nn.py 268.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
S
sneaxiy 已提交
157
    'sequence_reverse',
158
    'affine_channel',
M
minqiyang 已提交
159
    'hash',
Y
Yu Yang 已提交
160 161 162 163 164 165 166 167 168
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
169
       is_test=False,
170
       name=None):
Y
Yu Yang 已提交
171
    """
172
    **Fully Connected Layer**
Y
Yu Yang 已提交
173

174 175 176 177 178 179 180 181
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
182
    to the output as well.
C
caoying03 已提交
183

C
caoying03 已提交
184
    This process can be formulated as follows:
185 186 187

    .. math::

188
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
189 190 191

    In the above equation:

C
caoying03 已提交
192 193 194 195
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
196
    * :math:`Act`: The activation function.
C
caoying03 已提交
197
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
198 199

    Args:
R
ranqiu 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
215 216
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
217
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
218
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
219
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
220

221
    Returns:
F
fengjiayi 已提交
222
        Variable: The transformation result.
223 224

    Raises:
C
caoying03 已提交
225
        ValueError: If rank of the input tensor is less than 2.
226 227 228 229

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
230
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
231
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
232
    """
C
caoying03 已提交
233

C
caoying03 已提交
234
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
235 236 237 238

    dtype = helper.input_dtype()

    mul_results = []
239 240
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
241 242 243
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
244

Y
Yu Yang 已提交
245
        w = helper.create_parameter(
246
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
247
        tmp = helper.create_variable_for_type_inference(dtype)
248
        helper.append_op(
249 250 251
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
252
            outputs={"Out": tmp},
M
mozga-intel 已提交
253 254
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
255 256 257 258
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
259
    else:
X
Xin Pan 已提交
260
        pre_bias = helper.create_variable_for_type_inference(dtype)
261
        helper.append_op(
262 263 264
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
265
            attrs={"use_mkldnn": False})
266 267 268 269
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
270 271


272 273 274
def embedding(input,
              size,
              is_sparse=False,
275
              is_distributed=False,
276 277 278
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
279
    """
280 281
    **Embedding Layer**

282
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
283 284
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
285 286 287

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
288 289

    Args:
290 291 292 293 294
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
295
        is_distributed(bool): Whether to run lookup table from remote parameter server.
296 297
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
298
            with zeros whenever lookup encounters it in :attr:`input`. If
299
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
300 301
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
302
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
303

304 305 306
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
307

308 309
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
310

C
chengduoZH 已提交
311
          dict_size = len(dataset.ids)
312
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
313
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
314 315 316 317 318
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
319
    tmp = helper.create_variable_for_type_inference(dtype)
320 321
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
322 323 324 325 326
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
327 328 329 330 331
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
332 333 334
    return tmp


Y
yi.wu 已提交
335
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
336 337
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
338 339
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
340 341 342 343 344 345 346
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
347 348
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
349
    """
Y
yi.wu 已提交
350
    ${comment}
Y
Yibing Liu 已提交
351 352

    Args:
Y
yi.wu 已提交
353 354
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
355 356 357 358 359 360
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
361
        param_attr(ParamAttr|None): The parameter attribute for the learnable
362
                               hidden-hidden weights.
Y
Yibing Liu 已提交
363 364 365

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
366 367
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
368 369 370 371 372

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
373
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
374 375 376
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
377

378
                              1. `use_peepholes = False`
Y
yi.wu 已提交
379 380
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
381
                              2. `use_peepholes = True`
Y
yi.wu 已提交
382
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
383
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
384
                                 - The shape is (1 x 7D).
C
chengduo 已提交
385 386 387 388 389

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
390 391 392 393 394 395 396 397
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
398 399

    Returns:
Y
Yibing Liu 已提交
400 401
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
402

Y
Yibing Liu 已提交
403
    Examples:
Y
Yibing Liu 已提交
404 405
        .. code-block:: python

Y
Yibing Liu 已提交
406 407
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
408
                                           bias_attr=False)
Y
Yibing Liu 已提交
409 410
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
411
    """
C
chengduo 已提交
412
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
413
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
414
    size = size // 4
Y
Yu Yang 已提交
415 416 417 418 419 420 421 422
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
423 424 425 426
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
427 428 429 430 431 432 433 434 435 436
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
437 438 439

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
440
        inputs=inputs,
Y
Yu Yang 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
457 458 459 460 461 462 463 464 465 466 467
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
468 469
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
470 471 472
    """
    **Dynamic LSTMP Layer**

473 474 475 476 477 478
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
479 480 481 482 483

    The formula is as follows:

    .. math::

484
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
485

486
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
487

488
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
489

490
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
491

492
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
493

494
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
495

496
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
497

Y
Yibing Liu 已提交
498 499 500 501 502 503
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
504
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
505
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
506
          bias vector).
Y
Yibing Liu 已提交
507 508 509
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
510
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
511
    * :math:`h`: The hidden state.
512
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
513 514
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
515
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
516
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
517
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
518 519
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
520 521 522 523

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
524

Y
Yibing Liu 已提交
525 526 527 528 529 530 531 532 533 534 535 536
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
537
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
538 539
                               hidden-hidden weight and projection weight.

