nn.py 328.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24 25
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
26
from ..framework import Variable, OpProtoHolder, Program
Y
yangyaming 已提交
27
from ..param_attr import ParamAttr
S
sneaxiy 已提交
28
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
29 30
from .tensor import concat
from . import utils
F
fengjiayi 已提交
31
from .. import unique_name
32
from functools import reduce
33
from .. import core
Y
Yu Yang 已提交
34 35

__all__ = [
X
Xin Pan 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
63
    'sequence_unpad',
X
Xin Pan 已提交
64 65 66 67 68 69 70 71
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
72
    'sequence_slice',
X
Xin Pan 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
90
    'group_norm',
X
Xin Pan 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
104
    'roi_align',
X
Xin Pan 已提交
105 106 107 108
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
109
    'resize_nearest',
X
Xin Pan 已提交
110 111 112 113 114 115
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
116
    'selu',
X
Xin Pan 已提交
117 118 119
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
120
    'margin_rank_loss',
X
Xin Pan 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
164
    'space_to_depth',
W
whs 已提交
165
    'affine_grid',
S
sneaxiy 已提交
166
    'sequence_reverse',
167
    'affine_channel',
B
barrierye 已提交
168
    'similarity_focus',
M
minqiyang 已提交
169
    'hash',
D
dengkaipeng 已提交
170
    'grid_sampler',
G
gmcather 已提交
171 172
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
173
    'bilinear_tensor_product',
C
chengduo 已提交
174 175
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
176
    'lstm',
S
sneaxiy 已提交
177
    'py_func',
Y
Yu Yang 已提交
178 179
]

J
jerrywgz 已提交
180 181
kIgnoreIndex = -100

Y
Yu Yang 已提交
182 183 184 185 186 187 188

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
189
       is_test=False,
190
       name=None):
Y
Yu Yang 已提交
191
    """
192
    **Fully Connected Layer**
Y
Yu Yang 已提交
193

194 195 196 197 198 199 200 201
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
202
    to the output as well.
C
caoying03 已提交
203

C
caoying03 已提交
204
    This process can be formulated as follows:
205 206 207

    .. math::

208
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
209 210 211

    In the above equation:

C
caoying03 已提交
212 213 214 215
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
216
    * :math:`Act`: The activation function.
C
caoying03 已提交
217
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
218 219

    Args:
R
ranqiu 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
235 236
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
237
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
238
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
239
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
240

241
    Returns:
F
fengjiayi 已提交
242
        Variable: The transformation result.
243 244

    Raises:
C
caoying03 已提交
245
        ValueError: If rank of the input tensor is less than 2.
246 247 248 249

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
250
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
251
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
252
    """
C
caoying03 已提交
253

C
caoying03 已提交
254
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
255 256 257 258

    dtype = helper.input_dtype()

    mul_results = []
259 260
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
261 262 263
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
264

Y
Yu Yang 已提交
265
        w = helper.create_parameter(
266
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
267
        tmp = helper.create_variable_for_type_inference(dtype)
268
        helper.append_op(
269 270 271
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
272
            outputs={"Out": tmp},
M
mozga-intel 已提交
273 274
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
275 276 277 278
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
279
    else:
X
Xin Pan 已提交
280
        pre_bias = helper.create_variable_for_type_inference(dtype)
281
        helper.append_op(
282 283 284
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
285
            attrs={"use_mkldnn": False})
286 287 288 289
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
290 291


292 293 294
def embedding(input,
              size,
              is_sparse=False,
295
              is_distributed=False,
296 297 298
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
299
    """
300 301
    **Embedding Layer**

302
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
303 304
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
305 306 307

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
308 309

    Args:
310 311 312 313 314
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
315
        is_distributed(bool): Whether to run lookup table from remote parameter server.
316 317
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
318
            with zeros whenever lookup encounters it in :attr:`input`. If
319
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
320 321
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
322
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
323

324 325 326
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
327

328 329
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
330

C
chengduoZH 已提交
331
          dict_size = len(dataset.ids)
332
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
333
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
334 335 336
    """

    helper = LayerHelper('embedding', **locals())
337 338 339
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
340 341
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
342 343
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
344
    tmp = helper.create_variable_for_type_inference(dtype)
345 346
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
347 348 349 350 351
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
352 353 354
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
355
            'remote_prefetch': remote_prefetch,
356 357
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
358 359 360
    return tmp


W
wopeizl 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
377

W
wopeizl 已提交
378 379 380 381 382 383 384 385 386 387 388
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
389

W
wopeizl 已提交
390 391 392 393
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
394

W
wopeizl 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
481 482


P
phlrain 已提交
483 484 485 486 487 488
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
489
         dropout_prob=0.0,
P
phlrain 已提交
490 491 492 493 494
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
495
    """
P
phlrain 已提交
496
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
497 498 499 500 501

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
541 542
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
543 544 545 546 547 548
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
549
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
550

L
liuhongyu 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
576
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
577 578 579 580 581 582
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
583 584 585
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
645 646 647 648 649 650 651 652 653 654 655
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
656 657
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
658 659 660
    """
    **Dynamic LSTMP Layer**

661 662 663 664 665 666
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
667 668 669 670 671

    The formula is as follows:

    .. math::

672
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
673

674
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
675

676
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
677

678
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
679

680
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
681

682
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
683

684
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
685

Y
Yibing Liu 已提交
686 687 688 689 690 691
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
692
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
693
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
694
          bias vector).
Y
Yibing Liu 已提交
695 696 697
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
698
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
699
    * :math:`h`: The hidden state.
700
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
701 702
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
703
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
704
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
705
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
706 707
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
708 709 710 711

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
712

Y
Yibing Liu 已提交
713 714 715 716 717 718 719 720 721 722 723 724
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
725
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
726 727
                               hidden-hidden weight and projection weight.

728 729
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
730 731
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
732 733
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
734
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
735 736 737 738 739

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
740
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
741 742 743 744 745 746
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
747
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
748 749 750
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
751
                                - The shape is (1 x 7D).
C
chengduo 已提交
752 753 754 755 756

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
757 758 759 760 761 762 763 764 765
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
766
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
767 768
                              default "tanh".
        proj_activation(str): The activation for projection output.
769
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
770 771
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
772 773
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
774 775

    Returns:
776 777 778 779
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
780 781

    Examples:
782

Y
Yibing Liu 已提交
783 784
        .. code-block:: python

785 786 787 788
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
789
            hidden_dim, proj_dim = 512, 256
790
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
791
                                     act=None, bias_attr=None)
792 793 794
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
795 796 797 798
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
799
    """
800

C
chengduo 已提交
801
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
802
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
803
    size = size // 4
Y
Yibing Liu 已提交
804 805 806 807 808 809 810 811 812 813
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
814 815 816 817 818 819
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
848 849 850 851 852 853 854 855 856
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
857
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
858

859
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
860
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
861

G
guosheng 已提交
862 863 864 865 866 867 868 869 870
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
871

G
guosheng 已提交
872
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
873

G
guosheng 已提交
874
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
875 876
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
877 878 879 880
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
881
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
882 883

    Args:
884 885
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
886
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
887
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
888 889
            is the hidden size.
        size(int): The dimension of the gru cell.
890
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
891 892
            hidden-hidden weight matrix. Note:

893
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
894
              :math:`D` is the hidden size.
895
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
896
              The first part are weights of the update gate and reset gate with
897
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
898
              candidate hidden state with shape :math:`(D \\times D)`.
899 900 901 902 903

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
904
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
905
            the bias in the update gate, reset gate and candidate calculations.
906 907 908
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
909 910
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
911
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
912 913 914
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
915
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
916
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
917 918 919 920
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
921 922

    Returns:
G
guosheng 已提交
923
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
924
            and sequence length is the same with the input.
925

G
guosheng 已提交
926
    Examples:
927

G
guosheng 已提交
928 929
        .. code-block:: python

930 931 932 933
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
934
            hidden_dim = 512
935
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
936
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
937 938 939 940 941 942 943 944 945
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
946
    batch_size = input.shape[0]
G
guosheng 已提交
947
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
948
    if h_0:
G
guosheng 已提交
949
        assert h_0.shape == (
Y
Yancey 已提交
950 951 952
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
953

X
Xin Pan 已提交
954 955 956 957
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
976 977 978
def gru_unit(input,
             hidden,
             size,
979 980
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
981
             activation='tanh',
982
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
983
    """
984
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
985

986 987
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
988

989
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
990

991
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
992

993
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
994 995

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
996 997 998
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
999 1000
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1001 1002
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1003 1004 1005
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1006 1007 1008

    Args:
        input (Variable): The fc transformed input value of current step.
1009
        hidden (Variable): The hidden value of gru unit from previous step.
1010
        size (integer): The input dimension value.
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1025
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1026
            the bias in the update gate, reset gate and candidate calculations.
1027 1028 1029
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1030 1031
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1032 1033 1034 1035
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1036

1037 1038 1039 1040 1041 1042
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1043

1044
             # assuming we have x_t_data and prev_hidden of size=10
1045
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1046 1047
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1060
    size = size // 3
Y
Yu Yang 已提交
1061 1062

    # create weight
1063 1064
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1065

X
Xin Pan 已提交
1066 1067 1068
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1069
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1070
    # create bias
1071
    if helper.bias_attr:
Y
Yu Yang 已提交
1072 1073 1074
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1075
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1076 1077 1078

    helper.append_op(
        type='gru_unit',
1079
        inputs=inputs,
Y
Yu Yang 已提交
1080 1081 1082 1083 1084 1085
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1086 1087
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1088 1089 1090 1091 1092
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1093
@templatedoc()
1094
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1095 1096 1097 1098 1099 1100 1101
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1102
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1103 1104 1105 1106
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1107 1108 1109
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1110 1111

    """
Y
Yu Yang 已提交
1112 1113 1114 1115 1116 1117
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1118 1119 1120 1121 1122 1123 1124 1125
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1141 1142 1143 1144
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1145

W
wopeizl 已提交
1146 1147
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1148

W
wopeizl 已提交
1149
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1150

W
wopeizl 已提交
1151
        label(${label_type}): ${label_comment}
1152

W
wopeizl 已提交
1153 1154
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1155

W
wopeizl 已提交
1156 1157
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1158

W
wopeizl 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1169
                "Transition": transition,
W
wopeizl 已提交
1170 1171
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1172

W
wopeizl 已提交
1173
    return viterbi_path
Y
Yu Yang 已提交
1174 1175


Y
yi.wu 已提交
1176
@templatedoc()
F
fengjiayi 已提交
1177
def cos_sim(X, Y):
Y
Yu Yang 已提交
1178
    """
Y
yi.wu 已提交
1179 1180 1181
    ${comment}

    Args:
1182 1183
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1184

Y
yi.wu 已提交
1185
    Returns:
1186
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1187
    """
F
fengjiayi 已提交
1188
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1189 1190 1191
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1202 1203 1204 1205 1206
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1207
            dropout_implementation="downgrade_in_infer"):
1208 1209 1210 1211 1212
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1213
    training. The dropout operator randomly sets (according to the given dropout
1214 1215 1216 1217
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1218 1219
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1220 1221 1222 1223 1224 1225 1226
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1238
                                           dropout op can be removed from the program.
P
phlrain 已提交
1239
                                           the program will be efficient
1240

