nn.py 304.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35
    'fc',
    'embedding',
P
peizhilin 已提交
36
    'dynamic_lstm',
X
Xin Pan 已提交
37 38 39 40
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
P
peizhilin 已提交
41
    'crf_decoding',
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
P
peizhilin 已提交
100
    'roi_pool',
J
jerrywgz 已提交
101
    'roi_align',
X
Xin Pan 已提交
102 103 104 105
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
106
    'resize_nearest',
X
Xin Pan 已提交
107 108 109 110 111 112
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
113
    'selu',
X
Xin Pan 已提交
114 115 116
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
117
    'margin_rank_loss',
X
Xin Pan 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
161
    'space_to_depth',
W
whs 已提交
162
    'affine_grid',
S
sneaxiy 已提交
163
    'sequence_reverse',
164
    'affine_channel',
B
barrierye 已提交
165
    'similarity_focus',
M
minqiyang 已提交
166
    'hash',
D
dengkaipeng 已提交
167
    'grid_sampler',
G
gmcather 已提交
168 169
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
170
    'bilinear_tensor_product',
Y
Yu Yang 已提交
171 172
]

J
jerrywgz 已提交
173 174
kIgnoreIndex = -100

Y
Yu Yang 已提交
175 176 177 178 179 180 181

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
182
       is_test=False,
183
       name=None):
Y
Yu Yang 已提交
184
    """
185
    **Fully Connected Layer**
Y
Yu Yang 已提交
186

187 188 189 190 191 192 193 194
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
195
    to the output as well.
C
caoying03 已提交
196

C
caoying03 已提交
197
    This process can be formulated as follows:
198 199 200

    .. math::

201
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
202 203 204

    In the above equation:

C
caoying03 已提交
205 206 207 208
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
209
    * :math:`Act`: The activation function.
C
caoying03 已提交
210
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
211 212

    Args:
R
ranqiu 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
228 229
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
230
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
231
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
232
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
233

234
    Returns:
F
fengjiayi 已提交
235
        Variable: The transformation result.
236 237

    Raises:
C
caoying03 已提交
238
        ValueError: If rank of the input tensor is less than 2.
239 240 241 242

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
243
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
244
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
245
    """
C
caoying03 已提交
246

C
caoying03 已提交
247
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
248 249 250 251

    dtype = helper.input_dtype()

    mul_results = []
252 253
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
254 255 256
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
257

Y
Yu Yang 已提交
258
        w = helper.create_parameter(
259
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
260
        tmp = helper.create_variable_for_type_inference(dtype)
261
        helper.append_op(
262 263 264
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
265
            outputs={"Out": tmp},
M
mozga-intel 已提交
266 267
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
268 269 270 271
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
272
    else:
X
Xin Pan 已提交
273
        pre_bias = helper.create_variable_for_type_inference(dtype)
274
        helper.append_op(
275 276 277
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
278
            attrs={"use_mkldnn": False})
279 280 281 282
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
283 284


285 286 287
def embedding(input,
              size,
              is_sparse=False,
288
              is_distributed=False,
289 290 291
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
292
    """
293 294
    **Embedding Layer**

295
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
296 297
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
298 299 300

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
301 302

    Args:
303 304 305 306 307
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
308
        is_distributed(bool): Whether to run lookup table from remote parameter server.
309 310
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
311
            with zeros whenever lookup encounters it in :attr:`input`. If
312
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
313 314
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
315
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
316

317 318 319
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
320

321 322
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
323

C
chengduoZH 已提交
324
          dict_size = len(dataset.ids)
325
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
326
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
327 328 329 330 331
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
332
    tmp = helper.create_variable_for_type_inference(dtype)
333 334
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
335 336 337 338 339
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
340 341 342 343 344
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
345 346 347
    return tmp


P
peizhilin 已提交
348
if os.name != 'nt':
P
peizhilin 已提交
349

P
peizhilin 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    @templatedoc(op_type="lstm")
    def dynamic_lstm(input,
                     size,
                     h_0=None,
                     c_0=None,
                     param_attr=None,
                     bias_attr=None,
                     use_peepholes=True,
                     is_reverse=False,
                     gate_activation='sigmoid',
                     cell_activation='tanh',
                     candidate_activation='tanh',
                     dtype='float32',
                     name=None):
        """
        ${comment}

        Args:
            input (Variable): ${input_comment}
            size (int): 4 * hidden size.
            h_0(Variable): The initial hidden state is an optional input, default is zero.
                           This is a tensor with shape (N x D), where N is the
                           batch size and D is the hidden size.
            c_0(Variable): The initial cell state is an optional input, default is zero.
                           This is a tensor with shape (N x D), where N is the
                           batch size. `h_0` and `c_0` can be NULL but only at the same time.
            param_attr(ParamAttr|None): The parameter attribute for the learnable
                                   hidden-hidden weights.

                                   - Weights = {:math:`W_{ch}, W_{ih}, \
                                                    W_{fh}, W_{oh}`}
                                   - The shape is (D x 4D), where D is the hidden
                                     size.

                                   If it is set to None or one attribute of ParamAttr,
                                   dynamic_lstm will create ParamAttr as param_attr.
                                   If the Initializer of the param_attr is not set, the
                                   parameter is initialized with Xavier. Default: None.
            bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                                  weights, which contains two parts, input-hidden
                                  bias weights and peephole connections weights if
                                  setting `use_peepholes` to `True`.

                                  1. `use_peepholes = False`
                                     - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                     - The shape is (1 x 4D).
                                  2. `use_peepholes = True`
                                     - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                     W_{fc}, W_{oc}`}.
                                     - The shape is (1 x 7D).

                                  If it is set to None or one attribute of ParamAttr,
                                  dynamic_lstm will create ParamAttr as bias_attr.
                                  If the Initializer of the bias_attr is not set,
                                  the bias is initialized zero. Default: None.
            use_peepholes (bool): ${use_peepholes_comment}
            is_reverse (bool): ${is_reverse_comment}
            gate_activation (str): ${gate_activation_comment}
            cell_activation (str): ${cell_activation_comment}
            candidate_activation (str): ${candidate_activation_comment}
            dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
            name (str|None): A name for this layer(optional). If set None, the layer
                             will be named automatically.

        Returns:
            tuple: The hidden state, and cell state of LSTM. The shape of both \
            is (T x D), and lod is the same with the `input`.

        Examples:
            .. code-block:: python

                hidden_dim = 512
                forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                               bias_attr=False)
                forward, _ = fluid.layers.dynamic_lstm(
                    input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
        """
        assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
        helper = LayerHelper('lstm', **locals())
        size = size // 4
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
        bias_size = [1, 7 * size]
        if not use_peepholes:
            bias_size[1] = 4 * size
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
437

P
peizhilin 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451
        hidden = helper.create_variable_for_type_inference(dtype)
        cell = helper.create_variable_for_type_inference(dtype)
        batch_gate = helper.create_variable_for_type_inference(dtype)
        batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
        inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
        batch_size = input.shape[0]
        if h_0:
            assert h_0.shape == (batch_size, size), \
                'The shape of h0 should be (batch_size, %d)' % size
            inputs['H0'] = h_0
        if c_0:
            assert c_0.shape == (batch_size, size), \
                'The shape of c0 should be (batch_size, %d)' % size
            inputs['C0'] = c_0
Y
Yu Yang 已提交
452

P
peizhilin 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
        helper.append_op(
            type='lstm',
            inputs=inputs,
            outputs={
                'Hidden': hidden,
                'Cell': cell,
                'BatchGate': batch_gate,
                'BatchCellPreAct': batch_cell_pre_act
            },
            attrs={
                'use_peepholes': use_peepholes,
                'is_reverse': is_reverse,
                'gate_activation': gate_activation,
                'cell_activation': cell_activation,
                'candidate_activation': candidate_activation
            })
        return hidden, cell
Y
Yu Yang 已提交
470 471


Y
Yibing Liu 已提交
472 473 474 475 476 477 478 479 480 481 482
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
483 484
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
485 486 487
    """
    **Dynamic LSTMP Layer**

488 489 490 491 492 493
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
494 495 496 497 498

    The formula is as follows:

    .. math::

499
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
500

501
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
502

503
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
504

505
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
506

507
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
508

509
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
510

511
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
512

Y
Yibing Liu 已提交
513 514 515 516 517 518
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
519
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
520
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
521
          bias vector).
Y
Yibing Liu 已提交
522 523 524
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
525
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
526
    * :math:`h`: The hidden state.
527
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
528 529
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
530
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
531
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
532
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
533 534
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
535 536 537 538

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
539

Y
Yibing Liu 已提交
540 541 542 543 544 545 546 547 548 549 550 551
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
552
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
553 554
                               hidden-hidden weight and projection weight.

555 556
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
557 558
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
559 560
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
561
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
562 563 564 565 566

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
567
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
568 569 570 571 572 573
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
574
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
575 576 577
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
578
                                - The shape is (1 x 7D).
C
chengduo 已提交
579 580 581 582 583

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
584 585 586 587 588 589 590 591 592
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
593
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
594 595
                              default "tanh".
        proj_activation(str): The activation for projection output.
596
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
597 598
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
599 600
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
601 602

    Returns:
603 604 605 606
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
607 608

    Examples:
609

Y
Yibing Liu 已提交
610 611
        .. code-block:: python

612 613 614 615
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
616
            hidden_dim, proj_dim = 512, 256
617
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
618
                                     act=None, bias_attr=None)
619 620 621
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
622 623 624 625
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
626
    """
627

C
chengduo 已提交
628
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
629
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
630
    size = size // 4
Y
Yibing Liu 已提交
631 632 633 634 635 636 637 638 639 640
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
641 642 643 644 645 646
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
675 676 677 678 679 680 681 682 683
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
684
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
685

686
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
687
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
688

G
guosheng 已提交
689 690 691 692 693 694 695 696 697
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
698

G
guosheng 已提交
699
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
700

G
guosheng 已提交
701
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
702 703
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
704 705 706 707
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
708
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
709 710

    Args:
711 712
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
713
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
714
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
715 716
            is the hidden size.
        size(int): The dimension of the gru cell.
717
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
718 719
            hidden-hidden weight matrix. Note:

720
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
721
              :math:`D` is the hidden size.
722
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
723
              The first part are weights of the update gate and reset gate with
724
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
725
              candidate hidden state with shape :math:`(D \\times D)`.
726 727 728 729 730 731 732 733 734 735 736 737

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
738
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
739 740 741
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
742
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
743
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
744 745 746 747
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
748 749

    Returns:
G
guosheng 已提交
750
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
751
            and sequence length is the same with the input.
752

G
guosheng 已提交
753
    Examples:
754

G
guosheng 已提交
755 756
        .. code-block:: python

757 758 759 760
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
761
            hidden_dim = 512
762
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
763 764 765 766 767 768 769 770 771 772
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
773
    batch_size = input.shape[0]
G
guosheng 已提交
774
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
775
    if h_0:
G
guosheng 已提交
776
        assert h_0.shape == (
Y
Yancey 已提交
777 778 779
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
780

