

2825 2826
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2827 2828 2829
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2830
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2831
        shape=param_shape,
2832 2833 2834 2835 2836 2837 2838
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2839
            trainable=False,
W
wanghaoshuang 已提交
2840
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2841
        shape=param_shape,
2842 2843
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2844 2845 2846 2847 2848 2849

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2850 2851 2852 2853
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2854

X
Xin Pan 已提交
2855 2856
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2874 2875 2876 2877
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2878
            "use_mkldnn": False,
2879 2880
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2881
        })
Y
Yu Yang 已提交
2882 2883 2884 2885

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2886
@templatedoc()
G
guosheng 已提交
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2897
    ${comment}
G
guosheng 已提交
2898 2899 2900

    The formula is as follows:

Y
yuyang18 已提交
2901
    ..  math::
G
guosheng 已提交
2902 2903 2904 2905 2906 2907 2908

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2909 2910 2911 2912 2913 2914 2915 2916
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2917

G
guosheng 已提交
2918 2919
    Args:
        input(Variable): The input tensor variable.
2920
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2921
            normalization. Default True.
2922
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2923 2924
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2925
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2926
            Default 1.
2927
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2928
            division by zero. Default 1e-05.
G
guosheng 已提交
2929
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2930 2931
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2932 2933
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2934
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2935 2936
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2937
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2938
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2939
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2940 2941 2942
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2943 2944

    Returns:
Y
yuyang18 已提交
2945
        ${y_comment}
G
guosheng 已提交
2946 2947 2948

    Examples:

Y
yuyang18 已提交
2949 2950 2951
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2967
    if shift:
G
guosheng 已提交
2968 2969 2970 2971 2972 2973
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2974 2975 2976 2977 2978
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3072 3073 3074 3075
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3076 3077 3078
                     padding=0,
                     stride=1,
                     dilation=1,
3079
                     groups=None,
C
caoying03 已提交
3080
                     param_attr=None,
3081
                     bias_attr=None,
C
chengduoZH 已提交
3082
                     use_cudnn=True,
3083
                     act=None,
C
caoying03 已提交
3084
                     name=None):
Y
Yu Yang 已提交
3085
    """
3086 3087 3088 3089 3090 3091 3092 3093
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3094 3095
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3096 3097 3098
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3099 3100 3101 3102 3103

    For each input :math:`X`, the equation is:

    .. math::

3104
        Out = \sigma (W \\ast X + b)
3105

3106
    Where:
3107 3108 3109

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3110 3111 3112 3113
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3114

3115 3116 3117 3118
    Example:

        - Input:

3119
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3120

3121
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3122 3123 3124

        - Output:

3125
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3126 3127

        Where
Y
Yu Yang 已提交
3128

3129 3130
        .. math::

3131 3132 3133 3134
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3135 3136

    Args:
3137 3138 3139 3140
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3141 3142 3143 3144
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3173
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3174 3175 3176
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3177
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3178
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3179 3180

    Returns:
3181
        Variable: The tensor variable storing the convolution transpose result.
3182 3183

    Raises:
3184 3185
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3186 3187 3188 3189

    Examples:
       .. code-block:: python

3190 3191
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3192
    """
C
chengduo 已提交
3193
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3194 3195 3196 3197 3198 3199 3200 3201
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3202 3203 3204
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3205 3206 3207
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3208

C
chengduoZH 已提交
3209 3210
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3211

Y
Yu Yang 已提交
3212 3213 3214 3215 3216
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3217

Y
Yu Yang 已提交
3218 3219
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3220

C
chengduoZH 已提交
3221
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3222
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3223
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3224
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3225
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3226 3227 3228
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3229

3230 3231 3232 3233 3234 3235 3236
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3237
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3238
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3239

Y
Yu Yang 已提交
3240 3241 3242
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3243
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3244
    helper.append_op(
3245
        type=op_type,
Y
Yu Yang 已提交
3246 3247
        inputs={'Input': [input],
                'Filter': [img_filter]},
3248
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3249
        attrs={
3250
            'output_size': output_size,
3251 3252 3253 3254 3255
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3256 3257
        })

3258 3259 3260
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3261 3262


3263
def conv3d_transpose(input,
Y
Yu Yang 已提交
3264 3265 3266
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3267 3268 3269
                     padding=0,
                     stride=1,
                     dilation=1,
3270
                     groups=None,
C
caoying03 已提交
3271
                     param_attr=None,
3272
                     bias_attr=None,
C
chengduoZH 已提交
3273
                     use_cudnn=True,
3274
                     act=None,
C
caoying03 已提交
3275
                     name=None):
Y
Yu Yang 已提交
3276
    """
3277
    **Convlution3D transpose layer**
3278

3279
    The convolution3D transpose layer calculates the output based on the input,
3280
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3281 3282 3283 3284 3285 3286
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3287 3288 3289
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3290 3291 3292 3293 3294

    For each input :math:`X`, the equation is:

    .. math::

3295
        Out = \sigma (W \\ast X + b)
3296 3297 3298

    In the above equation:

3299 3300
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3301 3302 3303 3304
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3305

3306 3307 3308 3309
    Example:

        - Input:

3310
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3311

3312
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3313 3314 3315

        - Output:

3316
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3317 3318

        Where
Y
Yu Yang 已提交
3319

3320 3321
        .. math::

3322 3323 3324
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3325 3326

    Args:
3327
        input(Variable): The input image with [N, C, D, H, W] format.
3328 3329 3330
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3331
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3332 3333
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3334
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3335 3336 3337
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3338 3339
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3340
        stride(int|tuple): The stride size. If stride is a tuple, it must
3341 3342
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3343
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3344 3345 3346
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3347 3348 3349 3350 3351
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3361 3362
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3363 3364
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3365 3366
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3367 3368

    Returns:
3369
        Variable: The tensor variable storing the convolution transpose result.
3370 3371

    Raises:
3372 3373
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3374 3375 3376 3377

    Examples:
       .. code-block:: python

3378 3379
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3380
    """
C
chengduo 已提交
3381
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3382 3383
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3384
    if not isinstance(input, Variable):
3385
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3386 3387
    input_channel = input.shape[1]

3388 3389 3390
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3391

C
chengduoZH 已提交
3392 3393 3394
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3395 3396 3397 3398 3399 3400
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3401 3402 3403
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3404

3405
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3406
                         padding[0] - 1) // dilation[0] + 1
3407
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3408
                         padding[1] - 1) // dilation[1] + 1
3409
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3410
                         padding[2] - 1) // dilation[2] + 1
3411
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3412
    else:
3413 3414
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3415

3416
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3417
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3418 3419 3420
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3421
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3422
    helper.append_op(
3423
        type=l_type,
Y
Yu Yang 已提交
3424 3425
        inputs={'Input': [input],
                'Filter': [img_filter]},
3426
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3427 3428 3429 3430
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3431
            'groups': groups,
C
chengduoZH 已提交
3432 3433
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3434

3435 3436
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3437
    return out
Y
yangyaming 已提交
3438 3439


Y
yangyaming 已提交
3440
def sequence_expand(x, y, ref_level=-1, name=None):
3441
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3442 3443 3444 3445
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3446 3447 3448 3449 3450

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3451
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3452
                x.data = [[a], [b], [c], [d]]
3453 3454 3455
                x.dims = [4, 1]

            y is a LoDTensor:
3456 3457
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3458