540 541
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
542 543
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
544 545
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
546
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
547 548 549 550 551

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
552
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
553 554 555 556 557 558
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
559
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
560 561 562
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
563
                                - The shape is (1 x 7D).
C
chengduo 已提交
564 565 566 567 568

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
569 570 571 572 573 574 575 576 577
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
578
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
579 580
                              default "tanh".
        proj_activation(str): The activation for projection output.
581
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
582 583
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
584 585
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
586 587

    Returns:
588 589 590 591
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
592 593

    Examples:
594

Y
Yibing Liu 已提交
595 596
        .. code-block:: python

597 598 599 600
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
601
            hidden_dim, proj_dim = 512, 256
602
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
603
                                     act=None, bias_attr=None)
604 605 606
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
607 608 609 610
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
611
    """
612

C
chengduo 已提交
613
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
614
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
615
    size = size // 4
Y
Yibing Liu 已提交
616 617 618 619 620 621 622 623 624 625
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
626 627 628 629 630 631
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
660 661 662 663 664 665 666 667 668
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
669
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
670

671
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
672
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
673

G
guosheng 已提交
674 675 676 677 678 679 680 681 682
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
683

G
guosheng 已提交
684
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
685

G
guosheng 已提交
686
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
687 688
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
689 690 691 692
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
693
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
694 695

    Args:
696 697
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
698
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
699
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
700 701
            is the hidden size.
        size(int): The dimension of the gru cell.
702
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
703 704
            hidden-hidden weight matrix. Note:

705
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
706
              :math:`D` is the hidden size.
707
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
708
              The first part are weights of the update gate and reset gate with
709
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
710
              candidate hidden state with shape :math:`(D \\times D)`.
711
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
712
            hidden-hidden bias.
713
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
714 715 716
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
717
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
718
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
719 720 721 722
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
723 724

    Returns:
G
guosheng 已提交
725
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
726
            and sequence length is the same with the input.
727

G
guosheng 已提交
728
    Examples:
729

G
guosheng 已提交
730 731
        .. code-block:: python

732 733 734 735
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
736
            hidden_dim = 512
737
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
738 739 740 741 742 743 744 745 746 747
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
748
    batch_size = input.shape[0]
G
guosheng 已提交
749 750 751
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
752 753 754
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
755

X
Xin Pan 已提交
756 757 758 759
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
778 779 780
def gru_unit(input,
             hidden,
             size,
781 782
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
783
             activation='tanh',
784
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
785
    """
786
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
787

788 789
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
790

791
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
792

793
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
794

795
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
796 797

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
798 799 800
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
801 802
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

803 804
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
805 806 807
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
808 809 810 811 812

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
813 814
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
815 816 817 818
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
819

820 821 822 823 824 825
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
826

827
             # assuming we have x_t_data and prev_hidden of size=10
828
             x_t = fluid.layers.fc(input=x_t_data, size=30)
829 830
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
831 832 833 834 835 836 837 838 839 840 841 842

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
843
    size = size // 3
Y
Yu Yang 已提交
844 845

    # create weight
846 847
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
848

X
Xin Pan 已提交
849 850 851
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
852
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
853
    # create bias
854
    if helper.bias_attr:
Y
Yu Yang 已提交
855 856 857
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
858
        inputs['Bias'] = bias
Y
Yu Yang 已提交
859 860 861

    helper.append_op(
        type='gru_unit',
862
        inputs=inputs,
Y
Yu Yang 已提交
863 864 865 866 867 868
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
869 870
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
871 872 873 874 875
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
876
@templatedoc()
877
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
878 879 880 881 882 883 884
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
885
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
886 887 888 889
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
890 891 892
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
893 894

    """
Y
Yu Yang 已提交
895 896 897 898 899 900
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
901 902 903 904 905 906 907 908
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
924
@templatedoc()
925
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
926 927 928 929 930
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
931

Y
yuyang18 已提交
932
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
933

Y
yuyang18 已提交
934 935 936
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
937
        Variable: ${viterbi_path_comment}
938

Y
yi.wu 已提交
939 940 941 942 943
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
944
    """
Y
Yu Yang 已提交
945 946
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
947 948
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
949 950 951 952 953 954 955 956 957 958
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
959
@templatedoc()
F
fengjiayi 已提交
960
def cos_sim(X, Y):
Y
Yu Yang 已提交
961
    """
Y
yi.wu 已提交
962 963 964
    ${comment}

    Args:
965 966
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
967

Y
yi.wu 已提交
968
    Returns:
969
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
970
    """
F
fengjiayi 已提交
971
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
972 973 974
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
975 976 977 978 979 980 981 982 983 984
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
985 986 987 988 989
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
990
            dropout_implementation="downgrade_in_infer"):
991 992 993 994 995
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
996
    training. The dropout operator randomly sets (according to the given dropout
997 998 999 1000
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1001 1002
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1003 1004 1005 1006 1007 1008 1009
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1024

1025 1026

    Returns:
1027
        Variable: A tensor variable is the shape with `x`.
1028 1029

    Examples:
1030

1031 1032
        .. code-block:: python

1033 1034
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1035 1036
    """

F
fengjiayi 已提交
1037
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1038 1039 1040
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1041 1042 1043 1044

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1045 1046 1047 1048 1049
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1050 1051 1052 1053
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1054 1055
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1056
        })
1057 1058 1059
    return out


1060
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1061
    """
Y
Yibing Liu 已提交
1062 1063
    **Cross Entropy Layer**

1064 1065 1066
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1067 1068

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1069
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1070

Y
Yibing Liu 已提交
1071
        .. math::
Y
yangyaming 已提交
1072

Y
Yibing Liu 已提交
1073 1074 1075
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1076 1077
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1078 1079 1080 1081 1082

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1083
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1084 1085 1086
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1087 1088
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1089
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1090

Y
Yibing Liu 已提交
1091
    Args:
Y
yangyaming 已提交
1092
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1093 1094 1095 1096
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1097
        label (Variable|list): the ground truth which is a 2-D tensor. When
1098 1099 1100 1101
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1102
        soft_label (bool): a flag indicating whether to
1103
                                           interpretate the given labels as soft
1104
                                           labels. Default: `False`.
M
minqiyang 已提交
1105 1106
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1107
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1108 1109 1110 1111 1112