X
Xin Pan 已提交
781 782 783 784
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
803 804 805
def gru_unit(input,
             hidden,
             size,
806 807
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
808
             activation='tanh',
809
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
810
    """
811
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
812

813 814
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
815

816
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
817

818
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
819

820
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
821 822

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
823 824 825
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
826 827
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

828 829
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
830 831 832
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
833 834 835

    Args:
        input (Variable): The fc transformed input value of current step.
836
        hidden (Variable): The hidden value of gru unit from previous step.
837
        size (integer): The input dimension value.
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
859 860 861 862
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
863

864 865 866 867 868 869
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
870

871
             # assuming we have x_t_data and prev_hidden of size=10
872
             x_t = fluid.layers.fc(input=x_t_data, size=30)
873 874
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
875 876 877 878 879 880 881 882 883 884 885 886

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
887
    size = size // 3
Y
Yu Yang 已提交
888 889

    # create weight
890 891
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
892

X
Xin Pan 已提交
893 894 895
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
896
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
897
    # create bias
898
    if helper.bias_attr:
Y
Yu Yang 已提交
899 900 901
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
902
        inputs['Bias'] = bias
Y
Yu Yang 已提交
903 904 905

    helper.append_op(
        type='gru_unit',
906
        inputs=inputs,
Y
Yu Yang 已提交
907 908 909 910 911 912
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
913 914
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
915 916 917 918 919
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
920
@templatedoc()
921
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
922 923 924 925 926 927 928
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
929
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
930 931 932 933
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
934 935 936
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
937 938

    """
Y
Yu Yang 已提交
939 940 941 942 943 944
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
945 946 947 948 949 950 951 952
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


P
peizhilin 已提交
968
if os.name != 'nt':
P
peizhilin 已提交
969

P
peizhilin 已提交
970 971 972 973
    @templatedoc()
    def crf_decoding(input, param_attr, label=None):
        """
        ${comment}
Y
yuyang18 已提交
974

P
peizhilin 已提交
975 976
        Args:
            input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
977

P
peizhilin 已提交
978
            param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
979

P
peizhilin 已提交
980
            label(${label_type}): ${label_comment}
Y
yuyang18 已提交
981

P
peizhilin 已提交
982 983
        Returns:
            Variable: ${viterbi_path_comment}
984

P
peizhilin 已提交
985 986
        Examples:
            .. code-block:: python
Y
yi.wu 已提交
987

P
peizhilin 已提交
988 989 990 991 992 993 994 995 996
               crf_decode = layers.crf_decoding(
                    input=hidden, param_attr=ParamAttr(name="crfw"))
        """
        helper = LayerHelper('crf_decoding', **locals())
        transition = helper.get_parameter(param_attr.name)
        viterbi_path = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(
            type='crf_decoding',
P
peizhilin 已提交
997 998 999 1000 1001
            inputs={
                "Emission": [input],
                "Transition": transition,
                "Label": label
            },
P
peizhilin 已提交
1002
            outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1003

P
peizhilin 已提交
1004
        return viterbi_path
Y
Yu Yang 已提交
1005 1006


Y
yi.wu 已提交
1007
@templatedoc()
F
fengjiayi 已提交
1008
def cos_sim(X, Y):
Y
Yu Yang 已提交
1009
    """
Y
yi.wu 已提交
1010 1011 1012
    ${comment}

    Args:
1013 1014
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1015

Y
yi.wu 已提交
1016
    Returns:
1017
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1018
    """
F
fengjiayi 已提交
1019
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1020 1021 1022
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1033 1034 1035 1036 1037
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1038
            dropout_implementation="downgrade_in_infer"):
1039 1040 1041 1042 1043
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1044
    training. The dropout operator randomly sets (according to the given dropout
1045 1046 1047 1048
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1049 1050
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1051 1052 1053 1054 1055 1056 1057
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1072

1073 1074

    Returns:
1075
        Variable: A tensor variable is the shape with `x`.
1076 1077

    Examples:
1078

1079 1080
        .. code-block:: python

1081 1082
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1083 1084
    """

F
fengjiayi 已提交
1085
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1086 1087 1088
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1089 1090 1091 1092

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1093 1094 1095 1096 1097
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1098 1099 1100 1101
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1102 1103
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1104
        })
1105 1106 1107
    return out


J
jerrywgz 已提交
1108
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1109
    """
Y
Yibing Liu 已提交
1110 1111
    **Cross Entropy Layer**

1112 1113 1114
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1115 1116

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1117
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1118

Y
Yibing Liu 已提交
1119
        .. math::
Y
yangyaming 已提交
1120

Y
Yibing Liu 已提交
1121 1122 1123
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1124 1125
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1126 1127 1128 1129 1130

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1131
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1132 1133 1134
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1135 1136
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1137
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1138

Y
Yibing Liu 已提交
1139
    Args:
Y
yangyaming 已提交
1140
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1141 1142 1143 1144
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1145
        label (Variable|list): the ground truth which is a 2-D tensor. When
1146 1147 1148 1149
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1150
        soft_label (bool): a flag indicating whether to
1151
                                           interpretate the given labels as soft
1152
                                           labels. Default: `False`.
M
minqiyang 已提交
1153 1154
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1155
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1156 1157 1158 1159 1160

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1161 1162 1163 1164 1165
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1166 1167 1168 1169 1170 1171

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1172
    """
F
fengjiayi 已提交
1173
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1174
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1175 1176 1177 1178 1179
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1180 1181
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1182 1183 1184
    return out


F
fengjiayi 已提交
1185
def square_error_cost(input, label):
Y
Yu Yang 已提交
1186
    """
1187 1188
    **Square error cost layer**

1189 1190
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1191

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1205 1206
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1207 1208

    Returns:
G
guosheng 已提交
1209
        Variable: The tensor variable storing the element-wise squared error \
1210
                  difference of input and label.
1211 1212 1213 1214 1215 1216 1217 1218

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1219
    """
F
fengjiayi 已提交
1220
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1221
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1222 1223 1224 1225 1226 1227
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1228
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1229
    helper.append_op(
F
fengjiayi 已提交
1230 1231
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1232 1233 1234
    return square_out


Y
yi.wu 已提交
1235
@templatedoc()
Y
Yu Yang 已提交
1236 1237 1238 1239
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1240
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1241
    """
Y
yi.wu 已提交
1242
    **Chunk Evaluator**
Y
yi.wu 已提交
1243

Y
yangyaming 已提交
1244
    This function computes and outputs the precision, recall and
1245
    F1-score of chunk detection.
Y
yi.wu 已提交
1246

Y
yi.wu 已提交
1247 1248 1249 1250 1251 1252 1253 1254
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1255

Y
yi.wu 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1281

Y
yi.wu 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1306
    Args:
1307 1308 1309 1310 1311
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1312

Y
yi.wu 已提交
1313
    Returns:
Y
update  
yi.wu 已提交
1314 1315 1316
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1317

Y
yi.wu 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1330
    """
F
fengjiayi 已提交
1331
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1332 1333

    # prepare output
X
Xin Pan 已提交
1334 1335 1336 1337 1338 1339 1340
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1341 1342 1343 1344 1345 1346 1347 1348

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1349 1350 1351 1352
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1353 1354 1355
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1356 1357
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1358
        })
1359 1360
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1361 1362


1363
@templatedoc()
Y
Yu Yang 已提交
1364 1365 1366 1367 1368 1369 1370
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1371 1372
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1373 1374 1375 1376
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1377 1378 1379 1380 1381 1382 1383

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1397

1398 1399
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1400 1401 1402 1403 1404 1405 1406
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1407
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1418
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1419 1420 1421 1422 1423 1424
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1425
def sequence_softmax(input, use_cudnn=False, name=None):
1426 1427 1428
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1429
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1446 1447 1448
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1461 1462
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1463
    softmax_out = helper.create_variable_for_type_inference(dtype)
1464 1465 1466 1467 1468 1469 1470 1471
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1472
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1473
    """
1474
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1475
    has the same shape as the input.
Q
qiaolongfei 已提交
1476

1477 1478 1479 1480 1481 1482
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1483
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1484 1485 1486 1487 1488 1489 1490

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1491
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1492 1493 1494 1495 1496 1497 1498 1499

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1500 1501 1502
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1515 1516
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1517
    softmax_out = helper.create_variable_for_type_inference(dtype)
1518 1519 1520 1521 1522 1523 1524 1525
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1526 1527 1528
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1529 1530
           stride=1,
           padding=0,
1531
           dilation=1,
Y
Yu Yang 已提交
1532 1533 1534
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1535
           use_cudnn=True,
1536 1537
           act=None,
           name=None):
Y
Yu Yang 已提交
1538
    """
C
chengduoZH 已提交
1539
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1540 1541
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1542
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1543 1544 1545 1546 1547 1548 1549
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1550 1551 1552
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1553

1554
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1555

C
chengduoZH 已提交
1556 1557
    .. math::

C
refine  
chengduoZH 已提交
1558
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1559

T
tensor-tang 已提交
1560
    Where:
C
chengduoZH 已提交
1561

1562 1563 1564 1565 1566
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1567
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1568 1569 1570

    Example:

1571 1572
        - Input:

W
weixing02 已提交
1573
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1574

W
weixing02 已提交
1575
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1576

1577
        - Output:
T
tensor-tang 已提交
1578

W
weixing02 已提交
1579
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1580

C
chengduoZH 已提交
1581
        Where
1582 1583

        .. math::
C
chengduoZH 已提交
1584

W
weixing02 已提交
1585 1586
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1587 1588

    Args:
1589
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1590
        num_filters(int): The number of filter. It is as same as the output
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1619 1620
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1621 1622
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1623
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1624
            will be named automatically. Default: None
C
chengduoZH 已提交
1625 1626

    Returns:
G
guosheng 已提交
1627
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1628 1629
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1630
    Raises:
1631 1632
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1633

C
chengduoZH 已提交
1634 1635 1636
    Examples:
        .. code-block:: python

1637 1638
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1639 1640 1641
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1642
    assert param_attr is not False, "param_attr should not be False here."
1643
    l_type = 'conv2d'
X
xzl 已提交
1644 1645
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1646
        l_type = 'depthwise_conv2d'
1647 1648 1649 1650

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1651 1652 1653 1654 1655
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1656
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1657

C
chengduoZH 已提交
1658 1659 1660
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1661
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1662

C
chengduoZH 已提交
1663 1664
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1665 1666

    input_shape = input.shape
M
minqiyang 已提交
1667
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1668 1669

    def _get_default_param_initializer():
C
chengduo 已提交
1670 1671
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1672 1673 1674 1675 1676 1677 1678 1679
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1680
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1681