Y
yangyaming 已提交
3459
            ref_level: 0
3460

Y
yangyaming 已提交
3461
            then output is a 1-level LoDTensor:
3462
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3463
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3464 3465 3466 3467
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3468
                x.data = [[a], [b], [c]]
3469 3470 3471
                x.dims = [3, 1]

            y is a LoDTensor:
3472
                y.lod = [[2, 0, 3]]
3473

Y
yangyaming 已提交
3474
            ref_level: -1
3475

Y
yangyaming 已提交
3476 3477 3478
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3479 3480 3481
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3482 3483
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3484
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3485
                        will be named automatically.
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3496
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3497
    """
Y
yangyaming 已提交
3498
    helper = LayerHelper('sequence_expand', input=x, **locals())
3499
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3500
    tmp = helper.create_variable_for_type_inference(dtype)
3501
    helper.append_op(
Y
yangyaming 已提交
3502 3503 3504 3505 3506
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3507
    return tmp
3508 3509


C
chengduo 已提交
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3566
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3567 3568 3569 3570 3571 3572 3573 3574
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3575
@templatedoc()
3576
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3577 3578 3579 3580 3581
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3582 3583 3584
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3585
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3586 3587 3588 3589
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3590 3591 3592
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3593

F
fengjiayi 已提交
3594
    Returns:
M
minqiyang 已提交
3595
        Variable: The padded sequence batch and the original lengths before
3596
                  padding. All sequences has the same length.
M
minqiyang 已提交
3597

F
fengjiayi 已提交
3598 3599 3600 3601 3602 3603 3604
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3605
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3606
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3607 3608 3609 3610 3611
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3612 3613
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3614 3615 3616 3617

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3618 3619 3620 3621 3622 3623
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3624 3625
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3626
        attrs={'padded_length': maxlen})
3627
    return out, length
F
fengjiayi 已提交
3628 3629


3630
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3631
    """
3632
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3633

3634 3635
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3645 3646 3647
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3648
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3649 3650 3651 3652 3653 3654

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3655
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3656 3657 3658 3659 3660 3661

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3662 3663
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3678
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3690 3691 3692 3693 3694 3695 3696 3697 3698
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3699 3700
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3701 3702 3703

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3704 3705

    This layer does the search in beams for one time step. Specifically, it
3706 3707 3708 3709 3710 3711
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3712

3713 3714 3715 3716 3717 3718 3719 3720
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3721

3722
    Args:
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3748

3749
    Returns:
3750 3751
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3752 3753 3754 3755

    Examples:
        .. code-block:: python

3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3773 3774 3775 3776
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3777 3778 3779
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3780 3781 3782 3783 3784

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3785
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3803 3804 3805 3806 3807 3808 3809
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3810

3811 3812 3813 3814 3815 3816 3817 3818 3819
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3820

3821 3822 3823 3824 3825 3826
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3827

3828 3829
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3830

3831 3832 3833 3834 3835 3836
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3837 3838
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3854 3855 3856 3857
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3858
              param_attr=None,
C
caoying03 已提交
3859 3860
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3861 3862 3863 3864
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3865
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3866

3867
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3868

3869
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3870

3871
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3872 3873 3874

            h_t & = o_t tanh(c_t)

3875 3876 3877 3878 3879 3880
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3881 3882 3883

        .. math::

3884
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3885 3886 3887 3888 3889 3890 3891 3892

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3893
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3894 3895

    Args:
Y
yangyaming 已提交
3896 3897 3898 3899 3900 3901
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3902
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3915 3916
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3917 3918

    Returns:
Y
yangyaming 已提交
3919
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3920 3921

    Raises:
3922 3923 3924 3925
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3926 3927 3928 3929 3930 3931

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3932
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3933
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3934
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3951
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3952 3953 3954 3955
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3956 3957
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3958 3959 3960
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3961
    size = cell_t_prev.shape[1]
3962
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3963 3964
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3965
                param_attr=param_attr,
3966
                bias_attr=bias_attr)
Y
yangyaming 已提交
3967
    dtype = x_t.dtype
X
Xin Pan 已提交
3968 3969
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3979
    return h, c
G
guosheng 已提交
3980 3981


C
caoying03 已提交
3982
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3983
    """
Y
yangyaming 已提交
3984
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3985 3986 3987

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3988
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3989 3990
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3991 3992
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3993
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3994
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3995
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3996 3997
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3998 3999 4000

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4001

G
guosheng 已提交
4002 4003 4004 4005 4006 4007
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4008
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4009 4010 4011 4012
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4013 4014 4015 4016

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4017
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4018 4019 4020
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4021 4022
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4023
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4024 4025
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4026 4027 4028 4029 4030
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4031
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4032 4033 4034 4035
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4036 4037


C
caoying03 已提交
4038
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4039
    """
Y
Yibing Liu 已提交
4040
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4041 4042 4043

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4044 4045 4046
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4047
            must be in the range :math:`[-rank(input), rank(input))`. If
4048
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4049
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4050 4051
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4052
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4053
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4054
                       will be named automatically.
G
guosheng 已提交
4055 4056

    Returns:
Y
Yibing Liu 已提交
4057
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4058

G
guosheng 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4069 4070
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4071 4072 4073 4074 4075 4076 4077

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4078 4079
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4080
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4081 4082
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4083 4084 4085 4086 4087
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4088
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4089 4090 4091 4092
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4093 4094


C
caoying03 已提交
4095
def reduce_max(input, dim=None, keep_dim=False, name=None):
4096
    """
Y
yangyaming 已提交
4097
    Computes the maximum of tensor elements over the given dimension.
4098 4099 4100

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4101
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4102 4103 4104
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4105
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4106 4107
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4108
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4109 4110
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4111 4112 4113

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4114

4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4126 4127 4128 4129 4130 4131 4132

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4133 4134
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4135
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4136 4137
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4138 4139 4140 4141 4142
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4143
            'dim': dim if dim != None else [0],
4144 4145 4146 4147 4148 4149
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4150
def reduce_min(input, dim=None, keep_dim=False, name=None):
4151
    """
Y
yangyaming 已提交
4152
    Computes the minimum of tensor elements over the given dimension.
4153 4154 4155

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4156
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4157 4158 4159
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4160
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4161 4162
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4163
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4164 4165
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4166 4167 4168

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4169

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4181 4182 4183 4184 4185 4186 4187

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4188 4189
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4190
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4191 4192
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4193 4194 4195 4196 4197
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4198
            'dim': dim if dim != None else [0],
4199 4200 4201 4202
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4203 4204


4205 4206 4207 4208 4209 4210
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4211
        dim (list|int|None): The dimensions along which the product is performed. If
4212 4213
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4214 4215
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4216 4217 4218
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4219
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4220
            layer will be named automatically.
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4235
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4236
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4237 4238 4239 4240 4241 4242 4243

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4244 4245
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4246
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4247 4248
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4249 4250 4251 4252 4253
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4254
            'dim': dim if dim != None else [0],
4255 4256 4257 4258 4259 4260
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4261
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4262
    """
C
caoying03 已提交
4263
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4264 4265 4266

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4267 4268 4269 4270 4271
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4272
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4273
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4274
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4275 4276
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4277 4278

    Returns:
D
dzhwinter 已提交
4279
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4280 4281 4282 4283 4284 4285 4286 4287 4288

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4289 4290
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4306
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4320 4321 4322 4323 4324 4325 4326 4327 4328


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4329
    .. math::
4330 4331

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4332 4333 4334 4335 4336

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4337
        x(Variable|list): The input tensor to l2_normalize layer.
4338
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4339 4340
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4341
        epsilon(float): The epsilon value is used to avoid division by zero, \
4342
            the defalut value is 1e-10.
4343
        name(str|None): A name for this layer(optional). If set None, the layer \
4344
            will be named automatically.
C
caoying03 已提交
4345 4346

    Returns:
4347
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4348 4349

    Examples:
4350

C
caoying03 已提交
4351 4352
        .. code-block:: python

4353 4354 4355 4356
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4357 4358
    """