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1113 1114 1115 1116 1117
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1118 1119 1120 1121 1122 1123

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1124
    """
F
fengjiayi 已提交
1125
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1126
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1127 1128 1129 1130 1131
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1132 1133
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1134 1135 1136
    return out


F
fengjiayi 已提交
1137
def square_error_cost(input, label):
Y
Yu Yang 已提交
1138
    """
1139 1140
    **Square error cost layer**

1141 1142
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1143

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1157 1158
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1159 1160

    Returns:
G
guosheng 已提交
1161
        Variable: The tensor variable storing the element-wise squared error \
1162
                  difference of input and label.
1163 1164 1165 1166 1167 1168 1169 1170

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1171
    """
F
fengjiayi 已提交
1172
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1173
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1174 1175 1176 1177 1178 1179
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1180
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1181
    helper.append_op(
F
fengjiayi 已提交
1182 1183
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1184 1185 1186
    return square_out


Y
yi.wu 已提交
1187
@templatedoc()
Y
Yu Yang 已提交
1188 1189 1190 1191
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1192
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1193
    """
Y
yi.wu 已提交
1194
    **Chunk Evaluator**
Y
yi.wu 已提交
1195

Y
yangyaming 已提交
1196
    This function computes and outputs the precision, recall and
1197
    F1-score of chunk detection.
Y
yi.wu 已提交
1198

Y
yi.wu 已提交
1199 1200 1201 1202 1203 1204 1205 1206
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1207

Y
yi.wu 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1233

Y
yi.wu 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1258
    Args:
1259 1260 1261 1262 1263
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1264

Y
yi.wu 已提交
1265
    Returns:
Y
update  
yi.wu 已提交
1266 1267 1268
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1269

Y
yi.wu 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1282
    """
F
fengjiayi 已提交
1283
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1284 1285

    # prepare output
X
Xin Pan 已提交
1286 1287 1288 1289 1290 1291 1292
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1293 1294 1295 1296 1297 1298 1299 1300

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1301 1302 1303 1304
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1305 1306 1307
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1308 1309
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1310
        })
1311 1312
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1313 1314


1315
@templatedoc()
Y
Yu Yang 已提交
1316 1317 1318 1319 1320 1321 1322
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1323 1324
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1325 1326 1327 1328
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1329 1330 1331 1332 1333 1334 1335

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1349

1350 1351
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1352 1353 1354 1355 1356 1357 1358
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1359
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1370
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1371 1372 1373 1374 1375 1376
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1377
def sequence_softmax(input, use_cudnn=False, name=None):
1378 1379 1380
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1381
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1398 1399 1400
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1401

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1413 1414
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1415
    softmax_out = helper.create_variable_for_type_inference(dtype)
1416 1417 1418 1419 1420 1421 1422 1423
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1424
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1425
    """
1426
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1427
    has the same shape as the input.
Q
qiaolongfei 已提交
1428

1429 1430 1431 1432 1433 1434
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1435
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1436 1437 1438 1439 1440 1441 1442

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1443
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1444 1445 1446 1447 1448 1449 1450 1451

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1452 1453 1454
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1467 1468
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1469
    softmax_out = helper.create_variable_for_type_inference(dtype)
1470 1471 1472 1473 1474 1475 1476 1477
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1478 1479 1480
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1481 1482
           stride=1,
           padding=0,
1483
           dilation=1,
Y
Yu Yang 已提交
1484 1485 1486
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1487
           use_cudnn=True,
1488 1489
           act=None,
           name=None):
Y
Yu Yang 已提交
1490
    """
C
chengduoZH 已提交
1491
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1492 1493
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1494
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1495 1496 1497 1498 1499 1500 1501
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1502 1503 1504
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1505

1506
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1507

C
chengduoZH 已提交
1508 1509
    .. math::

C
refine  
chengduoZH 已提交
1510
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1511

T
tensor-tang 已提交
1512
    Where:
C
chengduoZH 已提交
1513

1514 1515 1516 1517 1518
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1519
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1520 1521 1522

    Example:

1523 1524
        - Input:

W
weixing02 已提交
1525
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1526

W
weixing02 已提交
1527
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1528

1529
        - Output:
T
tensor-tang 已提交
1530

W
weixing02 已提交
1531
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1532

C
chengduoZH 已提交
1533
        Where
1534 1535

        .. math::
C
chengduoZH 已提交
1536

W
weixing02 已提交
1537 1538
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1539 1540

    Args:
1541
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1542
        num_filters(int): The number of filter. It is as same as the output
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1571 1572
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1573 1574
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1575
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1576
            will be named automatically. Default: None
C
chengduoZH 已提交
1577 1578

    Returns:
G
guosheng 已提交
1579
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1580 1581
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1582
    Raises:
1583 1584
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1585

C
chengduoZH 已提交
1586 1587 1588
    Examples:
        .. code-block:: python

1589 1590
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1591 1592 1593
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1594
    assert param_attr is not False, "param_attr should not be False here."
1595
    l_type = 'conv2d'
X
xzl 已提交
1596 1597
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1598
        l_type = 'depthwise_conv2d'
1599 1600 1601 1602

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1603 1604 1605 1606 1607
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1608
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1609

C
chengduoZH 已提交
1610 1611 1612
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1613
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1614