P
phlrain 已提交
1241

1242 1243

    Returns:
1244
        Variable: A tensor variable is the shape with `x`.
1245 1246

    Examples:
1247

1248 1249
        .. code-block:: python

1250 1251
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1252 1253
    """

F
fengjiayi 已提交
1254
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1255 1256 1257
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1258 1259 1260 1261

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1262 1263 1264 1265 1266
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1267 1268 1269 1270
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1271 1272
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1273
        })
1274 1275 1276
    return out


J
jerrywgz 已提交
1277
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1278
    """
Y
Yibing Liu 已提交
1279 1280
    **Cross Entropy Layer**

1281 1282 1283
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1284 1285

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1286
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1287

Y
Yibing Liu 已提交
1288
        .. math::
Y
yangyaming 已提交
1289

Y
Yibing Liu 已提交
1290 1291 1292
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1293 1294
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1295 1296 1297 1298 1299

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1300
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1301 1302 1303
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1304 1305
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1306
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1307

Y
Yibing Liu 已提交
1308
    Args:
Y
yangyaming 已提交
1309
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1310 1311 1312 1313
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1314
        label (Variable|list): the ground truth which is a 2-D tensor. When
1315 1316 1317 1318
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1319
        soft_label (bool): a flag indicating whether to
1320
                                           interpretate the given labels as soft
1321
                                           labels. Default: `False`.
M
minqiyang 已提交
1322 1323
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1324
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1325 1326 1327 1328 1329

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1330 1331 1332 1333 1334
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1335 1336 1337 1338 1339 1340

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1341
    """
F
fengjiayi 已提交
1342
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1343
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1344 1345 1346 1347 1348
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1349 1350
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1351 1352 1353
    return out


F
fengjiayi 已提交
1354
def square_error_cost(input, label):
Y
Yu Yang 已提交
1355
    """
1356 1357
    **Square error cost layer**

1358 1359
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1374 1375
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1376 1377

    Returns:
G
guosheng 已提交
1378
        Variable: The tensor variable storing the element-wise squared error \
1379
                  difference of input and label.
1380 1381 1382 1383 1384 1385 1386 1387

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1388
    """
F
fengjiayi 已提交
1389
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1390
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1391 1392 1393 1394 1395 1396
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1397
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1398
    helper.append_op(
F
fengjiayi 已提交
1399 1400
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1401 1402 1403
    return square_out


Y
yi.wu 已提交
1404
@templatedoc()
Y
Yu Yang 已提交
1405 1406 1407 1408
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1409
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1410
    """
Y
yi.wu 已提交
1411
    **Chunk Evaluator**
Y
yi.wu 已提交
1412

Y
yangyaming 已提交
1413
    This function computes and outputs the precision, recall and
1414
    F1-score of chunk detection.
Y
yi.wu 已提交
1415

Y
yi.wu 已提交
1416 1417 1418 1419 1420 1421 1422 1423
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1424

Y
yi.wu 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1450

Y
yi.wu 已提交
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1475
    Args:
1476 1477 1478 1479 1480
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1481

Y
yi.wu 已提交
1482
    Returns:
Y
update  
yi.wu 已提交
1483 1484 1485
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1486

Y
yi.wu 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1499
    """
F
fengjiayi 已提交
1500
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1501 1502

    # prepare output
X
Xin Pan 已提交
1503 1504 1505 1506 1507 1508 1509
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1510 1511 1512 1513 1514 1515 1516 1517

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1518 1519 1520 1521
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1522 1523 1524
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1525 1526
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1527
        })
1528 1529
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1530 1531


1532
@templatedoc()
Y
Yu Yang 已提交
1533 1534 1535 1536 1537 1538 1539
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1540 1541
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1542 1543 1544 1545
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1546 1547 1548 1549 1550 1551 1552

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1566

1567 1568
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1569 1570 1571 1572 1573 1574 1575
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1576
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1587
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1588 1589 1590 1591 1592 1593
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1594
def sequence_softmax(input, use_cudnn=False, name=None):
1595 1596 1597
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1598
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1615 1616 1617
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1630 1631
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1632
    softmax_out = helper.create_variable_for_type_inference(dtype)
1633 1634 1635 1636 1637 1638 1639 1640
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1641
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1642
    """
1643
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1644
    has the same shape as the input.
Q
qiaolongfei 已提交
1645

1646 1647 1648 1649 1650 1651
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1652
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1653 1654 1655 1656 1657 1658 1659

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1660
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1661 1662 1663 1664 1665 1666 1667 1668

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1669 1670 1671
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1684 1685
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1686
    softmax_out = helper.create_variable_for_type_inference(dtype)
1687 1688 1689 1690 1691 1692 1693 1694
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1695 1696 1697
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1698 1699
           stride=1,
           padding=0,
1700
           dilation=1,
Y
Yu Yang 已提交
1701 1702 1703
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1704
           use_cudnn=True,
1705 1706
           act=None,
           name=None):
Y
Yu Yang 已提交
1707
    """
C
chengduoZH 已提交
1708
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1709 1710
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1711
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1712 1713 1714 1715 1716 1717 1718
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1719 1720 1721
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1722

1723
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1724

C
chengduoZH 已提交
1725 1726
    .. math::

C
refine  
chengduoZH 已提交
1727
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1728

T
tensor-tang 已提交
1729
    Where:
C
chengduoZH 已提交
1730

1731 1732 1733 1734 1735
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1736
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1737 1738 1739

    Example:

1740 1741
        - Input:

W
weixing02 已提交
1742
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1743

W
weixing02 已提交
1744
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1745

1746
        - Output:
T
tensor-tang 已提交
1747

W
weixing02 已提交
1748
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1749

C
chengduoZH 已提交
1750
        Where
1751 1752

        .. math::
C
chengduoZH 已提交
1753

W
weixing02 已提交
1754 1755
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1756 1757

    Args:
1758
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1759
        num_filters(int): The number of filter. It is as same as the output
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1788 1789
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1790 1791
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1792
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1793
            will be named automatically. Default: None
C
chengduoZH 已提交
1794 1795

    Returns:
G
guosheng 已提交
1796
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1797 1798
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1799
    Raises:
1800 1801
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1802

C
chengduoZH 已提交
1803 1804 1805
    Examples:
        .. code-block:: python

1806 1807
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1808 1809 1810
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1811
    assert param_attr is not False, "param_attr should not be False here."
1812
    l_type = 'conv2d'
X
xzl 已提交
1813 1814
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1815
        l_type = 'depthwise_conv2d'
1816 1817 1818 1819

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1820 1821 1822 1823 1824
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1825
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1826

C
chengduoZH 已提交
1827 1828 1829
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1830
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1831

C
chengduoZH 已提交
1832 1833
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1834 1835

    input_shape = input.shape
M
minqiyang 已提交
1836
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1837 1838

    def _get_default_param_initializer():
C
chengduo 已提交
1839 1840
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1841 1842 1843 1844 1845 1846 1847 1848
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1849
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1850

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1865
    helper.append_op(
1866
        type=l_type,
Y
Yu Yang 已提交
1867 1868 1869 1870 1871
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1872 1873 1874
        attrs={
            'strides': stride,
            'paddings': padding,
1875
            'dilations': dilation,
C
chengduoZH 已提交
1876
            'groups': groups,
1877
            'use_cudnn': use_cudnn,
1878
            'use_mkldnn': False,
C
chengduoZH 已提交
1879
        })
Y
Yu Yang 已提交
1880 1881 1882 1883 1884 1885

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1903 1904 1905 1906 1907 1908
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1909 1910 1911 1912 1913 1914 1915 1916 1917

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1918 1919
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1920 1921 1922
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1923
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1949
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1950 1951
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1952
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1953 1954
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1955
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1956 1957
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1958
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1959 1960 1961 1962 1963 1964
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1975 1976
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1977 1978
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1979
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1980
            will be named automatically. Default: None.
C
chengduoZH 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1993 1994
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1995 1996 1997
    """

    l_type = 'conv3d'
C
chengduo 已提交
1998
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2009
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2023 2024 2025
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2026 2027 2028 2029 2030 2031 2032 2033
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2034
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2049
            'use_mkldnn': False
C
chengduoZH 已提交
2050 2051
        })

2052
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2053 2054 2055 2056

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2057
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2058
    """
Y
yangyaming 已提交
2059 2060 2061
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2073
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2074 2075 2076 2077 2078
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2079
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2080 2081 2082 2083 2084 2085 2086

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2087 2088
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2089

L
Luo Tao 已提交
2090 2091
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2092
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2093
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2094
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2095 2096 2097 2098 2099 2100 2101

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2102

Y
yangyaming 已提交
2103
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2104 2105 2106 2107 2108
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2109 2110
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2111
    """
F
fengjiayi 已提交
2112
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2113
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2114 2115
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2116 2117 2118 2119 2120 2121

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2122 2123
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2124

Y
yangyaming 已提交
2125 2126 2127 2128 2129
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2130 2131 2132
    return pool_out


C
add doc  
chengduoZH 已提交
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2152
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2153 2154 2155 2156 2157
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2158
def sequence_first_step(input):
L
Luo Tao 已提交
2159
    """
L
Luo Tao 已提交
2160
    This function gets the first step of sequence.
L
Luo Tao 已提交
2161 2162 2163 2164

    .. code-block:: text

       x is a 1-level LoDTensor:
2165
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2166 2167 2168 2169 2170
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2171
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2172
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2173

L
Luo Tao 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2183

Y
yangyaming 已提交
2184
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2185 2186 2187
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2188 2189 2190
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2191
def sequence_last_step(input):
L
Luo Tao 已提交
2192
    """
L
Luo Tao 已提交
2193
    This function gets the last step of sequence.
L
Luo Tao 已提交
2194 2195 2196 2197

    .. code-block:: text

       x is a 1-level LoDTensor:
2198
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2199 2200 2201 2202 2203
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2204
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2205
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2206

L
Luo Tao 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2216

Y
yangyaming 已提交
2217
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2218 2219 2220
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2221 2222 2223
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2224 2225 2226 2227
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2228
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2229 2230 2231 2232 2233
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2234

Y
Yibing Liu 已提交
2235 2236
	- Case:

2237
            Given the input Variable **input**:
2238

2239 2240 2241
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2242

2243
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2244

2245
            the output Variable will be
2246

2247 2248 2249
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2250 2251

    NOTE: The first dimension size of **input**, **offset** and **length**
2252
          should be equal. The **offset** should start from 0.
2253

Y
Yibing Liu 已提交
2254
    Args:
2255
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2256
                         sequences.
Y
Yibing Liu 已提交
2257 2258 2259 2260 2261 2262
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2263
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2274
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2275 2276 2277 2278
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2279
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2294
@templatedoc()
Y
Yu Yang 已提交
2295
def pool2d(input,
C
chengduoZH 已提交
2296 2297
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2298 2299
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2300
           global_pooling=False,
C
chengduoZH 已提交
2301
           use_cudnn=True,
2302
           ceil_mode=False,
2303 2304
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2305
    """
F
fengjiayi 已提交
2306
    ${comment}
2307 2308