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1696
    helper.append_op(
1697
        type=l_type,
Y
Yu Yang 已提交
1698 1699 1700 1701 1702
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1703 1704 1705
        attrs={
            'strides': stride,
            'paddings': padding,
1706
            'dilations': dilation,
C
chengduoZH 已提交
1707
            'groups': groups,
1708
            'use_cudnn': use_cudnn,
1709
            'use_mkldnn': False,
C
chengduoZH 已提交
1710
        })
Y
Yu Yang 已提交
1711 1712 1713 1714 1715 1716

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1734 1735 1736 1737 1738 1739
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1749 1750
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1751 1752 1753
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1754
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1780
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1781 1782
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1783
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1784 1785
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1786
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1787 1788
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1789
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1790 1791 1792 1793 1794 1795
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1806 1807
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1808 1809
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1810
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1811
            will be named automatically. Default: None.
C
chengduoZH 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1824 1825
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1826 1827 1828
    """

    l_type = 'conv3d'
C
chengduo 已提交
1829
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1840
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1854 1855 1856
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1857 1858 1859 1860 1861 1862 1863 1864
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1865
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1880
            'use_mkldnn': False
C
chengduoZH 已提交
1881 1882
        })

1883
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1884 1885 1886 1887

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1888
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1889
    """
Y
yangyaming 已提交
1890 1891 1892
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1904
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1905 1906 1907 1908 1909
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1910
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1911 1912 1913 1914 1915 1916 1917

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1918 1919
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1920

L
Luo Tao 已提交
1921 1922
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1923
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1924
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1925
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1926 1927 1928 1929 1930 1931 1932

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1933

Y
yangyaming 已提交
1934
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1935 1936 1937 1938 1939
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1940 1941
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1942
    """
F
fengjiayi 已提交
1943
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1944
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1945 1946
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1947 1948 1949 1950 1951 1952

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1953 1954
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1955

Y
yangyaming 已提交
1956 1957 1958 1959 1960
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1961 1962 1963
    return pool_out


C
add doc  
chengduoZH 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1983
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1984 1985 1986 1987 1988
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1989
def sequence_first_step(input):
L
Luo Tao 已提交
1990
    """
L
Luo Tao 已提交
1991
    This function gets the first step of sequence.
L
Luo Tao 已提交
1992 1993 1994 1995

    .. code-block:: text

       x is a 1-level LoDTensor:
1996
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1997 1998 1999 2000 2001
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2002
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2003
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2004

L
Luo Tao 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2014

Y
yangyaming 已提交
2015
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2016 2017 2018
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2019 2020 2021
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2022
def sequence_last_step(input):
L
Luo Tao 已提交
2023
    """
L
Luo Tao 已提交
2024
    This function gets the last step of sequence.
L
Luo Tao 已提交
2025 2026 2027 2028

    .. code-block:: text

       x is a 1-level LoDTensor:
2029
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2030 2031 2032 2033 2034
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2035
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2036
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2037

L
Luo Tao 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2047

Y
yangyaming 已提交
2048
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2049 2050 2051
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2052 2053 2054
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2055 2056 2057 2058
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2059
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2060 2061 2062 2063 2064
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2065

Y
Yibing Liu 已提交
2066 2067
	- Case:

2068
            Given the input Variable **input**:
2069

2070 2071 2072
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2073

2074
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2075

2076
            the output Variable will be
2077

2078 2079 2080
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2081 2082

    NOTE: The first dimension size of **input**, **offset** and **length**
2083
          should be equal. The **offset** should start from 0.
2084

Y
Yibing Liu 已提交
2085
    Args:
2086
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2087
                         sequences.
Y
Yibing Liu 已提交
2088 2089 2090 2091 2092 2093
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2094
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2105
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2106 2107 2108 2109
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2110
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2125
@templatedoc()
Y
Yu Yang 已提交
2126
def pool2d(input,
C
chengduoZH 已提交
2127 2128
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2129 2130
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2131
           global_pooling=False,
C
chengduoZH 已提交
2132
           use_cudnn=True,
2133
           ceil_mode=False,
2134 2135
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2136
    """
F
fengjiayi 已提交
2137
    ${comment}
2138 2139

    Args:
2140 2141 2142
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2143
                          feature, and W is the width of the feature.
2144
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2145
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2146
        pool_type: ${pooling_type_comment}
2147 2148
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
2149 2150 2151
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2152
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2153
                        layer will be named automatically.
2154 2155
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
F
fengjiayi 已提交
2156

2157
    Returns:
F
fengjiayi 已提交
2158
        Variable: The pooling result.
F
fengjiayi 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2172 2173 2174 2175
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2176
                            global_pooling=False)
Y
Yu Yang 已提交
2177 2178 2179 2180 2181
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2182

C
chengduoZH 已提交
2183 2184 2185 2186 2187
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2188 2189 2190 2191
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2192 2193
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2194

C
Add doc  
chengduoZH 已提交
2195
    l_type = 'pool2d'
2196 2197

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2198
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2199
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2200 2201

    helper.append_op(
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2213 2214
            "use_mkldnn": False,
            "exclusive": exclusive,
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2228 2229
           name=None,
           exclusive=True):
2230 2231
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2232
    pooling configurations mentioned in input parameters.
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2245 2246
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
2247

2248
    Returns:
2249
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2250 2251 2252 2253 2254
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2255

C
chengduoZH 已提交
2256 2257 2258 2259 2260
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2261 2262 2263
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2264

C
chengduoZH 已提交
2265 2266
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2267

2268 2269
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2270
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2271
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2272 2273

    helper.append_op(
2274
        type=l_type,
Y
Yu Yang 已提交
2275 2276 2277 2278 2279 2280 2281
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2282
            "paddings": pool_padding,
2283
            "use_cudnn": use_cudnn,
2284
            "ceil_mode": ceil_mode,
2285 2286
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2299
               data_layout='NCHW',
Y
Yang Yang 已提交
2300
               in_place=False,
2301 2302
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2303
               moving_variance_name=None,
2304 2305
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2306
    """
Q
qiaolongfei 已提交
2307 2308 2309 2310
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2311

Q
qiaolongfei 已提交
2312
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2313

Q
qiaolongfei 已提交
2314 2315
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2316 2317 2318
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2331 2332

    Args:
Q
qiaolongfei 已提交
2333
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2334 2335 2336 2337
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2338 2339 2340 2341 2342 2343 2344 2345
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2346
        data_layout(string, default NCHW): NCHW|NHWC
2347
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2348 2349 2350 2351
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2352
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2353
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2354 2355

    Returns:
Q
qiaolongfei 已提交
2356
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2357 2358 2359 2360 2361 2362 2363

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2364
    """
C
chengduo 已提交
2365
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2388
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2389

2390 2391
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2392 2393 2394
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2395
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2396
        shape=param_shape,
2397 2398 2399 2400 2401 2402 2403
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2404
            trainable=False,
W
wanghaoshuang 已提交
2405
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2406
        shape=param_shape,
2407 2408
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2409 2410 2411 2412 2413 2414

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2415 2416 2417 2418
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2419

X
Xin Pan 已提交
2420 2421
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2439 2440 2441 2442
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2443
            "use_mkldnn": False,
2444
            "fuse_with_relu": fuse_with_relu
2445
        })
Y
Yu Yang 已提交
2446 2447 2448 2449

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2450
@templatedoc()
G
guosheng 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2461
    ${comment}
G
guosheng 已提交
2462 2463 2464

    The formula is as follows:

Y
yuyang18 已提交
2465
    ..  math::
G
guosheng 已提交
2466 2467 2468 2469 2470 2471 2472

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2473 2474 2475 2476 2477 2478 2479 2480
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2481

G
guosheng 已提交
2482 2483
    Args:
        input(Variable): The input tensor variable.
2484
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2485
            normalization. Default True.
2486
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2487 2488
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2489
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2490
            Default 1.
2491
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2492
            division by zero. Default 1e-05.
G
guosheng 已提交
2493
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2494 2495
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2496 2497
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2498
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2499 2500
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2501
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2502
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2503
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2504 2505 2506
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2507 2508

    Returns:
Y
yuyang18 已提交
2509
        ${y_comment}
G
guosheng 已提交
2510 2511 2512

    Examples:

Y
yuyang18 已提交
2513 2514 2515
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2531
    if shift:
G
guosheng 已提交
2532 2533 2534 2535 2536 2537
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2538 2539 2540 2541 2542
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2558 2559 2560 2561
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2562 2563 2564
                     padding=0,
                     stride=1,
                     dilation=1,
2565
                     groups=None,
C
caoying03 已提交
2566
                     param_attr=None,
2567
                     bias_attr=None,
C
chengduoZH 已提交
2568
                     use_cudnn=True,
2569
                     act=None,
C
caoying03 已提交
2570
                     name=None):
Y
Yu Yang 已提交
2571
    """
2572 2573 2574 2575 2576 2577 2578 2579
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2580 2581
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2582 2583 2584
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2585 2586 2587 2588 2589

    For each input :math:`X`, the equation is:

    .. math::

2590
        Out = \sigma (W \\ast X + b)
2591

2592
    Where:
2593 2594 2595

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2596 2597 2598 2599
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2600

2601 2602 2603 2604
    Example:

        - Input:

2605
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2606

2607
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2608 2609 2610

        - Output:

2611
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2612 2613

        Where
Y
Yu Yang 已提交
2614

2615 2616
        .. math::

2617 2618 2619 2620
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2621 2622

    Args:
2623 2624 2625 2626
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2627 2628 2629 2630
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2659
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2660 2661 2662
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2663
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2664
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2665 2666

    Returns:
2667
        Variable: The tensor variable storing the convolution transpose result.
2668 2669

    Raises:
2670 2671
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2672 2673 2674 2675

    Examples:
       .. code-block:: python

2676 2677
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2678
    """
C
chengduo 已提交
2679
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2680 2681 2682 2683 2684 2685 2686 2687
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2688 2689 2690
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2691 2692 2693
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2694

C
chengduoZH 已提交
2695 2696
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2697

Y
Yu Yang 已提交
2698 2699 2700 2701 2702
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2703

Y
Yu Yang 已提交
2704 2705
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2706

C
chengduoZH 已提交
2707
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2708
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2709
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2710
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2711
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2712 2713 2714
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2715

2716 2717 2718 2719 2720 2721 2722
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2723
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2724
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2725

Y
Yu Yang 已提交
2726 2727 2728
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2729
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2730
    helper.append_op(
2731
        type=op_type,
Y
Yu Yang 已提交
2732 2733
        inputs={'Input': [input],
                'Filter': [img_filter]},
2734
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2735
        attrs={
2736
            'output_size': output_size,
2737 2738 2739 2740 2741
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2742 2743
        })

