提交 559d3632 编写于 作者: M minqiyang

Apply 2to3 to current paddle main python code

上级 3ade95d0
...@@ -394,8 +394,10 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -394,8 +394,10 @@ All parameter, weight, gradient are variables in Paddle.
InferenceOptimize(*(origin.Proto()), &pruned_desc); InferenceOptimize(*(origin.Proto()), &pruned_desc);
return new ProgramDesc(pruned_desc); return new ProgramDesc(pruned_desc);
}); });
m.def("empty_var_name", []() { return framework::kEmptyVarName; }); m.def("empty_var_name",
m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; }); []() { return std::string(framework::kEmptyVarName); });
m.def("grad_var_suffix",
[]() { return std::string(framework::kGradVarSuffix); });
m.def_submodule( m.def_submodule(
"var_names", "var_names",
"The module will return special predefined variable name in Paddle") "The module will return special predefined variable name in Paddle")
......
...@@ -28,7 +28,7 @@ images per class. ...@@ -28,7 +28,7 @@ images per class.
""" """
import cPickle import pickle
import itertools import itertools
import numpy import numpy
import paddle.dataset.common import paddle.dataset.common
...@@ -48,7 +48,7 @@ def reader_creator(filename, sub_name, cycle=False): ...@@ -48,7 +48,7 @@ def reader_creator(filename, sub_name, cycle=False):
data = batch['data'] data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None)) labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None assert labels is not None
for sample, label in itertools.izip(data, labels): for sample, label in zip(data, labels):
yield (sample / 255.0).astype(numpy.float32), int(label) yield (sample / 255.0).astype(numpy.float32), int(label)
def reader(): def reader():
...@@ -58,7 +58,7 @@ def reader_creator(filename, sub_name, cycle=False): ...@@ -58,7 +58,7 @@ def reader_creator(filename, sub_name, cycle=False):
while True: while True:
for name in names: for name in names:
batch = cPickle.load(f.extractfile(name)) batch = pickle.load(f.extractfile(name))
for item in read_batch(batch): for item in read_batch(batch):
yield item yield item
if not cycle: if not cycle:
......
...@@ -20,9 +20,9 @@ import shutil ...@@ -20,9 +20,9 @@ import shutil
import sys import sys
import importlib import importlib
import paddle.dataset import paddle.dataset
import cPickle import pickle
import glob import glob
import cPickle as pickle import pickle as pickle
__all__ = [ __all__ = [
'DATA_HOME', 'DATA_HOME',
...@@ -75,13 +75,13 @@ def download(url, module_name, md5sum, save_name=None): ...@@ -75,13 +75,13 @@ def download(url, module_name, md5sum, save_name=None):
retry_limit = 3 retry_limit = 3
while not (os.path.exists(filename) and md5file(filename) == md5sum): while not (os.path.exists(filename) and md5file(filename) == md5sum):
if os.path.exists(filename): if os.path.exists(filename):
print "file md5", md5file(filename), md5sum print(("file md5", md5file(filename), md5sum))
if retry < retry_limit: if retry < retry_limit:
retry += 1 retry += 1
else: else:
raise RuntimeError("Cannot download {0} within retry limit {1}". raise RuntimeError("Cannot download {0} within retry limit {1}".
format(url, retry_limit)) format(url, retry_limit))
print "Cache file %s not found, downloading %s" % (filename, url) print(("Cache file %s not found, downloading %s" % (filename, url)))
r = requests.get(url, stream=True) r = requests.get(url, stream=True)
total_length = r.headers.get('content-length') total_length = r.headers.get('content-length')
...@@ -104,8 +104,9 @@ def download(url, module_name, md5sum, save_name=None): ...@@ -104,8 +104,9 @@ def download(url, module_name, md5sum, save_name=None):
def fetch_all(): def fetch_all():
for module_name in filter(lambda x: not x.startswith("__"), for module_name in [
dir(paddle.dataset)): x for x in dir(paddle.dataset) if not x.startswith("__")
]:
if "fetch" in dir( if "fetch" in dir(
importlib.import_module("paddle.dataset.%s" % module_name)): importlib.import_module("paddle.dataset.%s" % module_name)):
getattr( getattr(
...@@ -114,8 +115,9 @@ def fetch_all(): ...@@ -114,8 +115,9 @@ def fetch_all():
def fetch_all_recordio(path): def fetch_all_recordio(path):
for module_name in filter(lambda x: not x.startswith("__"), for module_name in [
dir(paddle.dataset)): x for x in dir(paddle.dataset) if not x.startswith("__")
]:
if "convert" in dir( if "convert" in dir(
importlib.import_module("paddle.dataset.%s" % module_name)) and \ importlib.import_module("paddle.dataset.%s" % module_name)) and \
not module_name == "common": not module_name == "common":
...@@ -126,7 +128,7 @@ def fetch_all_recordio(path): ...@@ -126,7 +128,7 @@ def fetch_all_recordio(path):
"convert")(ds_path) "convert")(ds_path)
def split(reader, line_count, suffix="%05d.pickle", dumper=cPickle.dump): def split(reader, line_count, suffix="%05d.pickle", dumper=pickle.dump):
""" """
you can call the function as: you can call the function as:
...@@ -167,7 +169,7 @@ def split(reader, line_count, suffix="%05d.pickle", dumper=cPickle.dump): ...@@ -167,7 +169,7 @@ def split(reader, line_count, suffix="%05d.pickle", dumper=cPickle.dump):
def cluster_files_reader(files_pattern, def cluster_files_reader(files_pattern,
trainer_count, trainer_count,
trainer_id, trainer_id,
loader=cPickle.load): loader=pickle.load):
""" """
Create a reader that yield element from the given files, select Create a reader that yield element from the given files, select
a file set according trainer count and trainer_id a file set according trainer count and trainer_id
...@@ -188,7 +190,7 @@ def cluster_files_reader(files_pattern, ...@@ -188,7 +190,7 @@ def cluster_files_reader(files_pattern,
my_file_list = [] my_file_list = []
for idx, fn in enumerate(file_list): for idx, fn in enumerate(file_list):
if idx % trainer_count == trainer_id: if idx % trainer_count == trainer_id:
print "append file: %s" % fn print(("append file: %s" % fn))
my_file_list.append(fn) my_file_list.append(fn)
for fn in my_file_list: for fn in my_file_list:
with open(fn, "r") as f: with open(fn, "r") as f:
...@@ -221,7 +223,7 @@ def convert(output_path, reader, line_count, name_prefix): ...@@ -221,7 +223,7 @@ def convert(output_path, reader, line_count, name_prefix):
for l in lines: for l in lines:
# FIXME(Yancey1989): # FIXME(Yancey1989):
# dumps with protocol: pickle.HIGHEST_PROTOCOL # dumps with protocol: pickle.HIGHEST_PROTOCOL
writer.write(cPickle.dumps(l)) writer.write(pickle.dumps(l))
writer.close() writer.close()
lines = [] lines = []
......
...@@ -87,12 +87,12 @@ def corpus_reader(data_path, words_name, props_name): ...@@ -87,12 +87,12 @@ def corpus_reader(data_path, words_name, props_name):
sentences = [] sentences = []
labels = [] labels = []
one_seg = [] one_seg = []
for word, label in itertools.izip(words_file, props_file): for word, label in zip(words_file, props_file):
word = word.strip() word = word.strip()
label = label.strip().split() label = label.strip().split()
if len(label) == 0: # end of sentence if len(label) == 0: # end of sentence
for i in xrange(len(one_seg[0])): for i in range(len(one_seg[0])):
a_kind_lable = [x[i] for x in one_seg] a_kind_lable = [x[i] for x in one_seg]
labels.append(a_kind_lable) labels.append(a_kind_lable)
......
...@@ -28,10 +28,10 @@ Graphics and Image Processing (2008) ...@@ -28,10 +28,10 @@ Graphics and Image Processing (2008)
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}. http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.
""" """
import cPickle import pickle
import itertools import itertools
import functools import functools
from common import download from .common import download
import tarfile import tarfile
import scipy.io as scio import scipy.io as scio
from paddle.dataset.image import * from paddle.dataset.image import *
...@@ -116,10 +116,10 @@ def reader_creator(data_file, ...@@ -116,10 +116,10 @@ def reader_creator(data_file,
file = file.strip() file = file.strip()
batch = None batch = None
with open(file, 'r') as f: with open(file, 'r') as f:
batch = cPickle.load(f) batch = pickle.load(f)
data = batch['data'] data = batch['data']
labels = batch['label'] labels = batch['label']
for sample, label in itertools.izip(data, batch['label']): for sample, label in zip(data, batch['label']):
yield sample, int(label) - 1 yield sample, int(label) - 1
if not cycle: if not cycle:
break break
......
...@@ -36,7 +36,7 @@ except ImportError: ...@@ -36,7 +36,7 @@ except ImportError:
cv2 = None cv2 = None
import os import os
import tarfile import tarfile
import cPickle import pickle
__all__ = [ __all__ = [
"load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop", "load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop",
...@@ -86,10 +86,10 @@ def batch_images_from_tar(data_file, ...@@ -86,10 +86,10 @@ def batch_images_from_tar(data_file,
output = {} output = {}
output['label'] = labels output['label'] = labels
output['data'] = data output['data'] = data
cPickle.dump( pickle.dump(
output, output,
open('%s/batch_%d' % (out_path, file_id), 'w'), open('%s/batch_%d' % (out_path, file_id), 'w'),
protocol=cPickle.HIGHEST_PROTOCOL) protocol=pickle.HIGHEST_PROTOCOL)
file_id += 1 file_id += 1
data = [] data = []
labels = [] labels = []
...@@ -97,10 +97,10 @@ def batch_images_from_tar(data_file, ...@@ -97,10 +97,10 @@ def batch_images_from_tar(data_file,
output = {} output = {}
output['label'] = labels output['label'] = labels
output['data'] = data output['data'] = data
cPickle.dump( pickle.dump(
output, output,
open('%s/batch_%d' % (out_path, file_id), 'w'), open('%s/batch_%d' % (out_path, file_id), 'w'),
protocol=cPickle.HIGHEST_PROTOCOL) protocol=pickle.HIGHEST_PROTOCOL)
with open(meta_file, 'a') as meta: with open(meta_file, 'a') as meta:
for file in os.listdir(out_path): for file in os.listdir(out_path):
......
...@@ -42,13 +42,13 @@ def tokenize(pattern): ...@@ -42,13 +42,13 @@ def tokenize(pattern):
# sequential access of member files, other than # sequential access of member files, other than
# tarfile.extractfile, which does random access and might # tarfile.extractfile, which does random access and might
# destroy hard disks. # destroy hard disks.
tf = tarf.next() tf = next(tarf)
while tf != None: while tf != None:
if bool(pattern.match(tf.name)): if bool(pattern.match(tf.name)):
# newline and punctuations removal and ad-hoc tokenization. # newline and punctuations removal and ad-hoc tokenization.
yield tarf.extractfile(tf).read().rstrip("\n\r").translate( yield tarf.extractfile(tf).read().rstrip("\n\r").translate(
None, string.punctuation).lower().split() None, string.punctuation).lower().split()
tf = tarf.next() tf = next(tarf)
def build_dict(pattern, cutoff): def build_dict(pattern, cutoff):
...@@ -62,11 +62,11 @@ def build_dict(pattern, cutoff): ...@@ -62,11 +62,11 @@ def build_dict(pattern, cutoff):
word_freq[word] += 1 word_freq[word] += 1
# Not sure if we should prune less-frequent words here. # Not sure if we should prune less-frequent words here.
word_freq = filter(lambda x: x[1] > cutoff, word_freq.items()) word_freq = [x for x in list(word_freq.items()) if x[1] > cutoff]
dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0])) dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*dictionary)) words, _ = list(zip(*dictionary))
word_idx = dict(zip(words, xrange(len(words)))) word_idx = dict(list(zip(words, list(range(len(words))))))
word_idx['<unk>'] = len(words) word_idx['<unk>'] = len(words)
return word_idx return word_idx
......
...@@ -64,11 +64,11 @@ def build_dict(min_word_freq=50): ...@@ -64,11 +64,11 @@ def build_dict(min_word_freq=50):
# remove <unk> for now, since we will set it as last index # remove <unk> for now, since we will set it as last index
del word_freq['<unk>'] del word_freq['<unk>']
word_freq = filter(lambda x: x[1] > min_word_freq, word_freq.items()) word_freq = [x for x in list(word_freq.items()) if x[1] > min_word_freq]
word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0])) word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*word_freq_sorted)) words, _ = list(zip(*word_freq_sorted))
word_idx = dict(zip(words, xrange(len(words)))) word_idx = dict(list(zip(words, list(range(len(words))))))
word_idx['<unk>'] = len(words) word_idx['<unk>'] = len(words)
return word_idx return word_idx
......
...@@ -65,7 +65,7 @@ def reader_creator(image_filename, label_filename, buffer_size): ...@@ -65,7 +65,7 @@ def reader_creator(image_filename, label_filename, buffer_size):
images = images / 255.0 * 2.0 - 1.0 images = images / 255.0 * 2.0 - 1.0
for i in xrange(buffer_size): for i in range(buffer_size):
yield images[i, :], int(labels[i]) yield images[i, :], int(labels[i])
finally: finally:
try: try:
......
...@@ -187,7 +187,7 @@ def max_movie_id(): ...@@ -187,7 +187,7 @@ def max_movie_id():
Get the maximum value of movie id. Get the maximum value of movie id.
""" """
__initialize_meta_info__() __initialize_meta_info__()
return reduce(__max_index_info__, MOVIE_INFO.viewvalues()).index return reduce(__max_index_info__, list(MOVIE_INFO.values())).index
def max_user_id(): def max_user_id():
...@@ -195,7 +195,7 @@ def max_user_id(): ...@@ -195,7 +195,7 @@ def max_user_id():
Get the maximum value of user id. Get the maximum value of user id.
""" """
__initialize_meta_info__() __initialize_meta_info__()
return reduce(__max_index_info__, USER_INFO.viewvalues()).index return reduce(__max_index_info__, list(USER_INFO.values())).index
def __max_job_id_impl__(a, b): def __max_job_id_impl__(a, b):
...@@ -210,7 +210,7 @@ def max_job_id(): ...@@ -210,7 +210,7 @@ def max_job_id():
Get the maximum value of job id. Get the maximum value of job id.
""" """
__initialize_meta_info__() __initialize_meta_info__()
return reduce(__max_job_id_impl__, USER_INFO.viewvalues()).job_id return reduce(__max_job_id_impl__, list(USER_INFO.values())).job_id
def movie_categories(): def movie_categories():
...@@ -243,7 +243,7 @@ def unittest(): ...@@ -243,7 +243,7 @@ def unittest():
for test_count, _ in enumerate(test()()): for test_count, _ in enumerate(test()()):
pass pass
print train_count, test_count print((train_count, test_count))
def fetch(): def fetch():
......
...@@ -26,7 +26,7 @@ http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ20 ...@@ -26,7 +26,7 @@ http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ20
import os import os
import functools import functools
import rarfile import rarfile
from common import download from .common import download
import numpy as np import numpy as np
# URL = "http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar" # URL = "http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/MQ2007.rar"
...@@ -330,4 +330,4 @@ if __name__ == "__main__": ...@@ -330,4 +330,4 @@ if __name__ == "__main__":
mytest = functools.partial( mytest = functools.partial(
__reader__, filepath="MQ2007/MQ2007/Fold1/sample", format="listwise") __reader__, filepath="MQ2007/MQ2007/Fold1/sample", format="listwise")
for label, query in mytest(): for label, query in mytest():
print label, query print((label, query))
...@@ -43,11 +43,11 @@ def download_data_if_not_yet(): ...@@ -43,11 +43,11 @@ def download_data_if_not_yet():
nltk.data.path.append(paddle.dataset.common.DATA_HOME) nltk.data.path.append(paddle.dataset.common.DATA_HOME)
movie_reviews.categories() movie_reviews.categories()
except LookupError: except LookupError:
print "Downloading movie_reviews data set, please wait....." print("Downloading movie_reviews data set, please wait.....")
nltk.download( nltk.download(
'movie_reviews', download_dir=paddle.dataset.common.DATA_HOME) 'movie_reviews', download_dir=paddle.dataset.common.DATA_HOME)
print "Download data set success....." print("Download data set success.....")
print "Path is " + nltk.data.find('corpora/movie_reviews').path print(("Path is " + nltk.data.find('corpora/movie_reviews').path))
def get_word_dict(): def get_word_dict():
...@@ -64,7 +64,7 @@ def get_word_dict(): ...@@ -64,7 +64,7 @@ def get_word_dict():
for field in movie_reviews.fileids(category): for field in movie_reviews.fileids(category):
for words in movie_reviews.words(field): for words in movie_reviews.words(field):
word_freq_dict[words] += 1 word_freq_dict[words] += 1
words_sort_list = word_freq_dict.items() words_sort_list = list(word_freq_dict.items())
words_sort_list.sort(cmp=lambda a, b: b[1] - a[1]) words_sort_list.sort(cmp=lambda a, b: b[1] - a[1])
for index, word in enumerate(words_sort_list): for index, word in enumerate(words_sort_list):
words_freq_sorted.append((word[0], index)) words_freq_sorted.append((word[0], index))
...@@ -80,7 +80,8 @@ def sort_files(): ...@@ -80,7 +80,8 @@ def sort_files():
files_list = list() files_list = list()
neg_file_list = movie_reviews.fileids('neg') neg_file_list = movie_reviews.fileids('neg')
pos_file_list = movie_reviews.fileids('pos') pos_file_list = movie_reviews.fileids('pos')
files_list = list(chain.from_iterable(zip(neg_file_list, pos_file_list))) files_list = list(
chain.from_iterable(list(zip(neg_file_list, pos_file_list))))
return files_list return files_list
......
...@@ -36,7 +36,7 @@ class TestCommon(unittest.TestCase): ...@@ -36,7 +36,7 @@ class TestCommon(unittest.TestCase):
def test_split(self): def test_split(self):
def test_reader(): def test_reader():
def reader(): def reader():
for x in xrange(10): for x in range(10):
yield x yield x
return reader return reader
...@@ -49,7 +49,7 @@ class TestCommon(unittest.TestCase): ...@@ -49,7 +49,7 @@ class TestCommon(unittest.TestCase):
def test_cluster_file_reader(self): def test_cluster_file_reader(self):
_, temp_path = tempfile.mkstemp() _, temp_path = tempfile.mkstemp()
for x in xrange(5): for x in range(5):
with open(temp_path + '/%05d.test' % x) as f: with open(temp_path + '/%05d.test' % x) as f:
f.write('%d\n' % x) f.write('%d\n' % x)
reader = paddle.dataset.common.cluster_files_reader( reader = paddle.dataset.common.cluster_files_reader(
...@@ -63,7 +63,7 @@ class TestCommon(unittest.TestCase): ...@@ -63,7 +63,7 @@ class TestCommon(unittest.TestCase):
def test_reader(): def test_reader():
def reader(): def reader():
for x in xrange(record_num): for x in range(record_num):
yield x yield x
return reader return reader
......
...@@ -59,7 +59,7 @@ class TestMikolov(unittest.TestCase): ...@@ -59,7 +59,7 @@ class TestMikolov(unittest.TestCase):
self.assertEqual(first_line, read_line) self.assertEqual(first_line, read_line)
def test_total(self): def test_total(self):
_, idx = zip(*WORD_DICT.items()) _, idx = list(zip(*list(WORD_DICT.items())))
self.assertEqual(sorted(idx)[-1], len(WORD_DICT) - 1) self.assertEqual(sorted(idx)[-1], len(WORD_DICT) - 1)
......
...@@ -24,9 +24,8 @@ from nltk.corpus import movie_reviews ...@@ -24,9 +24,8 @@ from nltk.corpus import movie_reviews
class TestSentimentMethods(unittest.TestCase): class TestSentimentMethods(unittest.TestCase):
def test_get_word_dict(self): def test_get_word_dict(self):
word_dict = st.get_word_dict()[0:10] word_dict = st.get_word_dict()[0:10]
test_word_list = [(u',', 0), (u'the', 1), (u'.', 2), (u'a', 3), test_word_list = [(',', 0), ('the', 1), ('.', 2), ('a', 3), ('and', 4),
(u'and', 4), (u'of', 5), (u'to', 6), (u"'", 7), ('of', 5), ('to', 6), ("'", 7), ('is', 8), ('in', 9)]
(u'is', 8), (u'in', 9)]
for idx, each in enumerate(word_dict): for idx, each in enumerate(word_dict):
self.assertEqual(each, test_word_list[idx]) self.assertEqual(each, test_word_list[idx])
self.assertTrue("/root/.cache/paddle/dataset" in nltk.data.path) self.assertTrue("/root/.cache/paddle/dataset" in nltk.data.path)
......
...@@ -49,9 +49,12 @@ def feature_range(maximums, minimums): ...@@ -49,9 +49,12 @@ def feature_range(maximums, minimums):
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
fig, ax = plt.subplots() fig, ax = plt.subplots()
feature_num = len(maximums) feature_num = len(maximums)
ax.bar(range(feature_num), maximums - minimums, color='r', align='center') ax.bar(list(range(feature_num)),
maximums - minimums,
color='r',
align='center')
ax.set_title('feature scale') ax.set_title('feature scale')
plt.xticks(range(feature_num), feature_names) plt.xticks(list(range(feature_num)), feature_names)
plt.xlim([-1, feature_num]) plt.xlim([-1, feature_num])
fig.set_figheight(6) fig.set_figheight(6)
fig.set_figwidth(10) fig.set_figwidth(10)
...@@ -71,7 +74,7 @@ def load_data(filename, feature_num=14, ratio=0.8): ...@@ -71,7 +74,7 @@ def load_data(filename, feature_num=14, ratio=0.8):
maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum( maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum(
axis=0) / data.shape[0] axis=0) / data.shape[0]
feature_range(maximums[:-1], minimums[:-1]) feature_range(maximums[:-1], minimums[:-1])
for i in xrange(feature_num - 1): for i in range(feature_num - 1):
data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i]) data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])
offset = int(data.shape[0] * ratio) offset = int(data.shape[0] * ratio)
UCI_TRAIN_DATA = data[:offset] UCI_TRAIN_DATA = data[:offset]
......
...@@ -154,8 +154,8 @@ def get_dict(dict_size, reverse=True): ...@@ -154,8 +154,8 @@ def get_dict(dict_size, reverse=True):
tar_file = paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN) tar_file = paddle.dataset.common.download(URL_TRAIN, 'wmt14', MD5_TRAIN)
src_dict, trg_dict = __read_to_dict(tar_file, dict_size) src_dict, trg_dict = __read_to_dict(tar_file, dict_size)
if reverse: if reverse:
src_dict = {v: k for k, v in src_dict.items()} src_dict = {v: k for k, v in list(src_dict.items())}
trg_dict = {v: k for k, v in trg_dict.items()} trg_dict = {v: k for k, v in list(trg_dict.items())}
return src_dict, trg_dict return src_dict, trg_dict
......