F
fengjiayi 已提交
4359 4360
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4361 4362
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4363 4364
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4365
    helper.append_op(
4366 4367 4368 4369
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4370
        attrs={
4371 4372
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4373 4374
        })
    return out
4375 4376


S
sneaxiy 已提交
4377
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4378
    """
Y
ying 已提交
4379 4380 4381 4382
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4383

C
chengduoZH 已提交
4384
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4385
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4386

4387 4388 4389 4390 4391
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4392
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4393

C
chengduoZH 已提交
4394
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4395
      performs in the following way.
G
guosheng 已提交
4396

4397
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4398
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4399
        last two dimensions and a batched matrix multiply supporting broadcast
4400
        applies on the two tensors.
G
guosheng 已提交
4401

Y
ying 已提交
4402 4403
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4404
    removed after matrix multiplication.
G
guosheng 已提交
4405 4406 4407

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4408 4409 4410
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4411
        alpha (float): The scale of output. Default 1.0.
4412
        name(str|None): A name for this layer(optional). If set None, the layer
4413
            will be named automatically.
G
guosheng 已提交
4414 4415

    Returns:
4416
        Variable: The product Tensor variable.
G
guosheng 已提交
4417

G
guosheng 已提交
4418 4419 4420
    Examples:
        .. code-block:: python

4421
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4422 4423
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4424

4425 4426
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4427

4428 4429
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4430

4431 4432
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4433 4434 4435 4436

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4437 4438
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4439

Y
ying 已提交
4440
            # x: [M], y: [N]
4441
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4442
    """
Y
ying 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4455
            y_shape = y_shape + [1]
Y
ying 已提交
4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4472
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4473
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4474
    helper.append_op(
4475 4476 4477 4478
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4479 4480 4481
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4482
            'alpha': float(alpha),
S
sneaxiy 已提交
4483
        })
4484
    return out
4485 4486


4487
def topk(input, k, name=None):
Q
qingqing01 已提交
4488 4489 4490 4491
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4492
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4493 4494 4495 4496 4497 4498
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4520 4521 4522
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4523
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4524
                 of input.
4525
        name(str|None): A name for this layer(optional). If set None, the layer
4526
                       will be named automatically.
F
fengjiayi 已提交
4527
                       Default: None
Q
qingqing01 已提交
4528 4529

    Returns:
4530 4531 4532
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4533
        within the last dimension of input.
Q
qingqing01 已提交
4534

F
fengjiayi 已提交
4535 4536
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4537 4538 4539 4540 4541 4542 4543

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4544 4545
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4557
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4558
    """
Y
ying 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4568

Y
ying 已提交
4569
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4570

4571
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4572 4573
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4574
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4575

4576
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4577 4578
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4579

4580 4581 4582
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4583
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4584
                          the length of reference string.
4585
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4586
                                     calculating edit distance.
4587
        name (str): The name of this layer. It is optional.
4588

W
wanghaoshuang 已提交
4589
    Returns:
W
wanghaoshuang 已提交
4590
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4591 4592 4593 4594

    Examples:
        .. code-block:: python

T
tink2123 已提交
4595 4596
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4597
            cost = fluid.layers.edit_distance(input=x,label=y)
4598
    """
4599
    helper = LayerHelper("edit_distance", **locals())
4600

4601
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4602
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4603 4604
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4605 4606 4607 4608 4609

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4610
            attrs={"tokens": ignored_tokens})
4611 4612 4613 4614 4615
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4616
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4617
            attrs={"tokens": ignored_tokens})
4618 4619
        label = erased_label

4620
    # edit distance op
X
Xin Pan 已提交
4621 4622
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4623 4624 4625 4626
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4627 4628
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4629 4630
        attrs={"normalized": normalized})

4631
    return edit_distance_out, sequence_num
4632 4633 4634 4635 4636


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4637

Y
ying 已提交
4638 4639 4640 4641
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4659
        input.lod = [[4, 4]]
W
whs 已提交
4660 4661
      
        Computation:
4662

W
whs 已提交
4663 4664 4665 4666 4667 4668
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4669 4670 4671 4672 4673

        output.data = [[2],
                       [1],
                       [3]]

4674
        output.lod = [[2, 1]]
4675

W
whs 已提交
4676

4677 4678
    Args:

Y
ying 已提交
4679 4680 4681 4682 4683 4684 4685 4686 4687
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4688
        name (str): The name of this layer. It is optional.
4689 4690

    Returns:
W
whs 已提交
4691 4692 4693 4694
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4695 4696 4697 4698 4699

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4700

4701
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4702
    """
4703
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4704
    _, topk_indices = topk(input, k=1)
4705 4706

    # ctc align op
X
Xin Pan 已提交
4707
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4708 4709 4710
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4711
        outputs={"Output": [ctc_out]},
4712 4713
        attrs={"merge_repeated": True,
               "blank": blank})
4714
    return ctc_out
4715 4716


W
Wu Yi 已提交
4717
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4718
    """
4719 4720
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4721
    to compute Connectionist Temporal Classification (CTC) loss.
4722 4723
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4724 4725 4726
    input tensor.

    Args:
4727
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4728 4729 4730 4731
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4732
       label (Variable): The ground truth of variable-length sequence,
4733 4734 4735
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4736 4737
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4738 4739 4740
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4741
         follewed by a mean_op.
W
Wu Yi 已提交
4742
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4743 4744

    Returns:
4745 4746
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4747 4748

    Examples:
4749

W
wanghaoshuang 已提交
4750
        .. code-block:: python
4751

4752 4753 4754
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4755 4756

    """
F
fengjiayi 已提交
4757
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4758 4759
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4760 4761 4762 4763 4764 4765
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4766 4767 4768 4769 4770
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4771
    return loss_out
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4787 4788 4789
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4790 4791 4792 4793 4794
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4795

4796
            out.lod  = [[0, 1, 3]]
4797 4798 4799 4800

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4801 4802 4803 4804 4805 4806 4807
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4808 4809 4810

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4811 4812

    Returns:
4813

4814 4815 4816 4817 4818
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4819
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4820
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4821 4822
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4823
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4824 4825 4826 4827 4828 4829
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4830 4831


4832 4833 4834 4835
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4836 4837 4838 4839 4840 4841
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4842
        num_neg_samples=None,
4843 4844 4845
        name=None,
        sampler="uniform",
        custom_dist=None,
4846 4847
        seed=0,
        is_sparse=False):
4848 4849 4850 4851 4852 4853 4854
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4855 4856
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4857
            sample is 1.0.
C
chengduo 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4867
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4868 4869
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4870 4871 4872
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4873
        custom_dist (float[]): A float[] with size=num_total_classes.
4874 4875 4876 4877
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4878
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4879

4880
    Returns:
Y
Yibing Liu 已提交
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4908 4909 4910 4911 4912 4913 4914 4915 4916

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4917

4918
    """
Y
Yang Yu 已提交
4919 4920 4921
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4922 4923

    dim = input.shape[1]
Y
Yang Yu 已提交
4924 4925 4926 4927 4928 4929
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4930
    inputs = {}
C
chengduo 已提交
4931 4932 4933 4934 4935 4936 4937
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4938 4939 4940
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4941

4942 4943 4944 4945
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4946 4947 4948 4949 4950 4951 4952

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
5005 5006 5007 5008
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5009 5010 5011 5012 5013
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
5014 5015
    attrs = {
        'num_total_classes': int(num_total_classes),
5016 5017
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5018 5019
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
5020
    }
Y
Yang Yu 已提交
5021 5022 5023

    helper.append_op(
        type='nce',
C
chengduo 已提交
5024
        inputs=inputs,
Y
Yang Yu 已提交
5025 5026 5027 5028 5029 5030
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5031
    return cost / (num_neg_samples + 1)
5032 5033