    Args:
2309 2310 2311
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2312
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2313
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2314 2315
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2316
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2317 2318 2319 2320 2321 2322
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2323 2324 2325
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2326
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2327
                        layer will be named automatically.
2328
        exclusive (bool): Whether to exclude padding points in average pooling
2329
                          mode, default is true
F
fengjiayi 已提交
2330

2331
    Returns:
F
fengjiayi 已提交
2332
        Variable: The pooling result.
F
fengjiayi 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2346 2347 2348 2349
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2350
                            global_pooling=False)
Y
Yu Yang 已提交
2351 2352 2353 2354 2355
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2356

C
chengduoZH 已提交
2357 2358 2359 2360 2361
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2362 2363 2364 2365
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2366 2367
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2368

C
Add doc  
chengduoZH 已提交
2369
    l_type = 'pool2d'
2370 2371

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2372
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2373
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2374 2375

    helper.append_op(
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2387 2388
            "use_mkldnn": False,
            "exclusive": exclusive,
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2402 2403
           name=None,
           exclusive=True):
2404 2405
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2406
    pooling configurations mentioned in input parameters.
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2419
        exclusive (bool): Whether to exclude padding points in average pooling
2420
                          mode, default is true
2421

2422
    Returns:
2423
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2424 2425 2426 2427 2428
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2429

C
chengduoZH 已提交
2430 2431 2432 2433 2434
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2435 2436 2437
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2438

C
chengduoZH 已提交
2439 2440
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2441

2442 2443
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2444
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2445
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2446 2447

    helper.append_op(
2448
        type=l_type,
Y
Yu Yang 已提交
2449 2450 2451 2452 2453 2454 2455
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2456
            "paddings": pool_padding,
2457
            "use_cudnn": use_cudnn,
2458
            "ceil_mode": ceil_mode,
2459 2460
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2473
               data_layout='NCHW',
Y
Yang Yang 已提交
2474
               in_place=False,
2475 2476
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2477
               moving_variance_name=None,
2478
               do_model_average_for_mean_and_var=False,
2479 2480
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2481
    """
Q
qiaolongfei 已提交
2482 2483 2484 2485
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2486

Q
qiaolongfei 已提交
2487
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2488

Q
qiaolongfei 已提交
2489 2490
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2491 2492 2493
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2506

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2520
    Args:
Q
qiaolongfei 已提交
2521
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2522 2523 2524 2525
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2526 2527 2528 2529 2530 2531 2532 2533
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2534
        data_layout(string, default NCHW): NCHW|NHWC
2535
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2536 2537 2538 2539
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2540
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2541
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2542 2543 2544 2545 2546
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2547 2548

    Returns:
Q
qiaolongfei 已提交
2549
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2550 2551 2552 2553 2554 2555 2556

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2557
    """
C
chengduo 已提交
2558
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2579 2580 2581
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2582 2583

    bias = helper.create_parameter(
2584
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2585 2586 2587
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2588

2589 2590
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2591 2592 2593
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2594
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2595
        shape=param_shape,
2596 2597 2598 2599 2600 2601 2602
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2603
            trainable=False,
W
wanghaoshuang 已提交
2604
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2605
        shape=param_shape,
2606 2607
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2608 2609 2610 2611 2612 2613

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2614 2615 2616 2617
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2618

X
Xin Pan 已提交
2619 2620
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2638 2639 2640 2641
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2642
            "use_mkldnn": False,
2643 2644
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2645
        })
Y
Yu Yang 已提交
2646 2647 2648 2649

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2650
@templatedoc()
G
guosheng 已提交
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2661
    ${comment}
G
guosheng 已提交
2662 2663 2664

    The formula is as follows:

Y
yuyang18 已提交
2665
    ..  math::
G
guosheng 已提交
2666 2667 2668 2669 2670 2671 2672

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2673 2674 2675 2676 2677 2678 2679 2680
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2681

G
guosheng 已提交
2682 2683
    Args:
        input(Variable): The input tensor variable.
2684
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2685
            normalization. Default True.
2686
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2687 2688
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2689
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2690
            Default 1.
2691
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2692
            division by zero. Default 1e-05.
G
guosheng 已提交
2693
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2694 2695
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2696 2697
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2698
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2699 2700
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2701
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2702
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2703
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2704 2705 2706
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2707 2708

    Returns:
Y
yuyang18 已提交
2709
        ${y_comment}
G
guosheng 已提交
2710 2711 2712

    Examples:

Y
yuyang18 已提交
2713 2714 2715
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2731
    if shift:
G
guosheng 已提交
2732 2733 2734 2735 2736 2737
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2738 2739 2740 2741 2742
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
2836 2837 2838 2839
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2840 2841 2842
                     padding=0,
                     stride=1,
                     dilation=1,
2843
                     groups=None,
C
caoying03 已提交
2844
                     param_attr=None,
2845
                     bias_attr=None,
C
chengduoZH 已提交
2846
                     use_cudnn=True,
2847
                     act=None,
C
caoying03 已提交
2848
                     name=None):
Y
Yu Yang 已提交
2849
    """
2850 2851 2852 2853 2854 2855 2856 2857
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2858 2859
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2860 2861 2862
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2863 2864 2865 2866 2867

    For each input :math:`X`, the equation is:

    .. math::

2868
        Out = \sigma (W \\ast X + b)
2869

2870
    Where:
2871 2872 2873

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2874 2875 2876 2877
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2878

2879 2880 2881 2882
    Example:

        - Input:

2883
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2884

2885
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2886 2887 2888

        - Output:

2889
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2890 2891

        Where
Y
Yu Yang 已提交
2892

2893 2894
        .. math::

2895 2896 2897 2898
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2899 2900

    Args:
2901 2902 2903 2904
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2905 2906 2907 2908
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2937
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2938 2939 2940
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2941
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2942
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2943 2944

    Returns:
2945
        Variable: The tensor variable storing the convolution transpose result.
2946 2947

    Raises:
2948 2949
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2950 2951 2952 2953

    Examples:
       .. code-block:: python

2954 2955
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2956
    """
C
chengduo 已提交
2957
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2958 2959 2960 2961 2962 2963 2964 2965
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2966 2967 2968
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2969 2970 2971
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2972

C
chengduoZH 已提交
2973 2974
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2975

Y
Yu Yang 已提交
2976 2977 2978 2979 2980
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2981

Y
Yu Yang 已提交
2982 2983
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2984

C
chengduoZH 已提交
2985
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2986
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2987
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2988
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2989
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2990 2991 2992
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2993

2994 2995 2996 2997 2998 2999 3000
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3001
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3002
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3003

Y
Yu Yang 已提交
3004 3005 3006
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3007
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3008
    helper.append_op(
3009
        type=op_type,
Y
Yu Yang 已提交
3010 3011
        inputs={'Input': [input],
                'Filter': [img_filter]},
3012
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3013
        attrs={
3014
            'output_size': output_size,
3015 3016 3017 3018 3019
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3020 3021
        })

3022 3023 3024
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3025 3026


3027
def conv3d_transpose(input,
Y
Yu Yang 已提交
3028 3029 3030
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3031 3032 3033
                     padding=0,
                     stride=1,
                     dilation=1,
3034
                     groups=None,
C
caoying03 已提交
3035
                     param_attr=None,
3036
                     bias_attr=None,
C
chengduoZH 已提交
3037
                     use_cudnn=True,
3038
                     act=None,
C
caoying03 已提交
3039
                     name=None):
Y
Yu Yang 已提交
3040
    """
3041
    **Convlution3D transpose layer**
3042

3043
    The convolution3D transpose layer calculates the output based on the input,
3044
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3045 3046 3047 3048 3049 3050
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3051 3052 3053
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3054 3055 3056 3057 3058

    For each input :math:`X`, the equation is:

    .. math::

3059
        Out = \sigma (W \\ast X + b)
3060 3061 3062

    In the above equation:

3063 3064
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3065 3066 3067 3068
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3069

3070 3071 3072 3073
    Example:

        - Input:

3074
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3075

3076
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3077 3078 3079

        - Output:

3080
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3081 3082

        Where
Y
Yu Yang 已提交
3083

3084 3085
        .. math::

3086 3087 3088
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3089 3090

    Args:
3091
        input(Variable): The input image with [N, C, D, H, W] format.
3092 3093 3094
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3095
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3096 3097
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3098
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3099 3100 3101
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3102 3103
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3104
        stride(int|tuple): The stride size. If stride is a tuple, it must
3105 3106
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3107
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3108 3109 3110
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3111 3112 3113 3114 3115
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3116 3117 3118 3119 3120 3121 3122 3123 3124
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3125 3126
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3127 3128
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3129 3130
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3131 3132

    Returns:
3133
        Variable: The tensor variable storing the convolution transpose result.
3134 3135

    Raises:
3136 3137
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3138 3139 3140 3141

    Examples:
       .. code-block:: python

3142 3143
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3144
    """
C
chengduo 已提交
3145
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3146 3147
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3148
    if not isinstance(input, Variable):
3149
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3150 3151
    input_channel = input.shape[1]

3152 3153 3154
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3155

C
chengduoZH 已提交
3156 3157 3158
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3159 3160 3161 3162 3163 3164
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3165 3166 3167
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3168

3169
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3170
                         padding[0] - 1) // dilation[0] + 1
3171
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3172
                         padding[1] - 1) // dilation[1] + 1
3173
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3174
                         padding[2] - 1) // dilation[2] + 1
3175
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3176
    else:
3177 3178
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3179

3180
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3181
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3182 3183 3184
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3185
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3186
    helper.append_op(
3187
        type=l_type,
Y
Yu Yang 已提交
3188 3189
        inputs={'Input': [input],
                'Filter': [img_filter]},
3190
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3191 3192 3193 3194
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3195
            'groups': groups,
C
chengduoZH 已提交
3196 3197
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3198

3199 3200
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3201
    return out
Y
yangyaming 已提交
3202 3203


Y
yangyaming 已提交
3204
def sequence_expand(x, y, ref_level=-1, name=None):
3205
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3206 3207 3208 3209
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3210 3211 3212 3213 3214

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3215
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3216
                x.data = [[a], [b], [c], [d]]
3217 3218 3219
                x.dims = [4, 1]

            y is a LoDTensor:
3220 3221
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3222