...@@ -70,7 +70,9 @@ def __build_dict(tar_file, dict_size, save_path, lang): ...@@ -70,7 +70,9 @@ def __build_dict(tar_file, dict_size, save_path, lang):
fout.write("%s\n%s\n%s\n" % (START_MARK, END_MARK, UNK_MARK)) fout.write("%s\n%s\n%s\n" % (START_MARK, END_MARK, UNK_MARK))
for idx, word in enumerate( for idx, word in enumerate(
sorted( sorted(
word_dict.iteritems(), key=lambda x: x[1], reverse=True)): iter(list(word_dict.items())),
key=lambda x: x[1],
reverse=True)):
if idx + 3 == dict_size: break if idx + 3 == dict_size: break
fout.write("%s\n" % (word[0])) fout.write("%s\n" % (word[0]))
......
...@@ -14,49 +14,49 @@ ...@@ -14,49 +14,49 @@
from __future__ import print_function from __future__ import print_function
# import all class inside framework into fluid module # import all class inside framework into fluid module
import framework from . import framework
from framework import * from .framework import *
# import all class inside executor into fluid module # import all class inside executor into fluid module
import executor from . import executor
from executor import * from .executor import *
import trainer from . import trainer
from trainer import Trainer from .trainer import Trainer
from trainer import BeginEpochEvent from .trainer import BeginEpochEvent
from trainer import EndEpochEvent from .trainer import EndEpochEvent
from trainer import BeginStepEvent from .trainer import BeginStepEvent
from trainer import EndStepEvent from .trainer import EndStepEvent
from trainer import CheckpointConfig from .trainer import CheckpointConfig
import inferencer from . import inferencer
from inferencer import Inferencer from .inferencer import Inferencer
import io from . import io
import evaluator from . import evaluator
import initializer from . import initializer
import layers from . import layers
import contrib from . import contrib
import nets from . import nets
import optimizer from . import optimizer
import backward from . import backward
import regularizer from . import regularizer
import average from . import average
import metrics from . import metrics
import transpiler from . import transpiler
from param_attr import ParamAttr, WeightNormParamAttr from .param_attr import ParamAttr, WeightNormParamAttr
from data_feeder import DataFeeder from .data_feeder import DataFeeder
from core import LoDTensor, LoDTensorArray, CPUPlace, CUDAPlace, CUDAPinnedPlace, Scope from .core import LoDTensor, LoDTensorArray, CPUPlace, CUDAPlace, CUDAPinnedPlace, Scope
from transpiler import DistributeTranspiler, InferenceTranspiler, \ from .transpiler import DistributeTranspiler, InferenceTranspiler, \
memory_optimize, release_memory, DistributeTranspilerConfig memory_optimize, release_memory, DistributeTranspilerConfig
from concurrency import (Go, make_channel, channel_send, channel_recv, from .concurrency import (Go, make_channel, channel_send, channel_recv,
channel_close, Select) channel_close, Select)
from lod_tensor import create_lod_tensor, create_random_int_lodtensor from .lod_tensor import create_lod_tensor, create_random_int_lodtensor
import clip from . import clip
import profiler from . import profiler
import unique_name from . import unique_name
import recordio_writer from . import recordio_writer
import parallel_executor from . import parallel_executor
from parallel_executor import * from .parallel_executor import *
from paddle.fluid.layers.math_op_patch import monkey_patch_variable from paddle.fluid.layers.math_op_patch import monkey_patch_variable
Tensor = LoDTensor Tensor = LoDTensor
...@@ -99,8 +99,8 @@ def __bootstrap__(): ...@@ -99,8 +99,8 @@ def __bootstrap__():
None None
""" """
import sys import sys
import core
import os import os
from . import core
in_test = 'unittest' in sys.modules in_test = 'unittest' in sys.modules
......
...@@ -12,6 +12,7 @@ ...@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import functools import functools
import sys import sys
...@@ -28,7 +29,7 @@ def deprecated(since, instead, extra_message=""): ...@@ -28,7 +29,7 @@ def deprecated(since, instead, extra_message=""):
@functools.wraps(func) @functools.wraps(func)
def wrapper(*args, **kwargs): def wrapper(*args, **kwargs):
print >> sys.stderr, err_msg print(err_msg, file=sys.stderr)
return func(*args, **kwargs) return func(*args, **kwargs)
wrapper.__doc__ += "\n " wrapper.__doc__ += "\n "
......
...@@ -16,7 +16,8 @@ from paddle.fluid import framework as framework ...@@ -16,7 +16,8 @@ from paddle.fluid import framework as framework
from . import core from . import core
import collections import collections
import copy import copy
import unique_name import six
from . import unique_name
__all__ = ['append_backward'] __all__ = ['append_backward']
...@@ -44,17 +45,25 @@ def _create_op_desc_(op_type, inputs, outputs, attrs): ...@@ -44,17 +45,25 @@ def _create_op_desc_(op_type, inputs, outputs, attrs):
""" """
op_desc = core.OpDesc() op_desc = core.OpDesc()
op_desc.set_type(op_type) op_desc.set_type(op_type)
for para, args in inputs.iteritems(): for para, args in list(inputs.items()):
op_desc.set_input(para, args) op_desc.set_input(
for para, args in outputs.iteritems(): para,
op_desc.set_output(para, args) list(
map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
args)))
for para, args in list(outputs.items()):
op_desc.set_output(
para,
list(
map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
args)))
op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName() op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
if op_role_attr_name not in attrs: if op_role_attr_name not in attrs:
attrs[ attrs[
op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
for name, val in attrs.iteritems(): for name, val in list(attrs.items()):
if isinstance(val, framework.Block): if isinstance(val, framework.Block):
op_desc.set_block_attr(name, val.desc) op_desc.set_block_attr(name, val.desc)
else: else:
...@@ -105,7 +114,9 @@ def _strip_grad_suffix_(name): ...@@ -105,7 +114,9 @@ def _strip_grad_suffix_(name):
e.g. x@GRAD ==> x e.g. x@GRAD ==> x
y@GRAD@RENAME@1 ==> y y@GRAD@RENAME@1 ==> y
""" """
pos = name.find(core.grad_var_suffix()) if isinstance(name, six.text_type):
name = name.encode()
pos = name.find(six.b(core.grad_var_suffix()))
return name[:pos] if pos != -1 else name return name[:pos] if pos != -1 else name
...@@ -114,7 +125,9 @@ def _append_grad_suffix_(name): ...@@ -114,7 +125,9 @@ def _append_grad_suffix_(name):
Append grad suffix to the given variable name Append grad suffix to the given variable name
e.g. x ==> x@GRAD e.g. x ==> x@GRAD
""" """
return name + core.grad_var_suffix() if isinstance(name, six.text_type):
name = name.encode()
return name + six.b(core.grad_var_suffix())
def _addup_repetitive_outputs_(op_descs): def _addup_repetitive_outputs_(op_descs):
...@@ -174,7 +187,7 @@ def _addup_repetitive_outputs_(op_descs): ...@@ -174,7 +187,7 @@ def _addup_repetitive_outputs_(op_descs):
op_desc.set_output(param_name, arg_names) op_desc.set_output(param_name, arg_names)
renamed_vars[var_name].append(new_name) renamed_vars[var_name].append(new_name)
for var_name, inputs in renamed_vars.iteritems(): for var_name, inputs in list(renamed_vars.items()):
if len(inputs) > 1: if len(inputs) > 1:
pending_sum_ops.append( pending_sum_ops.append(
(_create_op_desc_("sum", {"X": inputs}, {"Out": [var_name]}, (_create_op_desc_("sum", {"X": inputs}, {"Out": [var_name]},
...@@ -198,16 +211,19 @@ def _remove_no_grad_branch_(op_descs, no_grad_set): ...@@ -198,16 +211,19 @@ def _remove_no_grad_branch_(op_descs, no_grad_set):
out_arg_names = op_desc.output_arg_names() out_arg_names = op_desc.output_arg_names()
if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set): if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
return True return True
if _all_in_set_( if _all_in_set_([
filter(lambda name: name.find(core.grad_var_suffix()) != -1, name for name in op_desc.input_arg_names()
op_desc.input_arg_names()), no_grad_set): if name.find(core.grad_var_suffix()) != -1
], no_grad_set):
no_grad_set.update(out_arg_names) no_grad_set.update(out_arg_names)
return True return True
return False return False
# Remove ops whose outputs are all in no_grad_dict # Remove ops whose outputs are all in no_grad_dict
op_descs = filter( op_descs = [
lambda op_desc: not _op_can_be_removed_(op_desc, no_grad_set), op_descs) op_desc for op_desc in op_descs
if not _op_can_be_removed_(op_desc, no_grad_set)
]
# Insert fill_zeros_like_op # Insert fill_zeros_like_op
to_insert = [] to_insert = []
for idx, op_desc in enumerate(op_descs): for idx, op_desc in enumerate(op_descs):
...@@ -217,12 +233,12 @@ def _remove_no_grad_branch_(op_descs, no_grad_set): ...@@ -217,12 +233,12 @@ def _remove_no_grad_branch_(op_descs, no_grad_set):
"X": [_strip_grad_suffix_(arg)] "X": [_strip_grad_suffix_(arg)]
}, {"Out": [arg]}, {}), idx)) }, {"Out": [arg]}, {}), idx))
map(lambda p: op_descs.insert(p[1], p[0]), reversed(to_insert)) list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
return op_descs return op_descs
import proto.framework_pb2 as framework_pb2 from .proto import framework_pb2
def serialize_op_decs(op_desc): def serialize_op_decs(op_desc):
...@@ -244,8 +260,10 @@ def _callback_lookup_(op): ...@@ -244,8 +260,10 @@ def _callback_lookup_(op):
if op.type == 'parallel_do' and op.attr('use_nccl'): if op.type == 'parallel_do' and op.attr('use_nccl'):
all_vars = op.block.vars all_vars = op.block.vars
param_names = set(op.input('parameters')) param_names = set(op.input('parameters'))
param_names = filter(lambda name: all_vars[name].stop_gradient is False, param_names = [
param_names) name for name in param_names
if all_vars[name].stop_gradient is False
]
param_grad_names = [n + "@GRAD" for n in param_names] param_grad_names = [n + "@GRAD" for n in param_names]
class ParallelDoCallBack(object): class ParallelDoCallBack(object):
...@@ -399,7 +417,7 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map): ...@@ -399,7 +417,7 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
continue continue
block.desc.var(grad_var_name) block.desc.var(grad_var_name)
new_vars.add(grad_var_name) new_vars.add(grad_var_name)
if not grad_to_var.has_key(grad_var_name): if grad_var_name not in grad_to_var:
continue continue
grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block) grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
# infer_shape and infer_type # infer_shape and infer_type
...@@ -427,7 +445,7 @@ def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map): ...@@ -427,7 +445,7 @@ def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
op_desc.rename_output(name, new_name) op_desc.rename_output(name, new_name)
var_map[name] = new_name var_map[name] = new_name
for g, ng in var_map.iteritems(): for g, ng in list(var_map.items()):
if g in grad_to_var: if g in grad_to_var:
grad_to_var[ng] = grad_to_var[g] grad_to_var[ng] = grad_to_var[g]
grad_to_var.pop(g) grad_to_var.pop(g)
...@@ -439,7 +457,7 @@ def _get_stop_gradients_(program): ...@@ -439,7 +457,7 @@ def _get_stop_gradients_(program):
for block in program.blocks: for block in program.blocks:
assert isinstance(block, framework.Block) assert isinstance(block, framework.Block)
block_no_grad_set = set() block_no_grad_set = set()
for var in block.vars.itervalues(): for var in list(block.vars.values()):
assert isinstance(var, framework.Variable) assert isinstance(var, framework.Variable)
if var.stop_gradient: if var.stop_gradient:
block_no_grad_set.add(_append_grad_suffix_(var.name)) block_no_grad_set.add(_append_grad_suffix_(var.name))
...@@ -452,51 +470,51 @@ def append_backward(loss, parameter_list=None, no_grad_set=None, ...@@ -452,51 +470,51 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
""" """
Append backward part to main_program. Append backward part to main_program.
A complete neural network training is made up of forward and backward A complete neural network training is made up of forward and backward
propagation. However, when we configure a network, we only need to propagation. However, when we configure a network, we only need to
specify its forwrd part. The backward part is generated automatically specify its forwrd part. The backward part is generated automatically
according to the forward part by this function. according to the forward part by this function.
In most cases, users do not need to invoke this function manually. It In most cases, users do not need to invoke this function manually. It
will be automatically invoked by the optimizer's `minimize` function. will be automatically invoked by the optimizer's `minimize` function.
Args: Args:
loss(Variable): The loss variable of the network. loss(Variable): The loss variable of the network.
parameter_list(list[string]|None): Names of parameters that need parameter_list(list[string]|None): Names of parameters that need
to be updated by optimizers. to be updated by optimizers.
If it is None, all parameters If it is None, all parameters
will be updated. will be updated.
Default: None Default: None
no_grad_set(set|None): Variables in the Block 0 whose gradients no_grad_set(set|None): Variables in the Block 0 whose gradients
should be ignored. All variables with should be ignored. All variables with
`step_gradient=True` from all blocks will `step_gradient=True` from all blocks will
be automatically added into this set. be automatically added into this set.
Default: None Default: None
callbacks(list[callable object]|None): The callbacks are used for callbacks(list[callable object]|None): The callbacks are used for
doing some custom jobs during doing some custom jobs during
backward part building. All backward part building. All
callable objects in it will callable objects in it will
be invoked once each time a be invoked once each time a
new gradient operator is added new gradient operator is added
into the program. The callable into the program. The callable
object must has two input object must has two input
parameters: 'block' and 'context'. parameters: 'block' and 'context'.
The 'block' is the block which The 'block' is the block which
the new gradient operator will the new gradient operator will
be added to. The 'context' is a be added to. The 'context' is a
map, whose keys are gradient map, whose keys are gradient
variable names and values are variable names and values are
corresponding original variables. corresponding original variables.
In addition to this, the 'context' In addition to this, the 'context'
has another special key-value pair: has another special key-value pair:
the key is string '__current_op_desc__' the key is string '__current_op_desc__'
and the value is the op_desc of the and the value is the op_desc of the
gradient operator who has just gradient operator who has just
triggered the callable object. triggered the callable object.
Returns: Returns:
list[(Variable,Variable)]: Pairs of parameter and its list[(Variable,Variable)]: Pairs of parameter and its
corresponding gradients. The key is the parameter and the corresponding gradients. The key is the parameter and the
value is gradient variable. value is gradient variable.
Raises: Raises:
...@@ -535,7 +553,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None, ...@@ -535,7 +553,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
no_grad_set = set() no_grad_set = set()
no_grad_set = copy.copy(no_grad_set) no_grad_set = copy.copy(no_grad_set)
no_grad_dict = _get_stop_gradients_(program) no_grad_dict = _get_stop_gradients_(program)
no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set)) no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
grad_info_map = dict() grad_info_map = dict()
root_block = program.block(0) root_block = program.block(0)
...@@ -558,7 +576,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None, ...@@ -558,7 +576,7 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0])) block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set) op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set)) no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
_append_backward_ops_(root_block, op_path, root_block, no_grad_dict, _append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
grad_to_var, callbacks) grad_to_var, callbacks)
...@@ -699,7 +717,7 @@ def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None): ...@@ -699,7 +717,7 @@ def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
no_grad_set = set() no_grad_set = set()
no_grad_set = copy.copy(no_grad_set) no_grad_set = copy.copy(no_grad_set)
no_grad_dict = _get_stop_gradients_(prog) no_grad_dict = _get_stop_gradients_(prog)
no_grad_dict[0].update(map(_append_grad_suffix_, no_grad_set)) no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
fwd_op_num = block.desc.op_size() fwd_op_num = block.desc.op_size()
...@@ -733,7 +751,7 @@ def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None): ...@@ -733,7 +751,7 @@ def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0])) block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
op_path = _find_op_path_(block, targets, inputs, block_no_grad_set) op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
no_grad_dict[0].update(map(_append_grad_suffix_, block_no_grad_set)) no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
grad_to_var = dict() grad_to_var = dict()
grad_info_map = dict() grad_info_map = dict()
_append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var) _append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var)
......
...@@ -15,8 +15,8 @@ ...@@ -15,8 +15,8 @@
import copy import copy
import functools import functools
import layers from . import layers
import framework from . import framework
from . import core from . import core
__all__ = [ __all__ = [
...@@ -80,8 +80,7 @@ def error_clip_callback(block, context): ...@@ -80,8 +80,7 @@ def error_clip_callback(block, context):
# the context is a grad_to_var map # the context is a grad_to_var map
grad_to_var = context grad_to_var = context
op_desc = block.desc.op(block.desc.op_size() - 1) op_desc = block.desc.op(block.desc.op_size() - 1)
for grad_n in filter(lambda n: grad_to_var.has_key(n), for grad_n in [n for n in op_desc.output_arg_names() if n in grad_to_var]:
op_desc.output_arg_names()):
fwd_var = block._var_recursive(grad_to_var[grad_n]) fwd_var = block._var_recursive(grad_to_var[grad_n])
error_clip = getattr(fwd_var, "error_clip", None) error_clip = getattr(fwd_var, "error_clip", None)
if not (error_clip is None or isinstance(error_clip, if not (error_clip is None or isinstance(error_clip,
...@@ -247,7 +246,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr): ...@@ -247,7 +246,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
""" """
def __init__(self, clip_norm, group_name="default_group"): def __init__(self, clip_norm, group_name="default_group"):
if not isinstance(group_name, basestring): if not isinstance(group_name, str):
raise TypeError("'group_name' must be a basestring.") raise TypeError("'group_name' must be a basestring.")
self.clip_norm = clip_norm self.clip_norm = clip_norm
...@@ -284,7 +283,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr): ...@@ -284,7 +283,7 @@ class GradientClipByGlobalNorm(BaseGradientClipAttr):
x=clip_var, x=clip_var,
y=layers.elementwise_max( y=layers.elementwise_max(
x=clip_var, y=group_norm_var)) x=clip_var, y=group_norm_var))
assert group_scale_var.shape == (1L, ) assert group_scale_var.shape == (1, )
self.context[group_scale_name] = group_scale_var self.context[group_scale_name] = group_scale_var
new_grad = layers.elementwise_mul( new_grad = layers.elementwise_mul(
...@@ -313,7 +312,7 @@ def set_gradient_clip(clip, param_list=None, program=None): ...@@ -313,7 +312,7 @@ def set_gradient_clip(clip, param_list=None, program=None):
program = framework.default_main_program() program = framework.default_main_program()
if param_list is None: if param_list is None:
param_list = program.block(0).all_parameters() param_list = program.block(0).all_parameters()
if all(isinstance(elem, basestring) for elem in param_list): if all(isinstance(elem, str) for elem in param_list):
param_list = [program.block(0).var(elem) for elem in param_list] param_list = [program.block(0).var(elem) for elem in param_list]
if not all(isinstance(elem, framework.Parameter) for elem in param_list): if not all(isinstance(elem, framework.Parameter) for elem in param_list):
raise TypeError( raise TypeError(
......
...@@ -12,11 +12,11 @@ ...@@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from layers.control_flow import BlockGuard, equal from .layers.control_flow import BlockGuard, equal
from .framework import Operator from .framework import Operator
from layer_helper import LayerHelper, unique_name from .layer_helper import LayerHelper, unique_name
from layers import fill_constant from .layers import fill_constant
import core from . import core
__all__ = [ __all__ = [
'Go', 'make_channel', 'channel_send', 'channel_recv', 'channel_close', 'Go', 'make_channel', 'channel_send', 'channel_recv', 'channel_close',
......
...@@ -12,14 +12,13 @@ ...@@ -12,14 +12,13 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function from . import core
import core
import numpy import numpy
import os import os
import six.moves as six import six.moves as six
import multiprocessing import multiprocessing
from framework import Variable, default_main_program from .framework import Variable, default_main_program
__all__ = ['DataFeeder'] __all__ = ['DataFeeder']
...@@ -142,7 +141,7 @@ class DataFeeder(object): ...@@ -142,7 +141,7 @@ class DataFeeder(object):
if program is None: if program is None:
program = default_main_program() program = default_main_program()
for each_var in feed_list: for each_var in feed_list:
if isinstance(each_var, basestring): if isinstance(each_var, str):
each_var = program.block(0).var(each_var) each_var = program.block(0).var(each_var)
if not isinstance(each_var, Variable): if not isinstance(each_var, Variable):
raise TypeError("Feed list should contain a list of variable") raise TypeError("Feed list should contain a list of variable")
......
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
import sys import sys
import re import re
from graphviz import GraphPreviewGenerator from .graphviz import GraphPreviewGenerator
import proto.framework_pb2 as framework_pb2 from .proto import framework_pb2
from google.protobuf import text_format from google.protobuf import text_format
_vartype2str_ = [ _vartype2str_ = [
......
...@@ -15,11 +15,11 @@ ...@@ -15,11 +15,11 @@
import warnings import warnings
import numpy as np import numpy as np
import layers from . import layers
from framework import Program, Variable, program_guard from .framework import Program, Variable, program_guard
import unique_name from . import unique_name
from layer_helper import LayerHelper from .layer_helper import LayerHelper
from initializer import Constant from .initializer import Constant
__all__ = [ __all__ = [
'ChunkEvaluator', 'ChunkEvaluator',
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import numpy as np import numpy as np
import contextlib import contextlib
from framework import Program, default_main_program, Variable from .framework import Program, default_main_program, Variable
from . import core from . import core
__all__ = [ __all__ = [
...@@ -204,19 +204,19 @@ def fetch_var(name, scope=None, return_numpy=True): ...@@ -204,19 +204,19 @@ def fetch_var(name, scope=None, return_numpy=True):
def _get_program_cache_key(feed, fetch_list): def _get_program_cache_key(feed, fetch_list):
feed_var_names = feed.keys() feed_var_names = list(feed.keys())
def to_name_str(var): def to_name_str(var):
if isinstance(var, Variable): if isinstance(var, Variable):
return var.desc.name() return var.desc.name()
elif isinstance(var, str): elif isinstance(var, str):
return var return var
elif isinstance(var, basestring): elif isinstance(var, str):
return str(var) return str(var)
else: else:
raise TypeError(str(var) + " should be Variable or str") raise TypeError(str(var) + " should be Variable or str")
fetch_var_names = map(to_name_str, fetch_list) fetch_var_names = list(map(to_name_str, fetch_list))
return str(feed_var_names + fetch_var_names) return str(feed_var_names + fetch_var_names)
...@@ -345,7 +345,7 @@ class Executor(object): ...@@ -345,7 +345,7 @@ class Executor(object):
def _fetch_data(self, fetch_list, fetch_var_name, scope): def _fetch_data(self, fetch_list, fetch_var_name, scope):
outs = [ outs = [
core.get_fetch_variable(scope, fetch_var_name, i) core.get_fetch_variable(scope, fetch_var_name, i)
for i in xrange(len(fetch_list)) for i in range(len(fetch_list))
] ]
return outs return outs
......