C
chengduo 已提交
5034 5035
def hsigmoid(input,
             label,
5036
             num_classes,
C
chengduo 已提交
5037 5038
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5039
             name=None,
5040 5041 5042
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5043
             is_sparse=False):
W
weixing02 已提交
5044 5045
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5046
    process of language model. This operator organizes the classes into a
5047 5048
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5049 5050 5051 5052 5053 5054
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5055
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5056
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5057

5058 5059 5060 5061 5062 5063 5064 5065 5066
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
5067
    Args:
M
minqiyang 已提交
5068
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5069 5070 5071 5072
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
5073 5074 5075
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5087 5088 5089 5090 5091 5092 5093
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
5094
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
5095 5096
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
5097 5098

    Returns:
J
JiabinYang 已提交
5099
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5100 5101 5102 5103 5104

    Examples:

        .. code-block:: python

G
guosheng 已提交
5105 5106 5107
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5108 5109 5110 5111
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5112 5113
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5114
    dim = input.shape[1]
5115
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5116 5117 5118
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5119 5120 5121 5122
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5123 5124
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5125 5126 5127
    else:
        pass

J
JiabinYang 已提交
5128 5129
    weights = None

5130
    if not is_custom:
J
JiabinYang 已提交
5131 5132 5133 5134 5135 5136 5137 5138
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5139
            shape=[num_classes, dim],
J
JiabinYang 已提交
5140 5141
            is_bias=False,
            dtype=input.dtype)
5142 5143 5144
    inputs = {
        "X": input,
        "W": weights,
5145 5146
        "PTable": path_table,
        "PathCode": path_code,
5147 5148
        "Label": label
    }
W
weixing02 已提交
5149
    if helper.bias_attr:
5150
        if not is_custom:
J
JiabinYang 已提交
5151 5152
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5153
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5154 5155 5156 5157 5158 5159
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5160
                shape=[num_classes, 1],
J
JiabinYang 已提交
5161 5162 5163
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5164 5165
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5166
        inputs=inputs,
W
weixing02 已提交
5167 5168
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
5169 5170
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
5171 5172 5173
    return out


Y
fix ci.  
ying 已提交
5174
def transpose(x, perm, name=None):
Y
ying 已提交
5175 5176 5177 5178 5179 5180 5181
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5182 5183 5184
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5185 5186 5187 5188 5189 5190 5191

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5192
            # use append_batch_size=False to avoid prepending extra
5193
            # batch size in shape
5194
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5195
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5196
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5197 5198
    """

Y
fix ci.  
ying 已提交
5199
    if len(perm) != len(x.shape):
Y
ying 已提交
5200 5201 5202
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5203 5204 5205 5206 5207 5208
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5209 5210

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5211 5212
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5213
    helper.append_op(
5214
        type='transpose2',
Y
fix ci.  
ying 已提交
5215
        inputs={'X': [x]},
5216 5217
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5218 5219
        attrs={'axis': perm})
    return out
5220 5221


5222 5223 5224 5225 5226 5227 5228
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5229
    """
5230 5231 5232 5233 5234 5235 5236
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5265 5266 5267 5268 5269 5270 5271 5272 5273
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5274 5275 5276
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5277 5278 5279 5280 5281
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5309 5310 5311
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5324
            output.dims = {8, 8}
5325

5326
            output.lod = [[4, 4]]
5327

T
Tink_Y 已提交
5328
    Examples:
5329 5330 5331

        .. code-block:: python

5332 5333
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5334 5335

    """
W
wanghaoshuang 已提交
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5346 5347 5348 5349 5350 5351 5352
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5353
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5354
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5355
    helper.append_op(
5356
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5357
    return out
5358 5359


Y
yuyang18 已提交
5360
@templatedoc()
5361
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5362 5363
    """
    ${comment}
5364 5365

    Args:
Y
yuyang18 已提交
5366
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5367 5368
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5369 5370 5371 5372 5373
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5374
        ${out_comment}.
5375 5376

    Examples:
Y
yuyang18 已提交
5377 5378 5379 5380
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5381 5382 5383 5384 5385 5386
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5387
    out = helper.create_variable_for_type_inference(dtype)
5388 5389 5390 5391 5392
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5393
    return helper.append_activation(out)
5394 5395


Y
yuyang18 已提交
5396
@templatedoc()
5397 5398
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5399 5400 5401 5402 5403 5404 5405
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5406 5407

    Args:
Y
yuyang18 已提交
5408 5409
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5410 5411

    Returns:
Y
yuyang18 已提交
5412
        ${out_comment}.
5413 5414
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5415 5416 5417 5418 5419

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5420
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5421 5422 5423 5424 5425 5426
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5427 5428


5429 5430 5431
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5432
                               ignore_index=kIgnoreIndex,
5433 5434
                               numeric_stable_mode=False,
                               return_softmax=False):
5435 5436
    """
    **Softmax With Cross Entropy Operator.**
5437

5438 5439 5440 5441
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5442

5443 5444 5445
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5446

5447 5448 5449
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5450

5451
    The equation is as follows:
5452

5453
    1) Hard label (one-hot label, so every sample has exactly one class)
5454

5455 5456 5457 5458
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5459

5460 5461 5462
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5463

5464 5465 5466 5467
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5468 5469 5470
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5471

S
sneaxiy 已提交
5472 5473 5474 5475 5476 5477 5478 5479
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5480 5481 5482 5483 5484 5485 5486 5487
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5488 5489
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5490
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5491 5492 5493
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5494 5495 5496
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5497
                                    stable algorithm. Default: False
5498
        return_softmax (bool): A flag indicating whether to return the softmax
5499
                               along with the cross entropy loss. Default: False
5500

5501
    Returns:
5502 5503 5504 5505
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5506
                              2-D tensor with shape [N x K].
5507 5508 5509 5510 5511 5512 5513

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5514 5515
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5516 5517
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5518 5519
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5520 5521 5522 5523 5524 5525
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5526 5527 5528 5529 5530
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5531 5532 5533 5534

    if return_softmax:
        return loss, softmax

5535 5536 5537 5538 5539
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5540 5541
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5542
    For each instance, it computes the smooth L1 loss element by element first
5543
    and then sums all the losses. So the shape of ouput Variable is
5544
    [batch_size, 1].
5545

5546 5547
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5548
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5549
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5550
            L1 loss op with same shape as :attr:`x`.
5551
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5552 5553
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5554
            by this tensor element by element.
5555
        outside_weight (Variable|None): A tensor with rank at least 2. This
5556 5557
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5558
            element by element.
5559
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5560 5561
           scalar with default value 1.0.

5562
    Returns:
5563
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5564 5565 5566 5567 5568

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5569 5570
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5571
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5572
            out = fluid.layers.smooth_l1(x=fc, y=label)
5573
    """
5574

5575
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5576 5577
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5590 5591 5592 5593


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5594
    This layer creates the one-hot representations for input indices.
5595 5596

    Args:
Y
Yibing Liu 已提交
5597 5598
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5599 5600

    Returns:
Y
Yibing Liu 已提交
5601
        Variable: The one-hot representations of input.
5602 5603

    Examples:
C
caoying03 已提交
5604
        .. code-block:: python
5605

Y
Yibing Liu 已提交
5606 5607
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5608 5609
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5610
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5611 5612 5613 5614 5615 5616
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5617 5618


Y
Yu Yang 已提交
5619
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5620
    """
Y
yi.wu 已提交
5621 5622 5623
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5624 5625 5626 5627 5628 5629

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5630 5631
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5632 5633 5634 5635 5636 5637

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5638 5639
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5640 5641
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5642 5643 5644 5645 5646
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5647
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5648
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5649 5650
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5651 5652
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5653 5654 5655
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5656 5657


5658
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5659
    """
C
caoying03 已提交
5660 5661
    Gives a new shape to the input Tensor without changing its data.