Y
yangyaming 已提交
3223
            ref_level: 0
3224

Y
yangyaming 已提交
3225
            then output is a 1-level LoDTensor:
3226
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3227
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3228 3229 3230 3231
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3232
                x.data = [[a], [b], [c]]
3233 3234 3235
                x.dims = [3, 1]

            y is a LoDTensor:
3236
                y.lod = [[2, 0, 3]]
3237

Y
yangyaming 已提交
3238
            ref_level: -1
3239

Y
yangyaming 已提交
3240 3241 3242
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3243 3244 3245
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3246 3247
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3248
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3249
                        will be named automatically.
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3260
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3261
    """
Y
yangyaming 已提交
3262
    helper = LayerHelper('sequence_expand', input=x, **locals())
3263
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3264
    tmp = helper.create_variable_for_type_inference(dtype)
3265
    helper.append_op(
Y
yangyaming 已提交
3266 3267 3268 3269 3270
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3271
    return tmp
3272 3273


C
chengduo 已提交
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3330
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3331 3332 3333 3334 3335 3336 3337 3338
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3339
@templatedoc()
3340
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3341 3342 3343 3344 3345
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3346 3347 3348
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3349
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3350 3351 3352 3353
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3354 3355 3356
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3357

F
fengjiayi 已提交
3358
    Returns:
M
minqiyang 已提交
3359
        Variable: The padded sequence batch and the original lengths before
3360
                  padding. All sequences has the same length.
M
minqiyang 已提交
3361

F
fengjiayi 已提交
3362 3363 3364 3365 3366 3367 3368
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3369
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3370
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3371 3372 3373 3374 3375
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3376 3377
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3378 3379 3380 3381

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3382 3383 3384 3385 3386 3387
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3388 3389
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3390
        attrs={'padded_length': maxlen})
3391
    return out, length
F
fengjiayi 已提交
3392 3393


3394
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3395
    """
3396
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3397

3398 3399
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3400 3401 3402 3403 3404 3405 3406 3407 3408
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3409 3410 3411
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3412
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3413 3414 3415 3416 3417 3418

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3419
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3420 3421 3422 3423 3424 3425

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3426 3427
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3442
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3454 3455 3456 3457 3458 3459 3460 3461 3462
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3463 3464
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3465 3466 3467

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3468 3469

    This layer does the search in beams for one time step. Specifically, it
3470 3471 3472 3473 3474 3475
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3476

3477 3478 3479 3480 3481 3482 3483 3484
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3485

3486
    Args:
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3512

3513
    Returns:
3514 3515
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3516 3517 3518 3519

    Examples:
        .. code-block:: python

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3537 3538 3539 3540
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3541 3542 3543
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3544 3545 3546 3547 3548

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3549
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3567 3568 3569 3570 3571 3572 3573
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3574

3575 3576 3577 3578 3579 3580 3581 3582 3583
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3584

3585 3586 3587 3588 3589 3590
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3591

3592 3593
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3594

3595 3596 3597 3598 3599 3600
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3601 3602
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3618 3619 3620 3621
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3622
              param_attr=None,
C
caoying03 已提交
3623 3624
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3625 3626 3627 3628
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3629
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3630

3631
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3632

3633
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3634

3635
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3636 3637 3638

            h_t & = o_t tanh(c_t)

3639 3640 3641 3642 3643 3644
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3645 3646 3647

        .. math::

3648
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3649 3650 3651 3652 3653 3654 3655 3656

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3657
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3658 3659

    Args:
Y
yangyaming 已提交
3660 3661 3662 3663 3664 3665
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3666
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3679 3680
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3681 3682

    Returns:
Y
yangyaming 已提交
3683
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3684 3685

    Raises:
3686 3687 3688 3689
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3690 3691 3692 3693 3694 3695

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3696
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3697
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3698
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3715
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3716 3717 3718 3719
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3720 3721
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3722 3723 3724
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3725
    size = cell_t_prev.shape[1]
3726
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3727 3728
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3729
                param_attr=param_attr,
3730
                bias_attr=bias_attr)
Y
yangyaming 已提交
3731
    dtype = x_t.dtype
X
Xin Pan 已提交
3732 3733
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3743
    return h, c
G
guosheng 已提交
3744 3745


C
caoying03 已提交
3746
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3747
    """
Y
yangyaming 已提交
3748
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3749 3750 3751

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3752
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3753 3754
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3755 3756
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3757
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3758
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3759
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3760 3761
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3762 3763 3764

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3765

G
guosheng 已提交
3766 3767 3768 3769 3770 3771
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3772
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3773 3774 3775 3776
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3777 3778 3779 3780

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3781
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3782 3783 3784
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3785 3786
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3787
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3788 3789
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3790 3791 3792 3793 3794
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3795
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3796 3797 3798 3799
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3800 3801


C
caoying03 已提交
3802
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3803
    """
Y
Yibing Liu 已提交
3804
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3805 3806 3807

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3808 3809 3810
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3811
            must be in the range :math:`[-rank(input), rank(input))`. If
3812
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3813
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3814 3815
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3816
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3817
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3818
                       will be named automatically.
G
guosheng 已提交
3819 3820

    Returns:
Y
Yibing Liu 已提交
3821
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3822

G
guosheng 已提交
3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3833 3834
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3835 3836 3837 3838 3839 3840 3841

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3842 3843
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3844
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3845 3846
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3847 3848 3849 3850 3851
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3852
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3853 3854 3855 3856
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3857 3858


C
caoying03 已提交
3859
def reduce_max(input, dim=None, keep_dim=False, name=None):
3860
    """
Y
yangyaming 已提交
3861
    Computes the maximum of tensor elements over the given dimension.
3862 3863 3864

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3865
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3866 3867 3868
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3869
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3870 3871
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3872
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3873 3874
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3875 3876 3877

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3878

3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3890 3891 3892 3893 3894 3895 3896

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3897 3898
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3899
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3900 3901
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3902 3903 3904 3905 3906
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3907
            'dim': dim if dim != None else [0],
3908 3909 3910 3911 3912 3913
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3914
def reduce_min(input, dim=None, keep_dim=False, name=None):
3915
    """
Y
yangyaming 已提交
3916
    Computes the minimum of tensor elements over the given dimension.
3917 3918 3919

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3920
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3921 3922 3923
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3924
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3925 3926
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3927
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3928 3929
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3930 3931 3932

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3933

3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3945 3946 3947 3948 3949 3950 3951

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3952 3953
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3954
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3955 3956
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3957 3958 3959 3960 3961
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3962
            'dim': dim if dim != None else [0],
3963 3964 3965 3966
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3967 3968


3969 3970 3971 3972 3973 3974
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3975
        dim (list|int|None): The dimensions along which the product is performed. If
3976 3977
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3978 3979
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3980 3981 3982
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3983
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3984
            layer will be named automatically.
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3999
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4000
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4001 4002 4003 4004 4005 4006 4007

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4008 4009
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4010
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4011 4012
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4013 4014 4015 4016 4017
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4018
            'dim': dim if dim != None else [0],
4019 4020 4021 4022 4023 4024
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4025
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4026
    """
C
caoying03 已提交
4027
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4028 4029 4030

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4031 4032 4033 4034 4035
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4036
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4037
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4038
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4039 4040
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4041 4042

    Returns:
D
dzhwinter 已提交
4043
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4053 4054
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4070
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4093
    .. math::
4094 4095

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4096 4097 4098 4099 4100

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4101
        x(Variable|list): The input tensor to l2_normalize layer.
4102
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4103 4104
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4105
        epsilon(float): The epsilon value is used to avoid division by zero, \
4106
            the defalut value is 1e-10.
4107
        name(str|None): A name for this layer(optional). If set None, the layer \
4108
            will be named automatically.
C
caoying03 已提交
4109 4110

    Returns:
4111
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4112 4113

    Examples:
4114

C
caoying03 已提交
4115 4116
        .. code-block:: python

4117 4118 4119 4120
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4121 4122
    """

F
fengjiayi 已提交
4123 4124
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4125 4126
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4127 4128
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4129
    helper.append_op(
4130 4131 4132 4133
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4134
        attrs={
4135 4136
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4137 4138
        })
    return out
4139 4140


S
sneaxiy 已提交
4141
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4142
    """
Y
ying 已提交
4143 4144 4145 4146
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4147

C
chengduoZH 已提交
4148
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4149
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4150

4151 4152 4153 4154 4155
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4156
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4157

C
chengduoZH 已提交
4158
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4159
      performs in the following way.
G
guosheng 已提交
4160

4161
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4162
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4163
        last two dimensions and a batched matrix multiply supporting broadcast
4164
        applies on the two tensors.
G
guosheng 已提交
4165

Y
ying 已提交
4166 4167
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4168
    removed after matrix multiplication.
G
guosheng 已提交
4169 4170 4171

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4172 4173 4174
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4175
        alpha (float): The scale of output. Default 1.0.
4176
        name(str|None): A name for this layer(optional). If set None, the layer
4177
            will be named automatically.
G
guosheng 已提交
4178 4179

    Returns:
4180
        Variable: The product Tensor variable.
G
guosheng 已提交
4181

G
guosheng 已提交
4182 4183 4184
    Examples:
        .. code-block:: python

4185
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4186 4187
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4188

4189 4190
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4191

4192 4193
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4194

4195 4196
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4197 4198 4199 4200

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4201 4202
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4203

Y
ying 已提交
4204
            # x: [M], y: [N]
4205
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4206
    """
Y
ying 已提交
4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4219
            y_shape = y_shape + [1]
Y
ying 已提交
4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4236
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4237
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4238
    helper.append_op(
4239 4240 4241 4242
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4243 4244 4245
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4246
            'alpha': float(alpha),
S
sneaxiy 已提交
4247
        })
4248
    return out
4249 4250


4251
def topk(input, k, name=None):
Q
qingqing01 已提交
4252 4253 4254 4255
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4256
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4257 4258 4259 4260 4261 4262
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4284 4285 4286
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4287
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4288
                 of input.
4289
        name(str|None): A name for this layer(optional). If set None, the layer
4290
                       will be named automatically.
F
fengjiayi 已提交
4291
                       Default: None
Q
qingqing01 已提交
4292 4293

    Returns:
4294 4295 4296
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4297
        within the last dimension of input.
Q
qingqing01 已提交
4298

F
fengjiayi 已提交
4299 4300
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4301 4302 4303 4304 4305 4306 4307

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4308 4309
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4321
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4322
    """
Y
ying 已提交
4323 4324 4325 4326 4327 4328 4329 4330 4331
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4332

Y
ying 已提交
4333
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4334

4335
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4336 4337
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4338
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4339

4340
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4341 4342
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4343

4344 4345 4346
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4347
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4348
                          the length of reference string.
4349
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4350
                                     calculating edit distance.
4351
        name (str): The name of this layer. It is optional.
4352

W
wanghaoshuang 已提交
4353
    Returns:
W
wanghaoshuang 已提交
4354
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4355 4356 4357 4358

    Examples:
        .. code-block:: python

T
tink2123 已提交
4359 4360
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4361
            cost = fluid.layers.edit_distance(input=x,label=y)
4362
    """
4363
    helper = LayerHelper("edit_distance", **locals())
4364

4365
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4366
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4367 4368
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4369 4370 4371 4372 4373

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4374
            attrs={"tokens": ignored_tokens})
4375 4376 4377 4378 4379
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4380
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4381
            attrs={"tokens": ignored_tokens})
4382 4383
        label = erased_label

4384
    # edit distance op
X
Xin Pan 已提交
4385 4386
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4387 4388 4389 4390
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4391 4392
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4393 4394
        attrs={"normalized": normalized})

4395
    return edit_distance_out, sequence_num
4396 4397 4398 4399 4400


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4401

Y
ying 已提交
4402 4403 4404 4405
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4423
        input.lod = [[4, 4]]
W
whs 已提交
4424 4425
      
        Computation:
4426

W
whs 已提交
4427 4428 4429 4430 4431 4432
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4433 4434 4435 4436 4437

        output.data = [[2],
                       [1],
                       [3]]

4438
        output.lod = [[2, 1]]
4439

W
whs 已提交
4440

4441 4442
    Args:

Y
ying 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4452
        name (str): The name of this layer. It is optional.
4453 4454

    Returns:
W
whs 已提交
4455 4456 4457 4458
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4459 4460 4461 4462 4463

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4464

4465
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4466
    """
4467
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4468
    _, topk_indices = topk(input, k=1)
4469 4470

    # ctc align op
X
Xin Pan 已提交
4471
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4472 4473 4474
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4475
        outputs={"Output": [ctc_out]},
4476 4477
        attrs={"merge_repeated": True,
               "blank": blank})
4478
    return ctc_out
4479 4480


W
Wu Yi 已提交
4481
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4482
    """
4483 4484
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4485
    to compute Connectionist Temporal Classification (CTC) loss.
4486 4487
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4488 4489 4490
    input tensor.