...@@ -15,21 +15,22 @@ ...@@ -15,21 +15,22 @@
import collections import collections
import contextlib import contextlib
import re import re
import six
import numpy as np import numpy as np
import proto.framework_pb2 as framework_pb2 from .proto import framework_pb2
try: try:
from . import core from . import core
except ImportError, e: except ImportError as e:
raise ImportError( raise ImportError(
"""NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\" """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
if you encounters \"libmkldnn.so not found\" errors. If you have python if you encounters \"libmkldnn.so not found\" errors. If you have python
installed in other directory, replace \"/usr/local/lib\" with your own installed in other directory, replace \"/usr/local/lib\" with your own
directory. The original error is: \n""" + e.message) directory. The original error is: \n""" + e.message)
except Exception, e: except Exception as e:
raise e raise e
import unique_name from . import unique_name
__all__ = [ __all__ = [
'Program', 'Program',
...@@ -86,7 +87,7 @@ def convert_np_dtype_to_dtype_(np_dtype): ...@@ -86,7 +87,7 @@ def convert_np_dtype_to_dtype_(np_dtype):
elif dtype == np.uint8: elif dtype == np.uint8:
return core.VarDesc.VarType.UINT8 return core.VarDesc.VarType.UINT8
else: else:
raise ValueError("Not supported numpy dtype " + str(dtype)) raise ValueError("Not supported numpy dtype " + six.binary_type(dtype))
def dtype_is_floating(dtype): def dtype_is_floating(dtype):
...@@ -129,15 +130,15 @@ def _debug_string_(proto, throw_on_error=True): ...@@ -129,15 +130,15 @@ def _debug_string_(proto, throw_on_error=True):
class Variable(object): class Variable(object):
""" """
In Fluid, every input and output of an operator is a variable. In most In Fluid, every input and output of an operator is a variable. In most
cases, variables are used for holding different kinds of data or training cases, variables are used for holding different kinds of data or training
labels. A variable belongs to a block. All variable has its own name and labels. A variable belongs to a block. All variable has its own name and
two variables in different blocks could have the same name. two variables in different blocks could have the same name.
There are many kinds of variables. Each kind of them has its own attributes There are many kinds of variables. Each kind of them has its own attributes
and usages. Please reference the framework.proto for details. and usages. Please reference the framework.proto for details.
Most of a Variable's member variables can be setted to be None. It mean Most of a Variable's member variables can be setted to be None. It mean
it is not available or will be specified later. it is not available or will be specified later.
Args: Args:
...@@ -197,6 +198,7 @@ class Variable(object): ...@@ -197,6 +198,7 @@ class Variable(object):
if name is None: if name is None:
name = unique_name.generate('_generated_var') name = unique_name.generate('_generated_var')
is_new_var = False is_new_var = False
name = name if isinstance(name, six.binary_type) else name.encode()
self.desc = self.block.desc.find_var(name) self.desc = self.block.desc.find_var(name)
if self.desc is None: if self.desc is None:
...@@ -290,13 +292,13 @@ class Variable(object): ...@@ -290,13 +292,13 @@ class Variable(object):
assert isinstance(throw_on_error, bool) and isinstance(with_details, assert isinstance(throw_on_error, bool) and isinstance(with_details,
bool) bool)
protostr = self.desc.serialize_to_string() protostr = self.desc.serialize_to_string()
proto = framework_pb2.VarDesc.FromString(str(protostr)) proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
res_str = _debug_string_(proto, throw_on_error) res_str = _debug_string_(proto, throw_on_error)
if with_details: if with_details:
additional_attr = ("error_clip", "stop_gradient") additional_attr = ("error_clip", "stop_gradient")
for attr_name in additional_attr: for attr_name in additional_attr:
res_str += "%s: %s\n" % (attr_name, res_str += "%s: %s\n" % (
str(getattr(self, attr_name))) attr_name, six.binary_type(getattr(self, attr_name)))
return res_str return res_str
__repr__ = __str__ __repr__ = __str__
...@@ -369,7 +371,7 @@ def get_all_op_protos(): ...@@ -369,7 +371,7 @@ def get_all_op_protos():
protostrs = core.get_all_op_protos() protostrs = core.get_all_op_protos()
ret_values = [] ret_values = []
for pbstr in protostrs: for pbstr in protostrs:
op_proto = framework_pb2.OpProto.FromString(str(pbstr)) op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
ret_values.append(op_proto) ret_values.append(op_proto)
return ret_values return ret_values
...@@ -472,7 +474,6 @@ class Operator(object): ...@@ -472,7 +474,6 @@ class Operator(object):
inputs=None, inputs=None,
outputs=None, outputs=None,
attrs=None): attrs=None):
self.block = block self.block = block
self.desc = desc self.desc = desc
self.attrs = attrs self.attrs = attrs
...@@ -523,10 +524,15 @@ class Operator(object): ...@@ -523,10 +524,15 @@ class Operator(object):
% (in_proto.name, len(in_args))) % (in_proto.name, len(in_args)))
in_arg_names = [] in_arg_names = []
for arg in in_args: for arg in in_args:
if isinstance(arg, basestring): if issubclass(arg.__class__, six.string_types):
in_arg_names.append(arg) in_arg_names.append(arg)
elif isinstance(arg, six.binary_type):
in_arg_names.append(arg.decode())
else: else:
in_arg_names.append(arg.name) if issubclass(arg.name.__class__, six.string_types):
in_arg_names.append(arg.name)
elif isinstance(arg.name, six.binary_type):
in_arg_names.append(arg.name.decode())
self.desc.set_input(in_proto.name, in_arg_names) self.desc.set_input(in_proto.name, in_arg_names)
else: else:
self.desc.set_input(in_proto.name, []) self.desc.set_input(in_proto.name, [])
...@@ -541,8 +547,9 @@ class Operator(object): ...@@ -541,8 +547,9 @@ class Operator(object):
if not given == need: if not given == need:
raise ValueError(("Incorrect setting for output(s) of " raise ValueError(("Incorrect setting for output(s) of "
"operator \"%s\". Need: [%s] Given: [%s]") % "operator \"%s\". Need: [%s] Given: [%s]") %
(type, ", ".join(str(e) for e in need), (type,
", ".join(str(e) for e in given))) ", ".join(six.binary_type(e) for e in need),
", ".join(six.binary_type(e) for e in given)))
for out_proto in proto.outputs: for out_proto in proto.outputs:
out_args = outputs[out_proto.name] out_args = outputs[out_proto.name]
...@@ -554,7 +561,12 @@ class Operator(object): ...@@ -554,7 +561,12 @@ class Operator(object):
(out_proto.name, len(out_args))) (out_proto.name, len(out_args)))
out_arg_names = [] out_arg_names = []
for arg in out_args: for arg in out_args:
out_arg_names.append(arg.name) if issubclass(arg.name.__class__, six.string_types):
out_arg_names.append(arg.name)
elif isinstance(arg.name, six.binary_type):
out_arg_names.append(arg.name.decode())
else:
out_arg_names.append(six.u(arg.name))
arg.op = self arg.op = self
self.desc.set_output(out_proto.name, out_arg_names) self.desc.set_output(out_proto.name, out_arg_names)
...@@ -590,7 +602,7 @@ class Operator(object): ...@@ -590,7 +602,7 @@ class Operator(object):
""" """
protostr = self.desc.serialize_to_string() protostr = self.desc.serialize_to_string()
proto = framework_pb2.OpDesc.FromString(str(protostr)) proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
return _debug_string_(proto, throw_on_error) return _debug_string_(proto, throw_on_error)
def __str__(self): def __str__(self):
...@@ -845,7 +857,7 @@ class Block(object): ...@@ -845,7 +857,7 @@ class Block(object):
re_add_indent = re.compile(r"\n(.)") re_add_indent = re.compile(r"\n(.)")
res_str = "blocks {\n idx: %d\n parent_idx: %d" % ( res_str = "blocks {\n idx: %d\n parent_idx: %d" % (
self.idx, self.parent_idx) self.idx, self.parent_idx)
for var in self.vars.itervalues(): for var in list(self.vars.values()):
res_str += "\n vars {\n %s }" % re_add_indent.sub( res_str += "\n vars {\n %s }" % re_add_indent.sub(
r"\n \1", var.to_string(throw_on_error, with_details)) r"\n \1", var.to_string(throw_on_error, with_details))
for op in self.ops: for op in self.ops:
...@@ -854,7 +866,8 @@ class Block(object): ...@@ -854,7 +866,8 @@ class Block(object):
res_str += "\n}" res_str += "\n}"
else: else:
protostr = self.desc.serialize_to_string() protostr = self.desc.serialize_to_string()
proto = framework_pb2.BlockDesc.FromString(str(protostr)) proto = framework_pb2.BlockDesc.FromString(
six.binary_type(protostr))
res_str = _debug_string_(proto, throw_on_error) res_str = _debug_string_(proto, throw_on_error)
return res_str return res_str
...@@ -898,10 +911,11 @@ class Block(object): ...@@ -898,10 +911,11 @@ class Block(object):
Returns: Returns:
Variable: the Variable with the giving name. Variable: the Variable with the giving name.
""" """
if not isinstance(name, basestring): if not issubclass(name.__class__, six.string_types):
raise TypeError( if not isinstance(name, six.binary_type):
"var require string as parameter, but get %s instead." % raise TypeError(
(type(name))) "var require string as parameter, but get %s instead." %
(type(name)))
v = self.vars.get(name, None) v = self.vars.get(name, None)
if v is None: if v is None:
raise ValueError("var %s not in this block" % name) raise ValueError("var %s not in this block" % name)
...@@ -949,10 +963,10 @@ class Block(object): ...@@ -949,10 +963,10 @@ class Block(object):
raise ValueError("Var {0} is not found recursively".format(name)) raise ValueError("Var {0} is not found recursively".format(name))
def all_parameters(self): def all_parameters(self):
return list(self._iter_parameters()) return list(self.iter_parameters())
def _iter_parameters(self): def iter_parameters(self):
return (item[1] for item in self.vars.iteritems() return (item[1] for item in list(self.vars.items())
if isinstance(item[1], Parameter)) if isinstance(item[1], Parameter))
def create_var(self, *args, **kwargs): def create_var(self, *args, **kwargs):
...@@ -1113,7 +1127,7 @@ class Block(object): ...@@ -1113,7 +1127,7 @@ class Block(object):
self.create_var(name=var.name(), desc=var, type=var.type()) self.create_var(name=var.name(), desc=var, type=var.type())
# sync variables removed from c++ end # sync variables removed from c++ end
for var in self.vars.keys(): for var in list(self.vars.keys()):
if not self.desc.find_var(var): if not self.desc.find_var(var):
self.vars.pop(var) self.vars.pop(var)
...@@ -1185,7 +1199,7 @@ class Block(object): ...@@ -1185,7 +1199,7 @@ class Block(object):
if not isinstance(other, Block): if not isinstance(other, Block):
raise TypeError( raise TypeError(
"_copy_param_info_from should be invoked with Block") "_copy_param_info_from should be invoked with Block")
for p in other._iter_parameters(): for p in other.iter_parameters():
assert isinstance(p, Parameter) assert isinstance(p, Parameter)
v = self.vars.get(p.name, None) v = self.vars.get(p.name, None)
if v is None: if v is None:
...@@ -1384,7 +1398,8 @@ class Program(object): ...@@ -1384,7 +1398,8 @@ class Program(object):
res_str += block.to_string(throw_on_error, with_details) res_str += block.to_string(throw_on_error, with_details)
else: else:
protostr = self.desc.serialize_to_string() protostr = self.desc.serialize_to_string()
proto = framework_pb2.ProgramDesc.FromString(str(protostr)) proto = framework_pb2.ProgramDesc.FromString(
six.binary_type(protostr))
res_str = _debug_string_(proto, throw_on_error) res_str = _debug_string_(proto, throw_on_error)
return res_str return res_str
...@@ -1482,7 +1497,7 @@ class Program(object): ...@@ -1482,7 +1497,7 @@ class Program(object):
else: else:
p = Program() p = Program()
p.desc = core.ProgramDesc(self.desc) p.desc = core.ProgramDesc(self.desc)
p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())] p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
p._sync_with_cpp() p._sync_with_cpp()
p._copy_param_info_from(self) p._copy_param_info_from(self)
...@@ -1534,7 +1549,7 @@ class Program(object): ...@@ -1534,7 +1549,7 @@ class Program(object):
targets_idx.append([t.block.idx, t.idx]) targets_idx.append([t.block.idx, t.idx])
res = Program() res = Program()
res.desc = core.prune(self.desc, targets_idx) res.desc = core.prune(self.desc, targets_idx)
res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())] res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
res._sync_with_cpp() res._sync_with_cpp()
return res return res
...@@ -1554,13 +1569,13 @@ class Program(object): ...@@ -1554,13 +1569,13 @@ class Program(object):
# core.inference_optimize being fixed. # core.inference_optimize being fixed.
res = Program() res = Program()
res.desc = core.ProgramDesc(self.desc) res.desc = core.ProgramDesc(self.desc)
for i in xrange(res.desc.num_blocks()): for i in range(res.desc.num_blocks()):
block = res.desc.block(i) block = res.desc.block(i)
for j in xrange(block.op_size()): for j in range(block.op_size()):
op = block.op(j) op = block.op(j)
if op.has_attr('is_test'): if op.has_attr('is_test'):
op.set_attr('is_test', True) op.set_attr('is_test', True)
res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())] res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
res._sync_with_cpp() res._sync_with_cpp()
return res return res
...@@ -1573,14 +1588,14 @@ class Program(object): ...@@ -1573,14 +1588,14 @@ class Program(object):
and deserialization. and deserialization.
Args: Args:
binary_str(str): The binary prootbuf string. binary_str_type(str): The binary prootbuf string.
Returns: Returns:
Program: A deserialized program desc. Program: A deserialized program desc.
""" """
p = Program() p = Program()
p.desc = core.ProgramDesc(binary_str) p.desc = core.ProgramDesc(binary_str)
p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())] p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
p._sync_with_cpp() p._sync_with_cpp()
return p return p
...@@ -1608,7 +1623,7 @@ class Program(object): ...@@ -1608,7 +1623,7 @@ class Program(object):
self._seed = seed self._seed = seed
def __repr__(self): def __repr__(self):
return str(self) return self.__str__()
def global_block(self): def global_block(self):
""" """
...@@ -1719,7 +1734,7 @@ class Program(object): ...@@ -1719,7 +1734,7 @@ class Program(object):
if len(self.blocks) != len(other.blocks): if len(self.blocks) != len(other.blocks):
raise ValueError("_copy_param_info_from should be invoked with two " raise ValueError("_copy_param_info_from should be invoked with two "
"program, with represent the same topology") "program, with represent the same topology")
for var in other.global_block().vars.itervalues(): for var in list(other.global_block().vars.values()):
if var.is_data: if var.is_data:
self.global_block().var(var.name).is_data = True self.global_block().var(var.name).is_data = True
...@@ -1731,15 +1746,15 @@ class Program(object): ...@@ -1731,15 +1746,15 @@ class Program(object):
iterable: The generator will yield every variable in this program. iterable: The generator will yield every variable in this program.
""" """
for each_block in self.blocks: for each_block in self.blocks:
for each_var in each_block.vars.itervalues(): for each_var in list(each_block.vars.values()):
yield each_var yield each_var
class Parameter(Variable): class Parameter(Variable):
""" """
Parameter is derived from Variable. A parameter is a persistable Parameter is derived from Variable. A parameter is a persistable
Variable, and will be updated by optimizers after each iteration. Variable, and will be updated by optimizers after each iteration.
The training of a neural network is essentially the updating of The training of a neural network is essentially the updating of
its parameters. its parameters.
Relative to a general Variable, a Parameter has several its own Relative to a general Variable, a Parameter has several its own
...@@ -1805,8 +1820,8 @@ class Parameter(Variable): ...@@ -1805,8 +1820,8 @@ class Parameter(Variable):
additional_attr = ("trainable", "optimize_attr", "regularizer", additional_attr = ("trainable", "optimize_attr", "regularizer",
"gradient_clip_attr", "do_model_average") "gradient_clip_attr", "do_model_average")
for attr_name in additional_attr: for attr_name in additional_attr:
res_str += "%s: %s\n" % (attr_name, res_str += "%s: %s\n" % (
str(getattr(self, attr_name))) attr_name, six.binary_type(getattr(self, attr_name)))
else: else:
res_str = Variable.to_string(self, throw_on_error, False) res_str = Variable.to_string(self, throw_on_error, False)
return res_str return res_str
......
...@@ -19,7 +19,7 @@ import logging ...@@ -19,7 +19,7 @@ import logging
def crepr(v): def crepr(v):
if type(v) is str or type(v) is unicode: if type(v) is str or type(v) is str:
return '"%s"' % v return '"%s"' % v
return str(v) return str(v)
...@@ -104,7 +104,7 @@ class Graph(object): ...@@ -104,7 +104,7 @@ class Graph(object):
def _rank_repr(self): def _rank_repr(self):
ranks = sorted( ranks = sorted(
self.rank_groups.items(), list(self.rank_groups.items()),
cmp=lambda a, b: a[1].priority > b[1].priority) cmp=lambda a, b: a[1].priority > b[1].priority)
repr = [] repr = []
for x in ranks: for x in ranks:
...@@ -148,7 +148,7 @@ class Node(object): ...@@ -148,7 +148,7 @@ class Node(object):
name=self.name, name=self.name,
label=self.label, label=self.label,
extra=',' + ','.join("%s=%s" % (key, crepr(value)) extra=',' + ','.join("%s=%s" % (key, crepr(value))
for key, value in self.attrs.items()) for key, value in list(self.attrs.items()))
if self.attrs else "") if self.attrs else "")
return reprs return reprs
...@@ -172,7 +172,7 @@ class Edge(object): ...@@ -172,7 +172,7 @@ class Edge(object):
target=self.target.name, target=self.target.name,
extra="" if not self.attrs else extra="" if not self.attrs else
"[" + ','.join("{}={}".format(attr[0], crepr(attr[1])) "[" + ','.join("{}={}".format(attr[0], crepr(attr[1]))
for attr in self.attrs.items()) + "]") for attr in list(self.attrs.items())) + "]")
return repr return repr
......
...@@ -14,14 +14,14 @@ ...@@ -14,14 +14,14 @@
import contextlib import contextlib
import core from . import core
import executor from . import executor
import framework from . import framework
import io from . import io
import parallel_executor from . import parallel_executor
import unique_name from . import unique_name
from trainer import check_and_get_place from .trainer import check_and_get_place
__all__ = ['Inferencer', ] __all__ = ['Inferencer', ]
......
...@@ -12,11 +12,11 @@ ...@@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import framework from . import framework
import numpy as np import numpy as np
import contextlib import contextlib
from framework import convert_np_dtype_to_dtype_ from .framework import convert_np_dtype_to_dtype_
from core import VarDesc from .core import VarDesc
__all__ = [ __all__ = [
'Constant', 'Uniform', 'Normal', 'Xavier', 'Bilinear', 'MSRA', 'Constant', 'Uniform', 'Normal', 'Xavier', 'Bilinear', 'MSRA',
......
此差异已折叠。
...@@ -15,11 +15,11 @@ ...@@ -15,11 +15,11 @@
import copy import copy
import itertools import itertools
from framework import Variable, Parameter, default_main_program, default_startup_program, dtype_is_floating from .framework import Variable, Parameter, default_main_program, default_startup_program, dtype_is_floating
import unique_name from . import unique_name
from paddle.fluid.initializer import Constant, Xavier from paddle.fluid.initializer import Constant, Xavier
from param_attr import ParamAttr, WeightNormParamAttr from .param_attr import ParamAttr, WeightNormParamAttr
import core from . import core
class LayerHelper(object): class LayerHelper(object):
...@@ -83,7 +83,7 @@ class LayerHelper(object): ...@@ -83,7 +83,7 @@ class LayerHelper(object):
raise ValueError("parameter number mismatch") raise ValueError("parameter number mismatch")
elif len(param_attr) == 1 and length != 1: elif len(param_attr) == 1 and length != 1:
tmp = [None] * length tmp = [None] * length
for i in xrange(length): for i in range(length):
tmp[i] = copy.deepcopy(param_attr[0]) tmp[i] = copy.deepcopy(param_attr[0])
param_attr = tmp param_attr = tmp
return param_attr return param_attr
...@@ -91,7 +91,7 @@ class LayerHelper(object): ...@@ -91,7 +91,7 @@ class LayerHelper(object):
def iter_inputs_and_params(self, input_param_name='input'): def iter_inputs_and_params(self, input_param_name='input'):
inputs = self.multiple_input(input_param_name) inputs = self.multiple_input(input_param_name)
param_attrs = self.multiple_param_attr(len(inputs)) param_attrs = self.multiple_param_attr(len(inputs))
for ipt, param_attr in itertools.izip(inputs, param_attrs): for ipt, param_attr in zip(inputs, param_attrs):
yield ipt, param_attr yield ipt, param_attr
def input_dtype(self, input_param_name='input'): def input_dtype(self, input_param_name='input'):
...@@ -218,7 +218,7 @@ class LayerHelper(object): ...@@ -218,7 +218,7 @@ class LayerHelper(object):
norm = __norm_op(reshape, dim=0, block=block) norm = __norm_op(reshape, dim=0, block=block)
__reshape_op(norm, out=out, shape=out_shape, block=block) __reshape_op(norm, out=out, shape=out_shape, block=block)
else: else:
perm = range(len(x.shape)) perm = list(range(len(x.shape)))
perm[0], perm[dim] = dim, 0 perm[0], perm[dim] = dim, 0
transpose = __transpose_op(x, perm, block=block) transpose = __transpose_op(x, perm, block=block)
norm = __norm_op(transpose, dim=0, block=block) norm = __norm_op(transpose, dim=0, block=block)
...@@ -397,7 +397,7 @@ class LayerHelper(object): ...@@ -397,7 +397,7 @@ class LayerHelper(object):
act = self.kwargs.get('act', None) act = self.kwargs.get('act', None)
if act is None: if act is None:
return input_var return input_var
if isinstance(act, basestring): if isinstance(act, str):
act = {'type': act} act = {'type': act}
if 'use_cudnn' in self.kwargs and self.kwargs.get('use_cudnn'): if 'use_cudnn' in self.kwargs and self.kwargs.get('use_cudnn'):
......