C
chengduoZH 已提交
1615 1616
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1617 1618

    input_shape = input.shape
M
minqiyang 已提交
1619
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1620 1621

    def _get_default_param_initializer():
C
chengduo 已提交
1622 1623
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1624 1625 1626 1627 1628 1629 1630 1631
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1632
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1633 1634

    helper.append_op(
1635
        type=l_type,
Y
Yu Yang 已提交
1636 1637 1638 1639 1640
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1641 1642 1643
        attrs={
            'strides': stride,
            'paddings': padding,
1644
            'dilations': dilation,
C
chengduoZH 已提交
1645
            'groups': groups,
1646
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1647
            'use_mkldnn': False
C
chengduoZH 已提交
1648
        })
Y
Yu Yang 已提交
1649 1650 1651 1652 1653 1654

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1672 1673 1674 1675 1676 1677
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1687 1688
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1689 1690 1691
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1692
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1718
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1719 1720
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1721
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1722 1723
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1724
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1725 1726
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1727
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1728 1729 1730 1731 1732 1733
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1744 1745
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1746 1747
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1748
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1749
            will be named automatically. Default: None.
C
chengduoZH 已提交
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1762 1763
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1764 1765 1766
    """

    l_type = 'conv3d'
C
chengduo 已提交
1767
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1778
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1792 1793 1794
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1795 1796 1797 1798 1799 1800 1801 1802
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1803
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1818
            'use_mkldnn': False
C
chengduoZH 已提交
1819 1820
        })

1821
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1822 1823 1824 1825

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1826
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1827
    """
Y
yangyaming 已提交
1828 1829 1830
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1842
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1843 1844 1845 1846 1847
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1848
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1849 1850 1851 1852 1853 1854 1855

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1856 1857
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1858

L
Luo Tao 已提交
1859 1860
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1861
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1862 1863 1864 1865 1866 1867 1868 1869
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1870

Y
yangyaming 已提交
1871
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1872 1873 1874 1875 1876
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1877 1878
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1879
    """
F
fengjiayi 已提交
1880
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1881
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1882 1883
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1884 1885 1886 1887 1888 1889 1890 1891

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1892 1893 1894 1895 1896
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1897 1898 1899
    return pool_out


C
add doc  
chengduoZH 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1919
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1920 1921 1922 1923 1924
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1925
def sequence_first_step(input):
L
Luo Tao 已提交
1926
    """
L
Luo Tao 已提交
1927
    This function gets the first step of sequence.
L
Luo Tao 已提交
1928 1929 1930 1931

    .. code-block:: text

       x is a 1-level LoDTensor:
1932
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1933 1934 1935 1936 1937
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1938
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1939
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1940

L
Luo Tao 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1950

Y
yangyaming 已提交
1951
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1952 1953 1954
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1955 1956 1957
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1958
def sequence_last_step(input):
L
Luo Tao 已提交
1959
    """
L
Luo Tao 已提交
1960
    This function gets the last step of sequence.
L
Luo Tao 已提交
1961 1962 1963 1964

    .. code-block:: text

       x is a 1-level LoDTensor:
1965
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1966 1967 1968 1969 1970
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1971
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1972
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1973

L
Luo Tao 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1983

Y
yangyaming 已提交
1984
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1985 1986 1987
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1988 1989 1990
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1991 1992 1993 1994
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

1995
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
1996 1997 1998 1999 2000
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2001

Y
Yibing Liu 已提交
2002 2003
	- Case:

2004
            Given the input Variable **input**:
2005

2006 2007 2008
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2009

2010
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2011

2012
            the output Variable will be
2013

2014 2015 2016
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2017 2018

    NOTE: The first dimension size of **input**, **offset** and **length**
2019
          should be equal. The **offset** should start from 0.
2020

Y
Yibing Liu 已提交
2021
    Args:
2022
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2023
                         sequences.
Y
Yibing Liu 已提交
2024 2025 2026 2027 2028 2029
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2030
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2041
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2042 2043 2044 2045
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2046
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2061
@templatedoc()
Y
Yu Yang 已提交
2062
def pool2d(input,
C
chengduoZH 已提交
2063 2064
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2065 2066
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2067
           global_pooling=False,
C
chengduoZH 已提交
2068
           use_cudnn=True,
2069
           ceil_mode=False,
C
caoying03 已提交
2070
           name=None):
Y
Yu Yang 已提交
2071
    """
F
fengjiayi 已提交
2072
    ${comment}
2073 2074

    Args:
2075 2076 2077
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2078
                          feature, and W is the width of the feature.
2079
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2080
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2081
        pool_type: ${pooling_type_comment}
2082 2083
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2084 2085 2086
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2087
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2088 2089
                        layer will be named automatically.

2090
    Returns:
F
fengjiayi 已提交
2091
        Variable: The pooling result.
F
fengjiayi 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2105 2106 2107 2108
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2109
                            global_pooling=False)
Y
Yu Yang 已提交
2110 2111 2112 2113 2114
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2115

C
chengduoZH 已提交
2116 2117 2118 2119 2120
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2121 2122 2123 2124
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2125 2126
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2127

C
Add doc  
chengduoZH 已提交
2128
    l_type = 'pool2d'
2129 2130

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2131
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2132
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2133 2134

    helper.append_op(
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2146
            "use_mkldnn": False
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2163
    pooling configurations mentioned in input parameters.
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2176

2177
    Returns:
2178
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2179 2180 2181 2182 2183
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2184

C
chengduoZH 已提交
2185 2186 2187 2188 2189
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2190 2191 2192
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2193

C
chengduoZH 已提交
2194 2195
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2196