    Args:
4491
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4492 4493 4494 4495
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4496
       label (Variable): The ground truth of variable-length sequence,
4497 4498 4499
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4500 4501
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4502 4503 4504
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4505
         follewed by a mean_op.
W
Wu Yi 已提交
4506
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4507 4508

    Returns:
4509 4510
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4511 4512

    Examples:
4513

W
wanghaoshuang 已提交
4514
        .. code-block:: python
4515

4516 4517 4518
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4519 4520

    """
F
fengjiayi 已提交
4521
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4522 4523
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4524 4525 4526 4527 4528 4529
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4530 4531 4532 4533 4534
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4535
    return loss_out
4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4551 4552 4553
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4554 4555 4556 4557 4558
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4559

4560
            out.lod  = [[0, 1, 3]]
4561 4562 4563 4564

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4565 4566 4567 4568 4569 4570 4571
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4572 4573 4574

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4575 4576

    Returns:
4577

4578 4579 4580 4581 4582
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4583
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4584
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4585 4586
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4587
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4588 4589 4590 4591 4592 4593
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4594 4595


4596 4597 4598 4599
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4600 4601 4602 4603 4604 4605
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4606
        num_neg_samples=None,
4607 4608 4609
        name=None,
        sampler="uniform",
        custom_dist=None,
4610 4611
        seed=0,
        is_sparse=False):
4612 4613 4614 4615 4616 4617 4618
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4619 4620
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4621
            sample is 1.0.
C
chengduo 已提交
4622 4623 4624 4625 4626 4627 4628 4629 4630
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4631
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4632 4633
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4634 4635 4636
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4637
        custom_dist (float[]): A float[] with size=num_total_classes.
4638 4639 4640 4641
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4642
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4643

4644
    Returns:
Y
Yibing Liu 已提交
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4672 4673 4674 4675 4676 4677 4678 4679 4680

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4681

4682
    """
Y
Yang Yu 已提交
4683 4684 4685
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4686 4687

    dim = input.shape[1]
Y
Yang Yu 已提交
4688 4689 4690 4691 4692 4693
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4694
    inputs = {}
C
chengduo 已提交
4695 4696 4697 4698 4699 4700 4701
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4702 4703 4704
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4705

4706 4707 4708 4709
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4710 4711 4712 4713 4714 4715 4716

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4769 4770 4771 4772
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

4773 4774 4775 4776 4777
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
4778 4779
    attrs = {
        'num_total_classes': int(num_total_classes),
4780 4781
        'num_neg_samples': num_neg_samples,
        'seed': seed,
4782 4783
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
4784
    }
Y
Yang Yu 已提交
4785 4786 4787

    helper.append_op(
        type='nce',
C
chengduo 已提交
4788
        inputs=inputs,
Y
Yang Yu 已提交
4789 4790 4791 4792 4793 4794
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4795
    return cost / (num_neg_samples + 1)
4796 4797


C
chengduo 已提交
4798 4799
def hsigmoid(input,
             label,
4800
             num_classes,
C
chengduo 已提交
4801 4802
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
4803
             name=None,
4804 4805 4806
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
4807
             is_sparse=False):
W
weixing02 已提交
4808 4809
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4810
    process of language model. This operator organizes the classes into a
4811 4812
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
4813 4814 4815 4816 4817 4818
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

4819
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
4820
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4821

4822 4823 4824 4825 4826 4827 4828 4829 4830
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
4831
    Args:
M
minqiyang 已提交
4832
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4833 4834 4835 4836
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
4837 4838 4839
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4851 4852 4853 4854 4855 4856 4857
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
4858
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
4859 4860
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
4861 4862

    Returns:
J
JiabinYang 已提交
4863
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
4864 4865 4866 4867 4868

    Examples:

        .. code-block:: python

G
guosheng 已提交
4869 4870 4871
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4872 4873 4874 4875
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4876 4877
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4878
    dim = input.shape[1]
4879
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
4880 4881 4882
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

4883 4884 4885 4886
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
4887 4888
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
4889 4890 4891
    else:
        pass

J
JiabinYang 已提交
4892 4893
    weights = None

4894
    if not is_custom:
J
JiabinYang 已提交
4895 4896 4897 4898 4899 4900 4901 4902
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
4903
            shape=[num_classes, dim],
J
JiabinYang 已提交
4904 4905
            is_bias=False,
            dtype=input.dtype)
4906 4907 4908
    inputs = {
        "X": input,
        "W": weights,
4909 4910
        "PTable": path_table,
        "PathCode": path_code,
4911 4912
        "Label": label
    }
W
weixing02 已提交
4913
    if helper.bias_attr:
4914
        if not is_custom:
J
JiabinYang 已提交
4915 4916
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
4917
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
4918 4919 4920 4921 4922 4923
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
4924
                shape=[num_classes, 1],
J
JiabinYang 已提交
4925 4926 4927
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
4928 4929
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4930
        inputs=inputs,
W
weixing02 已提交
4931 4932
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
4933 4934
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
4935 4936 4937
    return out


Y
fix ci.  
ying 已提交
4938
def transpose(x, perm, name=None):
Y
ying 已提交
4939 4940 4941 4942 4943 4944 4945
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4946 4947 4948
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4949 4950 4951 4952 4953 4954 4955

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4956
            # use append_batch_size=False to avoid prepending extra
4957
            # batch size in shape
4958
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
4959
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4960
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4961 4962
    """

Y
fix ci.  
ying 已提交
4963
    if len(perm) != len(x.shape):
Y
ying 已提交
4964 4965 4966
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4967 4968 4969 4970 4971 4972
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4973 4974

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4975 4976
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4977
    helper.append_op(
4978
        type='transpose2',
Y
fix ci.  
ying 已提交
4979
        inputs={'X': [x]},
4980 4981
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4982 4983
        attrs={'axis': perm})
    return out
4984 4985


4986 4987 4988 4989 4990 4991 4992
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4993
    """
4994 4995 4996 4997 4998 4999 5000
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5029 5030 5031 5032 5033 5034 5035 5036 5037
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5038 5039 5040
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5041 5042 5043 5044 5045
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5073 5074 5075
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5088
            output.dims = {8, 8}
5089

5090
            output.lod = [[4, 4]]
5091

T
Tink_Y 已提交
5092
    Examples:
5093 5094 5095

        .. code-block:: python

5096 5097
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5098 5099

    """
W
wanghaoshuang 已提交
5100 5101 5102 5103 5104 5105 5106 5107 5108 5109

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5110 5111 5112 5113 5114 5115 5116
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5117
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5118
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5119
    helper.append_op(
5120
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5121
    return out
5122 5123


Y
yuyang18 已提交
5124
@templatedoc()
5125
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5126 5127
    """
    ${comment}
5128 5129

    Args:
Y
yuyang18 已提交
5130
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5131 5132
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5133 5134 5135 5136 5137
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5138
        ${out_comment}.
5139 5140

    Examples:
Y
yuyang18 已提交
5141 5142 5143 5144
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5145 5146 5147 5148 5149 5150
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5151
    out = helper.create_variable_for_type_inference(dtype)
5152 5153 5154 5155 5156
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5157
    return helper.append_activation(out)
5158 5159


Y
yuyang18 已提交
5160
@templatedoc()
5161 5162
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5163 5164 5165 5166 5167 5168 5169
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5170 5171

    Args:
Y
yuyang18 已提交
5172 5173
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5174 5175

    Returns:
Y
yuyang18 已提交
5176
        ${out_comment}.
5177 5178
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5179 5180 5181 5182 5183

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5184
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5185 5186 5187 5188 5189 5190
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5191 5192


5193 5194 5195
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5196
                               ignore_index=kIgnoreIndex,
5197 5198
                               numeric_stable_mode=False,
                               return_softmax=False):
5199 5200
    """
    **Softmax With Cross Entropy Operator.**
5201

5202 5203 5204 5205
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5206

5207 5208 5209
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5210

5211 5212 5213
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5214

5215
    The equation is as follows:
5216

5217
    1) Hard label (one-hot label, so every sample has exactly one class)
5218

5219 5220 5221 5222
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5223

5224 5225 5226
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5227

5228 5229 5230 5231
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5232 5233 5234
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5235

S
sneaxiy 已提交
5236 5237 5238 5239 5240 5241 5242 5243
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5244 5245 5246 5247 5248 5249 5250 5251
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5252 5253
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5254
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5255 5256 5257
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5258 5259 5260
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5261
                                    stable algorithm. Default: False
5262
        return_softmax (bool): A flag indicating whether to return the softmax
5263
                               along with the cross entropy loss. Default: False
5264

5265
    Returns:
5266 5267 5268 5269
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5270
                              2-D tensor with shape [N x K].
5271 5272 5273 5274 5275 5276 5277

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5278 5279
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5280 5281
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5282 5283
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5284 5285 5286 5287 5288 5289
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5290 5291 5292 5293 5294
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5295 5296 5297 5298

    if return_softmax:
        return loss, softmax

5299 5300 5301 5302 5303
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5304 5305
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5306
    For each instance, it computes the smooth L1 loss element by element first
5307
    and then sums all the losses. So the shape of ouput Variable is
5308
    [batch_size, 1].
5309

5310 5311
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5312
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5313
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5314
            L1 loss op with same shape as :attr:`x`.
5315
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5316 5317
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5318
            by this tensor element by element.
5319
        outside_weight (Variable|None): A tensor with rank at least 2. This
5320 5321
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5322
            element by element.
5323
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5324 5325
           scalar with default value 1.0.