...@@ -12,25 +12,25 @@ ...@@ -12,25 +12,25 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import ops from . import ops
from ops import * from .ops import *
import nn from . import nn
from nn import * from .nn import *
import io from . import io
from io import * from .io import *
import tensor from . import tensor
from tensor import * from .tensor import *
import control_flow from . import control_flow
from control_flow import * from .control_flow import *
import device from . import device
from device import * from .device import *
import math_op_patch from . import math_op_patch
from math_op_patch import * from .math_op_patch import *
import detection from . import detection
from detection import * from .detection import *
import metric_op from . import metric_op
from metric_op import * from .metric_op import *
from learning_rate_scheduler import * from .learning_rate_scheduler import *
__all__ = [] __all__ = []
__all__ += nn.__all__ __all__ += nn.__all__
......
...@@ -13,14 +13,15 @@ ...@@ -13,14 +13,15 @@
# limitations under the License. # limitations under the License.
import contextlib import contextlib
from layer_function_generator import autodoc, templatedoc from .layer_function_generator import autodoc, templatedoc
from tensor import assign, fill_constant from .tensor import assign, fill_constant
from .. import core from .. import core
from ..framework import Program, Variable, Operator from ..framework import Program, Variable, Operator
from ..layer_helper import LayerHelper, unique_name from ..layer_helper import LayerHelper, unique_name
from ..initializer import force_init_on_cpu from ..initializer import force_init_on_cpu
from ops import logical_and, logical_not, logical_or from .ops import logical_and, logical_not, logical_or
import numpy import numpy
from functools import reduce
__all__ = [ __all__ = [
'While', 'While',
...@@ -597,7 +598,7 @@ class StaticRNN(object): ...@@ -597,7 +598,7 @@ class StaticRNN(object):
boot_memories = [] boot_memories = []
pre_memories = [] pre_memories = []
memories = [] memories = []
for _, mem in self.memories.iteritems(): for _, mem in list(self.memories.items()):
boot_memories.append(mem.init) boot_memories.append(mem.init)
pre_memories.append(mem.pre_mem.name) pre_memories.append(mem.pre_mem.name)
mem_var = rnn_block.var(mem.mem.name) mem_var = rnn_block.var(mem.mem.name)
...@@ -1508,7 +1509,7 @@ class IfElse(object): ...@@ -1508,7 +1509,7 @@ class IfElse(object):
def __call__(self): def __call__(self):
if self.status != self.OUT_IF_ELSE_BLOCKS: if self.status != self.OUT_IF_ELSE_BLOCKS:
raise ValueError("IfElse::__call__ must be out of sub-block") raise ValueError("IfElse::__call__ must be out of sub-block")
false_len, true_len = map(len, self.output_table) false_len, true_len = list(map(len, self.output_table))
if false_len == 0 and true_len == 0: if false_len == 0 and true_len == 0:
raise ValueError("Must invoke true_block/false_block before " raise ValueError("Must invoke true_block/false_block before "
"__call__") "__call__")
......
...@@ -15,12 +15,13 @@ ...@@ -15,12 +15,13 @@
All layers just related to the detection neural network. All layers just related to the detection neural network.
""" """
from layer_function_generator import generate_layer_fn from .layer_function_generator import generate_layer_fn
from layer_function_generator import autodoc, templatedoc from .layer_function_generator import autodoc, templatedoc
from ..layer_helper import LayerHelper from ..layer_helper import LayerHelper
import tensor from . import tensor
import nn from . import nn
import math import math
from functools import reduce
__all__ = [ __all__ = [
'prior_box', 'prior_box',
...@@ -1031,7 +1032,7 @@ def multi_box_head(inputs, ...@@ -1031,7 +1032,7 @@ def multi_box_head(inputs,
min_sizes = [] min_sizes = []
max_sizes = [] max_sizes = []
step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2))) step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
for ratio in xrange(min_ratio, max_ratio + 1, step): for ratio in range(min_ratio, max_ratio + 1, step):
min_sizes.append(base_size * ratio / 100.) min_sizes.append(base_size * ratio / 100.)
max_sizes.append(base_size * (ratio + step) / 100.) max_sizes.append(base_size * (ratio + step) / 100.)
min_sizes = [base_size * .10] + min_sizes min_sizes = [base_size * .10] + min_sizes
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
All util layers. All util layers.
""" """
from layer_function_generator import autodoc from .layer_function_generator import autodoc
from ..framework import unique_name from ..framework import unique_name
from ..layer_helper import LayerHelper from ..layer_helper import LayerHelper
from ..annotations import deprecated from ..annotations import deprecated
......
...@@ -16,8 +16,8 @@ import multiprocessing ...@@ -16,8 +16,8 @@ import multiprocessing
import threading import threading
from ..data_feeder import DataFeeder from ..data_feeder import DataFeeder
from control_flow import BlockGuard from .control_flow import BlockGuard
from layer_function_generator import templatedoc from .layer_function_generator import templatedoc
from .. import core from .. import core
from ..executor import global_scope from ..executor import global_scope
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \ from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
...@@ -69,7 +69,7 @@ def data(name, ...@@ -69,7 +69,7 @@ def data(name,
""" """
helper = LayerHelper('data', **locals()) helper = LayerHelper('data', **locals())
shape = list(shape) shape = list(shape)
for i in xrange(len(shape)): for i in range(len(shape)):
if shape[i] is None: if shape[i] is None:
shape[i] = -1 shape[i] = -1
append_batch_size = False append_batch_size = False
...@@ -387,9 +387,9 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True): ...@@ -387,9 +387,9 @@ def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
Create a uniform random data generator Create a uniform random data generator
This layer returns a Reader Variable. This layer returns a Reader Variable.
Instead of opening a file and reading data from it, this Instead of opening a file and reading data from it, this
Reader Variable generates float uniform random data by itself. Reader Variable generates float uniform random data by itself.
It can be used as a dummy reader to test a network without It can be used as a dummy reader to test a network without
opening a real file. opening a real file.
Args: Args:
...@@ -710,9 +710,9 @@ def open_files(filenames, ...@@ -710,9 +710,9 @@ def open_files(filenames,
""" """
Open files Open files
This layer takes a list of files to read from and returns a Reader Variable. This layer takes a list of files to read from and returns a Reader Variable.
Via the Reader Variable, we can get data from given files. All files must Via the Reader Variable, we can get data from given files. All files must
have name suffixs to indicate their formats, e.g., '*.recordio'. have name suffixs to indicate their formats, e.g., '*.recordio'.
Args: Args:
filenames(list): The list of file names. filenames(list): The list of file names.
...@@ -828,9 +828,9 @@ def shuffle(reader, buffer_size): ...@@ -828,9 +828,9 @@ def shuffle(reader, buffer_size):
def batch(reader, batch_size): def batch(reader, batch_size):
""" """
This layer is a reader decorator. It takes a reader and adds This layer is a reader decorator. It takes a reader and adds
'batching' decoration on it. When reading with the result 'batching' decoration on it. When reading with the result
decorated reader, output data will be automatically organized decorated reader, output data will be automatically organized
to the form of batches. to the form of batches.
Args: Args:
...@@ -855,11 +855,11 @@ def batch(reader, batch_size): ...@@ -855,11 +855,11 @@ def batch(reader, batch_size):
# If we read data with the raw_reader: # If we read data with the raw_reader:
# data = fluid.layers.read_file(raw_reader) # data = fluid.layers.read_file(raw_reader)
# We can only get data instance by instance. # We can only get data instance by instance.
# #
# However, if we read data with the batch_reader: # However, if we read data with the batch_reader:
# data = fluid.layers.read_file(batch_reader) # data = fluid.layers.read_file(batch_reader)
# Each 5 adjacent instances will be automatically combined together # Each 5 adjacent instances will be automatically combined together
# to become a batch. So what we get('data') is a batch data instead # to become a batch. So what we get('data') is a batch data instead
# of an instance. # of an instance.
""" """
return __create_unshared_decorated_reader__( return __create_unshared_decorated_reader__(
...@@ -906,8 +906,8 @@ def read_file(reader): ...@@ -906,8 +906,8 @@ def read_file(reader):
""" """
Execute the given reader and get data via it. Execute the given reader and get data via it.
A reader is also a Variable. It can be a raw reader generated by A reader is also a Variable. It can be a raw reader generated by
`fluid.layers.open_files()` or a decorated one generated by `fluid.layers.open_files()` or a decorated one generated by
`fluid.layers.double_buffer()` and so on. `fluid.layers.double_buffer()` and so on.
Args: Args:
...@@ -1008,7 +1008,7 @@ class Preprocessor(object): ...@@ -1008,7 +1008,7 @@ class Preprocessor(object):
source_lod_levels = self.underlying_reader.desc.lod_levels() source_lod_levels = self.underlying_reader.desc.lod_levels()
self.source_var_names = [ self.source_var_names = [
unique_name("preprocessor_source") unique_name("preprocessor_source")
for _ in xrange(len(source_shapes)) for _ in range(len(source_shapes))
] ]
source_vars = [] source_vars = []
for var_name, shape, dtype, lod_level in zip( for var_name, shape, dtype, lod_level in zip(
......
...@@ -12,11 +12,11 @@ ...@@ -12,11 +12,11 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import re import re
import cStringIO
import functools import functools
import warnings import warnings
import string import string
from six.moves import cStringIO
from ..proto import framework_pb2 from ..proto import framework_pb2
from ..framework import OpProtoHolder, Variable from ..framework import OpProtoHolder, Variable
from ..layer_helper import LayerHelper from ..layer_helper import LayerHelper
...@@ -70,7 +70,7 @@ def _generate_doc_string_(op_proto): ...@@ -70,7 +70,7 @@ def _generate_doc_string_(op_proto):
if not isinstance(op_proto, framework_pb2.OpProto): if not isinstance(op_proto, framework_pb2.OpProto):
raise TypeError("OpProto should be `framework_pb2.OpProto`") raise TypeError("OpProto should be `framework_pb2.OpProto`")
buf = cStringIO.StringIO() buf = cStringIO()
buf.write(escape_math(op_proto.comment)) buf.write(escape_math(op_proto.comment))
buf.write('\nArgs:\n') buf.write('\nArgs:\n')
for each_input in op_proto.inputs: for each_input in op_proto.inputs:
...@@ -119,9 +119,9 @@ def generate_layer_fn(op_type): ...@@ -119,9 +119,9 @@ def generate_layer_fn(op_type):
""" """
op_proto = OpProtoHolder.instance().get_op_proto(op_type) op_proto = OpProtoHolder.instance().get_op_proto(op_type)
not_intermediate_outputs = \ not_intermediate_outputs = \
filter(lambda output: not output.intermediate, op_proto.outputs) [output for output in op_proto.outputs if not output.intermediate]
intermediate_outputs = \ intermediate_outputs = \
filter(lambda output: output.intermediate, op_proto.outputs) [output for output in op_proto.outputs if output.intermediate]
if len(not_intermediate_outputs) != 1: if len(not_intermediate_outputs) != 1:
raise ValueError("Only one non intermediate output operator can be", raise ValueError("Only one non intermediate output operator can be",
......
...@@ -20,10 +20,10 @@ User can also implement their own learning_rate_decay ...@@ -20,10 +20,10 @@ User can also implement their own learning_rate_decay
strategy according to this module. strategy according to this module.
""" """
import control_flow from . import control_flow
import nn from . import nn
import ops from . import ops
import tensor from . import tensor
from ..initializer import init_on_cpu from ..initializer import init_on_cpu
from ..framework import default_main_program, Parameter from ..framework import default_main_program, Parameter
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
from ..framework import Variable, unique_name from ..framework import Variable, unique_name
from layer_function_generator import OpProtoHolder from .layer_function_generator import OpProtoHolder
from ..initializer import force_init_on_cpu from ..initializer import force_init_on_cpu
......
...@@ -20,7 +20,7 @@ from ..layer_helper import LayerHelper ...@@ -20,7 +20,7 @@ from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant from ..initializer import Normal, Constant
from ..framework import Variable from ..framework import Variable
from ..param_attr import ParamAttr from ..param_attr import ParamAttr
import nn from . import nn
__all__ = ['accuracy', 'auc'] __all__ = ['accuracy', 'auc']
......
...@@ -33,11 +33,12 @@ from ..layer_helper import LayerHelper ...@@ -33,11 +33,12 @@ from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant from ..initializer import Normal, Constant
from ..framework import Variable from ..framework import Variable
from ..param_attr import ParamAttr from ..param_attr import ParamAttr
from layer_function_generator import autodoc, templatedoc from .layer_function_generator import autodoc, templatedoc
from tensor import concat from .tensor import concat
import utils from . import utils
import random import random
from .. import unique_name from .. import unique_name
from functools import reduce
__all__ = [ __all__ = [
'fc', 'fc',
...@@ -4843,7 +4844,7 @@ def dice_loss(input, label, epsilon=0.00001): ...@@ -4843,7 +4844,7 @@ def dice_loss(input, label, epsilon=0.00001):
loss = fluid.layers.dice_loss(input=predictions, label=label, 2) loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
""" """
label = one_hot(label, depth=input.shape[-1]) label = one_hot(label, depth=input.shape[-1])
reduce_dim = range(1, len(input.shape)) reduce_dim = list(range(1, len(input.shape)))
inse = reduce_sum(input * label, dim=reduce_dim) inse = reduce_sum(input * label, dim=reduce_dim)
dice_denominator = reduce_sum( dice_denominator = reduce_sum(
input, dim=reduce_dim) + reduce_sum( input, dim=reduce_dim) + reduce_sum(
......
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from layer_function_generator import generate_layer_fn from .layer_function_generator import generate_layer_fn
__activations__ = [ __activations__ = [
'sigmoid', 'sigmoid',
......
...@@ -18,7 +18,7 @@ from ..framework import convert_np_dtype_to_dtype_ ...@@ -18,7 +18,7 @@ from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable from ..framework import Variable
from ..initializer import Constant, force_init_on_cpu from ..initializer import Constant, force_init_on_cpu
from ..core import VarDesc from ..core import VarDesc
from layer_function_generator import templatedoc from .layer_function_generator import templatedoc
import numpy import numpy
__all__ = [ __all__ = [
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import core from . import core
import numpy as np import numpy as np
__all__ = ['create_lod_tensor', 'create_random_int_lodtensor'] __all__ = ['create_lod_tensor', 'create_random_int_lodtensor']
...@@ -24,7 +24,7 @@ def create_lod_tensor(data, recursive_seq_lens, place): ...@@ -24,7 +24,7 @@ def create_lod_tensor(data, recursive_seq_lens, place):
Create a lod tensor by doing the following: Create a lod tensor by doing the following:
1. Check that the length-based level of detail (LoD) also known as 1. Check that the length-based level of detail (LoD) also known as
recursive_sequence_lengths of the input is valid. recursive_sequence_lengths of the input is valid.
2. Convert recursive_sequence_lengths to a offset-based LoD. 2. Convert recursive_sequence_lengths to a offset-based LoD.
...@@ -33,7 +33,7 @@ def create_lod_tensor(data, recursive_seq_lens, place): ...@@ -33,7 +33,7 @@ def create_lod_tensor(data, recursive_seq_lens, place):
CPU or GPU device (based on input place). CPU or GPU device (based on input place).
4. Set the level of detail (LoD) using the offset-based LoD. 4. Set the level of detail (LoD) using the offset-based LoD.
Examples: Examples:
Suppose we want LoDTensor to hold data for sequences of word, where each Suppose we want LoDTensor to hold data for sequences of word, where each
...@@ -51,7 +51,7 @@ def create_lod_tensor(data, recursive_seq_lens, place): ...@@ -51,7 +51,7 @@ def create_lod_tensor(data, recursive_seq_lens, place):
Args: Args:
data(numpy.ndarray|list|LoDTensor): a numpy array or a LoDTensor or a data(numpy.ndarray|list|LoDTensor): a numpy array or a LoDTensor or a
list holding the data to be copied. list holding the data to be copied.
recursive_seq_lens(list): a list of lists indicating the length-based level of detail recursive_seq_lens(list): a list of lists indicating the length-based level of detail
info specified by the user. info specified by the user.
place(Place): CPU or GPU place indicating where the data in the new place(Place): CPU or GPU place indicating where the data in the new
LoDTensor will be stored. LoDTensor will be stored.
...@@ -62,10 +62,10 @@ def create_lod_tensor(data, recursive_seq_lens, place): ...@@ -62,10 +62,10 @@ def create_lod_tensor(data, recursive_seq_lens, place):
if isinstance(data, core.LoDTensor): if isinstance(data, core.LoDTensor):
return create_lod_tensor(np.array(data), recursive_seq_lens, place) return create_lod_tensor(np.array(data), recursive_seq_lens, place)
elif isinstance(data, list): elif isinstance(data, list):
# When input data is a list, it only deal with the case where the base element # When input data is a list, it only deal with the case where the base element
# is an index of shape [1] and dtype int64 (e.g., word id). Hence, the generated # is an index of shape [1] and dtype int64 (e.g., word id). Hence, the generated
# LoDTensor will be of shape [n, 1] and dtype int64, where `n` is the total number # LoDTensor will be of shape [n, 1] and dtype int64, where `n` is the total number
# of words or other indexes in the sequence. # of words or other indexes in the sequence.
new_recursive_seq_lens = [] new_recursive_seq_lens = []
for seq in data: for seq in data:
new_recursive_seq_lens.append(len(seq)) new_recursive_seq_lens.append(len(seq))
...@@ -109,12 +109,12 @@ def create_random_int_lodtensor(recursive_seq_lens, base_shape, place, low, ...@@ -109,12 +109,12 @@ def create_random_int_lodtensor(recursive_seq_lens, base_shape, place, low,
Suppose we want LoDTensor to hold data for sequences of word, where each Suppose we want LoDTensor to hold data for sequences of word, where each
word is represented by an integer. If we want to create a LoDTensor to word is represented by an integer. If we want to create a LoDTensor to
represent two sentences, one of 2 words, and one of 3 words. Then represent two sentences, one of 2 words, and one of 3 words. Then
'base_shape' is [1], input length-based 'recursive_seq_lens' is [[2, 3]]. 'base_shape' is [1], input length-based 'recursive_seq_lens' is [[2, 3]].
Then the overall shape of the LoDTensor would be [5, 1], holding 5 words Then the overall shape of the LoDTensor would be [5, 1], holding 5 words
for two sentences. for two sentences.
Args: Args:
recursive_seq_lens(list): a list of lists indicating the length-based recursive_seq_lens(list): a list of lists indicating the length-based
level of detail info specified by the user. level of detail info specified by the user.
base_shape(list): the shape of the basic element to be held by the base_shape(list): the shape of the basic element to be held by the
LoDTensor. LoDTensor.
...@@ -124,11 +124,11 @@ def create_random_int_lodtensor(recursive_seq_lens, base_shape, place, low, ...@@ -124,11 +124,11 @@ def create_random_int_lodtensor(recursive_seq_lens, base_shape, place, low,
high(int): the upper bound of the random integers. high(int): the upper bound of the random integers.
Returns: Returns:
A fluid LoDTensor object with tensor data and recursive_seq_lens info. A fluid LoDTensor object with tensor data and recursive_seq_lens info.
""" """
assert isinstance(base_shape, list), "base_shape should be a list" assert isinstance(base_shape, list), "base_shape should be a list"
# append the total number of basic elements to the front of its shape # append the total number of basic elements to the front of its shape
overall_shape = [sum(recursive_seq_lens[-1])] + base_shape overall_shape = [sum(recursive_seq_lens[-1])] + base_shape
# the range of integer data elements is [low, high] # the range of integer data elements is [low, high]
data = np.random.random_integers(low, high, overall_shape).astype("int64") data = np.random.random_integers(low, high, overall_shape).astype("int64")
return create_lod_tensor(data, recursive_seq_lens, place) return create_lod_tensor(data, recursive_seq_lens, place)
...@@ -79,10 +79,10 @@ class MetricBase(object): ...@@ -79,10 +79,10 @@ class MetricBase(object):
""" """
states = { states = {
attr: value attr: value
for attr, value in self.__dict__.iteritems() for attr, value in list(self.__dict__.items())
if not attr.startswith("_") if not attr.startswith("_")
} }
for attr, value in states.iteritems(): for attr, value in list(states.items()):
if isinstance(value, int): if isinstance(value, int):
setattr(self, attr, 0) setattr(self, attr, 0)
elif isinstance(value, float): elif isinstance(value, float):
...@@ -105,7 +105,7 @@ class MetricBase(object): ...@@ -105,7 +105,7 @@ class MetricBase(object):
""" """
states = { states = {
attr: value attr: value
for attr, value in self.__dict__.iteritems() for attr, value in list(self.__dict__.items())
if not attr.startswith("_") if not attr.startswith("_")
} }
config = {} config = {}
......
...@@ -24,7 +24,7 @@ logger = logging.getLogger(__name__) ...@@ -24,7 +24,7 @@ logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO) logger.setLevel(logging.INFO)
try: try:
from graphviz import Digraph from .graphviz import Digraph
except ImportError: except ImportError:
logger.info( logger.info(
'Cannot import graphviz, which is required for drawing a network. This ' 'Cannot import graphviz, which is required for drawing a network. This '
...@@ -77,7 +77,7 @@ def parse_graph(program, graph, var_dict, **kwargs): ...@@ -77,7 +77,7 @@ def parse_graph(program, graph, var_dict, **kwargs):
# fill the known variables # fill the known variables
for block in program.blocks: for block in program.blocks:
for var in block.vars: for var in block.vars:
if not var_dict.has_key(var): if var not in var_dict:
var_dict[var] = "Feed" var_dict[var] = "Feed"
temp_id = 0 temp_id = 0
...@@ -93,17 +93,17 @@ def parse_graph(program, graph, var_dict, **kwargs): ...@@ -93,17 +93,17 @@ def parse_graph(program, graph, var_dict, **kwargs):
var_dict[arg] = op.type var_dict[arg] = op.type
for e in op.inputs: for e in op.inputs:
for arg in e.arguments: for arg in e.arguments:
if var_dict.has_key(arg): if arg in var_dict:
graph.edge(**draw_edge(var_dict, op, e, arg)) graph.edge(**draw_edge(var_dict, op, e, arg))
break # only plot the first block break # only plot the first block
def draw_graph(startup_program, main_program, **kwargs): def draw_graph(startup_program, main_program, **kwargs):
if kwargs.has_key("graph_attr"): if "graph_attr" in kwargs:
GRAPH_STYLE.update(kwargs[graph_attr]) GRAPH_STYLE.update(kwargs[graph_attr])
if kwargs.has_key("node_attr"): if "node_attr" in kwargs:
OP_STYLE.update(kwargs[node_attr]) OP_STYLE.update(kwargs[node_attr])
if kwargs.has_key("edge_attr"): if "edge_attr" in kwargs:
VAR_STYLE.update(kwargs[edge_attr]) VAR_STYLE.update(kwargs[edge_attr])
graph_id = unique_id() graph_id = unique_id()
......
