Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
dd711c37
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dd711c37
编写于
6月 14, 2018
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
"add beam search"
上级
dbe0fe6d
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
19 addition
and
7 deletion
+19
-7
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+19
-7
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
dd711c37
...
...
@@ -834,11 +834,14 @@ def linear_chain_crf(input, label, param_attr=None):
Args:
input(${emission_type}): ${emission_comment}
input(${transition_type}): ${transition_comment}
label(${label_type}): ${label_comment}
param_attr(ParamAttr): The attribute of the learnable parameter.
Returns:
${log_likelihood_comment}
${transitionexps_comment}
${emissionexps_comment}
"""
helper
=
LayerHelper
(
'linear_chain_crf'
,
**
locals
())
...
...
@@ -1170,10 +1173,6 @@ def sequence_conv(input,
Variable: output of sequence_conv
"""
# FIXME(dzh) : want to unify the argument of python layer
# function. So we ignore some unecessary attributes.
# such as, padding_trainable, context_start.
helper
=
LayerHelper
(
'sequence_conv'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
filter_shape
=
[
filter_size
*
input
.
shape
[
1
],
num_filters
]
...
...
@@ -2051,18 +2050,31 @@ def layer_norm(input,
def
beam_search_decode
(
ids
,
scores
,
name
=
None
):
"""
Beam Search Decode
This layers is to pack the output of beam search layer into sentences and
associated scores. It is usually called after the beam search layer.
Typically, the output of beam search layer is a tensor of selected ids, with
a tensor of the score of each id. Beam search layer's output ids, however,
are generated directly during the tree search, and they are stacked by each
level of the search tree. Thus we need to reorganize them into sentences,
based on the score of each id. This layer takes the output of beam search
layer as input and repack them into sentences.
${beam_search_decode}
Args:
ids (Variable): ${ids_comment}
scores (Variable): ${scores_comment}
ids (Variable): The selected ids, output of beam search layer.
scores (Variable): The associated scores of the ids, out put of beam
search layer.
name (str): The name of this layer. It is optional.
Returns:
tuple(Variable): a tuple of two output variable: sentence_ids, sentence_scores
tuple(Variable): a tuple of two output tensors: sentence_ids, sentence_scores.
sentence_ids is a tensor with shape [size, length], where size is the
beam size of beam search, and length is the length of each sentence.
Note that the length of sentences may vary.
sentence_scores is a tensor with the same shape as sentence_ids.
Examples:
.. code-block:: python
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录