2197 2198
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2199
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2200
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2201 2202

    helper.append_op(
2203
        type=l_type,
Y
Yu Yang 已提交
2204 2205 2206 2207 2208 2209 2210
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2211
            "paddings": pool_padding,
2212
            "use_cudnn": use_cudnn,
2213
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2214
            "use_mkldnn": False
Y
Yu Yang 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2227
               data_layout='NCHW',
Y
Yang Yang 已提交
2228
               in_place=False,
2229 2230
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2231
               moving_variance_name=None,
2232 2233
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2234
    """
Q
qiaolongfei 已提交
2235 2236 2237 2238
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2239

Q
qiaolongfei 已提交
2240
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2241

Q
qiaolongfei 已提交
2242 2243
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2244 2245 2246
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2259 2260

    Args:
Q
qiaolongfei 已提交
2261
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2262 2263 2264 2265
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2266 2267 2268 2269 2270 2271 2272 2273
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2274
        data_layout(string, default NCHW): NCHW|NHWC
2275
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2276 2277 2278 2279
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2280
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2281
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2282 2283

    Returns:
Q
qiaolongfei 已提交
2284
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2285 2286 2287 2288 2289 2290 2291

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2292
    """
C
chengduo 已提交
2293
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2316
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2317

2318 2319
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2320 2321 2322
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2323
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2324
        shape=param_shape,
2325 2326 2327 2328 2329 2330 2331
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2332
            trainable=False,
W
wanghaoshuang 已提交
2333
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2334
        shape=param_shape,
2335 2336
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2337 2338 2339 2340 2341 2342

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2343 2344 2345 2346
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2347

X
Xin Pan 已提交
2348 2349
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2367 2368 2369 2370
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2371
            "use_mkldnn": False,
2372
            "fuse_with_relu": fuse_with_relu
2373
        })
Y
Yu Yang 已提交
2374 2375 2376 2377

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2378
@templatedoc()
G
guosheng 已提交
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2389
    ${comment}
G
guosheng 已提交
2390 2391 2392

    The formula is as follows:

Y
yuyang18 已提交
2393
    ..  math::
G
guosheng 已提交
2394 2395 2396 2397 2398 2399 2400

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2401 2402 2403 2404 2405 2406 2407 2408
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2409

G
guosheng 已提交
2410 2411
    Args:
        input(Variable): The input tensor variable.
2412
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2413
            normalization. Default True.
2414
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2415 2416
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2417
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2418
            Default 1.
2419
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2420
            division by zero. Default 1e-05.
G
guosheng 已提交
2421
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2422 2423
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2424 2425
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2426
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2427 2428
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2429
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2430
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2431
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2432 2433 2434
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2435 2436

    Returns:
Y
yuyang18 已提交
2437
        ${y_comment}
G
guosheng 已提交
2438 2439 2440

    Examples:

Y
yuyang18 已提交
2441 2442 2443
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2459
    if shift:
G
guosheng 已提交
2460 2461 2462 2463 2464 2465
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2466 2467 2468 2469 2470
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2486 2487 2488 2489
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2490 2491 2492
                     padding=0,
                     stride=1,
                     dilation=1,
2493
                     groups=None,
C
caoying03 已提交
2494
                     param_attr=None,
2495
                     bias_attr=None,
C
chengduoZH 已提交
2496
                     use_cudnn=True,
2497
                     act=None,
C
caoying03 已提交
2498
                     name=None):
Y
Yu Yang 已提交
2499
    """
2500 2501 2502 2503 2504 2505 2506 2507
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2508 2509
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2510 2511 2512
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2513 2514 2515 2516 2517

    For each input :math:`X`, the equation is:

    .. math::

2518
        Out = \sigma (W \\ast X + b)
2519

2520
    Where:
2521 2522 2523

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2524 2525 2526 2527
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2528

2529 2530 2531 2532
    Example:

        - Input:

2533
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2534

2535
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2536 2537 2538

        - Output:

2539
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2540 2541

        Where
Y
Yu Yang 已提交
2542

2543 2544
        .. math::

2545 2546 2547 2548
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2549 2550

    Args:
2551 2552 2553 2554
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2555 2556 2557 2558
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2587
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2588 2589 2590
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2591
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2592
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2593 2594

    Returns:
2595
        Variable: The tensor variable storing the convolution transpose result.
2596 2597

    Raises:
2598 2599
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2600 2601 2602 2603

    Examples:
       .. code-block:: python

2604 2605
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2606
    """
C
chengduo 已提交
2607
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2608 2609 2610 2611 2612 2613 2614 2615
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2616 2617 2618
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2619 2620 2621
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2622

C
chengduoZH 已提交
2623 2624
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2625

Y
Yu Yang 已提交
2626 2627 2628 2629 2630
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2631

Y
Yu Yang 已提交
2632 2633
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2634

C
chengduoZH 已提交
2635
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2636
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2637
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2638
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2639
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2640 2641 2642
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2643

2644 2645 2646 2647 2648 2649 2650
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2651
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2652
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2653

Y
Yu Yang 已提交
2654 2655 2656
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2657
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2658
    helper.append_op(
2659
        type=op_type,
Y
Yu Yang 已提交
2660 2661
        inputs={'Input': [input],
                'Filter': [img_filter]},
2662
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2663
        attrs={
2664
            'output_size': output_size,
2665 2666 2667 2668 2669
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2670 2671
        })

2672 2673 2674
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2675 2676


2677
def conv3d_transpose(input,
Y
Yu Yang 已提交
2678 2679 2680
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2681 2682 2683
                     padding=0,
                     stride=1,
                     dilation=1,
2684
                     groups=None,
C
caoying03 已提交
2685
                     param_attr=None,
2686
                     bias_attr=None,
C
chengduoZH 已提交
2687
                     use_cudnn=True,
2688
                     act=None,
C
caoying03 已提交
2689
                     name=None):
Y
Yu Yang 已提交
2690
    """
2691
    **Convlution3D transpose layer**
2692