2744 2745 2746
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2747 2748


2749
def conv3d_transpose(input,
Y
Yu Yang 已提交
2750 2751 2752
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2753 2754 2755
                     padding=0,
                     stride=1,
                     dilation=1,
2756
                     groups=None,
C
caoying03 已提交
2757
                     param_attr=None,
2758
                     bias_attr=None,
C
chengduoZH 已提交
2759
                     use_cudnn=True,
2760
                     act=None,
C
caoying03 已提交
2761
                     name=None):
Y
Yu Yang 已提交
2762
    """
2763
    **Convlution3D transpose layer**
2764

2765
    The convolution3D transpose layer calculates the output based on the input,
2766
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2767 2768 2769 2770 2771 2772
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2773 2774 2775
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2776 2777 2778 2779 2780

    For each input :math:`X`, the equation is:

    .. math::

2781
        Out = \sigma (W \\ast X + b)
2782 2783 2784

    In the above equation:

2785 2786
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2787 2788 2789 2790
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2791

2792 2793 2794 2795
    Example:

        - Input:

2796
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2797

2798
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2799 2800 2801

        - Output:

2802
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2803 2804

        Where
Y
Yu Yang 已提交
2805

2806 2807
        .. math::

2808 2809 2810
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2811 2812

    Args:
2813
        input(Variable): The input image with [N, C, D, H, W] format.
2814 2815 2816
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2817
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2818 2819
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2820
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2821 2822 2823
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2824 2825
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2826
        stride(int|tuple): The stride size. If stride is a tuple, it must
2827 2828
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2829
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2830 2831 2832
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2833 2834 2835 2836 2837
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2847 2848
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2849 2850
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2851 2852
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2853 2854

    Returns:
2855
        Variable: The tensor variable storing the convolution transpose result.
2856 2857

    Raises:
2858 2859
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2860 2861 2862 2863

    Examples:
       .. code-block:: python

2864 2865
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2866
    """
C
chengduo 已提交
2867
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2868 2869
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2870
    if not isinstance(input, Variable):
2871
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2872 2873
    input_channel = input.shape[1]

2874 2875 2876
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2877

C
chengduoZH 已提交
2878 2879 2880
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2881 2882 2883 2884 2885 2886
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2887 2888 2889
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2890

2891
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2892
                         padding[0] - 1) // dilation[0] + 1
2893
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2894
                         padding[1] - 1) // dilation[1] + 1
2895
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2896
                         padding[2] - 1) // dilation[2] + 1
2897
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2898
    else:
2899 2900
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2901

2902
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2903
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2904 2905 2906
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2907
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2908
    helper.append_op(
2909
        type=l_type,
Y
Yu Yang 已提交
2910 2911
        inputs={'Input': [input],
                'Filter': [img_filter]},
2912
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2913 2914 2915 2916
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2917
            'groups': groups,
C
chengduoZH 已提交
2918 2919
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2920

2921 2922
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2923
    return out
Y
yangyaming 已提交
2924 2925


Y
yangyaming 已提交
2926
def sequence_expand(x, y, ref_level=-1, name=None):
2927
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2928 2929 2930 2931
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2932 2933 2934 2935 2936

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2937
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2938
                x.data = [[a], [b], [c], [d]]
2939 2940 2941
                x.dims = [4, 1]

            y is a LoDTensor:
2942 2943
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2944

Y
yangyaming 已提交
2945
            ref_level: 0
2946

Y
yangyaming 已提交
2947
            then output is a 1-level LoDTensor:
2948
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2949
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2950 2951 2952 2953
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2954
                x.data = [[a], [b], [c]]
2955 2956 2957
                x.dims = [3, 1]

            y is a LoDTensor:
2958
                y.lod = [[2, 0, 3]]
2959

Y
yangyaming 已提交
2960
            ref_level: -1
2961

Y
yangyaming 已提交
2962 2963 2964
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2965 2966 2967
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2968 2969
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2970
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2971
                        will be named automatically.
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2982
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2983
    """
Y
yangyaming 已提交
2984
    helper = LayerHelper('sequence_expand', input=x, **locals())
2985
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2986
    tmp = helper.create_variable_for_type_inference(dtype)
2987
    helper.append_op(
Y
yangyaming 已提交
2988 2989 2990 2991 2992
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2993
    return tmp
2994 2995


C
chengduo 已提交
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3052
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3053 3054 3055 3056 3057 3058 3059 3060
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3061
@templatedoc()
3062
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3063 3064 3065 3066 3067
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3068 3069 3070
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3071
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3072 3073 3074 3075
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3076 3077 3078
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3079

F
fengjiayi 已提交
3080
    Returns:
M
minqiyang 已提交
3081
        Variable: The padded sequence batch and the original lengths before
3082
                  padding. All sequences has the same length.
M
minqiyang 已提交
3083

F
fengjiayi 已提交
3084 3085 3086 3087 3088 3089 3090
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3091
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3092
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3093 3094 3095 3096 3097
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3098 3099
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3100 3101 3102 3103

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3104 3105 3106 3107 3108 3109
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3110 3111
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3112
        attrs={'padded_length': maxlen})
3113
    return out, length
F
fengjiayi 已提交
3114 3115


3116
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3117
    """
3118
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3119

3120 3121
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3131 3132 3133
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3134
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3135 3136 3137 3138 3139 3140

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3141
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3142 3143 3144 3145 3146 3147

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3148 3149
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3164
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3176 3177 3178 3179 3180 3181 3182 3183 3184
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3185 3186
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3187 3188 3189

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3190 3191

    This layer does the search in beams for one time step. Specifically, it
3192 3193 3194 3195 3196 3197
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3198

3199 3200 3201 3202 3203 3204 3205 3206
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3207

3208
    Args:
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3234

3235
    Returns:
3236 3237
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3238 3239 3240 3241

    Examples:
        .. code-block:: python

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3259 3260 3261 3262
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3263 3264 3265
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3266 3267 3268 3269 3270

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3271
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3289 3290 3291 3292 3293 3294 3295
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3296

3297 3298 3299 3300 3301 3302 3303 3304 3305
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3306

3307 3308 3309 3310 3311 3312
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3313

3314 3315 3316 3317 3318 3319 3320 3321
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3322 3323
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3339 3340 3341 3342
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3343
              param_attr=None,
C
caoying03 已提交
3344 3345
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3346 3347 3348 3349
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3350
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3351

3352
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3353

3354
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3355

3356
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3357 3358 3359

            h_t & = o_t tanh(c_t)

3360 3361 3362 3363 3364 3365
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3366 3367 3368

        .. math::

3369
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3370 3371 3372 3373 3374 3375 3376 3377

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3378
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3379 3380

    Args:
Y
yangyaming 已提交
3381 3382 3383 3384 3385 3386
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3387
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3400 3401
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3402 3403

    Returns:
Y
yangyaming 已提交
3404
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3405 3406

    Raises:
3407 3408 3409 3410
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3411 3412 3413 3414 3415 3416

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3417
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3418
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3419
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3436
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3437 3438 3439 3440
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3441 3442
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3443 3444 3445
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3446
    size = cell_t_prev.shape[1]
3447
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3448 3449
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3450
                param_attr=param_attr,
3451
                bias_attr=bias_attr)
Y
yangyaming 已提交
3452
    dtype = x_t.dtype
X
Xin Pan 已提交
3453 3454
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3455 3456 3457 3458 3459 3460 3461 3462 3463

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3464
    return h, c
G
guosheng 已提交
3465 3466


C
caoying03 已提交
3467
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3468
    """
Y
yangyaming 已提交
3469
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3470 3471 3472

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3473
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3474 3475
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3476 3477
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3478
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3479
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3480
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3481 3482
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3483 3484 3485

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3486

G
guosheng 已提交
3487 3488 3489 3490 3491 3492
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3493
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3494 3495 3496 3497
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3498 3499 3500 3501

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3502
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3503 3504 3505
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3506 3507
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3508
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3509 3510
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3511 3512 3513 3514 3515
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3516
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3517 3518 3519 3520
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3521 3522


C
caoying03 已提交
3523
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3524
    """
Y
Yibing Liu 已提交
3525
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3526 3527 3528

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3529 3530 3531
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3532
            must be in the range :math:`[-rank(input), rank(input))`. If
3533
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3534
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3535 3536
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3537
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3538
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3539
                       will be named automatically.
G
guosheng 已提交
3540 3541

    Returns:
Y
Yibing Liu 已提交
3542
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3543

G
guosheng 已提交
3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3554 3555
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3556 3557 3558 3559 3560 3561 3562

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3563 3564
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3565
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3566 3567
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3568 3569 3570 3571 3572
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3573
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3574 3575 3576 3577
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3578 3579


C
caoying03 已提交
3580
def reduce_max(input, dim=None, keep_dim=False, name=None):
3581
    """
Y
yangyaming 已提交
3582
    Computes the maximum of tensor elements over the given dimension.
3583 3584 3585

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3586
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3587 3588 3589
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3590
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3591 3592
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3593
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3594 3595
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3596 3597 3598

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3599

3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3611 3612 3613 3614 3615 3616 3617

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3618 3619
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3620
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3621 3622
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3623 3624 3625 3626 3627
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3628
            'dim': dim if dim != None else [0],
3629 3630 3631 3632 3633 3634
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3635
def reduce_min(input, dim=None, keep_dim=False, name=None):
3636
    """
Y
yangyaming 已提交
3637
    Computes the minimum of tensor elements over the given dimension.
3638 3639 3640

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3641
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3642 3643 3644
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3645
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3646 3647
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3648
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3649 3650
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3651 3652 3653

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3654

3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3666 3667 3668 3669 3670 3671 3672

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3673 3674
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3675
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3676 3677
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3678 3679 3680 3681 3682
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3683
            'dim': dim if dim != None else [0],
3684 3685 3686 3687
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3688 3689


3690 3691 3692 3693 3694 3695
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3696
        dim (list|int|None): The dimensions along which the product is performed. If
3697 3698
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3699 3700
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3701 3702 3703
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3704
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3705
            layer will be named automatically.
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3720
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3721
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3722 3723 3724 3725 3726 3727 3728

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3729 3730
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3731
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3732 3733
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3734 3735 3736 3737 3738
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3739
            'dim': dim if dim != None else [0],
3740 3741 3742 3743 3744 3745
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3746
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3747
    """
C
caoying03 已提交
3748
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3749 3750 3751

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3752 3753 3754 3755 3756
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3757
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3758
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3759
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3760 3761
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3762 3763

    Returns:
D
dzhwinter 已提交
3764
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3765 3766 3767 3768 3769 3770 3771 3772 3773

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3774 3775
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3791
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3814
    .. math::
3815 3816

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3817 3818 3819 3820 3821

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3822
        x(Variable|list): The input tensor to l2_normalize layer.
3823
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3824 3825
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3826
        epsilon(float): The epsilon value is used to avoid division by zero, \
3827
            the defalut value is 1e-10.
3828
        name(str|None): A name for this layer(optional). If set None, the layer \
3829
            will be named automatically.
C
caoying03 已提交
3830 3831