5326
    Returns:
5327
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5328 5329 5330 5331 5332

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5333 5334
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5335
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5336
            out = fluid.layers.smooth_l1(x=fc, y=label)
5337
    """
5338

5339
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5340 5341
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5354 5355 5356 5357


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5358
    This layer creates the one-hot representations for input indices.
5359 5360

    Args:
Y
Yibing Liu 已提交
5361 5362
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5363 5364

    Returns:
Y
Yibing Liu 已提交
5365
        Variable: The one-hot representations of input.
5366 5367

    Examples:
C
caoying03 已提交
5368
        .. code-block:: python
5369

Y
Yibing Liu 已提交
5370 5371
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5372 5373
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5374
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5375 5376 5377 5378 5379 5380
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5381 5382


Y
Yu Yang 已提交
5383
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5384
    """
Y
yi.wu 已提交
5385 5386 5387
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5388 5389 5390 5391 5392 5393

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5394 5395
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5396 5397 5398 5399 5400 5401

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5402 5403
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5404 5405
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5406 5407 5408 5409 5410
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5411
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5412
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5413 5414
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5415 5416
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5417 5418 5419
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5420 5421


5422
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5423
    """
C
caoying03 已提交
5424 5425
    Gives a new shape to the input Tensor without changing its data.

5426 5427 5428 5429 5430
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5431

5432
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5433

5434 5435 5436 5437
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5438
    2. 0 means the actual dimension value is going to be copied from the
5439 5440 5441 5442
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5443 5444

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5445
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5446
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5447

5448
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5449 5450
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5451 5452
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5453
    dimensions.
C
caoying03 已提交
5454

5455
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5456 5457 5458 5459
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5460 5461

    Args:
5462
        x(variable): The input tensor.
C
caoying03 已提交
5463 5464
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5465 5466 5467 5468 5469
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5470 5471
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5472 5473 5474 5475 5476 5477 5478
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5479
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5480

5481
    Returns:
G
guosheng 已提交
5482 5483 5484 5485
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5486

X
Xin Pan 已提交
5487 5488 5489
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5490 5491
    Examples:
        .. code-block:: python
G
guosheng 已提交
5492

5493
            data = fluid.layers.data(
5494
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5495
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5496
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5497 5498 5499
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5500
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5501 5502 5503 5504 5505
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5506

5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5522
    helper = LayerHelper("reshape2", **locals())
5523 5524
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5525
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5526
    helper.append_op(
5527
        type="reshape2",
X
Xin Pan 已提交
5528
        inputs=inputs,
D
dzhwinter 已提交
5529
        attrs={"shape": shape},
5530 5531
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5532

D
dzhwinter 已提交
5533
    return helper.append_activation(out)
5534

5535

5536
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5537
    """
M
minqiyang 已提交
5538 5539 5540
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5541
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5542

Y
Yibing Liu 已提交
5543 5544
    Examples:
    Case 1:
M
minqiyang 已提交
5545
      Given
Y
Yibing Liu 已提交
5546 5547 5548 5549 5550 5551 5552 5553
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5554
        and
Y
Yibing Liu 已提交
5555 5556 5557
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5558

Y
Yibing Liu 已提交
5559
    Args:
5560
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5561
        axes (list): List of integers, indicating the dimensions to be squeezed.
5562
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5563 5564 5565 5566 5567 5568 5569 5570

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5571
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5572 5573
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5574 5575
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5576
    helper.append_op(
5577
        type="squeeze2",
5578
        inputs={"X": input},
Y
Yibing Liu 已提交
5579
        attrs={"axes": axes},
5580 5581
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5582

5583 5584 5585
    return out


5586
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5587
    """
M
minqiyang 已提交
5588 5589 5590
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5591

M
minqiyang 已提交
5592 5593
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5594
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5595

Y
Yibing Liu 已提交
5596
    Args:
5597
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5598
        axes (list): List of integers, indicating the dimensions to be inserted.
5599
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5600 5601 5602 5603 5604 5605 5606 5607

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5608
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5609 5610
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5611 5612
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5613
    helper.append_op(
5614
        type="unsqueeze2",
5615
        inputs={"X": input},
Y
Yibing Liu 已提交
5616
        attrs={"axes": axes},
5617 5618
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5619

5620 5621
    return out

5622

Y
yangyaming 已提交
5623
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5624
    """
Y
Yibing Liu 已提交
5625
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5626 5627 5628 5629
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5630
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5631 5632 5633 5634 5635 5636

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5637
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5638 5639 5640
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5641
            target_lod: [4, 2]
Y
yangyaming 已提交
5642 5643

            then we get a 1-level LoDTensor:
5644
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5645 5646 5647 5648 5649 5650
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5651
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5652 5653 5654 5655
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5656
                y.data = [[2, 4]]
Y
yangyaming 已提交
5657 5658 5659
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5660
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5661 5662 5663 5664 5665 5666
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5667
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5668 5669 5670 5671
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5672
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5673 5674 5675 5676
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5677
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5678 5679 5680 5681 5682
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5683
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5684
                           from :attr:`y`.
Y
yangyaming 已提交
5685
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5686
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5687 5688

    Returns:
Y
Yibing Liu 已提交
5689
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5690 5691

    Raises:
Y
Yibing Liu 已提交
5692
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5693 5694 5695 5696 5697 5698 5699 5700 5701

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5702
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5728
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5757 5758
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5771 5772 5773
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5787 5788 5789 5790


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5791
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5792
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5793

G
guosheng 已提交
5794 5795 5796 5797
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5820
                         The length of :attr:paddings must be
G
guosheng 已提交
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5831

G
guosheng 已提交
5832 5833 5834 5835 5836 5837
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5838
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5839 5840 5841 5842 5843 5844 5845
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5846 5847


C
chengduo 已提交
5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
5879 5880
		And
            pad_value = -1,
C
chengduo 已提交
5881

T
Tink_Y 已提交
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5917
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5918 5919 5920 5921 5922 5923 5924 5925 5926
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5927 5928 5929 5930 5931 5932 5933
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5934 5935
    called label-smoothing regularization (LSR).

5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5959
                              be :math:`(1, class\_num)`.
5960 5961
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5962
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5982
    smooth_label = helper.create_variable_for_type_inference(dtype)
5983 5984 5985 5986 5987 5988 5989
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5990 5991


W
wopeizl 已提交
5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6028 6029


J
jerrywgz 已提交
6030 6031 6032 6033 6034 6035
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6036 6037
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6054 6055 6056
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6057 6058 6059 6060 6061 6062
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6063
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6104 6105
        .. code-block:: python

W
whs 已提交
6106 6107 6108 6109
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6110
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6111 6112 6113 6114 6115 6116
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6117 6118


6119 6120 6121 6122
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6123 6124
                 resample='BILINEAR',
                 actual_shape=None):
6125
    """
Q
qiaolongfei 已提交
6126
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6127

6128
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6129 6130 6131
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6132

6133
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6134

6135
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6136

6137
    Args:
6138
        input (Variable): The input tensor of image resize layer,
6139 6140
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6141
        out_shape(list|tuple|Variable|None): Output shape of image resize
6142 6143
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6144
        scale(float|None): The multiplier for the input height or width.
6145 6146 6147
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6148 6149
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6150
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6151
                       currently.
6152
                       Default: 'BILINEAR'
6153 6154 6155
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6156
                                :attr:`out_shape` and :attr:`scale` specifying
6157 6158 6159 6160 6161 6162 6163
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6164 6165
                                constructing stage.
                                Default: None
6166 6167

    Returns:
Q
update  
qiaolongfei 已提交
6168 6169
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6170

6171 6172 6173
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6174
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6175 6176 6177 6178
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6179 6180 6181
    Examples:
        .. code-block:: python

6182
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6183
    """
6184 6185 6186 6187
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6188 6189
    if resample not in resample_methods:
        raise ValueError(
6190
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6191
        )
6192
    resample_type = resample_methods[resample]
6193
    if out_shape is None and scale is None:
6194
        raise ValueError("One of out_shape and scale must not be None.")
6195
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6196
    dtype = helper.input_dtype()
6197 6198 6199 6200

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6201 6202 6203
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6204
    if out_shape is not None:
6205 6206 6207 6208
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6209
            inputs['OutSize'] = out_shape
6210 6211 6212 6213 6214 6215 6216 6217
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6218 6219 6220 6221
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6222 6223 6224 6225 6226
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6227
    out = helper.create_variable_for_type_inference(dtype)
6228
    helper.append_op(
6229
        type='{}_interp'.format(resample_type),
6230
        inputs=inputs,
6231
        outputs={"Out": out},
6232 6233 6234
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6235
    return out
F
stash  
fengjiayi 已提交
6236 6237


6238
@templatedoc(op_type="bilinear_interp")
6239 6240 6241 6242 6243
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6244
    """
6245 6246
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6247 6248
    in priority order.

6249 6250 6251 6252
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6253 6254
    again in the other direction.

6255
    For details of bilinear interpolation, please refer to Wikipedia:
6256
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6257 6258 6259 6260 6261

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6262

Y
yuyang18 已提交
6263 6264 6265 6266 6267
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6268 6269 6270
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6271
                                :attr:`out_shape` and :attr:`scale` specifying
6272 6273 6274 6275 6276 6277 6278
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6279 6280
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6281 6282 6283

    Returns:
        ${out_comment}.
6284 6285 6286 6287 6288

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6289 6290
    """

6291
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6292 6293


6294
@templatedoc(op_type="nearest_interp")
6295 6296 6297 6298 6299
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6300
    """
6301
    Resize input by performing nearest neighbor interpolation in both the
6302 6303
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6304 6305
    out_shape and scale in priority order.

6306
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6307
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6308 6309 6310 6311 6312

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6313

Y
yuyang18 已提交
6314 6315 6316 6317 6318
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6319 6320 6321
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6322
                                :attr:`out_shape` and :attr:`scale` specifying
6323 6324 6325 6326 6327 6328 6329
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6330 6331
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6332 6333 6334

    Returns:
        ${out_comment}.
6335 6336 6337 6338 6339

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6340 6341
    """

6342
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6343 6344 6345 6346


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6347 6348 6349
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6350 6351 6352 6353 6354 6355 6356
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6357
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6358

6359
    Returns:
Q
update  
qiaolongfei 已提交
6360
        Variable: The output is a 4-D tensor of the shape
6361
        (num_batches, channls, out_h, out_w).
6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6372 6373 6374
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6375 6376 6377
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6378 6379
def gather(input, index):
    """
Q
qiaolongfei 已提交
6380 6381
    **Gather Layer**

6382
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6383 6384 6385 6386
    of X indexed by `index` and concatenate them together.