2693
    The convolution3D transpose layer calculates the output based on the input,
2694
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2695 2696 2697 2698 2699 2700
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2701 2702 2703
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2704 2705 2706 2707 2708

    For each input :math:`X`, the equation is:

    .. math::

2709
        Out = \sigma (W \\ast X + b)
2710 2711 2712

    In the above equation:

2713 2714
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2715 2716 2717 2718
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2719

2720 2721 2722 2723
    Example:

        - Input:

2724
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2725

2726
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2727 2728 2729

        - Output:

2730
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2731 2732

        Where
Y
Yu Yang 已提交
2733

2734 2735
        .. math::

2736 2737 2738
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2739 2740

    Args:
2741
        input(Variable): The input image with [N, C, D, H, W] format.
2742 2743 2744
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2745
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2746 2747
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2748
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2749 2750 2751
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2752 2753
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2754
        stride(int|tuple): The stride size. If stride is a tuple, it must
2755 2756
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2757
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2758 2759 2760
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2761 2762 2763 2764 2765
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2775 2776
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2777 2778
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2779 2780
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2781 2782

    Returns:
2783
        Variable: The tensor variable storing the convolution transpose result.
2784 2785

    Raises:
2786 2787
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2788 2789 2790 2791

    Examples:
       .. code-block:: python

2792 2793
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2794
    """
C
chengduo 已提交
2795
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2796 2797
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2798
    if not isinstance(input, Variable):
2799
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2800 2801
    input_channel = input.shape[1]

2802 2803 2804
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2805

C
chengduoZH 已提交
2806 2807 2808
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2809 2810 2811 2812 2813 2814
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2815 2816 2817
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2818

2819
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2820
                         padding[0] - 1) // dilation[0] + 1
2821
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2822
                         padding[1] - 1) // dilation[1] + 1
2823
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2824
                         padding[2] - 1) // dilation[2] + 1
2825
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2826
    else:
2827 2828
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2829

2830
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2831
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2832 2833 2834
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2835
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2836
    helper.append_op(
2837
        type=l_type,
Y
Yu Yang 已提交
2838 2839
        inputs={'Input': [input],
                'Filter': [img_filter]},
2840
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2841 2842 2843 2844
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2845
            'groups': groups,
C
chengduoZH 已提交
2846 2847
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2848

2849 2850
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2851
    return out
Y
yangyaming 已提交
2852 2853


Y
yangyaming 已提交
2854
def sequence_expand(x, y, ref_level=-1, name=None):
2855
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2856 2857 2858 2859
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2860 2861 2862 2863 2864

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2865
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2866
                x.data = [[a], [b], [c], [d]]
2867 2868 2869
                x.dims = [4, 1]

            y is a LoDTensor:
2870 2871
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2872

Y
yangyaming 已提交
2873
            ref_level: 0
2874

Y
yangyaming 已提交
2875
            then output is a 1-level LoDTensor:
2876
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2877
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2878 2879 2880 2881
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2882
                x.data = [[a], [b], [c]]
2883 2884 2885
                x.dims = [3, 1]

            y is a LoDTensor:
2886
                y.lod = [[2, 0, 3]]
2887

Y
yangyaming 已提交
2888
            ref_level: -1
2889

Y
yangyaming 已提交
2890 2891 2892
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2893 2894 2895
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2896 2897
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2898
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2899
                        will be named automatically.
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2910
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2911
    """
Y
yangyaming 已提交
2912
    helper = LayerHelper('sequence_expand', input=x, **locals())
2913
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2914
    tmp = helper.create_variable_for_type_inference(dtype)
2915
    helper.append_op(
Y
yangyaming 已提交
2916 2917 2918 2919 2920
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2921
    return tmp
2922 2923


C
chengduo 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2980
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
2981 2982 2983 2984 2985 2986 2987 2988
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2989
@templatedoc()
2990
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2991 2992 2993 2994 2995
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2996 2997 2998
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2999
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3000 3001 3002 3003
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3004 3005 3006
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3007

F
fengjiayi 已提交
3008
    Returns:
M
minqiyang 已提交
3009
        Variable: The padded sequence batch and the original lengths before
3010
                  padding. All sequences has the same length.
M
minqiyang 已提交
3011

F
fengjiayi 已提交
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3025 3026
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3027 3028 3029 3030

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3031 3032 3033 3034 3035 3036
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3037 3038
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3039
        attrs={'padded_length': maxlen})
3040
    return out, length
F
fengjiayi 已提交
3041 3042


3043
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3044
    """
3045
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3046

3047 3048
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3058 3059 3060
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3061
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3062 3063 3064 3065 3066 3067

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3068
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3069 3070 3071 3072 3073 3074

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3075 3076
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3091
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3103 3104 3105 3106 3107 3108 3109 3110 3111
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3112 3113
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3114 3115 3116

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3117 3118

    This layer does the search in beams for one time step. Specifically, it
3119 3120 3121 3122 3123 3124
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3125

3126 3127 3128 3129 3130 3131 3132 3133
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3134

3135
    Args:
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3161

3162
    Returns:
3163 3164
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3165 3166 3167 3168

    Examples:
        .. code-block:: python

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3186 3187 3188 3189
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3190 3191 3192
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3193 3194 3195 3196 3197

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3198
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3216 3217 3218 3219 3220 3221 3222
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3223

3224 3225 3226 3227 3228 3229 3230 3231 3232
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3233