    Returns:
3832
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3833 3834

    Examples:
3835

C
caoying03 已提交
3836 3837
        .. code-block:: python

3838 3839 3840 3841
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3842 3843
    """

F
fengjiayi 已提交
3844 3845
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3846 3847
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3848 3849
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3850
    helper.append_op(
3851 3852 3853 3854
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3855
        attrs={
3856 3857
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3858 3859
        })
    return out
3860 3861


S
sneaxiy 已提交
3862
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3863
    """
Y
ying 已提交
3864 3865 3866 3867
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3868

C
chengduoZH 已提交
3869
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3870
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3871

3872 3873 3874 3875 3876
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3877
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3878

C
chengduoZH 已提交
3879
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3880
      performs in the following way.
G
guosheng 已提交
3881

3882
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3883
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3884
        last two dimensions and a batched matrix multiply supporting broadcast
3885
        applies on the two tensors.
G
guosheng 已提交
3886

Y
ying 已提交
3887 3888
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3889
    removed after matrix multiplication.
G
guosheng 已提交
3890 3891 3892

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3893 3894 3895
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3896
        alpha (float): The scale of output. Default 1.0.
3897
        name(str|None): A name for this layer(optional). If set None, the layer
3898
            will be named automatically.
G
guosheng 已提交
3899 3900

    Returns:
3901
        Variable: The product Tensor variable.
G
guosheng 已提交
3902

G
guosheng 已提交
3903 3904 3905
    Examples:
        .. code-block:: python

3906
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3907 3908
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3909

3910 3911
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3912

3913 3914
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3915

3916 3917
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3918 3919 3920 3921

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3922 3923
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3924

Y
ying 已提交
3925
            # x: [M], y: [N]
3926
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3927
    """
Y
ying 已提交
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3940
            y_shape = y_shape + [1]
Y
ying 已提交
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3957
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3958
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3959
    helper.append_op(
3960 3961 3962 3963
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3964 3965 3966
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3967
            'alpha': float(alpha),
S
sneaxiy 已提交
3968
        })
3969
    return out
3970 3971


3972
def topk(input, k, name=None):
Q
qingqing01 已提交
3973 3974 3975 3976
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3977
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3978 3979 3980 3981 3982 3983
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4005 4006 4007
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4008
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4009
                 of input.
4010
        name(str|None): A name for this layer(optional). If set None, the layer
4011
                       will be named automatically.
F
fengjiayi 已提交
4012
                       Default: None
Q
qingqing01 已提交
4013 4014

    Returns:
4015 4016 4017
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4018
        within the last dimension of input.
Q
qingqing01 已提交
4019

F
fengjiayi 已提交
4020 4021
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4022 4023 4024 4025 4026 4027 4028

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4029 4030
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4042
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4043
    """
Y
ying 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4053

Y
ying 已提交
4054
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4055

4056
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4057 4058
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4059
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4060

4061
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4062 4063
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4064

4065 4066 4067
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4068
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4069
                          the length of reference string.
4070
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4071
                                     calculating edit distance.
4072
        name (str): The name of this layer. It is optional.
4073

W
wanghaoshuang 已提交
4074
    Returns:
W
wanghaoshuang 已提交
4075
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4076 4077 4078 4079

    Examples:
        .. code-block:: python

T
tink2123 已提交
4080 4081
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4082
            cost = fluid.layers.edit_distance(input=x,label=y)
4083
    """
4084
    helper = LayerHelper("edit_distance", **locals())
4085

4086
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4087
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4088 4089
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4090 4091 4092 4093 4094

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4095
            attrs={"tokens": ignored_tokens})
4096 4097 4098 4099 4100
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4101
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4102
            attrs={"tokens": ignored_tokens})
4103 4104
        label = erased_label

4105
    # edit distance op
X
Xin Pan 已提交
4106 4107
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4108 4109 4110 4111
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4112 4113
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4114 4115
        attrs={"normalized": normalized})

4116
    return edit_distance_out, sequence_num
4117 4118 4119 4120 4121


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4122

Y
ying 已提交
4123 4124 4125 4126
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4144
        input.lod = [[4, 4]]
4145 4146 4147 4148 4149 4150 4151

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4152
        output.lod = [[2, 1]]
4153 4154 4155

    Args:

Y
ying 已提交
4156 4157 4158 4159 4160 4161 4162 4163 4164
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4165
        name (str): The name of this layer. It is optional.
4166 4167

    Returns:
4168
        Variable: CTC greedy decode result. If all the sequences in result were
4169
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4170 4171 4172 4173 4174

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4175

4176
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4177
    """
4178
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4179
    _, topk_indices = topk(input, k=1)
4180 4181

    # ctc align op
X
Xin Pan 已提交
4182
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4183 4184 4185
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4186
        outputs={"Output": [ctc_out]},
4187 4188
        attrs={"merge_repeated": True,
               "blank": blank})
4189
    return ctc_out
4190 4191


W
Wu Yi 已提交
4192
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4193
    """
4194 4195
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4196
    to compute Connectionist Temporal Classification (CTC) loss.
4197 4198
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4199 4200 4201
    input tensor.

    Args:
4202
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4203 4204 4205 4206
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4207
       label (Variable): The ground truth of variable-length sequence,
4208 4209 4210
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4211 4212
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4213 4214 4215
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4216
         follewed by a mean_op.
W
Wu Yi 已提交
4217
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4218 4219

    Returns:
4220 4221
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4222 4223

    Examples:
4224

W
wanghaoshuang 已提交
4225
        .. code-block:: python
4226

4227 4228 4229
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4230 4231

    """
F
fengjiayi 已提交
4232
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4233 4234
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4235 4236 4237 4238 4239 4240
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4241 4242 4243 4244 4245
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4246
    return loss_out
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4262 4263 4264
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4265 4266 4267 4268 4269
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4270

4271
            out.lod  = [[0, 1, 3]]
4272 4273 4274 4275

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4276 4277 4278 4279 4280 4281 4282
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4283 4284 4285

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4286 4287

    Returns:
4288

4289 4290 4291 4292 4293
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4294
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4295
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4296 4297
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4298
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4299 4300 4301 4302 4303 4304
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4305 4306


4307 4308 4309 4310
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4311 4312 4313 4314 4315 4316
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4317
        num_neg_samples=None,
4318 4319 4320 4321
        name=None,
        sampler="uniform",
        custom_dist=None,
        seed=0):
4322 4323 4324 4325 4326 4327 4328
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4329 4330
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4331
            sample is 1.0.
C
chengduo 已提交
4332 4333 4334 4335 4336 4337 4338 4339 4340
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4341
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4342 4343
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4344 4345 4346 4347 4348 4349 4350 4351
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
        custom_dist (Variable): A tensor with shape [num_total_classes]. 
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
F
fengjiayi 已提交
4352

4353
    Returns:
Y
Yibing Liu 已提交
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
            
4391
    """
Y
Yang Yu 已提交
4392 4393 4394
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4395 4396

    dim = input.shape[1]
Y
Yang Yu 已提交
4397 4398 4399 4400 4401 4402
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4416 4417 4418
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4419

Y
Yang Yu 已提交
4420 4421 4422 4423 4424
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'Bias': b,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
        assert isinstance(custom_dist, Variable)
        inputs['CustomDistribution'] = custom_dist
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

Y
Yang Yu 已提交
4445 4446
    attrs = {
        'num_total_classes': int(num_total_classes),
4447 4448 4449
        'num_neg_samples': num_neg_samples,
        'seed': seed,
        'sampler': sampler
Y
Yang Yu 已提交
4450
    }
Y
Yang Yu 已提交
4451 4452 4453

    helper.append_op(
        type='nce',
C
chengduo 已提交
4454
        inputs=inputs,
Y
Yang Yu 已提交
4455 4456 4457 4458 4459 4460
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4461
    return cost / (num_neg_samples + 1)
4462 4463


C
chengduo 已提交
4464 4465 4466 4467 4468 4469
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4470 4471
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4472
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4473 4474 4475 4476 4477 4478 4479 4480 4481
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4482

W
weixing02 已提交
4483
    Args:
M
minqiyang 已提交
4484
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4485 4486 4487 4488 4489
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4501 4502 4503 4504 4505 4506 4507 4508

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4509 4510 4511
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4512 4513 4514 4515
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4516 4517
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4518 4519
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4520
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4521 4522 4523 4524 4525
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4526 4527 4528 4529 4530 4531 4532 4533
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4534 4535
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4536
        inputs=inputs,
W
weixing02 已提交
4537 4538 4539 4540 4541 4542
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4543
def transpose(x, perm, name=None):
Y
ying 已提交
4544 4545 4546 4547 4548 4549 4550
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4551 4552 4553
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4554 4555 4556 4557 4558 4559 4560

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4561 4562 4563 4564
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4565
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4566 4567
    """

Y
fix ci.  
ying 已提交
4568
    if len(perm) != len(x.shape):
Y
ying 已提交
4569 4570 4571
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4572 4573 4574 4575 4576 4577
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4578 4579

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4580 4581
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4582
    helper.append_op(
4583
        type='transpose2',
Y
fix ci.  
ying 已提交
4584
        inputs={'X': [x]},
4585 4586
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4587 4588
        attrs={'axis': perm})
    return out
4589 4590


4591 4592 4593 4594 4595 4596 4597
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4598
    """
4599 4600 4601 4602 4603 4604 4605
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4634 4635 4636 4637 4638 4639 4640 4641 4642
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4643 4644 4645
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4646 4647 4648 4649 4650
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4678 4679 4680
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4693
            output.dims = {8, 8}
4694

4695
            output.lod = [[4, 4]]
4696

D
dzhwinter 已提交
4697
     Examples:
4698 4699 4700

        .. code-block:: python

4701 4702
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4703 4704

    """
W
wanghaoshuang 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4715 4716 4717 4718 4719 4720 4721
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4722
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4723
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4724
    helper.append_op(
4725
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4726
    return out
4727 4728


Y
yuyang18 已提交
4729
@templatedoc()
4730
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4731 4732
    """
    ${comment}
4733 4734

    Args:
Y
yuyang18 已提交
4735
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4736 4737
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4738 4739 4740 4741 4742
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4743
        ${out_comment}.
4744 4745

    Examples:
Y
yuyang18 已提交
4746 4747 4748 4749
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4750 4751 4752 4753 4754 4755
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4756
    out = helper.create_variable_for_type_inference(dtype)
4757 4758 4759 4760 4761
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4762
    return helper.append_activation(out)
4763 4764


Y
yuyang18 已提交
4765
@templatedoc()
4766 4767
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4768 4769 4770 4771 4772 4773 4774
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4775 4776

    Args:
Y
yuyang18 已提交
4777 4778
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4779 4780