5662 5663 5664 5665 5666
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5667

5668
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5669

5670 5671 5672 5673
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5674
    2. 0 means the actual dimension value is going to be copied from the
5675 5676 5677 5678
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5679 5680

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5681
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5682
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5683

5684
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5685 5686
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5687 5688
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5689
    dimensions.
C
caoying03 已提交
5690

5691
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5692 5693 5694 5695
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5696 5697

    Args:
5698
        x(variable): The input tensor.
C
caoying03 已提交
5699 5700
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5701 5702 5703 5704 5705
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5706 5707
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5708 5709 5710 5711 5712 5713 5714
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5715
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5716

5717
    Returns:
G
guosheng 已提交
5718 5719 5720 5721
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5722

X
Xin Pan 已提交
5723 5724 5725
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5726 5727
    Examples:
        .. code-block:: python
G
guosheng 已提交
5728

5729
            data = fluid.layers.data(
5730
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5731
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5732
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5733 5734 5735
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5736
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5737 5738 5739 5740 5741
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5742

5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5758
    helper = LayerHelper("reshape2", **locals())
5759 5760
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5761
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5762
    helper.append_op(
5763
        type="reshape2",
X
Xin Pan 已提交
5764
        inputs=inputs,
D
dzhwinter 已提交
5765
        attrs={"shape": shape},
5766 5767
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5768

D
dzhwinter 已提交
5769
    return helper.append_activation(out)
5770

5771

5772
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5773
    """
M
minqiyang 已提交
5774 5775 5776
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5777
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5778

Y
Yibing Liu 已提交
5779 5780
    Examples:
    Case 1:
M
minqiyang 已提交
5781
      Given
Y
Yibing Liu 已提交
5782 5783 5784 5785 5786 5787 5788 5789
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5790
        and
Y
Yibing Liu 已提交
5791 5792 5793
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5794

Y
Yibing Liu 已提交
5795
    Args:
5796
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5797
        axes (list): List of integers, indicating the dimensions to be squeezed.
5798
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5799 5800 5801 5802 5803 5804 5805 5806

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5807
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5808 5809
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5810 5811
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5812
    helper.append_op(
5813
        type="squeeze2",
5814
        inputs={"X": input},
Y
Yibing Liu 已提交
5815
        attrs={"axes": axes},
5816 5817
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5818

5819 5820 5821
    return out


5822
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5823
    """
M
minqiyang 已提交
5824 5825 5826
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5827

M
minqiyang 已提交
5828 5829
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5830
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5831

Y
Yibing Liu 已提交
5832
    Args:
5833
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5834
        axes (list): List of integers, indicating the dimensions to be inserted.
5835
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5836 5837 5838 5839 5840 5841 5842 5843

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5844
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5845 5846
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5847 5848
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5849
    helper.append_op(
5850
        type="unsqueeze2",
5851
        inputs={"X": input},
Y
Yibing Liu 已提交
5852
        attrs={"axes": axes},
5853 5854
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5855

5856 5857
    return out

5858

Y
yangyaming 已提交
5859
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5860
    """
Y
Yibing Liu 已提交
5861
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5862 5863 5864 5865
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5866
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5867 5868 5869 5870 5871 5872

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5873
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5874 5875 5876
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5877
            target_lod: [4, 2]
Y
yangyaming 已提交
5878 5879

            then we get a 1-level LoDTensor:
5880
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5881 5882 5883 5884 5885 5886
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5887
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5888 5889 5890 5891
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5892
                y.data = [[2, 4]]
Y
yangyaming 已提交
5893 5894 5895
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5896
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5897 5898 5899 5900 5901 5902
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5903
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5904 5905 5906 5907
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5908
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5909 5910 5911 5912
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5913
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5914 5915 5916 5917 5918
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5919
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5920
                           from :attr:`y`.
Y
yangyaming 已提交
5921
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5922
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5923 5924

    Returns:
Y
Yibing Liu 已提交
5925
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5926 5927

    Raises:
Y
Yibing Liu 已提交
5928
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5929 5930 5931 5932 5933 5934 5935 5936 5937

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5938
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5964
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5993 5994
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6007 6008 6009
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6023 6024 6025 6026


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6027
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6028
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6029

G
guosheng 已提交
6030 6031 6032 6033
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6056
                         The length of :attr:paddings must be
G
guosheng 已提交
6057 6058 6059 6060 6061 6062 6063 6064 6065 6066
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6067

G
guosheng 已提交
6068 6069 6070 6071 6072 6073
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6074
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6075 6076 6077 6078 6079 6080 6081
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6082 6083


C
chengduo 已提交
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6115 6116
		And
            pad_value = -1,
C
chengduo 已提交
6117

T
Tink_Y 已提交
6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6153
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6154 6155 6156 6157 6158 6159 6160 6161 6162
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6163 6164 6165 6166 6167 6168 6169
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6170 6171
    called label-smoothing regularization (LSR).

6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6195
                              be :math:`(1, class\_num)`.
6196 6197
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6198
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6218
    smooth_label = helper.create_variable_for_type_inference(dtype)
6219 6220 6221 6222 6223 6224 6225
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6226 6227


W
wopeizl 已提交
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6264 6265


J
jerrywgz 已提交
6266 6267 6268 6269 6270 6271
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6272 6273
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6290 6291 6292
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6293 6294 6295 6296 6297 6298
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6299
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6340 6341
        .. code-block:: python

W
whs 已提交
6342 6343 6344 6345
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6346
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6347 6348 6349 6350 6351 6352
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6353 6354


6355 6356 6357 6358
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6359 6360
                 resample='BILINEAR',
                 actual_shape=None):
6361
    """
Q
qiaolongfei 已提交
6362
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6363

6364
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6365 6366 6367
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6368

6369
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6370

6371
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6372

6373
    Args:
6374
        input (Variable): The input tensor of image resize layer,
6375 6376
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6377
        out_shape(list|tuple|Variable|None): Output shape of image resize
6378 6379
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6380
        scale(float|None): The multiplier for the input height or width.
6381 6382 6383
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6384 6385
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6386
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6387
                       currently.
6388
                       Default: 'BILINEAR'
6389 6390 6391
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6392
                                :attr:`out_shape` and :attr:`scale` specifying
6393 6394 6395 6396 6397 6398 6399
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6400 6401
                                constructing stage.
                                Default: None
6402 6403

    Returns:
Q
update  
qiaolongfei 已提交
6404 6405
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6406

6407 6408 6409
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6410
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6411 6412 6413 6414
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6415 6416 6417
    Examples:
        .. code-block:: python

6418
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6419
    """
6420 6421 6422 6423
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6424 6425
    if resample not in resample_methods:
        raise ValueError(
6426
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6427
        )
6428
    resample_type = resample_methods[resample]
6429
    if out_shape is None and scale is None:
6430
        raise ValueError("One of out_shape and scale must not be None.")
6431
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6432
    dtype = helper.input_dtype()
6433 6434 6435 6436

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6437 6438 6439
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6440
    if out_shape is not None:
6441 6442 6443 6444
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6445
            inputs['OutSize'] = out_shape
6446 6447 6448 6449 6450 6451 6452 6453
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6454 6455 6456 6457
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6458 6459 6460 6461 6462
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6463
    out = helper.create_variable_for_type_inference(dtype)
6464
    helper.append_op(
6465
        type='{}_interp'.format(resample_type),
6466
        inputs=inputs,
6467
        outputs={"Out": out},
6468 6469 6470
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6471
    return out
F
stash  
fengjiayi 已提交
6472 6473


6474
@templatedoc(op_type="bilinear_interp")
6475 6476 6477 6478 6479
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6480
    """
6481 6482
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6483 6484
    in priority order.