3234 3235 3236 3237 3238 3239
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3240

3241 3242 3243 3244 3245 3246 3247 3248
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3249 3250
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3266 3267 3268 3269
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3270
              param_attr=None,
C
caoying03 已提交
3271 3272
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3273 3274 3275 3276
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3277
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3278

3279
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3280

3281
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3282

3283
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3284 3285 3286

            h_t & = o_t tanh(c_t)

3287 3288 3289 3290 3291 3292
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3293 3294 3295

        .. math::

3296
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3297 3298 3299 3300 3301 3302 3303 3304

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3305
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3306 3307

    Args:
Y
yangyaming 已提交
3308 3309 3310 3311 3312 3313
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3314
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3327 3328
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3329 3330

    Returns:
Y
yangyaming 已提交
3331
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3332 3333

    Raises:
3334 3335 3336 3337
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3338 3339 3340 3341 3342 3343

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3344
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3345
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3346
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3363
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3364 3365 3366 3367
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3368 3369
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3370 3371 3372
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3373
    size = cell_t_prev.shape[1]
3374
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3375 3376
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3377
                param_attr=param_attr,
3378
                bias_attr=bias_attr)
Y
yangyaming 已提交
3379
    dtype = x_t.dtype
X
Xin Pan 已提交
3380 3381
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3382 3383 3384 3385 3386 3387 3388 3389 3390

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3391
    return h, c
G
guosheng 已提交
3392 3393


C
caoying03 已提交
3394
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3395
    """
Y
yangyaming 已提交
3396
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3397 3398 3399

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3400
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3401 3402
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3403 3404
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3405
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3406
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3407
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3408 3409
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3410 3411 3412

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3413

G
guosheng 已提交
3414 3415 3416 3417 3418 3419
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3420
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3421 3422 3423 3424
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3425 3426 3427 3428

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3429
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3430 3431 3432
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3433 3434
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3435
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3436 3437
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3438 3439 3440 3441 3442
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3443
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3444 3445 3446 3447
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3448 3449


C
caoying03 已提交
3450
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3451
    """
Y
Yibing Liu 已提交
3452
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3453 3454 3455

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3456 3457 3458
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3459
            must be in the range :math:`[-rank(input), rank(input))`. If
3460
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3461
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3462 3463
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3464
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3465
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3466
                       will be named automatically.
G
guosheng 已提交
3467 3468

    Returns:
Y
Yibing Liu 已提交
3469
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3470

G
guosheng 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3481 3482
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3483 3484 3485 3486 3487 3488 3489

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3490 3491
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3492
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3493 3494
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3495 3496 3497 3498 3499
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3500
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3501 3502 3503 3504
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3505 3506


C
caoying03 已提交
3507
def reduce_max(input, dim=None, keep_dim=False, name=None):
3508
    """
Y
yangyaming 已提交
3509
    Computes the maximum of tensor elements over the given dimension.
3510 3511 3512

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3513
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3514 3515 3516
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3517
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3518 3519
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3520
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3521 3522
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3523 3524 3525

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3526

3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3538 3539 3540 3541 3542 3543 3544

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3545 3546
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3547
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3548 3549
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3550 3551 3552 3553 3554
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3555
            'dim': dim if dim != None else [0],
3556 3557 3558 3559 3560 3561
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3562
def reduce_min(input, dim=None, keep_dim=False, name=None):
3563
    """
Y
yangyaming 已提交
3564
    Computes the minimum of tensor elements over the given dimension.
3565 3566 3567

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3568
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3569 3570 3571
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3572
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3573 3574
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3575
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3576 3577
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3578 3579 3580

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3581

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3593 3594 3595 3596 3597 3598 3599

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3600 3601
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3602
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3603 3604
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3605 3606 3607 3608 3609
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3610
            'dim': dim if dim != None else [0],
3611 3612 3613 3614
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3615 3616


3617 3618 3619 3620 3621 3622
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3623
        dim (list|int|None): The dimensions along which the product is performed. If
3624 3625
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3626 3627
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3628 3629 3630
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3631
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3632
            layer will be named automatically.
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3647
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3648
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3649 3650 3651 3652 3653 3654 3655

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3656 3657
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3658
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3659 3660
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3661 3662 3663 3664 3665
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3666
            'dim': dim if dim != None else [0],
3667 3668 3669 3670 3671 3672
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3673
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3674
    """
C
caoying03 已提交
3675
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3676 3677 3678

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3679 3680 3681 3682 3683
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3684
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3685
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3686
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3687 3688
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3689 3690

    Returns:
D
dzhwinter 已提交
3691
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3701 3702
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3718
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3732 3733 3734 3735 3736 3737 3738 3739 3740


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3741
    .. math::
3742 3743

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3744 3745 3746 3747 3748

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3749
        x(Variable|list): The input tensor to l2_normalize layer.
3750
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3751 3752
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3753
        epsilon(float): The epsilon value is used to avoid division by zero, \
3754
            the defalut value is 1e-10.
3755
        name(str|None): A name for this layer(optional). If set None, the layer \
3756
            will be named automatically.
C
caoying03 已提交
3757 3758

    Returns:
3759
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3760 3761

    Examples:
3762

C
caoying03 已提交
3763 3764
        .. code-block:: python

3765 3766 3767 3768
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3769 3770
    """

F
fengjiayi 已提交
3771 3772
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3773 3774
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3775 3776
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3777
    helper.append_op(
3778 3779 3780 3781
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3782
        attrs={
3783 3784
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3785 3786
        })
    return out
3787 3788


S
sneaxiy 已提交
3789
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3790
    """
Y
ying 已提交
3791 3792 3793 3794
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3795