    Returns:
Y
yuyang18 已提交
4781
        ${out_comment}.
4782 4783
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4784 4785 4786 4787 4788

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4789
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4790 4791 4792 4793 4794 4795
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4796 4797


4798 4799 4800
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
4801
                               ignore_index=kIgnoreIndex,
4802 4803
                               numeric_stable_mode=False,
                               return_softmax=False):
4804 4805
    """
    **Softmax With Cross Entropy Operator.**
4806

4807 4808 4809 4810
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4811

4812 4813 4814
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4815

4816 4817 4818
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4819

4820
    The equation is as follows:
4821

4822
    1) Hard label (one-hot label, so every sample has exactly one class)
4823

4824 4825 4826 4827
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4828

4829 4830 4831
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4832

4833 4834 4835 4836
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
        
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4849 4850 4851 4852 4853 4854 4855 4856
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4857 4858
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4859
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4860 4861 4862 4863 4864 4865 4866
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
                                    When soft_label is True or CPU is used, 
                                    the algorithm is always numerically stable. 
                                    Note that the speed may be slower when use 
                                    stable algorithm. Default: False
4867 4868
        return_softmax (bool): A flag indicating whether to return the softmax 
                               along with the cross entropy loss. Default: False
4869

4870
    Returns:
4871 4872 4873 4874 4875
        Variable or Tuple of two Variables: Return the cross entropy loss if 
                              `return_softmax` is False, otherwise the tuple 
                              (loss, softmax), where the cross entropy loss is 
                              a 2-D tensor with shape [N x 1], and softmax is a 
                              2-D tensor with shape [N x K].
4876 4877 4878 4879 4880 4881 4882

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4883 4884
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4885 4886
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4887 4888
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4889 4890 4891 4892 4893 4894
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
4895 4896 4897 4898 4899
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
4900 4901 4902 4903

    if return_softmax:
        return loss, softmax

4904 4905 4906 4907 4908
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4909 4910
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4911
    For each instance, it computes the smooth L1 loss element by element first
4912
    and then sums all the losses. So the shape of ouput Variable is
4913
    [batch_size, 1].
4914

4915 4916
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4917
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4918
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4919
            L1 loss op with same shape as :attr:`x`.
4920
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4921 4922
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4923
            by this tensor element by element.
4924
        outside_weight (Variable|None): A tensor with rank at least 2. This
4925 4926
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4927
            element by element.
4928
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4929 4930
           scalar with default value 1.0.

4931
    Returns:
4932
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4933 4934 4935 4936 4937

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4938 4939
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4940
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4941
            out = fluid.layers.smooth_l1(x=fc, y=label)
4942
    """
4943

4944
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4945 4946
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4959 4960 4961 4962


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4963
    This layer creates the one-hot representations for input indices.
4964 4965

    Args:
Y
Yibing Liu 已提交
4966 4967
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4968 4969

    Returns:
Y
Yibing Liu 已提交
4970
        Variable: The one-hot representations of input.
4971 4972

    Examples:
C
caoying03 已提交
4973
        .. code-block:: python
4974

Y
Yibing Liu 已提交
4975 4976
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4977 4978
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4979
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4980 4981 4982 4983 4984 4985
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4986 4987


Y
Yu Yang 已提交
4988
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4989
    """
Y
yi.wu 已提交
4990 4991 4992
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4993 4994 4995 4996 4997 4998

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4999 5000
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5001 5002 5003 5004 5005 5006

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5007 5008
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5009 5010
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5011 5012 5013 5014 5015
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5016
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5017
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5018 5019
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5020 5021
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5022 5023 5024
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5025 5026


5027
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5028
    """
C
caoying03 已提交
5029 5030
    Gives a new shape to the input Tensor without changing its data.

5031 5032 5033 5034 5035
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5036

5037
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5038

5039 5040 5041 5042
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5043
    2. 0 means the actual dimension value is going to be copied from the
5044 5045 5046 5047
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5048 5049

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5050
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5051
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5052

5053
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5054 5055
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5056 5057
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5058
    dimensions.
C
caoying03 已提交
5059

5060
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5061 5062 5063 5064
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5065 5066

    Args:
5067
        x(variable): The input tensor.
C
caoying03 已提交
5068 5069
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5070 5071 5072 5073 5074
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5075 5076
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5077 5078 5079 5080 5081 5082 5083
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5084
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5085

5086
    Returns:
G
guosheng 已提交
5087 5088 5089 5090
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5091

X
Xin Pan 已提交
5092 5093 5094
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5095 5096
    Examples:
        .. code-block:: python
G
guosheng 已提交
5097

5098
            data = fluid.layers.data(
5099
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5100
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5101
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5102 5103 5104
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5105
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5106 5107 5108 5109 5110
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5111

5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5127
    helper = LayerHelper("reshape2", **locals())
5128 5129
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5130
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5131
    helper.append_op(
5132
        type="reshape2",
X
Xin Pan 已提交
5133
        inputs=inputs,
D
dzhwinter 已提交
5134
        attrs={"shape": shape},
5135 5136
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5137

D
dzhwinter 已提交
5138
    return helper.append_activation(out)
5139

5140

5141
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5142
    """
M
minqiyang 已提交
5143 5144 5145
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5146
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5147

Y
Yibing Liu 已提交
5148 5149
    Examples:
    Case 1:
M
minqiyang 已提交
5150
      Given
Y
Yibing Liu 已提交
5151 5152 5153 5154 5155 5156 5157 5158
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5159
        and
Y
Yibing Liu 已提交
5160 5161 5162
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5163

Y
Yibing Liu 已提交
5164
    Args:
5165
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5166
        axes (list): List of integers, indicating the dimensions to be squeezed.
5167
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5168 5169 5170 5171 5172 5173 5174 5175

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5176
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5177 5178
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5179 5180
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5181
    helper.append_op(
5182
        type="squeeze2",
5183
        inputs={"X": input},
Y
Yibing Liu 已提交
5184
        attrs={"axes": axes},
5185 5186
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5187

5188 5189 5190
    return out


5191
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5192
    """
M
minqiyang 已提交
5193 5194 5195
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5196

M
minqiyang 已提交
5197 5198
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5199
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5200

Y
Yibing Liu 已提交
5201
    Args:
5202
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5203
        axes (list): List of integers, indicating the dimensions to be inserted.
5204
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5205 5206 5207 5208 5209 5210 5211 5212

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5213
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5214 5215
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5216 5217
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5218
    helper.append_op(
5219
        type="unsqueeze2",
5220
        inputs={"X": input},
Y
Yibing Liu 已提交
5221
        attrs={"axes": axes},
5222 5223
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5224

5225 5226
    return out

5227

Y
yangyaming 已提交
5228
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5229
    """
Y
Yibing Liu 已提交
5230
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5231 5232 5233 5234
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5235
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5236 5237 5238 5239 5240 5241

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5242
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5243 5244 5245
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5246
            target_lod: [4, 2]
Y
yangyaming 已提交
5247 5248

            then we get a 1-level LoDTensor:
5249
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5250 5251 5252 5253 5254 5255
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5256
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5257 5258 5259 5260
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5261
                y.data = [[2, 4]]
Y
yangyaming 已提交
5262 5263 5264
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5265
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5266 5267 5268 5269 5270 5271
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5272
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5273 5274 5275 5276
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5277
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5278 5279 5280 5281
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5282
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5283 5284 5285 5286 5287
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5288
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5289
                           from :attr:`y`.
Y
yangyaming 已提交
5290
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5291
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5292 5293

    Returns:
Y
Yibing Liu 已提交
5294
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5295 5296

    Raises:
Y
Yibing Liu 已提交
5297
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5298 5299 5300 5301 5302 5303 5304 5305 5306

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5307
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5333
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5362 5363
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5376 5377 5378
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5392 5393 5394 5395


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5396
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5397
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5398

G
guosheng 已提交
5399 5400 5401 5402
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5425
                         The length of :attr:paddings must be
G
guosheng 已提交
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5436

G
guosheng 已提交
5437 5438 5439 5440 5441 5442
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5443
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5444 5445 5446 5447 5448 5449 5450
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5451 5452


C
chengduo 已提交
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5523
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5524 5525 5526 5527 5528 5529 5530 5531 5532
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5533 5534 5535 5536 5537 5538 5539
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5540 5541
    called label-smoothing regularization (LSR).

5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5565
                              be :math:`(1, class\_num)`.
5566 5567
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5568
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5588
    smooth_label = helper.create_variable_for_type_inference(dtype)
5589 5590 5591 5592 5593 5594 5595
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5596 5597


P
peizhilin 已提交
5598
if os.name != 'nt':
P
peizhilin 已提交
5599

P
peizhilin 已提交
5600
    @templatedoc()
P
peizhilin 已提交
5601 5602 5603 5604 5605
    def roi_pool(input,
                 rois,
                 pooled_height=1,
                 pooled_width=1,
                 spatial_scale=1.0):
P
peizhilin 已提交
5606 5607
        """
        ${comment}
5608

P
peizhilin 已提交
5609 5610 5611 5612 5613 5614
        Args:
            input (Variable): ${x_comment}
            rois (Variable): ROIs (Regions of Interest) to pool over.
            pooled_height (integer): ${pooled_height_comment} Default: 1
            pooled_width (integer): ${pooled_width_comment} Default: 1
            spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5615

P
peizhilin 已提交
5616 5617
        Returns:
            Variable: ${out_comment}.
5618

P
peizhilin 已提交
5619 5620
        Examples:
            .. code-block:: python
5621

P
peizhilin 已提交
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
                pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
        """
        helper = LayerHelper('roi_pool', **locals())
        dtype = helper.input_dtype()
        pool_out = helper.create_variable_for_type_inference(dtype)
        argmaxes = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type="roi_pool",
            inputs={"X": input,
                    "ROIs": rois},
            outputs={"Out": pool_out,
                     "Argmax": argmaxes},
            attrs={
                "pooled_height": pooled_height,
                "pooled_width": pooled_width,
                "spatial_scale": spatial_scale
            })
        return pool_out
W
whs 已提交
5640 5641


J
jerrywgz 已提交
5642 5643 5644 5645 5646 5647
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5648 5649
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5666 5667 5668
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5669 5670 5671 5672 5673 5674
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5675
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5716 5717
        .. code-block:: python

W
whs 已提交
5718 5719 5720 5721
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5722
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5723 5724 5725 5726 5727 5728
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5729 5730


5731 5732 5733 5734
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5735 5736
                 resample='BILINEAR',
                 actual_shape=None):
5737
    """
Q
qiaolongfei 已提交
5738
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5739

5740
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5741 5742 5743
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5744

5745
        'BILINEAR' : Bilinear interpolation
5746
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5747