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import layers from . import layers
__all__ = [ __all__ = [
"simple_img_conv_pool", "simple_img_conv_pool",
...@@ -210,7 +210,7 @@ def img_conv_group(input, ...@@ -210,7 +210,7 @@ def img_conv_group(input,
conv_with_batchnorm = __extend_list__(conv_with_batchnorm) conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate) conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)
for i in xrange(len(conv_num_filter)): for i in range(len(conv_num_filter)):
local_conv_act = conv_act local_conv_act = conv_act
if conv_with_batchnorm[i]: if conv_with_batchnorm[i]:
local_conv_act = None local_conv_act = None
...@@ -488,10 +488,11 @@ def scaled_dot_product_attention(queries, ...@@ -488,10 +488,11 @@ def scaled_dot_product_attention(queries,
trans_x = layers.transpose(x, perm=[0, 2, 1, 3]) trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
return layers.reshape( return layers.reshape(
x=trans_x, x=trans_x,
shape=map(int, [ shape=list(
trans_x.shape[0], trans_x.shape[1], map(int, [
trans_x.shape[2] * trans_x.shape[3] trans_x.shape[0], trans_x.shape[1], trans_x.shape[2] *
])) trans_x.shape[3]
])))
q, k, v = __compute_qkv(queries, keys, values, num_heads) q, k, v = __compute_qkv(queries, keys, values, num_heads)
......
...@@ -12,6 +12,8 @@ ...@@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import six
import paddle.fluid.core as core import paddle.fluid.core as core
import paddle.fluid.proto.framework_pb2 as framework_pb2 import paddle.fluid.proto.framework_pb2 as framework_pb2
...@@ -24,13 +26,13 @@ def get_all_op_protos(): ...@@ -24,13 +26,13 @@ def get_all_op_protos():
protostrs = core.get_all_op_protos() protostrs = core.get_all_op_protos()
ret_values = [] ret_values = []
for pbstr in protostrs: for pbstr in protostrs:
op_proto = framework_pb2.OpProto.FromString(str(pbstr)) op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
ret_values.append(op_proto) ret_values.append(op_proto)
return ret_values return ret_values
def is_str(s): def is_str(s):
return isinstance(s, str) or isinstance(s, unicode) return isinstance(s, str) or isinstance(s, str)
class OpDescCreationMethod(object): class OpDescCreationMethod(object):
...@@ -189,7 +191,7 @@ class OperatorFactory(object): ...@@ -189,7 +191,7 @@ class OperatorFactory(object):
return self.get_op_info(t).method(**kwargs) return self.get_op_info(t).method(**kwargs)
def types(self): def types(self):
return self.op_methods.keys() return list(self.op_methods.keys())
def get_op_info(self, t): def get_op_info(self, t):
if t not in self.op_methods: if t not in self.op_methods:
...@@ -197,13 +199,13 @@ class OperatorFactory(object): ...@@ -197,13 +199,13 @@ class OperatorFactory(object):
return self.op_methods.get(t) return self.op_methods.get(t)
def get_op_input_names(self, type): def get_op_input_names(self, type):
return map(lambda x: x[0], self.get_op_info(type).inputs) return [x[0] for x in self.get_op_info(type).inputs]
def get_op_inputs(self, type): def get_op_inputs(self, type):
return self.get_op_info(type).inputs return self.get_op_info(type).inputs
def get_op_output_names(self, type): def get_op_output_names(self, type):
return map(lambda x: x[0], self.get_op_info(type).outputs) return [x[0] for x in self.get_op_info(type).outputs]
def get_op_outputs(self, type): def get_op_outputs(self, type):
return self.get_op_info(type).outputs return self.get_op_info(type).outputs
......
...@@ -14,15 +14,15 @@ ...@@ -14,15 +14,15 @@
import re import re
from collections import defaultdict from collections import defaultdict
from paddle.fluid.framework import Program, Variable from paddle.fluid.framework import Program, Variable
import framework from . import framework
import layers from . import layers
from backward import append_backward from .backward import append_backward
from framework import program_guard from .framework import program_guard
import unique_name from . import unique_name
from initializer import Constant from .initializer import Constant
from layer_helper import LayerHelper from .layer_helper import LayerHelper
from regularizer import append_regularization_ops from .regularizer import append_regularization_ops
from clip import append_gradient_clip_ops, error_clip_callback from .clip import append_gradient_clip_ops, error_clip_callback
from contextlib import contextmanager from contextlib import contextmanager
__all__ = [ __all__ = [
...@@ -106,7 +106,7 @@ class Optimizer(object): ...@@ -106,7 +106,7 @@ class Optimizer(object):
param_lr = param.optimize_attr['learning_rate'] param_lr = param.optimize_attr['learning_rate']
if type(param_lr) == Variable: if type(param_lr) == Variable:
# param learning rate has been updated (LARS) # param learning rate has been updated (LARS)
print("returns updated param lr ", param_lr) print(("returns updated param lr ", param_lr))
return param_lr return param_lr
else: else:
if param_lr == 1.0: if param_lr == 1.0:
......
...@@ -12,10 +12,11 @@ ...@@ -12,10 +12,11 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import core from __future__ import print_function
import multiprocessing import multiprocessing
import framework from . import core
import executor from . import framework
from . import executor
import warnings import warnings
import sys import sys
import os import os
...@@ -94,7 +95,7 @@ class ParallelExecutor(object): ...@@ -94,7 +95,7 @@ class ParallelExecutor(object):
self._places = [] self._places = []
self._act_places = [] self._act_places = []
if use_cuda: if use_cuda:
for i in xrange(core.get_cuda_device_count()): for i in range(core.get_cuda_device_count()):
p = core.Place() p = core.Place()
self._act_places.append(core.CUDAPlace(i)) self._act_places.append(core.CUDAPlace(i))
p.set_place(self._act_places[-1]) p.set_place(self._act_places[-1])
...@@ -102,7 +103,7 @@ class ParallelExecutor(object): ...@@ -102,7 +103,7 @@ class ParallelExecutor(object):
else: else:
cpu_num = int( cpu_num = int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count())) os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
for i in xrange(cpu_num): for i in range(cpu_num):
p = core.Place() p = core.Place()
self._act_places.append(core.CPUPlace()) self._act_places.append(core.CPUPlace())
p.set_place(self._act_places[-1]) p.set_place(self._act_places[-1])
...@@ -143,16 +144,16 @@ class ParallelExecutor(object): ...@@ -143,16 +144,16 @@ class ParallelExecutor(object):
) if share_vars_from else [] ) if share_vars_from else []
self.persistable_vars = [ self.persistable_vars = [
v.name v.name for v in [
for v in filter( var for var in main.list_vars()
lambda var: var.persistable and var.type != core.VarDesc.VarType.RAW, if var.persistable and var.type != core.VarDesc.VarType.RAW
main.list_vars()) ]
] ]
self.executor = core.ParallelExecutor( self.executor = core.ParallelExecutor(
self._places, self._places,
set([ set([
p.name for p in main.global_block()._iter_parameters() p.name for p in main.global_block().iter_parameters()
if not p.stop_gradient if not p.stop_gradient
]), ]),
set(self.persistable_vars), main.desc, loss_name set(self.persistable_vars), main.desc, loss_name
...@@ -227,7 +228,9 @@ class ParallelExecutor(object): ...@@ -227,7 +228,9 @@ class ParallelExecutor(object):
""" """
if feed is None and feed_dict is not None: if feed is None and feed_dict is not None:
feed = feed_dict feed = feed_dict
print >> sys.stderr, "`feed_dict` is deprecated. Please use `feed=`" print(
"`feed_dict` is deprecated. Please use `feed=`",
file=sys.stderr)
if isinstance(feed, dict): if isinstance(feed, dict):
feed_tensor_dict = dict() feed_tensor_dict = dict()
......
...@@ -12,8 +12,8 @@ ...@@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from initializer import Initializer, Xavier, Constant from .initializer import Initializer, Xavier, Constant
from regularizer import WeightDecayRegularizer from .regularizer import WeightDecayRegularizer
__all__ = [ __all__ = [
'ParamAttr', 'ParamAttr',
...@@ -134,7 +134,7 @@ class ParamAttr(object): ...@@ -134,7 +134,7 @@ class ParamAttr(object):
return [ParamAttr._to_attr(a) for a in arg] return [ParamAttr._to_attr(a) for a in arg]
elif isinstance(arg, ParamAttr): elif isinstance(arg, ParamAttr):
return arg return arg
elif isinstance(arg, str) or isinstance(arg, unicode): elif isinstance(arg, str) or isinstance(arg, str):
return ParamAttr(name=arg) return ParamAttr(name=arg)
elif isinstance(arg, Initializer): elif isinstance(arg, Initializer):
return ParamAttr(initializer=arg) return ParamAttr(initializer=arg)
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import core from . import core
from contextlib import contextmanager from contextlib import contextmanager
import os import os
...@@ -224,7 +224,7 @@ def profiler(state, sorted_key=None, profile_path='/tmp/profile'): ...@@ -224,7 +224,7 @@ def profiler(state, sorted_key=None, profile_path='/tmp/profile'):
If the state == 'All', a profile proto file will be written to If the state == 'All', a profile proto file will be written to
`profile_path`. This file records timeline information during the execution. `profile_path`. This file records timeline information during the execution.
Then users can visualize this file to see the timeline, please refer Then users can visualize this file to see the timeline, please refer
https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/howto/optimization/timeline.md https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/howto/optimization/timeline.md
Args: Args:
......
...@@ -13,8 +13,8 @@ ...@@ -13,8 +13,8 @@
# limitations under the License. # limitations under the License.
import os import os
import core
import contextlib import contextlib
from . import core
__all__ = [ __all__ = [
'convert_reader_to_recordio_file', 'convert_reader_to_recordio_files' 'convert_reader_to_recordio_file', 'convert_reader_to_recordio_files'
] ]
......
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import framework from . import framework
from . import core from . import core
__all__ = ['L1Decay', 'L2Decay', 'L1DecayRegularizer', 'L2DecayRegularizer'] __all__ = ['L1Decay', 'L2Decay', 'L1DecayRegularizer', 'L2DecayRegularizer']
......
...@@ -63,7 +63,7 @@ def train(use_cuda, train_program, params_dirname): ...@@ -63,7 +63,7 @@ def train(use_cuda, train_program, params_dirname):
if event.step == 10: if event.step == 10:
test_metrics = trainer.test( test_metrics = trainer.test(
reader=test_reader, feed_order=['x', 'y']) reader=test_reader, feed_order=['x', 'y'])
print test_metrics print(test_metrics)
''' '''
... ...
['25.768919467926025'] ['25.768919467926025']
...@@ -94,7 +94,7 @@ def infer(use_cuda, inference_program, params_dirname=None): ...@@ -94,7 +94,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32") tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
results = inferencer.infer({'x': tensor_x}) results = inferencer.infer({'x': tensor_x})
print("infer results: ", results[0]) print(("infer results: ", results[0]))
def main(use_cuda): def main(use_cuda):
......
...@@ -28,7 +28,7 @@ images per class. ...@@ -28,7 +28,7 @@ images per class.
""" """
import cPickle import pickle
import itertools import itertools
import numpy import numpy
import paddle.v2.dataset.common import paddle.v2.dataset.common
...@@ -46,7 +46,7 @@ def reader_creator(filename, sub_name, batch_size=None): ...@@ -46,7 +46,7 @@ def reader_creator(filename, sub_name, batch_size=None):
data = batch['data'] data = batch['data']
labels = batch.get('labels', batch.get('fine_labels', None)) labels = batch.get('labels', batch.get('fine_labels', None))
assert labels is not None assert labels is not None
for sample, label in itertools.izip(data, labels): for sample, label in zip(data, labels):
yield (sample / 255.0).astype(numpy.float32), int(label) yield (sample / 255.0).astype(numpy.float32), int(label)
def reader(): def reader():
...@@ -56,7 +56,7 @@ def reader_creator(filename, sub_name, batch_size=None): ...@@ -56,7 +56,7 @@ def reader_creator(filename, sub_name, batch_size=None):
batch_count = 0 batch_count = 0
for name in names: for name in names:
batch = cPickle.load(f.extractfile(name)) batch = pickle.load(f.extractfile(name))
for item in read_batch(batch): for item in read_batch(batch):
if isinstance(batch_size, int) and batch_count > batch_size: if isinstance(batch_size, int) and batch_count > batch_size:
break break
......
...@@ -12,8 +12,6 @@ ...@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy import numpy
...@@ -107,7 +105,7 @@ def train(use_cuda, train_program, params_dirname): ...@@ -107,7 +105,7 @@ def train(use_cuda, train_program, params_dirname):
avg_cost, accuracy = trainer.test( avg_cost, accuracy = trainer.test(
reader=test_reader, feed_order=['pixel', 'label']) reader=test_reader, feed_order=['pixel', 'label'])
print('Loss {0:2.2}, Acc {1:2.2}'.format(avg_cost, accuracy)) print(('Loss {0:2.2}, Acc {1:2.2}'.format(avg_cost, accuracy)))
if accuracy > 0.01: # Low threshold for speeding up CI if accuracy > 0.01: # Low threshold for speeding up CI
if params_dirname is not None: if params_dirname is not None:
...@@ -136,7 +134,7 @@ def infer(use_cuda, inference_program, params_dirname=None): ...@@ -136,7 +134,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
tensor_img = numpy.random.rand(1, 3, 32, 32).astype("float32") tensor_img = numpy.random.rand(1, 3, 32, 32).astype("float32")
results = inferencer.infer({'pixel': tensor_img}) results = inferencer.infer({'pixel': tensor_img})
print("infer results: ", results) print(("infer results: ", results))
def main(use_cuda): def main(use_cuda):
......
...@@ -12,8 +12,6 @@ ...@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy import numpy
...@@ -84,7 +82,7 @@ def train(use_cuda, train_program, params_dirname): ...@@ -84,7 +82,7 @@ def train(use_cuda, train_program, params_dirname):
avg_cost, accuracy = trainer.test( avg_cost, accuracy = trainer.test(
reader=test_reader, feed_order=['pixel', 'label']) reader=test_reader, feed_order=['pixel', 'label'])
print('Loss {0:2.2}, Acc {1:2.2}'.format(avg_cost, accuracy)) print(('Loss {0:2.2}, Acc {1:2.2}'.format(avg_cost, accuracy)))
if accuracy > 0.01: # Low threshold for speeding up CI if accuracy > 0.01: # Low threshold for speeding up CI
if params_dirname is not None: if params_dirname is not None:
...@@ -113,7 +111,7 @@ def infer(use_cuda, inference_program, params_dirname=None): ...@@ -113,7 +111,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
tensor_img = numpy.random.rand(1, 3, 32, 32).astype("float32") tensor_img = numpy.random.rand(1, 3, 32, 32).astype("float32")
results = inferencer.infer({'pixel': tensor_img}) results = inferencer.infer({'pixel': tensor_img})
print("infer results: ", results) print(("infer results: ", results))
def main(use_cuda): def main(use_cuda):
......
...@@ -12,8 +12,6 @@ ...@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np import numpy as np
...@@ -173,19 +171,20 @@ def train(use_cuda, train_program, params_dirname): ...@@ -173,19 +171,20 @@ def train(use_cuda, train_program, params_dirname):
# get avg cost # get avg cost
avg_cost = np.array(avg_cost_set).mean() avg_cost = np.array(avg_cost_set).mean()
print("avg_cost: %s" % avg_cost) print(("avg_cost: %s" % avg_cost))
if float(avg_cost) < 100.0: # Large value to increase CI speed if float(avg_cost) < 100.0: # Large value to increase CI speed
trainer.save_params(params_dirname) trainer.save_params(params_dirname)
else: else:
print('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1, print(
float(avg_cost))) ('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1,
float(avg_cost))))
if math.isnan(float(avg_cost)): if math.isnan(float(avg_cost)):
sys.exit("got NaN loss, training failed.") sys.exit("got NaN loss, training failed.")
elif isinstance(event, fluid.EndStepEvent): elif isinstance(event, fluid.EndStepEvent):
print("Step {0}, Epoch {1} Metrics {2}".format( print(("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch, map(np.array, event.metrics))) event.step, event.epoch, list(map(np.array, event.metrics)))))
if event.step == 1: # Run 2 iterations to speed CI if event.step == 1: # Run 2 iterations to speed CI
trainer.save_params(params_dirname) trainer.save_params(params_dirname)
trainer.stop() trainer.stop()
...@@ -249,7 +248,7 @@ def infer(use_cuda, inference_program, params_dirname): ...@@ -249,7 +248,7 @@ def infer(use_cuda, inference_program, params_dirname):
}, },
return_numpy=False) return_numpy=False)
print("infer results: ", np.array(results[0]).shape) print(("infer results: ", np.array(results[0]).shape))
def main(use_cuda): def main(use_cuda):
......
...@@ -197,7 +197,7 @@ def train(use_cuda, is_sparse, is_local=True): ...@@ -197,7 +197,7 @@ def train(use_cuda, is_sparse, is_local=True):
def event_handler(event): def event_handler(event):
if isinstance(event, fluid.EndStepEvent): if isinstance(event, fluid.EndStepEvent):
print('pass_id=' + str(event.epoch) + ' batch=' + str(event.step)) print(('pass_id=' + str(event.epoch) + ' batch=' + str(event.step)))
if event.step == 10: if event.step == 10:
trainer.stop() trainer.stop()
...@@ -250,7 +250,7 @@ def decode_main(use_cuda, is_sparse): ...@@ -250,7 +250,7 @@ def decode_main(use_cuda, is_sparse):
feeder = fluid.DataFeeder(feed_list, place) feeder = fluid.DataFeeder(feed_list, place)
for data in train_data(): for data in train_data():
feed_dict = feeder.feed(map(lambda x: [x[0]], data)) feed_dict = feeder.feed([[x[0]] for x in data])
feed_dict['init_ids'] = init_ids feed_dict['init_ids'] = init_ids
feed_dict['init_scores'] = init_scores feed_dict['init_scores'] = init_scores
...@@ -259,7 +259,7 @@ def decode_main(use_cuda, is_sparse): ...@@ -259,7 +259,7 @@ def decode_main(use_cuda, is_sparse):
feed=feed_dict, feed=feed_dict,
fetch_list=[translation_ids, translation_scores], fetch_list=[translation_ids, translation_scores],
return_numpy=False) return_numpy=False)
print result_ids.recursive_sequence_lengths() print((result_ids.recursive_sequence_lengths()))
break break
......
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import argparse import argparse
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
...@@ -78,19 +78,21 @@ def train(use_cuda, train_program, params_dirname): ...@@ -78,19 +78,21 @@ def train(use_cuda, train_program, params_dirname):
avg_cost, acc = trainer.test( avg_cost, acc = trainer.test(
reader=test_reader, feed_order=['img', 'label']) reader=test_reader, feed_order=['img', 'label'])
print("avg_cost: %s" % avg_cost) print(("avg_cost: %s" % avg_cost))
print("acc : %s" % acc) print(("acc : %s" % acc))
if acc > 0.2: # Smaller value to increase CI speed if acc > 0.2: # Smaller value to increase CI speed
trainer.save_params(params_dirname) trainer.save_params(params_dirname)
else: else:
print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format( print(('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
event.epoch + 1, avg_cost, acc)) event.epoch + 1, avg_cost, acc)))
if math.isnan(avg_cost): if math.isnan(avg_cost):
sys.exit("got NaN loss, training failed.") sys.exit("got NaN loss, training failed.")
elif isinstance(event, fluid.EndStepEvent): elif isinstance(event, fluid.EndStepEvent):
print("Step {0}, Epoch {1} Metrics {2}".format( print(
event.step, event.epoch, map(numpy.array, event.metrics))) ("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch,
list(map(numpy.array, event.metrics)))))
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
...@@ -116,7 +118,7 @@ def infer(use_cuda, inference_program, params_dirname=None): ...@@ -116,7 +118,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
results = inferencer.infer({'img': tensor_img}) results = inferencer.infer({'img': tensor_img})
print("infer results: ", results[0]) print(("infer results: ", results[0]))
def main(use_cuda): def main(use_cuda):
......
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import argparse import argparse
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle import paddle
...@@ -61,14 +61,14 @@ def train(use_cuda, train_program, params_dirname): ...@@ -61,14 +61,14 @@ def train(use_cuda, train_program, params_dirname):
avg_cost, acc = trainer.test( avg_cost, acc = trainer.test(
reader=test_reader, feed_order=['img', 'label']) reader=test_reader, feed_order=['img', 'label'])
print("avg_cost: %s" % avg_cost) print(("avg_cost: %s" % avg_cost))
print("acc : %s" % acc) print(("acc : %s" % acc))
if acc > 0.2: # Smaller value to increase CI speed if acc > 0.2: # Smaller value to increase CI speed
trainer.save_params(params_dirname) trainer.save_params(params_dirname)
else: else:
print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format( print(('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
event.epoch + 1, avg_cost, acc)) event.epoch + 1, avg_cost, acc)))
if math.isnan(avg_cost): if math.isnan(avg_cost):
sys.exit("got NaN loss, training failed.") sys.exit("got NaN loss, training failed.")
...@@ -96,7 +96,7 @@ def infer(use_cuda, inference_program, params_dirname=None): ...@@ -96,7 +96,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
results = inferencer.infer({'img': tensor_img}) results = inferencer.infer({'img': tensor_img})
print("infer results: ", results[0]) print(("infer results: ", results[0]))
def main(use_cuda): def main(use_cuda):
......
...@@ -180,14 +180,15 @@ def train(use_cuda, train_program, params_dirname): ...@@ -180,14 +180,15 @@ def train(use_cuda, train_program, params_dirname):
# get avg cost # get avg cost
avg_cost = np.array(avg_cost_set).mean() avg_cost = np.array(avg_cost_set).mean()
print("avg_cost: %s" % avg_cost) print(("avg_cost: %s" % avg_cost))
if float(avg_cost) < 4: # Smaller value to increase CI speed if float(avg_cost) < 4: # Smaller value to increase CI speed
trainer.save_params(params_dirname) trainer.save_params(params_dirname)
trainer.stop() trainer.stop()
else: else:
print('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1, print(
float(avg_cost))) ('BatchID {0}, Test Loss {1:0.2}'.format(event.epoch + 1,
float(avg_cost))))
if math.isnan(float(avg_cost)): if math.isnan(float(avg_cost)):
sys.exit("got NaN loss, training failed.") sys.exit("got NaN loss, training failed.")
...@@ -239,7 +240,7 @@ def infer(use_cuda, inference_program, params_dirname): ...@@ -239,7 +240,7 @@ def infer(use_cuda, inference_program, params_dirname):
}, },
return_numpy=False) return_numpy=False)
print("infer results: ", np.array(results[0])) print(("infer results: ", np.array(results[0])))
def main(use_cuda): def main(use_cuda):
......