    .. math::

6387
        Out = X[Index]
W
whs 已提交
6388 6389 6390 6391 6392 6393 6394


    .. code-block:: text


                Given:

6395 6396
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6407
        input (Variable): The source input with rank>=1.
W
whs 已提交
6408 6409 6410 6411 6412 6413
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6414

W
whs 已提交
6415 6416 6417 6418 6419 6420
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6421
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6422 6423 6424 6425 6426 6427 6428 6429
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6461
    out = helper.create_variable_for_type_inference(dtype)
6462 6463 6464 6465 6466 6467 6468 6469 6470
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6521
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6522 6523 6524 6525 6526 6527 6528 6529 6530
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6544

6545 6546 6547
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6548
    """
F
stash  
fengjiayi 已提交
6549
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6550
    dtype = x.dtype
X
Xin Pan 已提交
6551
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6552
    if seed is None:
6553
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6554
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6555
    if isinstance(seed, int):
F
fengjiayi 已提交
6556 6557 6558 6559 6560
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6561 6562 6563 6564
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6565
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6566 6567
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6568 6569
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6570
    return out
W
whs 已提交
6571 6572


6573
def log(x, name=None):
W
wanghaoshuang 已提交
6574 6575 6576 6577 6578
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6579
        Out = \\ln(x)
W
wanghaoshuang 已提交
6580 6581

    Args:
6582
        x (Variable): Input tensor.
6583 6584
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6585 6586 6587 6588 6589 6590 6591 6592

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6593
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6594 6595
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6596
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6597
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6598
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6599 6600 6601
    return out


6602
def relu(x, name=None):
W
wanghaoshuang 已提交
6603 6604
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6605
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6606 6607 6608 6609
    the tensor elementwise.

    .. math::

6610
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6611 6612

    Args:
6613
        x (Variable): The input tensor.
6614 6615
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6616 6617 6618 6619 6620 6621 6622 6623

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6624
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6625 6626
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6627
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6628
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6629
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6630
    return out
6631 6632


C
chengduo 已提交
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6674 6675 6676
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6677 6678 6679 6680
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6681
    .. math::
6682 6683

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6684

6685
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6686 6687 6688 6689 6690
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6691
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6692
                           Its shape should be the same as input.
6693
        num_classes (int): The possible number of labels.
W
whs 已提交
6694 6695 6696 6697

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6698
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6699 6700 6701 6702

    Examples:

        .. code-block:: python
6703

W
whs 已提交
6704 6705 6706 6707
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6708 6709 6710
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6711 6712
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6713 6714
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6715
        outputs={
W
whs 已提交
6716 6717 6718
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6719 6720 6721
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
6790
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
6791 6792 6793 6794 6795

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
6796
            isinstance(shape, Variable)):
6797 6798 6799 6800 6801
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6802
    out = helper.create_variable_for_type_inference(x.dtype)
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6820 6821


W
whs 已提交
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
6839

W
whs 已提交
6840
              out_shape = [2, 3, 5, 5]
6841

W
whs 已提交
6842
          Step 1:
6843

W
whs 已提交
6844 6845 6846
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
6847

W
whs 已提交
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
6918
            isinstance(out_shape, Variable)):
W
whs 已提交
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6940 6941 6942 6943 6944 6945 6946 6947
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6948

6949 6950
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6951

6952 6953 6954 6955
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6956

6957 6958 6959 6960 6961
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6962 6963 6964

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7000
    out = helper.create_variable_for_type_inference("float32")
7001 7002 7003 7004 7005 7006 7007 7008

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7009 7010


M
minqiyang 已提交
7011 7012
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7013
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7014
    which compares left score and right score passed in.
M
minqiyang 已提交
7015
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7016 7017 7018 7019 7020 7021

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7022
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7023 7024
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7025
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7026 7027 7028
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7029
       Variable: The ranking loss.
M
minqiyang 已提交
7030
    Raises:
M
minqiyang 已提交
7031
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7032 7033 7034 7035 7036 7037 7038
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7039
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7040 7041 7042 7043 7044 7045
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7046 7047
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7071
        .. code-block:: text
W
whs 已提交
7072

T
Tink_Y 已提交
7073
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7074

T
Tink_Y 已提交
7075 7076
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7077

T
Tink_Y 已提交
7078
	      Case 0:
M
minqiyang 已提交
7079

T
Tink_Y 已提交
7080 7081 7082
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7083

T
Tink_Y 已提交
7084 7085 7086
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7087

T
Tink_Y 已提交
7088
	      Case 1:
M
minqiyang 已提交
7089

T
Tink_Y 已提交
7090 7091
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7092

T
Tink_Y 已提交
7093 7094 7095
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7096

T
Tink_Y 已提交
7097
	      Case 2:
M
minqiyang 已提交
7098

T
Tink_Y 已提交
7099 7100
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7101

T
Tink_Y 已提交
7102 7103 7104
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7105 7106


W
whs 已提交
7107 7108
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7109
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7133
    out = helper.create_variable_for_type_inference(dtype)
7134 7135 7136 7137 7138 7139 7140 7141 7142
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7143
    helper.append_op(
7144
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7145 7146 7147 7148

    return out


7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7161 7162 7163 7164 7165

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7166 7167
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7168 7169
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7170
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7191 7192 7193 7194 7195

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7196 7197
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7198 7199
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7200
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7221 7222 7223 7224 7225

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7226 7227
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7228 7229
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7230
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7252 7253 7254 7255 7256

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7257
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7258
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7259 7260
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7261
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7284 7285 7286 7287 7288

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7289 7290
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7291 7292
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7293
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7315 7316 7317 7318 7319

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7320 7321
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7322 7323
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7324
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7325 7326 7327 7328 7329 7330 7331 7332
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7333 7334 7335 7336
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7337
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7338 7339 7340

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7341
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7342
          weight (alpha).
J
jerrywgz 已提交
7343
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7344 7345 7346
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7347
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7348
          will be named automatically.
J
jerrywgz 已提交
7349 7350 7351 7352 7353 7354 7355 7356

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7357
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7371
        attr=helper.param_attr,
J
jerrywgz 已提交
7372 7373 7374 7375
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7376
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7377 7378 7379 7380 7381 7382 7383 7384 7385
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7386 7387 7388 7389 7390 7391 7392 7393 7394 7395
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7396
    Returns:
7397
        output(${out_type}): ${out_comment}
7398 7399 7400 7401 7402 7403 7404

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7405 7406
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7407
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7426
    Returns:
7427
        output(${out_type}): ${out_comment}
7428 7429 7430 7431 7432 7433 7434

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7435 7436
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7437
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7455
    Returns:
7456
        output(${out_type}): ${out_comment}
7457 7458 7459 7460 7461 7462 7463

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7464 7465
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7466
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7467 7468 7469 7470 7471 7472 7473 7474
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7488

7489 7490 7491 7492 7493 7494 7495 7496 7497 7498
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7499 7500
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7516
        ValueError: If axis is not in range [0, rank(x)].
7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7533 7534
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7535
    helper.append_op(
7536
        type='flatten2',
7537
        inputs={"X": x},
7538 7539
        outputs={'Out': out,
                 'XShape': x_shape},
7540 7541
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7542 7543


C
chenweihang 已提交
7544
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7545
    """
C
chenweihang 已提交
7546
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7547
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7548 7549
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7550

C
chenweihang 已提交
7551 7552 7553 7554
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7555
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7556 7557 7558 7559 7560 7561
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7562
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7563 7564 7565
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7566 7567 7568
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7580 7581
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7582 7583 7584 7585 7586 7587
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7588
    return out
7589

7590

S
sneaxiy 已提交
7591 7592 7593 7594 7595 7596 7597 7598 7599
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7600

S
sneaxiy 已提交
7601
    .. math::
7602

S
sneaxiy 已提交
7603 7604 7605
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7606
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7607 7608 7609 7610
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7611 7612 7613
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7614 7615
    Returns:
        Variable: The output sequence mask.
7616

S
sneaxiy 已提交
7617 7618
    """

Q
qingqing01 已提交
7619
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7620
    if name is None:
X
Xin Pan 已提交
7621
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7622
    else:
X
Xin Pan 已提交
7623
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7624

Q
qingqing01 已提交
7625 7626 7627
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7628 7629
        outputs={'Y': out},
        attrs={
7630
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7631 7632 7633
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7634 7635


X
Xin Pan 已提交
7636
def stack(x, axis=0):
S
sneaxiy 已提交
7637 7638 7639 7640
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7641 7642 7643 7644 7645 7646 7647

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7648
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7649
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7650 7651

    Args:
7652
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7653
        axis (int|None): The axis along which all inputs are stacked.
7654

S
sneaxiy 已提交
7655 7656
    Returns:
        Variable: The stacked variable.
7657

S
sneaxiy 已提交
7658 7659
    """

X
Xin Pan 已提交
7660 7661 7662 7663 7664 7665
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7666
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7667
    helper.append_op(
S
sneaxiy 已提交
7668 7669
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7670

X
Xin Pan 已提交
7671
    return out
D
dzhwinter 已提交
7672 7673 7674 7675 7676 7677 7678


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7679

D
dzhwinter 已提交
7680 7681 7682
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7683
    raised.
D
dzhwinter 已提交
7684 7685

    Args:
M
minqiyang 已提交
7686
        x (Variable): Input variable.
D
dzhwinter 已提交
7687 7688
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7689

D
dzhwinter 已提交
7690 7691
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7692

D
dzhwinter 已提交
7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7704
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7705 7706 7707 7708 7709 7710 7711 7712

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7725

W
whs 已提交
7726 7727 7728 7729
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7730

W
whs 已提交
7731
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7732

W
whs 已提交
7733
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7734

W
whs 已提交
7735 7736 7737 7738
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7739

W
whs 已提交
7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7756
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7757 7758 7759 7760 7761 7762
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7763 7764


G
fix  
gongweibao 已提交
7765 7766 7767
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7768
@templatedoc()
G
fix  
gongweibao 已提交
7769 7770 7771 7772 7773 7774 7775 7776 7777
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7778
    ${comment}
G
fix  
gongweibao 已提交
7779 7780

    Args:
G
gongweibao 已提交
7781 7782 7783
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7784
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7785 7786 7787
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7788 7789
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7790
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7791

7792 7793 7794 7795 7796
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
7797 7798 7799
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7800
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7817 7818


G
gongweibao 已提交
7819
@templatedoc()
X
Xin Pan 已提交
7820
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7821
    """
G
gongweibao 已提交
7822
    ${comment}
G
fix  
gongweibao 已提交
7823 7824

    Args:
G
gongweibao 已提交
7825 7826 7827 7828
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7829 7830 7831
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7832
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7833

7834 7835 7836 7837
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
7838 7839 7840
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7841
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7852
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7853 7854 7855 7856 7857
        })

    return out


G
gongweibao 已提交
7858
@templatedoc()
G
fix  
gongweibao 已提交
7859
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7860
    """
G
gongweibao 已提交
7861
    ${comment}
G
fix  
gongweibao 已提交
7862 7863

    Args:
G
gongweibao 已提交
7864 7865 7866 7867
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7868
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7869 7870

    Returns:
G
gongweibao 已提交
7871
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7872

7873 7874 7875 7876 7877 7878 7879 7880 7881 7882
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
7883 7884 7885
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7886
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7898
@templatedoc()
G
fix  
gongweibao 已提交
7899 7900 7901 7902 7903 7904 7905 7906 7907
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7908
    ${comment}
G
fix  
gongweibao 已提交
7909 7910