5748
    Args:
5749
        input (Variable): The input tensor of image resize layer,
5750 5751
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5752
        out_shape(list|tuple|Variable|None): Output shape of image resize
5753 5754
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5755
        scale(float|None): The multiplier for the input height or width.
5756 5757 5758
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5759 5760
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5761 5762
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST' 
                       currently.
5763
                       Default: 'BILINEAR'
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
5777 5778

    Returns:
Q
update  
qiaolongfei 已提交
5779 5780
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5781

5782 5783 5784 5785 5786 5787 5788 5789
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
        ValueError: The 'resample' of image_resize can only be 'BILINEAR' 
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5790 5791 5792
    Examples:
        .. code-block:: python

5793
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
5794
    """
5795 5796 5797 5798
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5799 5800
    if resample not in resample_methods:
        raise ValueError(
5801
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5802
        )
5803
    if out_shape is None and scale is None:
5804
        raise ValueError("One of out_shape and scale must not be None.")
5805
    helper = LayerHelper('interpolate', **locals())
5806
    dtype = helper.input_dtype()
5807 5808 5809 5810

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5811 5812 5813
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5814
    if out_shape is not None:
5815 5816 5817 5818
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
5819
            inputs['OutSize'] = out_shape
5820 5821 5822 5823 5824 5825 5826 5827
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
5828 5829 5830 5831
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5832 5833 5834 5835 5836
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
5837
    out = helper.create_variable_for_type_inference(dtype)
5838
    helper.append_op(
5839
        type='interpolate',
5840
        inputs=inputs,
5841
        outputs={"Out": out},
5842 5843 5844 5845 5846
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_methods[resample]
        })
5847
    return out
F
stash  
fengjiayi 已提交
5848 5849


5850
@templatedoc(op_type="interpolate")
5851 5852 5853 5854 5855
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
5856
    """
5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
    Resize input by performing bilinear interpolation based on given 
    output shape which specified by actual_shape, out_shape and scale 
    in priority order.

    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5869 5870 5871 5872 5873

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5874

Y
yuyang18 已提交
5875 5876 5877 5878 5879
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5893 5894 5895

    Returns:
        ${out_comment}.
5896 5897 5898 5899 5900

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
5901 5902
    """

5903
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
5904 5905


5906
@templatedoc(op_type="interpolate")
5907 5908 5909 5910 5911
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
5912
    """
5913 5914 5915 5916 5917 5918 5919
    Resize input by performing nearest neighbor interpolation in both the
    3rd dimention(in height direction) and the 4th dimention(in width 
    direction) based on given output shape which specified by actual_shape, 
    out_shape and scale in priority order.

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
5920 5921 5922 5923 5924

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5925

Y
yuyang18 已提交
5926 5927 5928 5929 5930
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5944 5945 5946

    Returns:
        ${out_comment}.
5947 5948 5949 5950 5951

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
5952 5953
    """

5954
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
5955 5956 5957 5958


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5959 5960 5961
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5962 5963 5964 5965 5966 5967 5968
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5969
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5970

5971
    Returns:
Q
update  
qiaolongfei 已提交
5972
        Variable: The output is a 4-D tensor of the shape
5973
        (num_batches, channls, out_h, out_w).
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5984 5985 5986
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5987 5988 5989
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5990 5991
def gather(input, index):
    """
Q
qiaolongfei 已提交
5992 5993
    **Gather Layer**

5994
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5995 5996 5997 5998
    of X indexed by `index` and concatenate them together.

    .. math::

5999
        Out = X[Index]
W
whs 已提交
6000 6001 6002 6003 6004 6005 6006


    .. code-block:: text


                Given:

6007 6008
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6019
        input (Variable): The source input with rank>=1.
W
whs 已提交
6020 6021 6022 6023 6024 6025
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6026

W
whs 已提交
6027 6028 6029 6030 6031 6032
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6033
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6034 6035 6036 6037 6038 6039 6040 6041
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6073
    out = helper.create_variable_for_type_inference(dtype)
6074 6075 6076 6077 6078 6079 6080 6081 6082
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6133
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6134 6135 6136 6137 6138 6139 6140 6141 6142
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6156

6157 6158 6159
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6160
    """
F
stash  
fengjiayi 已提交
6161
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6162
    dtype = x.dtype
X
Xin Pan 已提交
6163
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6164
    if seed is None:
6165
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6166
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6167
    if isinstance(seed, int):
F
fengjiayi 已提交
6168 6169 6170 6171 6172
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6173 6174 6175 6176
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6177
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6178 6179
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6180 6181
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6182
    return out
W
whs 已提交
6183 6184


6185
def log(x, name=None):
W
wanghaoshuang 已提交
6186 6187 6188 6189 6190
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6191
        Out = \\ln(x)
W
wanghaoshuang 已提交
6192 6193

    Args:
6194
        x (Variable): Input tensor.
6195 6196
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6197 6198 6199 6200 6201 6202 6203 6204

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6205
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6206 6207
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6208
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6209
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6210
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6211 6212 6213
    return out


6214
def relu(x, name=None):
W
wanghaoshuang 已提交
6215 6216
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6217
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6218 6219 6220 6221
    the tensor elementwise.

    .. math::

6222
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6223 6224

    Args:
6225
        x (Variable): The input tensor.
6226 6227
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6228 6229 6230 6231 6232 6233 6234 6235

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6236
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6237 6238
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6239
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6240
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6241
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6242
    return out
6243 6244


C
chengduo 已提交
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6286 6287 6288
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6289 6290 6291 6292
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6293
    .. math::
6294 6295

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6296

6297
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6298 6299 6300 6301 6302
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6303
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6304
                           Its shape should be the same as input.
6305
        num_classes (int): The possible number of labels.
W
whs 已提交
6306 6307 6308 6309

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6310
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6311 6312 6313 6314

    Examples:

        .. code-block:: python
6315

W
whs 已提交
6316 6317 6318 6319
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6320 6321 6322
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6323 6324
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6325 6326
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6327
        outputs={
W
whs 已提交
6328 6329 6330
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6331 6332 6333
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6408
                    isinstance(shape, Variable)):
6409 6410 6411 6412 6413
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6414
    out = helper.create_variable_for_type_inference(x.dtype)
6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6432 6433


W
whs 已提交
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
      
              out_shape = [2, 3, 5, 5]
      
          Step 1:
      
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
      
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6552 6553 6554 6555 6556 6557 6558 6559
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6560

6561 6562
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6563

6564 6565 6566 6567
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6568

6569 6570 6571 6572 6573
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6574 6575 6576

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6612
    out = helper.create_variable_for_type_inference("float32")
6613 6614 6615 6616 6617 6618 6619 6620

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6621 6622


M
minqiyang 已提交
6623 6624
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6625
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6626
    which compares left score and right score passed in.
M
minqiyang 已提交
6627
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6628 6629 6630 6631 6632 6633

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6634
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6635 6636
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6637
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6638 6639 6640
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6641
       Variable: The ranking loss.
M
minqiyang 已提交
6642
    Raises:
M
minqiyang 已提交
6643
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6644 6645 6646 6647 6648 6649 6650
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6651
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6652 6653 6654 6655 6656 6657
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6658 6659
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6685

W
whs 已提交
6686 6687
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6688

W
whs 已提交
6689
      Case 0:
M
minqiyang 已提交
6690

W
whs 已提交
6691 6692 6693
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6694

W
whs 已提交
6695 6696 6697
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6698

W
whs 已提交
6699
      Case 1:
M
minqiyang 已提交
6700

W
whs 已提交
6701 6702
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6703

W
whs 已提交
6704 6705 6706
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6707

W
whs 已提交
6708
      Case 2:
M
minqiyang 已提交
6709

W
whs 已提交
6710 6711
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6712

W
whs 已提交
6713 6714 6715
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6716 6717


W
whs 已提交
6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6744
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6773
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6796
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6819
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6843
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6868
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6892
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6893 6894 6895 6896 6897 6898 6899 6900
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6915
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6916
                        will be named automatically.
J
jerrywgz 已提交
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
6939
        attr=helper.param_attr,
J
jerrywgz 已提交
6940 6941 6942 6943
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6944
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6945 6946 6947 6948 6949 6950 6951 6952 6953
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6964
    Returns:
6965
        output(${out_type}): ${out_comment}
6966 6967 6968 6969 6970 6971 6972

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
6973 6974
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6975
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6994
    Returns:
6995
        output(${out_type}): ${out_comment}
6996 6997 6998 6999 7000 7001 7002

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7003 7004
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7005
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7023
    Returns:
7024
        output(${out_type}): ${out_comment}
7025 7026 7027 7028 7029 7030 7031

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7032 7033
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7034
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7035 7036 7037 7038 7039 7040 7041 7042
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7056

7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7067 7068
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7084
        ValueError: If axis is not in range [0, rank(x)].
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7101 7102
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7103
    helper.append_op(
7104
        type='flatten2',
7105
        inputs={"X": x},
7106 7107
        outputs={'Out': out,
                 'XShape': x_shape},
7108 7109
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7110 7111


C
chenweihang 已提交
7112
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7113
    """
C
chenweihang 已提交
7114
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7115
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7116 7117
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7118

C
chenweihang 已提交
7119 7120 7121 7122
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7123
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7124 7125 7126 7127 7128 7129
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7130
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7131 7132 7133
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7134 7135 7136
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7148 7149
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7150 7151 7152 7153 7154 7155
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7156
    return out
7157

7158

S
sneaxiy 已提交
7159 7160 7161 7162 7163 7164 7165 7166 7167
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7168

S
sneaxiy 已提交
7169
    .. math::
7170

S
sneaxiy 已提交
7171 7172 7173
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7174
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7175 7176 7177 7178
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7179 7180 7181
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7182 7183
    Returns:
        Variable: The output sequence mask.
7184

S
sneaxiy 已提交
7185 7186
    """

Q
qingqing01 已提交
7187
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7188
    if name is None:
X
Xin Pan 已提交
7189
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7190
    else:
X
Xin Pan 已提交
7191
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7192

Q
qingqing01 已提交
7193 7194 7195
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7196 7197
        outputs={'Y': out},
        attrs={
7198
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7199 7200 7201
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7202 7203


X
Xin Pan 已提交
7204
def stack(x, axis=0):
S
sneaxiy 已提交
7205 7206 7207 7208
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7209 7210 7211 7212 7213 7214 7215

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7216
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7217
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7218 7219

    Args:
7220
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7221
        axis (int|None): The axis along which all inputs are stacked.
7222

S
sneaxiy 已提交
7223 7224
    Returns:
        Variable: The stacked variable.
7225

S
sneaxiy 已提交
7226 7227
    """

X
Xin Pan 已提交
7228 7229 7230 7231 7232 7233
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7234
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7235
    helper.append_op(
S
sneaxiy 已提交
7236 7237
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7238

X
Xin Pan 已提交
7239
    return out
D
dzhwinter 已提交
7240 7241 7242 7243 7244 7245 7246