...@@ -12,8 +12,6 @@ ...@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from functools import partial from functools import partial
...@@ -84,21 +82,21 @@ def train(use_cuda, train_program, params_dirname): ...@@ -84,21 +82,21 @@ def train(use_cuda, train_program, params_dirname):
avg_cost, acc = trainer.test( avg_cost, acc = trainer.test(
reader=test_reader, feed_order=['words', 'label']) reader=test_reader, feed_order=['words', 'label'])
print("avg_cost: %s" % avg_cost) print(("avg_cost: %s" % avg_cost))
print("acc : %s" % acc) print(("acc : %s" % acc))
if acc > 0.2: # Smaller value to increase CI speed if acc > 0.2: # Smaller value to increase CI speed
trainer.save_params(params_dirname) trainer.save_params(params_dirname)
trainer.stop() trainer.stop()
else: else:
print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format( print(('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
event.epoch + 1, avg_cost, acc)) event.epoch + 1, avg_cost, acc)))
if math.isnan(avg_cost): if math.isnan(avg_cost):
sys.exit("got NaN loss, training failed.") sys.exit("got NaN loss, training failed.")
elif isinstance(event, fluid.EndStepEvent): elif isinstance(event, fluid.EndStepEvent):
print("Step {0}, Epoch {1} Metrics {2}".format( print(("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch, map(np.array, event.metrics))) event.step, event.epoch, list(map(np.array, event.metrics)))))
if event.step == 1: # Run 2 iterations to speed CI if event.step == 1: # Run 2 iterations to speed CI
trainer.save_params(params_dirname) trainer.save_params(params_dirname)
trainer.stop() trainer.stop()
...@@ -140,7 +138,7 @@ def infer(use_cuda, inference_program, params_dirname=None): ...@@ -140,7 +138,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
tensor_words = fluid.create_random_int_lodtensor( tensor_words = fluid.create_random_int_lodtensor(
recursive_seq_lens, base_shape, place, low=0, high=len(word_dict) - 1) recursive_seq_lens, base_shape, place, low=0, high=len(word_dict) - 1)
results = inferencer.infer({'words': tensor_words}) results = inferencer.infer({'words': tensor_words})
print("infer results: ", results) print(("infer results: ", results))
def main(use_cuda): def main(use_cuda):
......
...@@ -12,8 +12,6 @@ ...@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from functools import partial from functools import partial
...@@ -99,21 +97,21 @@ def train(use_cuda, train_program, params_dirname): ...@@ -99,21 +97,21 @@ def train(use_cuda, train_program, params_dirname):
avg_cost, acc = trainer.test( avg_cost, acc = trainer.test(
reader=test_reader, feed_order=['words', 'label']) reader=test_reader, feed_order=['words', 'label'])
print("avg_cost: %s" % avg_cost) print(("avg_cost: %s" % avg_cost))
print("acc : %s" % acc) print(("acc : %s" % acc))
if acc > 0.2: # Smaller value to increase CI speed if acc > 0.2: # Smaller value to increase CI speed
trainer.save_params(params_dirname) trainer.save_params(params_dirname)
trainer.stop() trainer.stop()
else: else:
print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format( print(('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
event.epoch + 1, avg_cost, acc)) event.epoch + 1, avg_cost, acc)))
if math.isnan(avg_cost): if math.isnan(avg_cost):
sys.exit("got NaN loss, training failed.") sys.exit("got NaN loss, training failed.")
elif isinstance(event, fluid.EndStepEvent): elif isinstance(event, fluid.EndStepEvent):
print("Step {0}, Epoch {1} Metrics {2}".format( print(("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch, map(np.array, event.metrics))) event.step, event.epoch, list(map(np.array, event.metrics)))))
if event.step == 1: # Run 2 iterations to speed CI if event.step == 1: # Run 2 iterations to speed CI
trainer.save_params(params_dirname) trainer.save_params(params_dirname)
trainer.stop() trainer.stop()
...@@ -155,7 +153,7 @@ def infer(use_cuda, inference_program, params_dirname=None): ...@@ -155,7 +153,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
tensor_words = fluid.create_random_int_lodtensor( tensor_words = fluid.create_random_int_lodtensor(
recursive_seq_lens, base_shape, place, low=0, high=len(word_dict) - 1) recursive_seq_lens, base_shape, place, low=0, high=len(word_dict) - 1)
results = inferencer.infer({'words': tensor_words}) results = inferencer.infer({'words': tensor_words})
print("infer results: ", results) print(("infer results: ", results))
def main(use_cuda): def main(use_cuda):
......
...@@ -12,8 +12,6 @@ ...@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from functools import partial from functools import partial
...@@ -93,21 +91,21 @@ def train(use_cuda, train_program, params_dirname): ...@@ -93,21 +91,21 @@ def train(use_cuda, train_program, params_dirname):
avg_cost, acc = trainer.test( avg_cost, acc = trainer.test(
reader=test_reader, feed_order=['words', 'label']) reader=test_reader, feed_order=['words', 'label'])
print("avg_cost: %s" % avg_cost) print(("avg_cost: %s" % avg_cost))
print("acc : %s" % acc) print(("acc : %s" % acc))
if acc > 0.2: # Smaller value to increase CI speed if acc > 0.2: # Smaller value to increase CI speed
trainer.save_params(params_dirname) trainer.save_params(params_dirname)
trainer.stop() trainer.stop()
else: else:
print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format( print(('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
event.epoch + 1, avg_cost, acc)) event.epoch + 1, avg_cost, acc)))
if math.isnan(avg_cost): if math.isnan(avg_cost):
sys.exit("got NaN loss, training failed.") sys.exit("got NaN loss, training failed.")
elif isinstance(event, fluid.EndStepEvent): elif isinstance(event, fluid.EndStepEvent):
print("Step {0}, Epoch {1} Metrics {2}".format( print(("Step {0}, Epoch {1} Metrics {2}".format(
event.step, event.epoch, map(np.array, event.metrics))) event.step, event.epoch, list(map(np.array, event.metrics)))))
if event.step == 1: # Run 2 iterations to speed CI if event.step == 1: # Run 2 iterations to speed CI
trainer.save_params(params_dirname) trainer.save_params(params_dirname)
trainer.stop() trainer.stop()
...@@ -150,7 +148,7 @@ def infer(use_cuda, inference_program, params_dirname=None): ...@@ -150,7 +148,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
tensor_words = fluid.create_random_int_lodtensor( tensor_words = fluid.create_random_int_lodtensor(
recursive_seq_lens, base_shape, place, low=0, high=len(word_dict) - 1) recursive_seq_lens, base_shape, place, low=0, high=len(word_dict) - 1)
results = inferencer.infer({'words': tensor_words}) results = inferencer.infer({'words': tensor_words})
print("infer results: ", results) print(("infer results: ", results))
def main(use_cuda): def main(use_cuda):
......
...@@ -98,7 +98,7 @@ def train(use_cuda, train_program, params_dirname): ...@@ -98,7 +98,7 @@ def train(use_cuda, train_program, params_dirname):
reader=test_reader, reader=test_reader,
feed_order=['firstw', 'secondw', 'thirdw', 'forthw', 'nextw']) feed_order=['firstw', 'secondw', 'thirdw', 'forthw', 'nextw'])
avg_cost = outs[0] avg_cost = outs[0]
print("loss= ", avg_cost) print(("loss= ", avg_cost))
if avg_cost < 10.0: if avg_cost < 10.0:
trainer.save_params(params_dirname) trainer.save_params(params_dirname)
...@@ -149,7 +149,7 @@ def infer(use_cuda, inference_program, params_dirname=None): ...@@ -149,7 +149,7 @@ def infer(use_cuda, inference_program, params_dirname=None):
'forthw': fourth_word 'forthw': fourth_word
}, },
return_numpy=False) return_numpy=False)
print(np.array(result[0])) print((np.array(result[0])))
def main(use_cuda, is_sparse): def main(use_cuda, is_sparse):
......
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
from paddle.fluid.layers.device import get_places from paddle.fluid.layers.device import get_places
import unittest import unittest
import paddle.fluid as fluid import paddle.fluid as fluid
...@@ -175,12 +175,12 @@ def train(word_dict, ...@@ -175,12 +175,12 @@ def train(word_dict,
def train_loop(main_program): def train_loop(main_program):
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
for pass_id in xrange(PASS_NUM): for pass_id in range(PASS_NUM):
for data in train_data(): for data in train_data():
cost_val, acc_val = exe.run(main_program, cost_val, acc_val = exe.run(main_program,
feed=feeder.feed(data), feed=feeder.feed(data),
fetch_list=[cost, acc_out]) fetch_list=[cost, acc_out])
print("cost=" + str(cost_val) + " acc=" + str(acc_val)) print(("cost=" + str(cost_val) + " acc=" + str(acc_val)))
if cost_val < 0.4 and acc_val > 0.8: if cost_val < 0.4 and acc_val > 0.8:
if save_dirname is not None: if save_dirname is not None:
fluid.io.save_inference_model(save_dirname, ["words"], fluid.io.save_inference_model(save_dirname, ["words"],
...@@ -261,10 +261,10 @@ def infer(word_dict, use_cuda, save_dirname=None): ...@@ -261,10 +261,10 @@ def infer(word_dict, use_cuda, save_dirname=None):
feed={feed_target_names[0]: tensor_words}, feed={feed_target_names[0]: tensor_words},
fetch_list=fetch_targets, fetch_list=fetch_targets,
return_numpy=False) return_numpy=False)
print(results[0].recursive_sequence_lengths()) print((results[0].recursive_sequence_lengths()))
np_data = np.array(results[0]) np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape) print(("Inference Shape: ", np_data.shape))
print("Inference results: ", np_data) print(("Inference results: ", np_data))
def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None): def main(word_dict, net_method, use_cuda, parallel=False, save_dirname=None):
......
...@@ -114,7 +114,7 @@ def infer(use_cuda, save_dirname=None): ...@@ -114,7 +114,7 @@ def infer(use_cuda, save_dirname=None):
test_reader = paddle.batch( test_reader = paddle.batch(
paddle.dataset.uci_housing.test(), batch_size=batch_size) paddle.dataset.uci_housing.test(), batch_size=batch_size)
test_data = test_reader().next() test_data = next(test_reader())
test_feat = numpy.array( test_feat = numpy.array(
[data[0] for data in test_data]).astype("float32") [data[0] for data in test_data]).astype("float32")
test_label = numpy.array( test_label = numpy.array(
...@@ -124,9 +124,9 @@ def infer(use_cuda, save_dirname=None): ...@@ -124,9 +124,9 @@ def infer(use_cuda, save_dirname=None):
results = exe.run(inference_program, results = exe.run(inference_program,
feed={feed_target_names[0]: numpy.array(test_feat)}, feed={feed_target_names[0]: numpy.array(test_feat)},
fetch_list=fetch_targets) fetch_list=fetch_targets)
print("infer shape: ", results[0].shape) print(("infer shape: ", results[0].shape))
print("infer results: ", results[0]) print(("infer results: ", results[0]))
print("ground truth: ", test_label) print(("ground truth: ", test_label))
def main(use_cuda, is_local=True): def main(use_cuda, is_local=True):
......
...@@ -12,8 +12,6 @@ ...@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import contextlib import contextlib
...@@ -165,10 +163,10 @@ def train(net_type, use_cuda, save_dirname, is_local): ...@@ -165,10 +163,10 @@ def train(net_type, use_cuda, save_dirname, is_local):
acc_value = numpy.array(acc_list).mean() acc_value = numpy.array(acc_list).mean()
avg_loss_value = numpy.array(avg_loss_list).mean() avg_loss_value = numpy.array(avg_loss_list).mean()
print( print((
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'. 'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
format(pass_id, batch_id + 1, format(pass_id, batch_id + 1,
float(avg_loss_value), float(acc_value))) float(avg_loss_value), float(acc_value))))
if acc_value > 0.01: # Low threshold for speeding up CI if acc_value > 0.01: # Low threshold for speeding up CI
fluid.io.save_inference_model(save_dirname, ["pixel"], fluid.io.save_inference_model(save_dirname, ["pixel"],
...@@ -241,7 +239,7 @@ def infer(use_cuda, save_dirname=None): ...@@ -241,7 +239,7 @@ def infer(use_cuda, save_dirname=None):
np.testing.assert_almost_equal( np.testing.assert_almost_equal(
results[0][i], transpiler_results[0][i], decimal=5) results[0][i], transpiler_results[0][i], decimal=5)
print("infer results: ", results[0]) print(("infer results: ", results[0]))
fluid.io.save_inference_model(save_dirname, feed_target_names, fluid.io.save_inference_model(save_dirname, feed_target_names,
fetch_targets, exe, fetch_targets, exe,
......
...@@ -181,7 +181,7 @@ def train(use_cuda, save_dirname=None, is_local=True): ...@@ -181,7 +181,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
start_time = time.time() start_time = time.time()
batch_id = 0 batch_id = 0
for pass_id in xrange(PASS_NUM): for pass_id in range(PASS_NUM):
for data in train_data(): for data in train_data():
cost = exe.run(main_program, cost = exe.run(main_program,
feed=feeder.feed(data), feed=feeder.feed(data),
...@@ -189,10 +189,10 @@ def train(use_cuda, save_dirname=None, is_local=True): ...@@ -189,10 +189,10 @@ def train(use_cuda, save_dirname=None, is_local=True):
cost = cost[0] cost = cost[0]
if batch_id % 10 == 0: if batch_id % 10 == 0:
print("avg_cost:" + str(cost)) print(("avg_cost:" + str(cost)))
if batch_id != 0: if batch_id != 0:
print("second per batch: " + str((time.time( print(("second per batch: " + str(
) - start_time) / batch_id)) (time.time() - start_time) / batch_id)))
# Set the threshold low to speed up the CI test # Set the threshold low to speed up the CI test
if float(cost) < 60.0: if float(cost) < 60.0:
if save_dirname is not None: if save_dirname is not None:
...@@ -333,9 +333,9 @@ def infer(use_cuda, save_dirname=None): ...@@ -333,9 +333,9 @@ def infer(use_cuda, save_dirname=None):
}, },
fetch_list=fetch_targets, fetch_list=fetch_targets,
return_numpy=False) return_numpy=False)
print(results[0].recursive_sequence_lengths()) print((results[0].recursive_sequence_lengths()))
np_data = np.array(results[0]) np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape) print(("Inference Shape: ", np_data.shape))
def main(use_cuda, is_local=True): def main(use_cuda, is_local=True):
......
...@@ -199,14 +199,14 @@ def train_main(use_cuda, is_sparse, is_local=True): ...@@ -199,14 +199,14 @@ def train_main(use_cuda, is_sparse, is_local=True):
feeder = fluid.DataFeeder(feed_list, place) feeder = fluid.DataFeeder(feed_list, place)
batch_id = 0 batch_id = 0
for pass_id in xrange(1): for pass_id in range(1):
for data in train_data(): for data in train_data():
outs = exe.run(main_program, outs = exe.run(main_program,
feed=feeder.feed(data), feed=feeder.feed(data),
fetch_list=[avg_cost]) fetch_list=[avg_cost])
avg_cost_val = np.array(outs[0]) avg_cost_val = np.array(outs[0])
print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) + print(('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
" avg_cost=" + str(avg_cost_val)) " avg_cost=" + str(avg_cost_val)))
if batch_id > 3: if batch_id > 3:
break break
batch_id += 1 batch_id += 1
...@@ -273,7 +273,7 @@ def decode_main(use_cuda, is_sparse): ...@@ -273,7 +273,7 @@ def decode_main(use_cuda, is_sparse):
feeder = fluid.DataFeeder(feed_list, place) feeder = fluid.DataFeeder(feed_list, place)
for data in train_data(): for data in train_data():
feed_dict = feeder.feed(map(lambda x: [x[0]], data)) feed_dict = feeder.feed([[x[0]] for x in data])
feed_dict['init_ids'] = init_ids feed_dict['init_ids'] = init_ids
feed_dict['init_scores'] = init_scores feed_dict['init_scores'] = init_scores
...@@ -282,7 +282,7 @@ def decode_main(use_cuda, is_sparse): ...@@ -282,7 +282,7 @@ def decode_main(use_cuda, is_sparse):
feed=feed_dict, feed=feed_dict,
fetch_list=[translation_ids, translation_scores], fetch_list=[translation_ids, translation_scores],
return_numpy=False) return_numpy=False)
print result_ids.recursive_sequence_lengths() print((result_ids.recursive_sequence_lengths()))
break break
......
...@@ -11,7 +11,6 @@ ...@@ -11,7 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import paddle.fluid.core as core import paddle.fluid.core as core
import math import math
...@@ -143,10 +142,10 @@ def train(nn_type, ...@@ -143,10 +142,10 @@ def train(nn_type,
params_filename=params_filename) params_filename=params_filename)
return return
else: else:
print( print((
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'. 'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'.
format(pass_id, batch_id + 1, format(pass_id, batch_id + 1,
float(avg_loss_val), float(acc_val))) float(avg_loss_val), float(acc_val))))
if math.isnan(float(avg_loss_val)): if math.isnan(float(avg_loss_val)):
sys.exit("got NaN loss, training failed.") sys.exit("got NaN loss, training failed.")
raise AssertionError("Loss of recognize digits is too large") raise AssertionError("Loss of recognize digits is too large")
...@@ -207,7 +206,7 @@ def infer(use_cuda, ...@@ -207,7 +206,7 @@ def infer(use_cuda,
results = exe.run(inference_program, results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_img}, feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets) fetch_list=fetch_targets)
print("infer results: ", results[0]) print(("infer results: ", results[0]))
def main(use_cuda, parallel, nn_type, combine): def main(use_cuda, parallel, nn_type, combine):
......
...@@ -304,7 +304,7 @@ def infer(use_cuda, save_dirname=None): ...@@ -304,7 +304,7 @@ def infer(use_cuda, save_dirname=None):
}, },
fetch_list=fetch_targets, fetch_list=fetch_targets,
return_numpy=False) return_numpy=False)
print("inferred score: ", np.array(results[0])) print(("inferred score: ", np.array(results[0])))
def main(use_cuda): def main(use_cuda):
......
...@@ -175,15 +175,15 @@ def train(use_cuda, save_dirname=None): ...@@ -175,15 +175,15 @@ def train(use_cuda, save_dirname=None):
feeder = fluid.DataFeeder(feed_list, place) feeder = fluid.DataFeeder(feed_list, place)
batch_id = 0 batch_id = 0
for pass_id in xrange(2): for pass_id in range(2):
for data in train_data(): for data in train_data():
outs = exe.run(framework.default_main_program(), outs = exe.run(framework.default_main_program(),
feed=feeder.feed(data), feed=feeder.feed(data),
fetch_list=[avg_cost]) fetch_list=[avg_cost])
avg_cost_val = np.array(outs[0]) avg_cost_val = np.array(outs[0])
print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) + print(('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
" avg_cost=" + str(avg_cost_val)) " avg_cost=" + str(avg_cost_val)))
if math.isnan(float(avg_cost_val[0])): if math.isnan(float(avg_cost_val[0])):
sys.exit("got NaN loss, training failed.") sys.exit("got NaN loss, training failed.")
if batch_id > 3: if batch_id > 3:
...@@ -241,10 +241,10 @@ def infer(use_cuda, save_dirname=None): ...@@ -241,10 +241,10 @@ def infer(use_cuda, save_dirname=None):
}, },
fetch_list=fetch_targets, fetch_list=fetch_targets,
return_numpy=False) return_numpy=False)
print(results[0].recursive_sequence_lengths()) print((results[0].recursive_sequence_lengths()))
np_data = np.array(results[0]) np_data = np.array(results[0])
print("Inference shape: ", np_data.shape) print(("Inference shape: ", np_data.shape))
print("Inference results: ", np_data) print(("Inference results: ", np_data))
def main(use_cuda): def main(use_cuda):
......
...@@ -85,9 +85,11 @@ def train(use_cuda, is_sparse, is_parallel, save_dirname, is_local=True): ...@@ -85,9 +85,11 @@ def train(use_cuda, is_sparse, is_parallel, save_dirname, is_local=True):
pd = fluid.layers.ParallelDo(places) pd = fluid.layers.ParallelDo(places)
with pd.do(): with pd.do():
avg_cost, predict_word = __network__( avg_cost, predict_word = __network__(
map(pd.read_input, [ list(
first_word, second_word, third_word, forth_word, next_word map(pd.read_input, [
])) first_word, second_word, third_word, forth_word,
next_word
])))
pd.write_output(avg_cost) pd.write_output(avg_cost)
avg_cost = fluid.layers.mean(pd()) avg_cost = fluid.layers.mean(pd())
...@@ -202,9 +204,9 @@ def infer(use_cuda, save_dirname=None): ...@@ -202,9 +204,9 @@ def infer(use_cuda, save_dirname=None):
}, },
fetch_list=fetch_targets, fetch_list=fetch_targets,
return_numpy=False) return_numpy=False)
print(results[0].recursive_sequence_lengths()) print((results[0].recursive_sequence_lengths()))
np_data = np.array(results[0]) np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape) print(("Inference Shape: ", np_data.shape))
def main(use_cuda, is_sparse, is_parallel): def main(use_cuda, is_sparse, is_parallel):
......
...@@ -78,7 +78,7 @@ for pass_id in range(PASS_NUM): ...@@ -78,7 +78,7 @@ for pass_id in range(PASS_NUM):
if avg_loss_value[0] < 10.0: if avg_loss_value[0] < 10.0:
exit(0) # if avg cost less than 10.0, we think our code is good. exit(0) # if avg cost less than 10.0, we think our code is good.
print avg_loss_value[0] print((avg_loss_value[0]))
if math.isnan(float(avg_loss_value)): if math.isnan(float(avg_loss_value)):
sys.exit("got NaN loss, training failed.") sys.exit("got NaN loss, training failed.")
exit(1) exit(1)
...@@ -12,8 +12,6 @@ ...@@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import sys import sys
import paddle import paddle
...@@ -157,8 +155,8 @@ for pass_id in range(PASS_NUM): ...@@ -157,8 +155,8 @@ for pass_id in range(PASS_NUM):
fetch_list=[avg_cost, batch_acc, batch_size]) fetch_list=[avg_cost, batch_acc, batch_size])
accuracy.add(value=acc, weight=weight) accuracy.add(value=acc, weight=weight)
pass_acc = accuracy.eval() pass_acc = accuracy.eval()
print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str( print(("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" +
pass_acc)) str(pass_acc)))
# this model is slow, so if we can train two mini batch, we think it works properly. # this model is slow, so if we can train two mini batch, we think it works properly.
if i > 0: if i > 0:
exit(0) exit(0)
......