6485 6486 6487 6488
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6489 6490
    again in the other direction.

6491
    For details of bilinear interpolation, please refer to Wikipedia:
6492
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6493 6494 6495 6496 6497

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6498

Y
yuyang18 已提交
6499 6500 6501 6502 6503
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6504 6505 6506
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6507
                                :attr:`out_shape` and :attr:`scale` specifying
6508 6509 6510 6511 6512 6513 6514
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6515 6516
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6517 6518 6519

    Returns:
        ${out_comment}.
6520 6521 6522 6523 6524

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6525 6526
    """

6527
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6528 6529


6530
@templatedoc(op_type="nearest_interp")
6531 6532 6533 6534 6535
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6536
    """
6537
    Resize input by performing nearest neighbor interpolation in both the
6538 6539
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6540 6541
    out_shape and scale in priority order.

6542
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6543
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6544 6545 6546 6547 6548

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6549

Y
yuyang18 已提交
6550 6551 6552 6553 6554
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6555 6556 6557
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6558
                                :attr:`out_shape` and :attr:`scale` specifying
6559 6560 6561 6562 6563 6564 6565
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6566 6567
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6568 6569 6570

    Returns:
        ${out_comment}.
6571 6572 6573 6574 6575

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6576 6577
    """

6578
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6579 6580 6581 6582


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6583 6584 6585
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6586 6587 6588 6589 6590 6591 6592
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6593
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6594

6595
    Returns:
Q
update  
qiaolongfei 已提交
6596
        Variable: The output is a 4-D tensor of the shape
6597
        (num_batches, channls, out_h, out_w).
6598 6599 6600 6601 6602 6603 6604 6605 6606 6607
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6608 6609 6610
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6611 6612 6613
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6614 6615
def gather(input, index):
    """
Q
qiaolongfei 已提交
6616 6617
    **Gather Layer**

6618
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6619 6620 6621 6622
    of X indexed by `index` and concatenate them together.

    .. math::

6623
        Out = X[Index]
W
whs 已提交
6624 6625 6626 6627 6628 6629 6630


    .. code-block:: text


                Given:

6631 6632
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6643
        input (Variable): The source input with rank>=1.
W
whs 已提交
6644 6645 6646 6647 6648 6649
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6650

W
whs 已提交
6651 6652 6653 6654 6655 6656
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6657
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6658 6659 6660 6661 6662 6663 6664 6665
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6697
    out = helper.create_variable_for_type_inference(dtype)
6698 6699 6700 6701 6702 6703 6704 6705 6706
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6757
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6758 6759 6760 6761 6762 6763 6764 6765 6766
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6780

6781 6782 6783
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6784
    """
F
stash  
fengjiayi 已提交
6785
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6786
    dtype = x.dtype
X
Xin Pan 已提交
6787
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6788
    if seed is None:
6789
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6790
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6791
    if isinstance(seed, int):
F
fengjiayi 已提交
6792 6793 6794 6795 6796
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6797 6798 6799 6800
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6801
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6802 6803
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6804 6805
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6806
    return out
W
whs 已提交
6807 6808


6809
def log(x, name=None):
W
wanghaoshuang 已提交
6810 6811 6812 6813 6814
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6815
        Out = \\ln(x)
W
wanghaoshuang 已提交
6816 6817

    Args:
6818
        x (Variable): Input tensor.
6819 6820
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6821 6822 6823 6824 6825 6826 6827 6828

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6829
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6830 6831
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6832
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6833
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6834
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6835 6836 6837
    return out


6838
def relu(x, name=None):
W
wanghaoshuang 已提交
6839 6840
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6841
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6842 6843 6844 6845
    the tensor elementwise.

    .. math::

6846
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6847 6848

    Args:
6849
        x (Variable): The input tensor.
6850 6851
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6852 6853 6854 6855 6856 6857 6858 6859

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6860
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6861 6862
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6863
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6864
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6865 6866
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6867
    return out
6868 6869


C
chengduo 已提交
6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6911 6912 6913
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6914 6915 6916 6917
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6918
    .. math::
6919 6920

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6921

6922
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6923 6924 6925 6926 6927
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6928
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6929
                           Its shape should be the same as input.
6930
        num_classes (int): The possible number of labels.
W
whs 已提交
6931 6932 6933 6934

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6935
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6936 6937 6938 6939

    Examples:

        .. code-block:: python
6940

W
whs 已提交
6941 6942 6943 6944
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6945 6946 6947
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6948 6949
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6950 6951
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6952
        outputs={
W
whs 已提交
6953 6954 6955
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6956 6957 6958
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7027
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7028 7029 7030 7031 7032

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7033
            isinstance(shape, Variable)):
7034 7035 7036 7037 7038
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7039
    out = helper.create_variable_for_type_inference(x.dtype)
7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7057 7058


W
whs 已提交
7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7076

W
whs 已提交
7077
              out_shape = [2, 3, 5, 5]
7078

W
whs 已提交
7079
          Step 1:
7080

W
whs 已提交
7081 7082 7083
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7084

W
whs 已提交
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7155
            isinstance(out_shape, Variable)):
W
whs 已提交
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7177 7178 7179 7180 7181 7182 7183 7184
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7185

7186 7187
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7188

7189 7190 7191 7192
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7193

7194 7195 7196 7197 7198
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7199 7200 7201

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7237
    out = helper.create_variable_for_type_inference("float32")
7238 7239 7240 7241 7242 7243 7244 7245

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7246 7247


M
minqiyang 已提交
7248 7249
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7250
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7251
    which compares left score and right score passed in.
M
minqiyang 已提交
7252
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7253 7254 7255 7256 7257 7258

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7259
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7260 7261
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7262
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7263 7264 7265
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7266
       Variable: The ranking loss.
M
minqiyang 已提交
7267
    Raises:
M
minqiyang 已提交
7268
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7269 7270 7271 7272 7273 7274 7275
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7276
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7277 7278 7279 7280 7281 7282
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7283 7284
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7308
        .. code-block:: text
W
whs 已提交
7309

T
Tink_Y 已提交
7310
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7311

T
Tink_Y 已提交
7312 7313
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7314

T
Tink_Y 已提交
7315
	      Case 0:
M
minqiyang 已提交
7316

T
Tink_Y 已提交
7317 7318 7319
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7320

T
Tink_Y 已提交
7321 7322 7323
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7324

T
Tink_Y 已提交
7325
	      Case 1:
M
minqiyang 已提交
7326

T
Tink_Y 已提交
7327 7328
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7329

T
Tink_Y 已提交
7330 7331 7332
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7333

T
Tink_Y 已提交
7334
	      Case 2:
M
minqiyang 已提交
7335

T
Tink_Y 已提交
7336 7337
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7338

T
Tink_Y 已提交
7339 7340 7341
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7342 7343


W
whs 已提交
7344 7345
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7346
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7370
    out = helper.create_variable_for_type_inference(dtype)
7371 7372 7373 7374 7375 7376 7377 7378 7379
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7380
    helper.append_op(
7381
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7382 7383 7384 7385

    return out


7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7398 7399 7400 7401 7402

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7403 7404
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7405 7406
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7407
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7428 7429 7430 7431 7432

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7433 7434
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7435 7436
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7437
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7458 7459 7460 7461 7462

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7463 7464
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7465 7466
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7467
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7489 7490 7491 7492 7493

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7494
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7495
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7496 7497
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7498
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7521 7522 7523 7524 7525

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7526 7527
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7528 7529
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7530
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7552 7553 7554 7555 7556