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7247

D
dzhwinter 已提交
7248 7249 7250
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7251
    raised.
D
dzhwinter 已提交
7252 7253

    Args:
M
minqiyang 已提交
7254
        x (Variable): Input variable.
D
dzhwinter 已提交
7255 7256
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7257

D
dzhwinter 已提交
7258 7259
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7260

D
dzhwinter 已提交
7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7272
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7273 7274 7275 7276 7277 7278 7279 7280

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7293

W
whs 已提交
7294 7295 7296 7297
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7298

W
whs 已提交
7299
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7300

W
whs 已提交
7301
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7302

W
whs 已提交
7303 7304 7305 7306
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7307

W
whs 已提交
7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7324
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7325 7326 7327 7328 7329 7330
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7331 7332


G
fix  
gongweibao 已提交
7333 7334 7335
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7336
@templatedoc()
G
fix  
gongweibao 已提交
7337 7338 7339 7340 7341 7342 7343 7344 7345
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7346
    ${comment}
G
fix  
gongweibao 已提交
7347 7348

    Args:
G
gongweibao 已提交
7349 7350 7351
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7352
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7353 7354 7355
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7356 7357
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7358
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7359 7360 7361 7362

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7363
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7380 7381


G
gongweibao 已提交
7382
@templatedoc()
X
Xin Pan 已提交
7383
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7384
    """
G
gongweibao 已提交
7385
    ${comment}
G
fix  
gongweibao 已提交
7386 7387

    Args:
G
gongweibao 已提交
7388 7389 7390 7391
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7392 7393 7394
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7395
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7396 7397 7398 7399

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7400
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7411
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7412 7413 7414 7415 7416
        })

    return out


G
gongweibao 已提交
7417
@templatedoc()
G
fix  
gongweibao 已提交
7418
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7419
    """
G
gongweibao 已提交
7420
    ${comment}
G
fix  
gongweibao 已提交
7421 7422

    Args:
G
gongweibao 已提交
7423 7424 7425 7426
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7427
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7428 7429

    Returns:
G
gongweibao 已提交
7430
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7431 7432 7433 7434

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7435
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7447
@templatedoc()
G
fix  
gongweibao 已提交
7448 7449 7450 7451 7452 7453 7454 7455 7456
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7457
    ${comment}
G
fix  
gongweibao 已提交
7458 7459

    Args:
G
gongweibao 已提交
7460 7461
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7462
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7463 7464 7465 7466
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7467
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7468 7469

    Returns:
G
gongweibao 已提交
7470
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7471 7472 7473
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7474
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7493
@templatedoc()
X
Xin Pan 已提交
7494
def sum(x):
G
fix  
gongweibao 已提交
7495
    """
G
gongweibao 已提交
7496
    ${comment}
G
fix  
gongweibao 已提交
7497 7498

    Args:
G
gongweibao 已提交
7499
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7500 7501

    Returns:
G
gongweibao 已提交
7502
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7503 7504 7505
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7506 7507
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7508 7509 7510 7511
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7512
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7513 7514 7515 7516

    return out


G
gongweibao 已提交
7517
@templatedoc()
G
fix  
gongweibao 已提交
7518 7519
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7520
    ${comment}
G
fix  
gongweibao 已提交
7521 7522

    Args:
G
gongweibao 已提交
7523 7524 7525 7526
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7527 7528

    Returns:
G
gongweibao 已提交
7529
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7530 7531 7532 7533

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7534 7535
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7547
@templatedoc()
G
fix  
gongweibao 已提交
7548 7549
def shape(input):
    """
G
gongweibao 已提交
7550
    ${comment}
G
fix  
gongweibao 已提交
7551 7552

    Args:
G
gongweibao 已提交
7553
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7554 7555

    Returns:
G
gongweibao 已提交
7556
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7557 7558 7559 7560

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7561 7562
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7563
    helper.append_op(
G
fix  
gongweibao 已提交
7564
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7565 7566

    return out
G
merge  
gongweibao 已提交
7567 7568


S
sneaxiy 已提交
7569 7570 7571 7572 7573 7574 7575 7576
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7577 7578
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7579
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7580 7581 7582
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7583

S
sneaxiy 已提交
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7595
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7596 7597 7598 7599 7600 7601 7602 7603
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7604
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7605
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7606 7607 7608 7609 7610 7611

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7612
    if name is None:
X
Xin Pan 已提交
7613
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7614 7615 7616
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7617 7618 7619 7620 7621 7622 7623 7624 7625 7626

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7627
    return helper.append_activation(out)
S
sneaxiy 已提交
7628 7629


X
Xin Pan 已提交
7630
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7631 7632 7633
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7634
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7635 7636 7637
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7638
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7639 7640 7641
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7642
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7643 7644 7645
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7646
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7647 7648 7649
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7650
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7651 7652 7653
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7654
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7666 7667
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7668
        ])
M
minqiyang 已提交
7669 7670


7671
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7672 7673
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7674 7675
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7676 7677 7678

    if out is None:
        if name is None:
X
Xin Pan 已提交
7679
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7695
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7714
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7733
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7752
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7787 7788 7789 7790
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7819 7820 7821 7822
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7823 7824 7825 7826 7827 7828 7829 7830

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7849
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7879
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7880 7881 7882 7883 7884 7885 7886 7887 7888
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7889 7890
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7891 7892 7893 7894 7895 7896
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
7897 7898 7899 7900
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
7901 7902 7903 7904 7905 7906
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
7907
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
7908 7909 7910 7911 7912 7913 7914 7915 7916
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7917
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7918 7919 7920 7921 7922 7923 7924 7925
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
7926
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7947
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7948 7949 7950 7951 7952 7953 7954 7955 7956 7957
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7958 7959


J
JiabinYang 已提交
7960
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
7961
    """
J
JiabinYang 已提交
7962
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
J
JiabinYang 已提交
7963
    
J
JiabinYang 已提交
7964
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the 
J
JiabinYang 已提交
7965
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension. 
J
JiabinYang 已提交
7966
    The attr blocksize indicates the input block size.
J
JiabinYang 已提交
7967 7968
    
    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according 
J
JiabinYang 已提交
7969
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
7970 7971 7972
    
    space_to_depth is used to This operation is useful for resizing the activations between convolutions 
    (but keeping all data)
J
JiabinYang 已提交
7973

J
JiabinYang 已提交
7974 7975 7976 7977 7978 7979 7980
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The depth of the output tensor is block_size * block_size * input channel 
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
7981
    Args:
J
JiabinYang 已提交
7982
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
7983
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
7984 7985

    Returns:
J
JiabinYang 已提交
7986
        Variable: The output LoDtensor.
J
JiabinYang 已提交
7987 7988

    Raises:
J
JiabinYang 已提交
7989
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
7990 7991 7992 7993 7994 7995

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
7996
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
7997
                x=data, blocksize=2)
J
JiabinYang 已提交
7998 7999
    """

J
JiabinYang 已提交
8000
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8001

J
JiabinYang 已提交
8002 8003
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8004 8005

    if name is None:
J
JiabinYang 已提交
8006 8007
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8008 8009 8010 8011 8012
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8013
        type="space_to_depth",
J
JiabinYang 已提交
8014
        inputs={"X": x},
J
JiabinYang 已提交
8015
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8016
        outputs={"Out": out})
J
JiabinYang 已提交
8017 8018
    return out

J
JiabinYang 已提交
8019

S
sneaxiy 已提交
8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8034
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8035 8036 8037 8038 8039 8040 8041 8042 8043 8044
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8045 8046


8047 8048 8049 8050 8051 8052
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8053

8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8073
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8086 8087


B
barrierye 已提交
8088 8089
def similarity_focus(input, axis, indexes, name=None):
    """  
B
barrierye 已提交
8090
    SimilarityFocus Operator
B
barrierye 已提交
8091 8092

    Generate a similarity focus mask with the same shape of input using the following method:
B
barrierye 已提交
8093
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding 
B
barrierye 已提交
8094
       to the axis according to the indexes. For example, if axis=1 and indexes=[a], 
B
barrierye 已提交
8095
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X 
B
barrierye 已提交
8096 8097 8098 8099
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
    2. For each index, find the largest numbers in the tensor T, so that the same 
       row and same column has at most one number(what it means is that if the 
       largest number has been found in the i-th row and the j-th column, then 
B
barrierye 已提交
8100 8101 8102
       the numbers in the i-th row or j-th column will be skipped. And then the 
       next largest number will be selected from the remaining numbers. Obviously 
       there will be min(B, C) numbers), and mark the corresponding position of the 
B
barrierye 已提交
8103 8104
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for 
       each index.
B
barrierye 已提交
8105 8106 8107 8108
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8158 8159 8160
    Args:
        input(Variable): The input tensor variable(default float). It should 
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8161
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8162
            1, 2 or 3.
B
barrierye 已提交
8163
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8164 8165 8166 8167 8168 8169 8170 8171

    Returns:
        Variable: A tensor variable with the same shape and same type 
            as the input.
        
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8172 8173
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8186 8187 8188 8189 8190
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8191 8192 8193 8194 8195 8196 8197
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8198 8199


M
minqiyang 已提交
8200 8201
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8202 8203
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8204 8205
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8244
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8245
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8246 8247 8248 8249 8250 8251 8252 8253 8254

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8255 8256
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8257 8258
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8259 8260 8261 8262 8263 8264 8265
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8266 8267


D
dengkaipeng 已提交
8268
@templatedoc()
8269 8270
def grid_sampler(x, grid, name=None):
    """
8271 8272 8273 8274 8275 8276 8277
    This operation samples input X by using bilinear interpolation based on 
    flow field grid, which is usually gennerated by affine_grid. The grid of
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
    (in width dimension) of input data x and grid_y is indexng the 3rd 
    dimention (in height dimension), finally results is the bilinear 
    interpolation value of 4 nearest corner points.
8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8316 8317

    Args:
8318 8319 8320
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8321 8322

    Returns:
8323 8324 8325 8326 8327 8328 8329 8330 8331 8332
        out(Variable): Output of shape [N, C, H, W] data samples input X 
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8333 8334 8335 8336 8337 8338 8339 8340 8341
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8342
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8343 8344
    ipts = {'X': x, 'Grid': grid}

8345
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8346 8347 8348
    return out


G
gmcather 已提交
8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8443 8444 8445 8446 8447 8448 8449 8450 8451 8452


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8453
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8454

Q
Qiao Longfei 已提交
8455
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8456 8457 8458
    For example:

    .. math::
8459
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8460

Q
Qiao Longfei 已提交
8461
    In this formula:
8462 8463
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8464
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8465
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8466 8467 8468
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8469 8470
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8471 8472 8473
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8474
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8475
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8476
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8477 8478 8479 8480
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8481
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8482 8483 8484 8485

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8486
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8487 8488
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8489
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8490 8491 8492 8493

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8494
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)