    Args:
G
gongweibao 已提交
7911 7912
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7913
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7914 7915 7916 7917
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7918
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7919 7920

    Returns:
G
gongweibao 已提交
7921
        out (Variable): ${out_comment}
7922 7923 7924 7925 7926 7927 7928 7929

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
7930 7931 7932
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7933
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7952
@templatedoc()
X
Xin Pan 已提交
7953
def sum(x):
G
fix  
gongweibao 已提交
7954
    """
G
gongweibao 已提交
7955
    ${comment}
G
fix  
gongweibao 已提交
7956 7957

    Args:
G
gongweibao 已提交
7958
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7959 7960

    Returns:
G
gongweibao 已提交
7961
        out (Variable): ${out_comment}
7962 7963 7964 7965 7966 7967

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
7968 7969 7970
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7971 7972
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7973 7974 7975 7976
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7977
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7978 7979 7980 7981

    return out


G
gongweibao 已提交
7982
@templatedoc()
G
fix  
gongweibao 已提交
7983 7984
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7985
    ${comment}
G
fix  
gongweibao 已提交
7986 7987

    Args:
G
gongweibao 已提交
7988 7989 7990 7991
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7992 7993

    Returns:
G
gongweibao 已提交
7994
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7995

7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8007 8008 8009
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8010 8011
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8023
@templatedoc()
G
fix  
gongweibao 已提交
8024 8025
def shape(input):
    """
G
gongweibao 已提交
8026
    ${comment}
G
fix  
gongweibao 已提交
8027 8028

    Args:
G
gongweibao 已提交
8029
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8030 8031

    Returns:
G
gongweibao 已提交
8032
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8033

8034 8035 8036 8037 8038 8039
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8040 8041 8042
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8043 8044
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8045
    helper.append_op(
G
fix  
gongweibao 已提交
8046
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8047 8048

    return out
G
merge  
gongweibao 已提交
8049 8050


S
sneaxiy 已提交
8051 8052 8053 8054 8055 8056 8057 8058
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8059 8060
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8061
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8062 8063 8064
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8065

S
sneaxiy 已提交
8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8077
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8078 8079 8080 8081 8082 8083 8084 8085
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8086
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8087
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8088 8089 8090 8091 8092 8093

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8094
    if name is None:
X
Xin Pan 已提交
8095
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8096 8097 8098
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8099 8100 8101 8102 8103 8104 8105 8106 8107 8108

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8109
    return helper.append_activation(out)
S
sneaxiy 已提交
8110 8111


X
Xin Pan 已提交
8112
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8113 8114 8115
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8116
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8117 8118 8119
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8120
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8121 8122 8123
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8124
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8125 8126 8127
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8128
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8129 8130 8131
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8132
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8133 8134 8135
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8136
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8148 8149
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8150
        ])
M
minqiyang 已提交
8151 8152


8153
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8154 8155
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8156 8157
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8158 8159 8160

    if out is None:
        if name is None:
X
Xin Pan 已提交
8161
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8177
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8189 8190 8191 8192 8193 8194 8195 8196 8197

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8198 8199 8200 8201 8202 8203 8204
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8205
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8217 8218 8219 8220 8221 8222 8223 8224 8225

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8226 8227 8228 8229 8230 8231 8232
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8233
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8245 8246 8247 8248 8249 8250 8251 8252 8253

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8254 8255 8256 8257 8258 8259 8260
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8261
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8262 8263 8264 8265 8266 8267 8268 8269 8270 8271
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8272 8273 8274 8275 8276 8277 8278

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8279 8280 8281 8282
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8298 8299 8300 8301 8302 8303 8304

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8305 8306 8307 8308 8309
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8310 8311 8312 8313
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8337 8338 8339 8340 8341 8342 8343

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8344 8345 8346 8347 8348
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8349 8350 8351 8352
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8353 8354 8355 8356 8357 8358 8359 8360

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8379
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8380 8381 8382 8383 8384 8385 8386 8387 8388 8389
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8432
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8433 8434 8435 8436 8437 8438 8439 8440 8441
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8442 8443
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8444 8445 8446 8447 8448 8449
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8450 8451 8452 8453
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8454 8455 8456 8457 8458 8459
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8460
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8461 8462 8463 8464 8465 8466 8467 8468 8469
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8470
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8471 8472 8473 8474 8475 8476 8477 8478
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8479
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8500
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8501 8502 8503 8504 8505 8506 8507 8508 8509 8510
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8511 8512


J
JiabinYang 已提交
8513
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8514
    """
J
JiabinYang 已提交
8515
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8516 8517 8518

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8519
    The attr blocksize indicates the input block size.
8520 8521

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8522
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8523 8524

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8525
    (but keeping all data)
J
JiabinYang 已提交
8526

J
JiabinYang 已提交
8527
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8528
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8529 8530 8531 8532 8533
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8534
    Args:
J
JiabinYang 已提交
8535
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8536
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8537 8538

    Returns:
J
JiabinYang 已提交
8539
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8540 8541

    Raises:
J
JiabinYang 已提交
8542
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8543 8544 8545 8546 8547 8548

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8549
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8550
                x=data, blocksize=2)
J
JiabinYang 已提交
8551 8552
    """

J
JiabinYang 已提交
8553
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8554

J
JiabinYang 已提交
8555 8556
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8557 8558

    if name is None:
J
JiabinYang 已提交
8559 8560
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8561 8562 8563 8564 8565
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8566
        type="space_to_depth",
J
JiabinYang 已提交
8567
        inputs={"X": x},
J
JiabinYang 已提交
8568
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8569
        outputs={"Out": out})
J
JiabinYang 已提交
8570 8571
    return out

J
JiabinYang 已提交
8572

S
sneaxiy 已提交
8573 8574
@templatedoc()
def sequence_reverse(x, name=None):
8575
    """
S
sneaxiy 已提交
8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8587
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8588 8589 8590 8591 8592 8593 8594 8595 8596 8597
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8598 8599


8600 8601 8602 8603 8604 8605
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8606

8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8626
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8639 8640


B
barrierye 已提交
8641
def similarity_focus(input, axis, indexes, name=None):
8642
    """
B
barrierye 已提交
8643
    SimilarityFocus Operator
B
barrierye 已提交
8644 8645

    Generate a similarity focus mask with the same shape of input using the following method:
8646 8647 8648
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8649
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8650 8651 8652 8653 8654 8655 8656
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8657
       each index.
B
barrierye 已提交
8658 8659 8660 8661
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8711
    Args:
8712
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8713
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8714
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8715
            1, 2 or 3.
B
barrierye 已提交
8716
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8717 8718

    Returns:
8719
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8720
            as the input.
8721

B
barrierye 已提交
8722 8723 8724
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8725 8726
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8739 8740 8741 8742 8743
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8744 8745 8746 8747 8748 8749 8750
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8751 8752


M
minqiyang 已提交
8753 8754
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8755 8756
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8757 8758
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8797
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8798
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8799 8800 8801 8802 8803 8804 8805 8806 8807

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8808 8809
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8810 8811
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8812 8813 8814 8815 8816 8817 8818
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8819 8820


D
dengkaipeng 已提交
8821
@templatedoc()
8822 8823
def grid_sampler(x, grid, name=None):
    """
8824
    This operation samples input X by using bilinear interpolation based on
8825
    flow field grid, which is usually gennerated by affine_grid. The grid of
8826 8827 8828 8829
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
8830
    interpolation value of 4 nearest corner points.
8831 8832 8833 8834 8835 8836 8837 8838

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
8839
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8869 8870

    Args:
8871 8872 8873
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8874 8875

    Returns:
8876
        out(Variable): Output of shape [N, C, H, W] data samples input X
8877 8878 8879 8880 8881 8882 8883 8884 8885
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8886 8887 8888 8889 8890 8891 8892 8893 8894
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8895
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8896 8897
    ipts = {'X': x, 'Grid': grid}

8898
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8899 8900 8901
    return out


G
gmcather 已提交
8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8996 8997 8998 8999 9000 9001 9002 9003 9004 9005


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9006
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9007

Q
Qiao Longfei 已提交
9008
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9009 9010 9011
    For example:

    .. math::
9012
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9013

Q
Qiao Longfei 已提交
9014
    In this formula:
9015 9016
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9017
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9018
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9019 9020 9021
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9022 9023
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9024 9025 9026
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9027
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9028
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9029
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9030 9031 9032 9033
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9034
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9035 9036 9037 9038

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9039
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9040 9041
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9042
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9043 9044 9045 9046

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9047
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
S
sneaxiy 已提交
9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194


@templatedoc()
def py_func(func, x, out, backward_func=None):
    """
    """

    class PyFuncRegister(object):
        _main_program_to_register = dict()

        @classmethod
        def get_instance(cls, prog=None):
            if prog is None:
                prog = fluid.default_main_program()

            if not isinstance(prog, Program):
                raise ValueError("prog must be None or type of Program")

            ret = cls._main_program_to_register.get(prog, None)
            if ret is None:
                ret = PyFuncRegister()
                ret._idx = core.append_python_callable_object_and_return_id(ret)
                ret._token_func_dict = dict()
                ret._func_token_dict = dict()
                cls._main_program_to_register[prog] = ret

            return ret

        @property
        def handle_idx(self):
            return self._idx

        def unique_token(self, func):
            return self._register_func(func)

        def _register_func(self, func):
            if func is None:
                raise ValueError("func cannot be None")

            token = self._func_token_dict.get(func, None)
            if token is not None:
                return token

            token = unique_name.generate('py_func_op_token')
            self._token_func_dict[token] = func
            self._func_token_dict[func] = token
            return token

        def __call__(self, token, *args):
            func = self._token_func_dict.get(token, None)
            if func is None:
                raise ValueError("func has not been registered")

            arg_list = inspect.getargspec(func)
            kwargs = dict()
            idx = 0
            for arg in arg_list[0]:
                kwargs[arg] = args[idx]
                idx += 1

            args = args[idx:]
            ret0 = func(*args, **kwargs)
            if ret0 is None:
                return None

            if not isinstance(ret0, (list, tuple)):
                ret0 = (ret0, )

            ret = []
            for i in six.moves.range(len(ret0)):
                if isinstance(ret0[i], core.LoDTensor):
                    ret.append(ret0[i])
                    continue

                if isinstance(ret0[i], np.ndarray):
                    r = ret0[i]
                else:
                    r = np.array(ret0[i])

                t = core.LoDTensor()
                t.set(r, core.CPUPlace())
                ret.append(t)

            return tuple(ret)

    helper = LayerHelper('py_func', **locals())
    if isinstance(x, Variable):
        x = [x]

    if isinstance(out, Variable):
        out = [out]

    for each_out in out:
        if len(each_out.shape) == 0:
            raise ValueError(
                'users should infer shapes of outputs of py_func op manually')

    py_func_reg = PyFuncRegister.get_instance(helper.main_program)
    token = py_func_reg.unique_token(func)

    helper.append_op(
        type='py_func',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'handle_idx': py_func_reg.handle_idx,
               'token': token})
    return out