...@@ -118,14 +118,14 @@ def main(): ...@@ -118,14 +118,14 @@ def main():
feeder = fluid.DataFeeder(feed_list, place) feeder = fluid.DataFeeder(feed_list, place)
batch_id = 0 batch_id = 0
for pass_id in xrange(10): for pass_id in range(10):
for data in train_data(): for data in train_data():
outs = exe.run(fluid.default_main_program(), outs = exe.run(fluid.default_main_program(),
feed=feeder.feed(data), feed=feeder.feed(data),
fetch_list=[avg_cost]) fetch_list=[avg_cost])
avg_cost_val = np.array(outs[0]) avg_cost_val = np.array(outs[0])
print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) + print(('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
" avg_cost=" + str(avg_cost_val)) " avg_cost=" + str(avg_cost_val)))
if batch_id > 2: if batch_id > 2:
exit(0) exit(0)
if math.isnan(float(avg_cost_val)): if math.isnan(float(avg_cost_val)):
......
...@@ -137,7 +137,7 @@ def main(): ...@@ -137,7 +137,7 @@ def main():
generated_img = exe.run(g_program, generated_img = exe.run(g_program,
feed={'noise': n}, feed={'noise': n},
fetch_list={g_img})[0] fetch_list={g_img})[0]
real_data = numpy.array(map(lambda x: x[0], data)).astype('float32') real_data = numpy.array([x[0] for x in data]).astype('float32')
real_data = real_data.reshape(num_true, 784) real_data = real_data.reshape(num_true, 784)
total_data = numpy.concatenate([real_data, generated_img]) total_data = numpy.concatenate([real_data, generated_img])
total_label = numpy.concatenate([ total_label = numpy.concatenate([
...@@ -150,7 +150,7 @@ def main(): ...@@ -150,7 +150,7 @@ def main():
feed={'img': total_data, feed={'img': total_data,
'label': total_label}, 'label': total_label},
fetch_list={d_loss})[0] fetch_list={d_loss})[0]
for _ in xrange(NUM_TRAIN_TIMES_OF_DG): for _ in range(NUM_TRAIN_TIMES_OF_DG):
n = numpy.random.uniform( n = numpy.random.uniform(
low=-1.0, high=1.0, low=-1.0, high=1.0,
size=[2 * num_true * NOISE_SIZE]).astype('float32').reshape( size=[2 * num_true * NOISE_SIZE]).astype('float32').reshape(
...@@ -158,8 +158,8 @@ def main(): ...@@ -158,8 +158,8 @@ def main():
dg_loss_np = exe.run(dg_program, dg_loss_np = exe.run(dg_program,
feed={'noise': n}, feed={'noise': n},
fetch_list={dg_loss})[0] fetch_list={dg_loss})[0]
print("Pass ID={0}, Batch ID={1}, D-Loss={2}, DG-Loss={3}".format( print(("Pass ID={0}, Batch ID={1}, D-Loss={2}, DG-Loss={3}".format(
pass_id, batch_id, d_loss_np, dg_loss_np)) pass_id, batch_id, d_loss_np, dg_loss_np)))
# generate image each batch # generate image each batch
fig = plot(generated_img) fig = plot(generated_img)
plt.savefig( plt.savefig(
......
...@@ -36,7 +36,7 @@ if len(sys.argv) == 1: ...@@ -36,7 +36,7 @@ if len(sys.argv) == 1:
else: else:
word_dict = load_vocab(sys.argv[1]) word_dict = load_vocab(sys.argv[1])
word_dict["<unk>"] = len(word_dict) word_dict["<unk>"] = len(word_dict)
print "Dict dim = ", len(word_dict) print("Dict dim = ", len(word_dict))
# input text data # input text data
data = fluid.layers.data(name="words", shape=[1], dtype="int64", lod_level=1) data = fluid.layers.data(name="words", shape=[1], dtype="int64", lod_level=1)
......
...@@ -194,7 +194,7 @@ class TestRoutineOp(unittest.TestCase): ...@@ -194,7 +194,7 @@ class TestRoutineOp(unittest.TestCase):
quit_ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR) quit_ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
with fluid.Go(): with fluid.Go():
for i in xrange(10): for i in range(10):
fluid.channel_recv(ch1, result) fluid.channel_recv(ch1, result)
Print(result) Print(result)
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
from paddle.fluid.framework import Program, program_guard from paddle.fluid.framework import Program, program_guard
...@@ -47,7 +46,7 @@ class TestDetection(unittest.TestCase): ...@@ -47,7 +46,7 @@ class TestDetection(unittest.TestCase):
scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv) scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv)
self.assertIsNotNone(out) self.assertIsNotNone(out)
self.assertEqual(out.shape[-1], 6) self.assertEqual(out.shape[-1], 6)
print(str(program)) print((str(program)))
def test_detection_api(self): def test_detection_api(self):
program = Program() program = Program()
...@@ -82,7 +81,7 @@ class TestDetection(unittest.TestCase): ...@@ -82,7 +81,7 @@ class TestDetection(unittest.TestCase):
self.assertIsNotNone(trg) self.assertIsNotNone(trg)
self.assertIsNotNone(trg_weight) self.assertIsNotNone(trg_weight)
print(str(program)) print((str(program)))
def test_ssd_loss(self): def test_ssd_loss(self):
program = Program() program = Program()
...@@ -106,7 +105,7 @@ class TestDetection(unittest.TestCase): ...@@ -106,7 +105,7 @@ class TestDetection(unittest.TestCase):
loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv) loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
self.assertIsNotNone(loss) self.assertIsNotNone(loss)
self.assertEqual(loss.shape[-1], 1) self.assertEqual(loss.shape[-1], 1)
print(str(program)) print((str(program)))
class TestPriorBox(unittest.TestCase): class TestPriorBox(unittest.TestCase):
...@@ -197,7 +196,7 @@ class TestDetectionMAP(unittest.TestCase): ...@@ -197,7 +196,7 @@ class TestDetectionMAP(unittest.TestCase):
map_out = layers.detection_map(detect_res, label, 21) map_out = layers.detection_map(detect_res, label, 21)
self.assertIsNotNone(map_out) self.assertIsNotNone(map_out)
self.assertEqual(map_out.shape, (1, )) self.assertEqual(map_out.shape, (1, ))
print(str(program)) print((str(program)))
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -12,7 +12,6 @@ ...@@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function
import numpy as np import numpy as np
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
......
...@@ -76,15 +76,15 @@ class TestMNISTIfElseOp(unittest.TestCase): ...@@ -76,15 +76,15 @@ class TestMNISTIfElseOp(unittest.TestCase):
PASS_NUM = 100 PASS_NUM = 100
for pass_id in range(PASS_NUM): for pass_id in range(PASS_NUM):
for data in train_reader(): for data in train_reader():
x_data = np.array(map(lambda x: x[0], data)).astype("float32") x_data = np.array([x[0] for x in data]).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.array([x[1] for x in data]).astype("int64")
y_data = np.expand_dims(y_data, axis=1) y_data = np.expand_dims(y_data, axis=1)
outs = exe.run(prog, outs = exe.run(prog,
feed={'x': x_data, feed={'x': x_data,
'y': y_data}, 'y': y_data},
fetch_list=[avg_loss]) fetch_list=[avg_loss])
print outs[0] print((outs[0]))
if outs[0] < 1.0: if outs[0] < 1.0:
return return
self.assertFalse(True) self.assertFalse(True)
...@@ -131,15 +131,15 @@ class TestMNISTIfElseOp(unittest.TestCase): ...@@ -131,15 +131,15 @@ class TestMNISTIfElseOp(unittest.TestCase):
PASS_NUM = 100 PASS_NUM = 100
for pass_id in range(PASS_NUM): for pass_id in range(PASS_NUM):
for data in train_reader(): for data in train_reader():
x_data = np.array(map(lambda x: x[0], data)).astype("float32") x_data = np.array([x[0] for x in data]).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.array([x[1] for x in data]).astype("int64")
y_data = y_data.reshape((y_data.shape[0], 1)) y_data = y_data.reshape((y_data.shape[0], 1))
outs = exe.run(prog, outs = exe.run(prog,
feed={'x': x_data, feed={'x': x_data,
'y': y_data}, 'y': y_data},
fetch_list=[avg_loss]) fetch_list=[avg_loss])
print outs[0] print((outs[0]))
if outs[0] < 1.0: if outs[0] < 1.0:
return return
self.assertFalse(True) self.assertFalse(True)
......
...@@ -20,7 +20,7 @@ import itertools ...@@ -20,7 +20,7 @@ import itertools
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid.op import Operator from paddle.fluid.op import Operator
from op_test import OpTest from .op_test import OpTest
class BenchmarkSuite(OpTest): class BenchmarkSuite(OpTest):
...@@ -40,8 +40,7 @@ class BenchmarkSuite(OpTest): ...@@ -40,8 +40,7 @@ class BenchmarkSuite(OpTest):
expect_t = np.array(item_cpu_out) expect_t = np.array(item_cpu_out)
actual = item_gpu_out actual = item_gpu_out
actual_t = np.array(item_gpu_out) actual_t = np.array(item_gpu_out)
var_name = variable if isinstance(variable, var_name = variable if isinstance(variable, str) else variable.name
basestring) else variable.name
self.assertTrue( self.assertTrue(
np.allclose( np.allclose(
actual_t, expect_t, atol=atol), actual_t, expect_t, atol=atol),
...@@ -53,7 +52,7 @@ class BenchmarkSuite(OpTest): ...@@ -53,7 +52,7 @@ class BenchmarkSuite(OpTest):
def _get_input_names(self): def _get_input_names(self):
inputs = [] inputs = []
for name, value in self.inputs.iteritems(): for name, value in list(self.inputs.items()):
if isinstance(value, list): if isinstance(value, list):
inputs.extend([sub_name for sub_name, _ in value]) inputs.extend([sub_name for sub_name, _ in value])
inputs.append(name) inputs.append(name)
...@@ -61,7 +60,7 @@ class BenchmarkSuite(OpTest): ...@@ -61,7 +60,7 @@ class BenchmarkSuite(OpTest):
def _get_output_names(self): def _get_output_names(self):
outputs = [] outputs = []
for var_name, var in self.outputs.iteritems(): for var_name, var in list(self.outputs.items()):
if isinstance(var, list): if isinstance(var, list):
for sub_var_name, sub_var in var: for sub_var_name, sub_var in var:
outputs.append(sub_var_name) outputs.append(sub_var_name)
...@@ -89,8 +88,8 @@ class BenchmarkSuite(OpTest): ...@@ -89,8 +88,8 @@ class BenchmarkSuite(OpTest):
for place in places: for place in places:
elapses.append(self.timeit_output_with_place(place, iters)) elapses.append(self.timeit_output_with_place(place, iters))
for place, elapse in zip(places, elapses): for place, elapse in zip(places, elapses):
print("One pass of ({2}_op) at {0} cost {1}".format( print(("One pass of ({2}_op) at {0} cost {1}".format(
str(place), elapse, self.op_type)) str(place), elapse, self.op_type)))
def timeit_grad_with_place(self, place, iters=100): def timeit_grad_with_place(self, place, iters=100):
inputs_to_check = self._get_input_names() inputs_to_check = self._get_input_names()
...@@ -109,5 +108,5 @@ class BenchmarkSuite(OpTest): ...@@ -109,5 +108,5 @@ class BenchmarkSuite(OpTest):
for place in places: for place in places:
elapses.append(self.timeit_grad_with_place(place, iters)) elapses.append(self.timeit_grad_with_place(place, iters))
for place, elapse in zip(places, elapses): for place, elapse in zip(places, elapses):
print("One pass of ({2}_grad_op) at {0} cost {1}".format( print(("One pass of ({2}_grad_op) at {0} cost {1}".format(
str(place), elapse, self.op_type)) str(place), elapse, self.op_type)))
...@@ -16,8 +16,8 @@ import unittest ...@@ -16,8 +16,8 @@ import unittest
import numpy as np import numpy as np
import paddle.fluid as fluid import paddle.fluid as fluid
from benchmark import BenchmarkSuite from .benchmark import BenchmarkSuite
from op_test import OpTest from .op_test import OpTest
# This is a demo op test case for operator benchmarking and high resolution number stability alignment. # This is a demo op test case for operator benchmarking and high resolution number stability alignment.
......
...@@ -91,7 +91,7 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -91,7 +91,7 @@ class TestParallelExecutorBase(unittest.TestCase):
first_loss, = run_executor( first_loss, = run_executor(
exe=exe, feed=feed_dict, fetch_list=[loss.name]) exe=exe, feed=feed_dict, fetch_list=[loss.name])
for i in xrange(iter): for i in range(iter):
run_executor(exe=exe, feed=feed_dict, fetch_list=[]) run_executor(exe=exe, feed=feed_dict, fetch_list=[])
last_loss, = run_executor( last_loss, = run_executor(
...@@ -99,8 +99,8 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -99,8 +99,8 @@ class TestParallelExecutorBase(unittest.TestCase):
end = time.time() end = time.time()
if batch_size is not None: if batch_size is not None:
print "%.4f Instance per second" % ( print(("%.4f Instance per second" % (
(batch_size * iter + 2) / (end - begin)) (batch_size * iter + 2) / (end - begin))))
avg_last_loss_val = np.array(last_loss).mean() avg_last_loss_val = np.array(last_loss).mean()
avg_first_loss_val = np.array(first_loss).mean() avg_first_loss_val = np.array(first_loss).mean()
...@@ -108,6 +108,6 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -108,6 +108,6 @@ class TestParallelExecutorBase(unittest.TestCase):
float(avg_first_loss_val)): float(avg_first_loss_val)):
sys.exit("got NaN loss, training failed.") sys.exit("got NaN loss, training failed.")
print first_loss, last_loss print((first_loss, last_loss))
# self.assertGreater(first_loss[0], last_loss[0]) # self.assertGreater(first_loss[0], last_loss[0])
return first_loss, last_loss return first_loss, last_loss
...@@ -142,7 +142,7 @@ def append_input_output(block, op_proto, np_list, is_input, dtype): ...@@ -142,7 +142,7 @@ def append_input_output(block, op_proto, np_list, is_input, dtype):
def append_loss_ops(block, output_names): def append_loss_ops(block, output_names):
mean_inputs = map(block.var, output_names) mean_inputs = list(map(block.var, output_names))
# for item in mean_inputs: # for item in mean_inputs:
# print(item) # print(item)
# print("Item", item.dtype) # print("Item", item.dtype)
......
...@@ -118,8 +118,9 @@ def multi_head_attention(queries, ...@@ -118,8 +118,9 @@ def multi_head_attention(queries,
# FIXME(guosheng): Decouple the program desc with batch_size. # FIXME(guosheng): Decouple the program desc with batch_size.
return layers.reshape( return layers.reshape(
x=trans_x, x=trans_x,
shape=map(int, shape=list(
[batch_size, -1, trans_x.shape[2] * trans_x.shape[3]])) map(int, [batch_size, -1, trans_x.shape[2] * trans_x.shape[3]
])))
def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate): def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate):
""" """
......
...@@ -18,16 +18,15 @@ import errno ...@@ -18,16 +18,15 @@ import errno
import shutil import shutil
import time import time
import core from . import core
from . import data_feeder
import data_feeder from . import executor
import executor from . import framework
import framework from . import io
import io
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module # optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import optimizer as opt_module from . import optimizer as opt_module
import parallel_executor from . import parallel_executor
from transpiler import distribute_transpiler from .transpiler import distribute_transpiler
__all__ = [ __all__ = [
'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent', 'Trainer', 'BeginEpochEvent', 'EndEpochEvent', 'BeginStepEvent',
...@@ -73,7 +72,7 @@ class BeginStepEvent(object): ...@@ -73,7 +72,7 @@ class BeginStepEvent(object):
self.step = step_id self.step = step_id
self.fetch_metrics = True self.fetch_metrics = True
""" """
If fetch_metrics is true, the metrics will be fetched at the If fetch_metrics is true, the metrics will be fetched at the
EndStepEvent. Default is True. EndStepEvent. Default is True.
""" """
...@@ -614,11 +613,12 @@ def build_feed_var_list(program, feed_order): ...@@ -614,11 +613,12 @@ def build_feed_var_list(program, feed_order):
if not isinstance(feed_order, dict): if not isinstance(feed_order, dict):
raise TypeError( raise TypeError(
"The 'feed_order' should be either None, list or dict.") "The 'feed_order' should be either None, list or dict.")
if not sorted(feed_order.values()) == range(len(feed_order)): if not sorted(feed_order.values()) == list(range(len(feed_order))):
raise ValueError( raise ValueError(
"The values of 'feed_order' should be a permutation of [0, len(feed_order))" "The values of 'feed_order' should be a permutation of [0, len(feed_order))"
) )
sorted_pair_list = sorted(feed_order.items(), key=lambda item: item[1]) sorted_pair_list = sorted(
list(feed_order.items()), key=lambda item: item[1])
feed_var_list = [ feed_var_list = [
program.global_block().var(pair[0]) for pair in sorted_pair_list program.global_block().var(pair[0]) for pair in sorted_pair_list
] ]
...@@ -644,14 +644,14 @@ def save_checkpoint(executor, ...@@ -644,14 +644,14 @@ def save_checkpoint(executor,
pserver_endpoints=None): pserver_endpoints=None):
""" """
This function filters out all checkpoint variables from the give This function filters out all checkpoint variables from the give
main_program and then saves these variables to the `checkpoint_dir` main_program and then saves these variables to the `checkpoint_dir`
directory. directory.
In the training precess, we generally save a checkpoint in each In the training precess, we generally save a checkpoint in each
iteration. So there might be a lot of checkpoints in the iteration. So there might be a lot of checkpoints in the
`checkpoint_dir`. To avoid them taking too much disk space, the `checkpoint_dir`. To avoid them taking too much disk space, the
`max_num_checkpoints` are introduced to limit the total number of `max_num_checkpoints` are introduced to limit the total number of
checkpoints. If the number of existing checkpints is greater than checkpoints. If the number of existing checkpints is greater than
the `max_num_checkpoints`, oldest ones will be scroll deleted. the `max_num_checkpoints`, oldest ones will be scroll deleted.
A variable is a checkpoint variable and will be saved if it meets A variable is a checkpoint variable and will be saved if it meets
...@@ -663,21 +663,21 @@ def save_checkpoint(executor, ...@@ -663,21 +663,21 @@ def save_checkpoint(executor,
Args: Args:
executor(Executor): The executor to run for save checkpoint. executor(Executor): The executor to run for save checkpoint.
checkpoint_dir(str): The folder where to save checkpoints. checkpoint_dir(str): The folder where to save checkpoints.
trainer_id(int): currect trainer id, if id is equal to 0, the trainer trainer_id(int): currect trainer id, if id is equal to 0, the trainer
is chief. is chief.
trainer_args(dict|None): Current training arguments. Such as 'epoch_id' trainer_args(dict|None): Current training arguments. Such as 'epoch_id'
and 'step_id'. and 'step_id'.
Defaut: None Defaut: None
main_program(Program): The program whose checkpoint variables will main_program(Program): The program whose checkpoint variables will
be saved. be saved.
max_num_checkpoints(int): The max number of total number of existing max_num_checkpoints(int): The max number of total number of existing
checkpoints. checkpoints.
Default: 3 Default: 3
lookup_table(string|None): the lookup table name, when use distribute lookup_table(string|None): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler. lookup table, we can get lookup table name by DistributeTranspiler.
table_name table_name
pserver_endpoints(list|None): the parameter server ip:port list. pserver_endpoints(list|None): the parameter server ip:port list.
when use distribute lookup table, we can get pserver_endpoints by when use distribute lookup table, we can get pserver_endpoints by
distribute arguments. distribute arguments.
Returns: Returns:
...@@ -747,8 +747,8 @@ def load_checkpoint(executor, ...@@ -747,8 +747,8 @@ def load_checkpoint(executor,
`checkpoint_dir` directory. `checkpoint_dir` directory.
In the training precess, we generally save a checkpoint in each In the training precess, we generally save a checkpoint in each
iteration. So there are more than one checkpoint in the iteration. So there are more than one checkpoint in the
`checkpoint_dir` (each checkpoint has its own sub folder), use `checkpoint_dir` (each checkpoint has its own sub folder), use
`serial` to specify which serial of checkpoint you would like to `serial` to specify which serial of checkpoint you would like to
load. load.
...@@ -819,9 +819,9 @@ def load_checkpoint(executor, ...@@ -819,9 +819,9 @@ def load_checkpoint(executor,
def clean_checkpoint(checkpoint_dir, delete_dir=False): def clean_checkpoint(checkpoint_dir, delete_dir=False):
""" """
clean the checkpoint dir, when the train exits normally, clean the checkpoint dir, when the train exits normally,
the trainer will call clean_checkpoint to delete checkpoint directory saved before. the trainer will call clean_checkpoint to delete checkpoint directory saved before.
delete_dir only works when the directory is empty, otherwise, OSError is raised. delete_dir only works when the directory is empty, otherwise, OSError is raised.
: param checkpoint_dir : param checkpoint_dir
: param delete_dir : param delete_dir
...@@ -889,7 +889,7 @@ def _load_persist_vars_without_grad(executor, ...@@ -889,7 +889,7 @@ def _load_persist_vars_without_grad(executor,
def _load_lookup_table_vars(executor, dirname, program, pserver_id, table_name): def _load_lookup_table_vars(executor, dirname, program, pserver_id, table_name):
""" """
The parameter server will load lookup table's local file in The parameter server will load lookup table's local file in
selectedrows variable. selectedrows variable.
Args: Args:
...@@ -940,7 +940,7 @@ def _load_lookup_table_vars(executor, dirname, program, pserver_id, table_name): ...@@ -940,7 +940,7 @@ def _load_lookup_table_vars(executor, dirname, program, pserver_id, table_name):
def _save_persist_vars_without_grad(executor, dirname, program): def _save_persist_vars_without_grad(executor, dirname, program):
""" """
This function filters out all checkpoint variables from the give This function filters out all checkpoint variables from the give
program and then save these variables to a sub-folder '__model__' of program and then save these variables to a sub-folder '__model__' of
the given directory. the given directory.
A variable is a checkpoint variable if it meets all following A variable is a checkpoint variable if it meets all following
...@@ -969,7 +969,7 @@ def _save_persist_vars_without_grad(executor, dirname, program): ...@@ -969,7 +969,7 @@ def _save_persist_vars_without_grad(executor, dirname, program):
# In this example, `_save_persist_vars_without_grad` function # In this example, `_save_persist_vars_without_grad` function
# will first filters out all checkpoint variables in the default # will first filters out all checkpoint variables in the default
# main program, and then saves these variables to the folder # main program, and then saves these variables to the folder
# "./my_paddle_model/__model__". # "./my_paddle_model/__model__".
""" """
cur_dir = _get_model_dir(dirname) cur_dir = _get_model_dir(dirname)
...@@ -988,7 +988,7 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table, ...@@ -988,7 +988,7 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
""" """
This function will send checkpoint notify message from Trainer 0 This function will send checkpoint notify message from Trainer 0
to all the pservers. to all the pservers.
