Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
004df46f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
004df46f
编写于
2月 12, 2018
作者:
X
xuwei06
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make print_op able to show the value of bool tensor
And some minor fixes on comments.
上级
432d2b5d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
25 addition
and
24 deletion
+25
-24
paddle/fluid/operators/elementwise_op_function.h
paddle/fluid/operators/elementwise_op_function.h
+0
-1
paddle/fluid/operators/print_op.cc
paddle/fluid/operators/print_op.cc
+9
-7
python/paddle/v2/fluid/layers/control_flow.py
python/paddle/v2/fluid/layers/control_flow.py
+1
-1
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+15
-15
未找到文件。
paddle/fluid/operators/elementwise_op_function.h
浏览文件 @
004df46f
...
...
@@ -314,7 +314,6 @@ EIGEN_FUNCTOR(Div, EIGEN_DIV);
template
<
typename
DeviceContext
,
typename
T
,
typename
functor
,
typename
broadcastfunctor
,
typename
broadcast2functor
>
void
ElementwiseGradCompute
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
out
,
...
...
paddle/fluid/operators/print_op.cc
浏览文件 @
004df46f
...
...
@@ -46,7 +46,7 @@ struct Formater {
}
private:
void
PrintMessage
()
{
CLOG
<<
std
::
time
(
nullptr
)
<<
"
\t
"
<<
message
;
}
void
PrintMessage
()
{
CLOG
<<
std
::
time
(
nullptr
)
<<
"
\t
"
<<
message
<<
"
\t
"
;
}
void
PrintName
()
{
if
(
!
name
.
empty
())
{
CLOG
<<
"Tensor["
<<
name
<<
"]"
<<
std
::
endl
;
...
...
@@ -85,15 +85,16 @@ struct Formater {
// print float
if
(
dtype
.
hash_code
()
==
typeid
(
float
).
hash_code
())
{
Display
<
float
>
(
size
);
}
if
(
dtype
.
hash_code
()
==
typeid
(
double
).
hash_code
())
{
}
else
if
(
dtype
.
hash_code
()
==
typeid
(
double
).
hash_code
())
{
Display
<
double
>
(
size
);
}
if
(
dtype
.
hash_code
()
==
typeid
(
int
).
hash_code
())
{
}
else
if
(
dtype
.
hash_code
()
==
typeid
(
int
).
hash_code
())
{
Display
<
int
>
(
size
);
}
if
(
dtype
.
hash_code
()
==
typeid
(
int64_t
).
hash_code
())
{
}
else
if
(
dtype
.
hash_code
()
==
typeid
(
int64_t
).
hash_code
())
{
Display
<
int64_t
>
(
size
);
}
else
if
(
dtype
.
hash_code
()
==
typeid
(
bool
).
hash_code
())
{
Display
<
bool
>
(
size
);
}
else
{
CLOG
<<
"
\t
data: unprintable type: "
<<
dtype
.
name
()
<<
std
::
endl
;
}
}
...
...
@@ -182,6 +183,7 @@ class TensorPrintOp : public framework::OperatorBase {
}
Formater
formater
;
formater
.
message
=
Attr
<
std
::
string
>
(
"message"
);
if
(
Attr
<
bool
>
(
"print_tensor_name"
))
{
formater
.
name
=
printed_var_name
;
}
...
...
python/paddle/v2/fluid/layers/control_flow.py
浏览文件 @
004df46f
...
...
@@ -174,7 +174,7 @@ def Print(input,
print_tensor_type (bool): Print the tensor type.
print_tensor_shape (bool): Print the tensor shape.
print_tensor_lod (bool): Print the tensor lod.
print_phase (
bool
): Which phase to displace, including 'forward',
print_phase (
str
): Which phase to displace, including 'forward',
'backward' and 'both'. If set to 'backward' or 'both', will
print the gradients of input tensor.
...
...
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
004df46f
...
...
@@ -1579,7 +1579,7 @@ def layer_norm(input,
"""
**Layer Normalization**
Assume feature vectors exist on dimensions
Assume feature vectors exist on dimensions
:attr:`begin_norm_axis ... rank(input)` and calculate the moment statistics
along these dimensions for each feature vector :math:`a` with size
:math:`H`, then normalize each feature vector using the corresponding
...
...
@@ -1600,13 +1600,13 @@ def layer_norm(input,
Args:
input(Variable): The input tensor variable.
scale(bool): Whether to learn the adaptive gain :math:`g` after
scale(bool): Whether to learn the adaptive gain :math:`g` after
normalization.
shift(bool): Whether to learn the adaptive bias :math:`b` after
shift(bool): Whether to learn the adaptive bias :math:`b` after
normalization.
begin_norm_axis(bool): The normalization will be performed along
begin_norm_axis(bool): The normalization will be performed along
dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
epsilon(float): The small value added to the variance to prevent
epsilon(float): The small value added to the variance to prevent
division by zero.
param_attr(ParamAttr|None): The parameter attribute for the learnable
gain :math:`g`.
...
...
@@ -2070,7 +2070,7 @@ def reduce_sum(input, dim=None, keep_dim=False, name=None):
Tensor variable with a single element, otherwise must be in the
range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
the dimension to reduce is :math:`rank + dim`.
keep_dim (bool): Whether to reserve the reduced dimension in the
keep_dim (bool
|False
): Whether to reserve the reduced dimension in the
output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
name(str|None): A name for this layer(optional). If set None, the layer
...
...
@@ -3098,33 +3098,33 @@ def multiplex(inputs, index):
def
softmax_with_cross_entropy
(
logits
,
label
,
soft_label
=
False
):
"""
**Softmax With Cross Entropy Operator.**
Cross entropy loss with softmax is used as the output layer extensively. This
operator computes the softmax normalized values for each row of the input
tensor, after which cross-entropy loss is computed. This provides a more
numerically stable gradient.
Because this operator performs a softmax on logits internally, it expects
unscaled logits. This operator should not be used with the output of
softmax operator since that would produce incorrect results.
When the attribute soft_label is set false, this operators expects mutually
exclusive hard labels, each sample in a batch is in exactly one class with a
probability of 1.0. Each sample in the batch will have a single label.
The equation is as follows:
1) Hard label (one-hot label, so every sample has exactly one class)
.. math::
loss_j = -
\\
text{logit}_{label_j} +
\\
log
\\
left(
\\
sum_{i=0}^{K}
\\
exp(
\\
text{logit}_i)
\\
right), j = 1,..., K
2) Soft label (each sample can have a distribution over all classes)
.. math::
loss_j = -
\\
sum_{i=0}^{K}
\\
text{label}_i
\\
left(
\\
text{logit}_i -
\\
log
\\
left(
\\
sum_{i=0}^{K}
\\
exp(
\\
text{logit}_i)
\\
right)
\\
right), j = 1,...,K
...
...
@@ -3169,7 +3169,7 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
The operator takes the first dimension of X and Y as batch size.
For each instance, it computes the smooth l1 loss element by element first
and then sums all the losses. So the shape of Out is [batch_size, 1].
Args:
x (Variable): A tensor with rank at least 2. The input value of smooth
l1 loss op with shape [batch_size, dim1, ..., dimN].
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录