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7557 7558
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7559 7560
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7561
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7562 7563 7564 7565 7566 7567 7568 7569
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7570 7571 7572 7573
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7574
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7575 7576 7577

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7578
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7579
          weight (alpha).
J
jerrywgz 已提交
7580
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7581 7582 7583
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7584
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7585
          will be named automatically.
J
jerrywgz 已提交
7586 7587 7588 7589 7590 7591 7592 7593

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7594
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7608
        attr=helper.param_attr,
J
jerrywgz 已提交
7609 7610 7611 7612
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7613
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7614 7615 7616 7617 7618 7619 7620 7621 7622
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7633
    Returns:
7634
        output(${out_type}): ${out_comment}
7635 7636 7637 7638 7639 7640 7641

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7642 7643
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7644
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7663
    Returns:
7664
        output(${out_type}): ${out_comment}
7665 7666 7667 7668 7669 7670 7671

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7672 7673
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7674
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7692
    Returns:
7693
        output(${out_type}): ${out_comment}
7694 7695 7696 7697 7698 7699 7700

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7701 7702
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7703
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7704 7705 7706 7707 7708 7709 7710 7711
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7725

7726 7727 7728 7729 7730 7731 7732 7733 7734 7735
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7736 7737
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7753
        ValueError: If axis is not in range [0, rank(x)].
7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7770 7771
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7772
    helper.append_op(
7773
        type='flatten2',
7774
        inputs={"X": x},
7775 7776
        outputs={'Out': out,
                 'XShape': x_shape},
7777 7778
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7779 7780


C
chenweihang 已提交
7781
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7782
    """
C
chenweihang 已提交
7783
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7784
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7785 7786
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7787

C
chenweihang 已提交
7788 7789 7790 7791
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7792
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7793 7794 7795 7796 7797 7798
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7799
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7800 7801 7802
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7803 7804 7805
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7817 7818
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7819 7820 7821 7822 7823 7824
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7825
    return out
7826

7827

S
sneaxiy 已提交
7828 7829 7830 7831 7832 7833 7834 7835 7836
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7837

S
sneaxiy 已提交
7838
    .. math::
7839

S
sneaxiy 已提交
7840 7841 7842
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7843
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7844 7845 7846 7847
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7848 7849 7850
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7851 7852
    Returns:
        Variable: The output sequence mask.
7853

S
sneaxiy 已提交
7854 7855
    """

Q
qingqing01 已提交
7856
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7857
    if name is None:
X
Xin Pan 已提交
7858
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7859
    else:
X
Xin Pan 已提交
7860
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7861

Q
qingqing01 已提交
7862 7863 7864
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7865 7866
        outputs={'Y': out},
        attrs={
7867
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7868 7869 7870
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7871 7872


X
Xin Pan 已提交
7873
def stack(x, axis=0):
S
sneaxiy 已提交
7874 7875 7876 7877
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7878 7879 7880 7881 7882 7883 7884

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7885
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7886
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7887 7888

    Args:
7889
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7890
        axis (int|None): The axis along which all inputs are stacked.
7891

S
sneaxiy 已提交
7892 7893
    Returns:
        Variable: The stacked variable.
7894

S
sneaxiy 已提交
7895 7896
    """

X
Xin Pan 已提交
7897 7898 7899 7900 7901 7902
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7903
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7904
    helper.append_op(
S
sneaxiy 已提交
7905 7906
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7907

X
Xin Pan 已提交
7908
    return out
D
dzhwinter 已提交
7909 7910 7911 7912 7913 7914 7915


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7916

D
dzhwinter 已提交
7917 7918 7919
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7920
    raised.
D
dzhwinter 已提交
7921 7922

    Args:
M
minqiyang 已提交
7923
        x (Variable): Input variable.
D
dzhwinter 已提交
7924 7925
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7926

D
dzhwinter 已提交
7927 7928
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7929

D
dzhwinter 已提交
7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7941
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7942 7943 7944 7945 7946 7947 7948 7949

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7962

W
whs 已提交
7963 7964 7965 7966
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7967

W
whs 已提交
7968
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7969

W
whs 已提交
7970
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7971

W
whs 已提交
7972 7973 7974 7975
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7976

W
whs 已提交
7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7993
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7994 7995 7996 7997 7998 7999
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8000 8001


G
fix  
gongweibao 已提交
8002 8003 8004
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8005
@templatedoc()
G
fix  
gongweibao 已提交
8006 8007 8008 8009 8010 8011 8012 8013 8014
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8015
    ${comment}
G
fix  
gongweibao 已提交
8016 8017

    Args:
G
gongweibao 已提交
8018 8019 8020
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8021
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8022 8023 8024
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8025 8026
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8027
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8028

8029 8030 8031 8032 8033
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8034 8035 8036
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8037
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8054 8055


G
gongweibao 已提交
8056
@templatedoc()
X
Xin Pan 已提交
8057
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8058
    """
G
gongweibao 已提交
8059
    ${comment}
G
fix  
gongweibao 已提交
8060 8061

    Args:
G
gongweibao 已提交
8062 8063 8064 8065
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8066 8067 8068
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8069
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8070

8071 8072 8073 8074
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8075 8076 8077
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8078
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8079 8080 8081 8082 8083 8084 8085 8086 8087 8088
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8089
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8090 8091 8092 8093 8094
        })

    return out


G
gongweibao 已提交
8095
@templatedoc()
G
fix  
gongweibao 已提交
8096
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8097
    """
G
gongweibao 已提交
8098
    ${comment}
G
fix  
gongweibao 已提交
8099 8100

    Args:
G
gongweibao 已提交
8101 8102 8103 8104
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8105
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8106 8107

    Returns:
G
gongweibao 已提交
8108
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8109

8110 8111 8112 8113 8114 8115 8116 8117 8118 8119
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8120 8121 8122
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8123
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8135
@templatedoc()
G
fix  
gongweibao 已提交
8136 8137 8138 8139 8140 8141 8142 8143 8144
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8145
    ${comment}
G
fix  
gongweibao 已提交
8146 8147

    Args:
G
gongweibao 已提交
8148 8149
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8150
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8151 8152 8153 8154
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8155
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8156 8157

    Returns:
G
gongweibao 已提交
8158
        out (Variable): ${out_comment}
8159 8160 8161 8162 8163 8164 8165 8166

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8167 8168 8169
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8170
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8189
@templatedoc()
X
Xin Pan 已提交
8190
def sum(x):
G
fix  
gongweibao 已提交
8191
    """
G
gongweibao 已提交
8192
    ${comment}
G
fix  
gongweibao 已提交
8193 8194

    Args:
G
gongweibao 已提交
8195
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8196 8197

    Returns:
G
gongweibao 已提交
8198
        out (Variable): ${out_comment}
8199 8200 8201 8202 8203 8204

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8205 8206 8207
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8208 8209
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8210 8211 8212 8213
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8214
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8215 8216 8217 8218

    return out


G
gongweibao 已提交
8219
@templatedoc()
G
fix  
gongweibao 已提交
8220 8221
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8222
    ${comment}
G
fix  
gongweibao 已提交
8223 8224

    Args:
G
gongweibao 已提交
8225 8226 8227 8228
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8229 8230

    Returns:
G
gongweibao 已提交
8231
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8232

8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8244 8245 8246
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8247 8248
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8260
@templatedoc()
G
fix  
gongweibao 已提交
8261 8262
def shape(input):
    """
G
gongweibao 已提交
8263
    ${comment}
G
fix  
gongweibao 已提交
8264 8265

    Args:
G
gongweibao 已提交
8266
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8267 8268

    Returns:
G
gongweibao 已提交
8269
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8270