The checkpoint notify message contains lookup table name, The checkpoint notify message contains lookup table name,
the absolute path on pserver to save lookup_table. the absolute path on pserver to save lookup_table.
Args: Args:
...@@ -996,13 +996,13 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table, ...@@ -996,13 +996,13 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
dirname(str): The folder where to save checkpoints. dirname(str): The folder where to save checkpoints.
lookup_table(string): the lookup table name, when use distribute lookup_table(string): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler. lookup table, we can get lookup table name by DistributeTranspiler.
table_name table_name
ps_endpoint_list(list): the parameter server ip:port list. ps_endpoint_list(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps_endpoint_list by when use distribute lookup table, we can get ps_endpoint_list by
distribute arguments. distribute arguments.
Return: Return:
None None
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -1013,7 +1013,7 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table, ...@@ -1013,7 +1013,7 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"] ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]
_save_pserver_vars_by_notify(executor=exe, _save_pserver_vars_by_notify(executor=exe,
dirname=param_path, lookup_table=table_name, dirname=param_path, lookup_table=table_name,
ps_endpoint_list=ps_endpoints) ps_endpoint_list=ps_endpoints)
""" """
cur_dir = _get_lookuptable_dir(dirname) cur_dir = _get_lookuptable_dir(dirname)
...@@ -1036,7 +1036,7 @@ def _save_trainer_args(dirname, trainer_id, trainer_args): ...@@ -1036,7 +1036,7 @@ def _save_trainer_args(dirname, trainer_id, trainer_args):
cur_dir = _get_trainer_dir(dirname, trainer_id) cur_dir = _get_trainer_dir(dirname, trainer_id)
for name, value in trainer_args.iteritems(): for name, value in list(trainer_args.items()):
args_file = os.path.join(cur_dir, name) args_file = os.path.join(cur_dir, name)
with open(args_file, 'w') as f: with open(args_file, 'w') as f:
f.write(str(value)) f.write(str(value))
...@@ -1045,7 +1045,7 @@ def _save_trainer_args(dirname, trainer_id, trainer_args): ...@@ -1045,7 +1045,7 @@ def _save_trainer_args(dirname, trainer_id, trainer_args):
def _load_trainer_args(checkpoint_dir, serial, trainer_id, trainer_args): def _load_trainer_args(checkpoint_dir, serial, trainer_id, trainer_args):
""" """
trainer will load some args from it's independent directory, trainer will load some args from it's independent directory,
such as epoch_id and step_id. such as epoch_id and step_id.
Args: Args:
...@@ -1168,10 +1168,10 @@ def _scroll_delete(dirname, max_num_checkpoints=3): ...@@ -1168,10 +1168,10 @@ def _scroll_delete(dirname, max_num_checkpoints=3):
serial_num = _get_dir_serial(serial) serial_num = _get_dir_serial(serial)
serial_map[serial_num] = serial serial_map[serial_num] = serial
if len(serial_map.keys()) <= max_num_checkpoints: if len(list(serial_map.keys())) <= max_num_checkpoints:
return return
serials = serial_map.keys() serials = list(serial_map.keys())
serials.sort(reverse=True) serials.sort(reverse=True)
serials = serials[max_num_checkpoints:] serials = serials[max_num_checkpoints:]
for serial in serials: for serial in serials:
......
...@@ -12,10 +12,10 @@ ...@@ -12,10 +12,10 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from distribute_transpiler import DistributeTranspiler, DistributeTranspilerConfig from .distribute_transpiler import DistributeTranspiler, DistributeTranspilerConfig
from inference_transpiler import InferenceTranspiler from .inference_transpiler import InferenceTranspiler
from memory_optimization_transpiler import memory_optimize, release_memory from .memory_optimization_transpiler import memory_optimize, release_memory
from ps_dispatcher import HashName, RoundRobin from .ps_dispatcher import HashName, RoundRobin
__all__ = [ __all__ = [
"DistributeTranspiler", "InferenceTranspiler", "memory_optimize", "DistributeTranspiler", "InferenceTranspiler", "memory_optimize",
......
...@@ -12,5 +12,5 @@ ...@@ -12,5 +12,5 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from program_utils import * from .program_utils import *
from ufind import * from .ufind import *
...@@ -17,8 +17,8 @@ def delete_ops(block, ops): ...@@ -17,8 +17,8 @@ def delete_ops(block, ops):
try: try:
start = list(block.ops).index(ops[0]) start = list(block.ops).index(ops[0])
end = list(block.ops).index(ops[-1]) end = list(block.ops).index(ops[-1])
[block._remove_op(start) for _ in xrange(end - start + 1)] [block._remove_op(start) for _ in range(end - start + 1)]
except Exception, e: except Exception as e:
raise e raise e
block.program._sync_with_cpp() block.program._sync_with_cpp()
......
...@@ -28,18 +28,17 @@ Steps to transpile pserver: ...@@ -28,18 +28,17 @@ Steps to transpile pserver:
5. add listen_and_serv op 5. add listen_and_serv op
""" """
from __future__ import print_function
import math import math
import random import random
import numpy as np import numpy as np
from ps_dispatcher import RoundRobin, HashName, PSDispatcher from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
from .. import core, framework from .. import core, framework
from ..framework import Program, default_main_program, \ from ..framework import Program, default_main_program, \
default_startup_program, Block, \ default_startup_program, Block, \
Parameter, grad_var_name Parameter, grad_var_name
from details import * from .details import *
from functools import reduce
LOOKUP_TABLE_TYPE = "lookup_table" LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad" LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
...@@ -102,7 +101,7 @@ def slice_variable(var_list, slice_count, min_block_size): ...@@ -102,7 +101,7 @@ def slice_variable(var_list, slice_count, min_block_size):
block_size += dim1 - remains block_size += dim1 - remains
# update split_count after aligning # update split_count after aligning
split_count = int(math.ceil(var_numel / float(block_size))) split_count = int(math.ceil(var_numel / float(block_size)))
for block_id in xrange(split_count): for block_id in range(split_count):
curr_block_size = min(block_size, var_numel - ( curr_block_size = min(block_size, var_numel - (
(block_id) * block_size)) (block_id) * block_size))
block = VarBlock(var.name, block_id, curr_block_size) block = VarBlock(var.name, block_id, curr_block_size)
...@@ -117,7 +116,7 @@ class DistributeTranspilerConfig(object): ...@@ -117,7 +116,7 @@ class DistributeTranspilerConfig(object):
try to choose the best method to balance loads for pservers. try to choose the best method to balance loads for pservers.
min_block_size (int): Minimum splitted element number in block. min_block_size (int): Minimum splitted element number in block.
According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156 According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
We can use bandwidth effiently when data size is larger than 2MB.If you We can use bandwidth effiently when data size is larger than 2MB.If you
want to change it, please be sure you see the slice_variable function. want to change it, please be sure you see the slice_variable function.
""" """
...@@ -218,7 +217,7 @@ class DistributeTranspiler(object): ...@@ -218,7 +217,7 @@ class DistributeTranspiler(object):
# fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1 # fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
# fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2 # fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
# shuffle the map will avoid the uneven distribution above # shuffle the map will avoid the uneven distribution above
grad_var_mapping_items = self.grad_var_mapping.items() grad_var_mapping_items = list(self.grad_var_mapping.items())
if not self.config.slice_var_up: if not self.config.slice_var_up:
random.seed(self.trainer_num) random.seed(self.trainer_num)
random.shuffle(grad_var_mapping_items) random.shuffle(grad_var_mapping_items)
...@@ -278,7 +277,7 @@ class DistributeTranspiler(object): ...@@ -278,7 +277,7 @@ class DistributeTranspiler(object):
self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i]) self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
# step4: Concat the parameters splits together after recv. # step4: Concat the parameters splits together after recv.
for varname, splited_var in self.param_var_mapping.iteritems(): for varname, splited_var in list(self.param_var_mapping.items()):
eps = [] eps = []
for var in splited_var: for var in splited_var:
index = [v.name for v in recv_vars].index(var.name) index = [v.name for v in recv_vars].index(var.name)
...@@ -302,7 +301,7 @@ class DistributeTranspiler(object): ...@@ -302,7 +301,7 @@ class DistributeTranspiler(object):
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
}) })
for varname, splited_var in self.param_var_mapping.iteritems(): for varname, splited_var in list(self.param_var_mapping.items()):
if len(splited_var) <= 1: if len(splited_var) <= 1:
continue continue
orig_param = program.global_block().vars[varname] orig_param = program.global_block().vars[varname]
...@@ -371,7 +370,7 @@ class DistributeTranspiler(object): ...@@ -371,7 +370,7 @@ class DistributeTranspiler(object):
dtype=v.dtype, dtype=v.dtype,
shape=v.shape) shape=v.shape)
if self.sync_mode and self.trainer_num > 1: if self.sync_mode and self.trainer_num > 1:
for trainer_id in xrange(self.trainer_num): for trainer_id in range(self.trainer_num):
var = pserver_program.global_block().create_var( var = pserver_program.global_block().create_var(
name="%s.trainer_%d" % (orig_var_name, trainer_id), name="%s.trainer_%d" % (orig_var_name, trainer_id),
persistable=False, persistable=False,
...@@ -461,7 +460,7 @@ class DistributeTranspiler(object): ...@@ -461,7 +460,7 @@ class DistributeTranspiler(object):
per_opt_block = pserver_program.create_block(pre_block_idx) per_opt_block = pserver_program.create_block(pre_block_idx)
optimize_blocks.append(per_opt_block) optimize_blocks.append(per_opt_block)
# append grad merging ops before clip and weight decay # append grad merging ops before clip and weight decay
# cases may like: # cases may like:
# L2Decay op -> clip op -> optimize # L2Decay op -> clip op -> optimize
for _, op in enumerate(self.optimize_ops): for _, op in enumerate(self.optimize_ops):
# find the origin @GRAD var before clipping # find the origin @GRAD var before clipping
...@@ -556,7 +555,7 @@ class DistributeTranspiler(object): ...@@ -556,7 +555,7 @@ class DistributeTranspiler(object):
# 1. create vars in pserver program to startup program # 1. create vars in pserver program to startup program
pserver_vars = pserver_program.global_block().vars pserver_vars = pserver_program.global_block().vars
created_var_map = dict() created_var_map = dict()
for _, var in pserver_vars.iteritems(): for _, var in list(pserver_vars.items()):
tmpvar = s_prog.global_block()._clone_variable(var) tmpvar = s_prog.global_block()._clone_variable(var)
created_var_map[var.name] = tmpvar created_var_map[var.name] = tmpvar
...@@ -989,11 +988,11 @@ class DistributeTranspiler(object): ...@@ -989,11 +988,11 @@ class DistributeTranspiler(object):
var_mapping = dict() var_mapping = dict()
for block_str in block_list: for block_str in block_list:
varname, offset, size = block_str.split(":") varname, offset, size = block_str.split(":")
if not block_map.has_key(varname): if varname not in block_map:
block_map[varname] = [] block_map[varname] = []
block_map[varname].append((long(offset), long(size))) block_map[varname].append((int(offset), int(size)))
for varname, splited in block_map.iteritems(): for varname, splited in list(block_map.items()):
orig_var = program.global_block().var(varname) orig_var = program.global_block().var(varname)
if len(splited) == 1: if len(splited) == 1:
if self.sync_mode and add_trainer_suffix: if self.sync_mode and add_trainer_suffix:
...@@ -1156,7 +1155,7 @@ class DistributeTranspiler(object): ...@@ -1156,7 +1155,7 @@ class DistributeTranspiler(object):
grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx)) grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
if self.sync_mode and self.trainer_num > 1: if self.sync_mode and self.trainer_num > 1:
vars2merge = [] vars2merge = []
for i in xrange(self.trainer_num): for i in range(self.trainer_num):
per_trainer_name = "%s.trainer_%d" % \ per_trainer_name = "%s.trainer_%d" % \
(merged_var_name, i) (merged_var_name, i)
vars2merge.append(pserver_block.vars[per_trainer_name]) vars2merge.append(pserver_block.vars[per_trainer_name])
...@@ -1204,7 +1203,7 @@ class DistributeTranspiler(object): ...@@ -1204,7 +1203,7 @@ class DistributeTranspiler(object):
# learning rate variable has already be created by non-optimize op, # learning rate variable has already be created by non-optimize op,
# don't create it once again. # don't create it once again.
lr_varname = opt_op.input(key)[0] lr_varname = opt_op.input(key)[0]
if pserver_block.vars.has_key(lr_varname): if lr_varname in pserver_block.vars:
new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]] new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
else: else:
origin_var = origin_program.global_block().vars[lr_varname] origin_var = origin_program.global_block().vars[lr_varname]
...@@ -1244,7 +1243,7 @@ class DistributeTranspiler(object): ...@@ -1244,7 +1243,7 @@ class DistributeTranspiler(object):
def _is_splited_grad_var(self, var, var_dict): def _is_splited_grad_var(self, var, var_dict):
grad_block = None grad_block = None
for _, g in var_dict.iteritems(): for _, g in list(var_dict.items()):
if self._orig_varname(g.name) == self._orig_varname(var.name): if self._orig_varname(g.name) == self._orig_varname(var.name):
if g.name.find(".trainer_") == -1: if g.name.find(".trainer_") == -1:
grad_block = g grad_block = g
...@@ -1254,7 +1253,7 @@ class DistributeTranspiler(object): ...@@ -1254,7 +1253,7 @@ class DistributeTranspiler(object):
def _clone_lr_op(self, program, block, op): def _clone_lr_op(self, program, block, op):
inputs = self._get_input_map_from_op( inputs = self._get_input_map_from_op(
self.origin_program.global_block().vars, op) self.origin_program.global_block().vars, op)
for key, varlist in inputs.iteritems(): for key, varlist in list(inputs.items()):
if not isinstance(varlist, list): if not isinstance(varlist, list):
varlist = [varlist] varlist = [varlist]
for var in varlist: for var in varlist:
...@@ -1263,7 +1262,7 @@ class DistributeTranspiler(object): ...@@ -1263,7 +1262,7 @@ class DistributeTranspiler(object):
outputs = self._get_output_map_from_op( outputs = self._get_output_map_from_op(
self.origin_program.global_block().vars, op) self.origin_program.global_block().vars, op)
for key, varlist in outputs.iteritems(): for key, varlist in list(outputs.items()):
if not isinstance(varlist, list): if not isinstance(varlist, list):
varlist = [varlist] varlist = [varlist]
for var in varlist: for var in varlist:
...@@ -1278,7 +1277,7 @@ class DistributeTranspiler(object): ...@@ -1278,7 +1277,7 @@ class DistributeTranspiler(object):
# Append the ops for parameters that do not need to be optimized/updated # Append the ops for parameters that do not need to be optimized/updated
inputs = self._get_input_map_from_op( inputs = self._get_input_map_from_op(
self.origin_program.global_block().vars, opt_op) self.origin_program.global_block().vars, opt_op)
for key, varlist in inputs.iteritems(): for key, varlist in list(inputs.items()):
if not isinstance(varlist, list): if not isinstance(varlist, list):
varlist = [varlist] varlist = [varlist]
for var in varlist: for var in varlist:
...@@ -1288,7 +1287,7 @@ class DistributeTranspiler(object): ...@@ -1288,7 +1287,7 @@ class DistributeTranspiler(object):
var, program.global_block().vars) var, program.global_block().vars)
if grad_block: if grad_block:
inputs[key] = grad_block inputs[key] = grad_block
elif not program.global_block().vars.has_key(var.name): elif var.name not in program.global_block().vars:
program.global_block().create_var( program.global_block().create_var(
name=var.name, name=var.name,
persistable=var.persistable, persistable=var.persistable,
...@@ -1297,7 +1296,7 @@ class DistributeTranspiler(object): ...@@ -1297,7 +1296,7 @@ class DistributeTranspiler(object):
outputs = self._get_output_map_from_op( outputs = self._get_output_map_from_op(
self.origin_program.global_block().vars, opt_op) self.origin_program.global_block().vars, opt_op)
for key, varlist in outputs.iteritems(): for key, varlist in list(outputs.items()):
if not isinstance(varlist, list): if not isinstance(varlist, list):
varlist = [varlist] varlist = [varlist]
for var in varlist: for var in varlist:
...@@ -1305,7 +1304,7 @@ class DistributeTranspiler(object): ...@@ -1305,7 +1304,7 @@ class DistributeTranspiler(object):
var, program.global_block().vars) var, program.global_block().vars)
if grad_block: if grad_block:
outputs[key] = grad_block outputs[key] = grad_block
elif not program.global_block().vars.has_key(var.name): elif var.name not in program.global_block().vars:
program.global_block()._clone_variable(var) program.global_block()._clone_variable(var)
return optimize_block.append_op( return optimize_block.append_op(
...@@ -1326,8 +1325,8 @@ class DistributeTranspiler(object): ...@@ -1326,8 +1325,8 @@ class DistributeTranspiler(object):
def _create_ufind(self, optimize_ops): def _create_ufind(self, optimize_ops):
# Create a unit find data struct by optimize ops # Create a unit find data struct by optimize ops
ufind = UnionFind(optimize_ops) ufind = UnionFind(optimize_ops)
for i in xrange(len(optimize_ops)): for i in range(len(optimize_ops)):
for j in xrange(i, len(optimize_ops)): for j in range(i, len(optimize_ops)):
op1 = optimize_ops[i] op1 = optimize_ops[i]
op2 = optimize_ops[j] op2 = optimize_ops[j]
if self._is_op_connected(op1, op2): if self._is_op_connected(op1, op2):
......
...@@ -305,6 +305,6 @@ class InferenceTranspiler(object): ...@@ -305,6 +305,6 @@ class InferenceTranspiler(object):
args += current_op.output_arg_names args += current_op.output_arg_names
args = list(set(args)) # unique the input and output arguments args = list(set(args)) # unique the input and output arguments
for var in self.block.vars.keys(): for var in list(self.block.vars.keys()):
if var not in args: if var not in args:
self.block._remove_var(var) self.block._remove_var(var)
...@@ -16,6 +16,7 @@ from collections import defaultdict ...@@ -16,6 +16,7 @@ from collections import defaultdict
from .. import core from .. import core
from ..framework import Program, default_main_program, Parameter from ..framework import Program, default_main_program, Parameter
from ..backward import _rename_arg_ from ..backward import _rename_arg_
from functools import reduce
dtype_to_size = { dtype_to_size = {
core.VarDesc.VarType.FP16: 2, core.VarDesc.VarType.FP16: 2,
...@@ -107,7 +108,7 @@ class ControlFlowGraph(object): ...@@ -107,7 +108,7 @@ class ControlFlowGraph(object):
# Repeatedly apply liveness updates until the algorithm stablize # Repeatedly apply liveness updates until the algorithm stablize
# on a complete set live input vars and live output vars. # on a complete set live input vars and live output vars.
while True: while True:
for i in reversed(range(self.op_size)): for i in reversed(list(range(self.op_size))):
live_in[i] = set(self._live_in[i]) live_in[i] = set(self._live_in[i])
live_out[i] = set(self._live_out[i]) live_out[i] = set(self._live_out[i])
for s in self._successors[i]: for s in self._successors[i]:
...@@ -172,9 +173,10 @@ class ControlFlowGraph(object): ...@@ -172,9 +173,10 @@ class ControlFlowGraph(object):
is_forward = i < self._forward_num is_forward = i < self._forward_num
in_diff, out_diff = self._get_diff(self._live_in[i], in_diff, out_diff = self._get_diff(self._live_in[i],
self._live_out[i]) self._live_out[i])
can_optimize = filter( can_optimize = [
lambda x: self._check_var_validity(block_desc, x, is_forward), x for x in in_diff
in_diff) if self._check_var_validity(block_desc, x, is_forward)
]
if can_optimize: if can_optimize:
index = i + fwd_id + 1 if is_forward else i - self._forward_num + bwd_id + 1 index = i + fwd_id + 1 if is_forward else i - self._forward_num + bwd_id + 1
delete_op = block_desc._insert_op(index) delete_op = block_desc._insert_op(index)
...@@ -213,9 +215,10 @@ class ControlFlowGraph(object): ...@@ -213,9 +215,10 @@ class ControlFlowGraph(object):
block_desc = op.block() block_desc = op.block()
is_forward = i < self._forward_num is_forward = i < self._forward_num
if self.pool: if self.pool:
defs_can_optimize = filter( defs_can_optimize = [
lambda x: self._check_var_validity(block_desc, x, is_forward), x for x in self._defs[i]
self._defs[i]) if self._check_var_validity(block_desc, x, is_forward)
]
out_pair = [ out_pair = [
(x, self._find_var(block_desc, x, is_forward).shape()) (x, self._find_var(block_desc, x, is_forward).shape())
for x in defs_can_optimize for x in defs_can_optimize
...@@ -243,11 +246,11 @@ class ControlFlowGraph(object): ...@@ -243,11 +246,11 @@ class ControlFlowGraph(object):
continue continue
if PRINT_LOG: if PRINT_LOG:
print(("Hit Cache !!!! cache pool index " print((("Hit Cache !!!! cache pool index "
"is %d, var name is %s, " "is %d, var name is %s, "
"cached var name is %s, " "cached var name is %s, "
"var shape is %s ") % (index, x, cache_var, "var shape is %s ") % (index, x, cache_var,
str(cache_shape))) str(cache_shape))))
self.pool.pop(index) self.pool.pop(index)
if x == cache_var: if x == cache_var:
break break
...@@ -261,9 +264,10 @@ class ControlFlowGraph(object): ...@@ -261,9 +264,10 @@ class ControlFlowGraph(object):
break break
in_diff, _ = self._get_diff(self._live_in[i], self._live_out[i]) in_diff, _ = self._get_diff(self._live_in[i], self._live_out[i])
can_optimize = filter( can_optimize = [
lambda x: self._check_var_validity(block_desc, x, is_forward), x for x in in_diff
in_diff) if self._check_var_validity(block_desc, x, is_forward)
]
if can_optimize: if can_optimize:
for var_name in can_optimize: for var_name in can_optimize:
self.pool.append((var_name, self._find_var( self.pool.append((var_name, self._find_var(
......
...@@ -67,7 +67,7 @@ def switch(new_generator=None): ...@@ -67,7 +67,7 @@ def switch(new_generator=None):
@contextlib.contextmanager @contextlib.contextmanager
def guard(new_generator=None): def guard(new_generator=None):
if isinstance(new_generator, basestring): if isinstance(new_generator, str):
new_generator = UniqueNameGenerator(new_generator) new_generator = UniqueNameGenerator(new_generator)
old = switch(new_generator) old = switch(new_generator)
yield yield
......
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册