8271 8272 8273 8274 8275 8276
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8277 8278 8279
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8280 8281
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8282
    helper.append_op(
G
fix  
gongweibao 已提交
8283
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8284 8285

    return out
G
merge  
gongweibao 已提交
8286 8287


S
sneaxiy 已提交
8288 8289 8290 8291 8292 8293 8294 8295
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8296 8297
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8298
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8299 8300 8301
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8302

S
sneaxiy 已提交
8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8314
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8315 8316 8317 8318 8319 8320 8321 8322
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8323
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8324
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8325 8326 8327 8328 8329 8330

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8331
    if name is None:
X
Xin Pan 已提交
8332
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8333 8334 8335
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8336 8337 8338 8339 8340 8341 8342 8343 8344 8345

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8346
    return helper.append_activation(out)
S
sneaxiy 已提交
8347 8348


X
Xin Pan 已提交
8349
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8350 8351 8352
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8353
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8354 8355 8356
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8357
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8358 8359 8360
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8361
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8362 8363 8364
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8365
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8366 8367 8368
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8369
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8370 8371 8372
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8373
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8385 8386
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8387
        ])
M
minqiyang 已提交
8388 8389


8390
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8391 8392
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8393 8394
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8395 8396 8397

    if out is None:
        if name is None:
X
Xin Pan 已提交
8398
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8414
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8426 8427 8428 8429 8430 8431 8432 8433 8434

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8435 8436 8437 8438 8439 8440 8441
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8442
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8454 8455 8456 8457 8458 8459 8460 8461 8462

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8463 8464 8465 8466 8467 8468 8469
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8470
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8482 8483 8484 8485 8486 8487 8488 8489 8490

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8491 8492 8493 8494 8495 8496 8497
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8498
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8499 8500 8501 8502 8503 8504 8505 8506 8507 8508
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8509 8510 8511 8512 8513 8514 8515

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8516 8517 8518 8519
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8535 8536 8537 8538 8539 8540 8541

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8542 8543 8544 8545 8546
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8547 8548 8549 8550
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8574 8575 8576 8577 8578 8579 8580

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8581 8582 8583 8584 8585
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8586 8587 8588 8589
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8590 8591 8592 8593 8594 8595 8596 8597

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8616
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8617 8618 8619 8620 8621 8622 8623 8624 8625 8626
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8669
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8670 8671 8672 8673 8674 8675 8676 8677 8678
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8679 8680
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8681 8682 8683 8684 8685 8686
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8687 8688 8689 8690
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8691 8692 8693 8694 8695 8696
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8697
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8698 8699 8700 8701 8702 8703 8704 8705 8706
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8707
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8708 8709 8710 8711 8712 8713 8714 8715
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8716
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8737
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8738 8739 8740 8741 8742 8743 8744 8745 8746 8747
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8748 8749


J
JiabinYang 已提交
8750
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8751
    """
J
JiabinYang 已提交
8752
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8753 8754 8755

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8756
    The attr blocksize indicates the input block size.
8757 8758

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8759
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8760 8761

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8762
    (but keeping all data)
J
JiabinYang 已提交
8763

J
JiabinYang 已提交
8764
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8765
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8766 8767 8768 8769 8770
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8771
    Args:
J
JiabinYang 已提交
8772
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8773
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8774 8775

    Returns:
J
JiabinYang 已提交
8776
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8777 8778

    Raises:
J
JiabinYang 已提交
8779
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8780 8781 8782 8783 8784 8785

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8786
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8787
                x=data, blocksize=2)
J
JiabinYang 已提交
8788 8789
    """

J
JiabinYang 已提交
8790
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8791

J
JiabinYang 已提交
8792 8793
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8794 8795

    if name is None:
J
JiabinYang 已提交
8796 8797
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8798 8799 8800 8801 8802
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8803
        type="space_to_depth",
J
JiabinYang 已提交
8804
        inputs={"X": x},
J
JiabinYang 已提交
8805
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8806
        outputs={"Out": out})
J
JiabinYang 已提交
8807 8808
    return out

J
JiabinYang 已提交
8809

S
sneaxiy 已提交
8810 8811
@templatedoc()
def sequence_reverse(x, name=None):
8812
    """
S
sneaxiy 已提交
8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8824
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8825 8826 8827 8828 8829 8830 8831 8832 8833 8834
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8835 8836


8837 8838 8839 8840 8841 8842
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8843

8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8863
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8876 8877


B
barrierye 已提交
8878
def similarity_focus(input, axis, indexes, name=None):
8879
    """
B
barrierye 已提交
8880
    SimilarityFocus Operator
B
barrierye 已提交
8881 8882

    Generate a similarity focus mask with the same shape of input using the following method:
8883 8884 8885
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8886
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8887 8888 8889 8890 8891 8892 8893
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8894
       each index.
B
barrierye 已提交
8895 8896 8897 8898
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8948
    Args:
8949
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8950
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8951
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8952
            1, 2 or 3.
B
barrierye 已提交
8953
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8954 8955

    Returns:
8956
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8957
            as the input.
8958

B
barrierye 已提交
8959 8960 8961
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8962 8963
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8976 8977 8978 8979 8980
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8981 8982 8983 8984 8985 8986 8987
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8988 8989


M
minqiyang 已提交
8990 8991
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8992 8993
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8994 8995
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9034
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9035
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9036 9037 9038 9039 9040 9041 9042 9043 9044

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9045 9046
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9047 9048
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9049 9050 9051 9052 9053 9054 9055
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9056 9057


D
dengkaipeng 已提交
9058
@templatedoc()
9059 9060
def grid_sampler(x, grid, name=None):
    """
9061
    This operation samples input X by using bilinear interpolation based on
9062
    flow field grid, which is usually gennerated by affine_grid. The grid of
9063 9064 9065 9066
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9067
    interpolation value of 4 nearest corner points.
9068 9069 9070 9071 9072 9073 9074 9075

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
9076
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9106 9107

    Args:
9108 9109 9110
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9111 9112

    Returns:
9113
        out(Variable): Output of shape [N, C, H, W] data samples input X
9114 9115 9116 9117 9118 9119 9120 9121 9122
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
9123 9124 9125 9126 9127 9128 9129 9130 9131
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9132
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9133 9134
    ipts = {'X': x, 'Grid': grid}

9135
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9136 9137 9138
    return out


G
gmcather 已提交
9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9233 9234 9235 9236 9237 9238 9239 9240 9241 9242


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9243
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9244

Q
Qiao Longfei 已提交
9245
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9246 9247 9248
    For example:

    .. math::
9249
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9250

Q
Qiao Longfei 已提交
9251
    In this formula:
9252 9253
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9254
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9255
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9256 9257 9258
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9259 9260
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9261 9262 9263
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9264
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9265
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9266
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9267 9268 9269 9270
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9271
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9272 9273 9274 9275

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9276
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9277 9278
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9279
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9280 9281 9282 9283

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9284
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
S
shippingwang 已提交
9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363


def shuffle_channel(x, group=1, name=None):
    """
    **Shuffle Channel Operator**
    This operator obtains the group convolutional layer with channels shuffled.
    First, divide the input channels in each group into several subgroups,
    then, feed each group in the next layer with different subgroups.
    Shuffle channel operation makes it possible to build more powerful structures
    with multiple group convolutional layers.
    
    Args: 
        x: The input tensor variable.


    Returns:
        Variable: channel shuffled tensor variable.

    Raises:
        ValueError: If group in not a int type variable.

    Examples:
        .. code-block:: python
    

    """
    helper = LayerHelper("shuffle_channel", **locals())

    out = helper.create_variable_for_type_inference(
        dtype=helper.intput_dtype('x'))

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
Add  
shippingwang 已提交
9364 9365


9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
S
shippingwang 已提交
9417
    return out