C
chengduoZH 已提交
3796
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3797
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3798

3799 3800 3801 3802 3803
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3804
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3805

C
chengduoZH 已提交
3806
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3807
      performs in the following way.
G
guosheng 已提交
3808

3809
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3810
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3811
        last two dimensions and a batched matrix multiply supporting broadcast
3812
        applies on the two tensors.
G
guosheng 已提交
3813

Y
ying 已提交
3814 3815
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3816
    removed after matrix multiplication.
G
guosheng 已提交
3817 3818 3819

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3820 3821 3822
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3823
        alpha (float): The scale of output. Default 1.0.
3824
        name(str|None): A name for this layer(optional). If set None, the layer
3825
            will be named automatically.
G
guosheng 已提交
3826 3827

    Returns:
3828
        Variable: The product Tensor variable.
G
guosheng 已提交
3829

G
guosheng 已提交
3830 3831 3832
    Examples:
        .. code-block:: python

3833
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3834 3835
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3836

3837 3838
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3839

3840 3841
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3842

3843 3844
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3845 3846 3847 3848

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3849 3850
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3851

Y
ying 已提交
3852
            # x: [M], y: [N]
3853
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3854
    """
Y
ying 已提交
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3867
            y_shape = y_shape + [1]
Y
ying 已提交
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3884
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3885
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3886
    helper.append_op(
3887 3888 3889 3890
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3891 3892 3893
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3894
            'alpha': float(alpha),
S
sneaxiy 已提交
3895
        })
3896
    return out
3897 3898


3899
def topk(input, k, name=None):
Q
qingqing01 已提交
3900 3901 3902 3903
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3904
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3905 3906 3907 3908 3909 3910
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3932 3933 3934
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3935
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3936
                 of input.
3937
        name(str|None): A name for this layer(optional). If set None, the layer
3938
                       will be named automatically.
F
fengjiayi 已提交
3939
                       Default: None
Q
qingqing01 已提交
3940 3941

    Returns:
3942 3943 3944
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3945
        within the last dimension of input.
Q
qingqing01 已提交
3946

F
fengjiayi 已提交
3947 3948
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3949 3950 3951 3952 3953 3954 3955

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3956 3957
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3969
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3970
    """
Y
ying 已提交
3971 3972 3973 3974 3975 3976 3977 3978 3979
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3980

Y
ying 已提交
3981
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3982

3983
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3984 3985
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3986
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3987

3988
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3989 3990
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3991

3992 3993 3994
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3995
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3996
                          the length of reference string.
3997
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3998
                                     calculating edit distance.
3999
        name (str): The name of this layer. It is optional.
4000

W
wanghaoshuang 已提交
4001
    Returns:
W
wanghaoshuang 已提交
4002
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4003 4004 4005 4006 4007

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4008
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4009
            cost = fluid.layers.edit_distance(input=x,label=y)
4010
    """
4011
    helper = LayerHelper("edit_distance", **locals())
4012

4013
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4014
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4015 4016
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4017 4018 4019 4020 4021

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4022
            attrs={"tokens": ignored_tokens})
4023 4024 4025 4026 4027
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4028
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4029
            attrs={"tokens": ignored_tokens})
4030 4031
        label = erased_label

4032
    # edit distance op
X
Xin Pan 已提交
4033 4034
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4035 4036 4037 4038
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4039 4040
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4041 4042
        attrs={"normalized": normalized})

4043
    return edit_distance_out, sequence_num
4044 4045 4046 4047 4048


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4049

Y
ying 已提交
4050 4051 4052 4053
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4071
        input.lod = [[4, 4]]
4072 4073 4074 4075 4076 4077 4078

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4079
        output.lod = [[2, 1]]
4080 4081 4082

    Args:

Y
ying 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4092
        name (str): The name of this layer. It is optional.
4093 4094

    Returns:
4095
        Variable: CTC greedy decode result. If all the sequences in result were
4096
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4097 4098 4099 4100 4101

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4102

4103
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4104
    """
4105
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4106
    _, topk_indices = topk(input, k=1)
4107 4108

    # ctc align op
X
Xin Pan 已提交
4109
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4110 4111 4112
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4113
        outputs={"Output": [ctc_out]},
4114 4115
        attrs={"merge_repeated": True,
               "blank": blank})
4116
    return ctc_out
4117 4118


F
fengjiayi 已提交
4119
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4120
    """
4121 4122
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4123
    to compute Connectionist Temporal Classification (CTC) loss.
4124 4125
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4126 4127 4128
    input tensor.

    Args:
4129
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4130 4131 4132 4133
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4134
       label (Variable): The ground truth of variable-length sequence,
4135 4136 4137
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4138 4139
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4140 4141 4142
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4143
         follewed by a mean_op.
W
wanghaoshuang 已提交
4144 4145

    Returns:
4146 4147
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4148 4149

    Examples:
4150

W
wanghaoshuang 已提交
4151
        .. code-block:: python
4152

4153 4154 4155
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4156 4157

    """
F
fengjiayi 已提交
4158
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4159 4160
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4161 4162 4163 4164 4165 4166 4167 4168 4169
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4185 4186 4187
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4188 4189 4190 4191 4192
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4193

4194
            out.lod  = [[0, 1, 3]]
4195 4196 4197 4198

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4199 4200 4201 4202 4203 4204 4205
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4206 4207 4208

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4209 4210

    Returns:
4211

4212 4213 4214 4215 4216
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4217
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4218
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4219 4220
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4221
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4222 4223 4224 4225 4226 4227
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4228 4229


4230 4231 4232 4233
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4234 4235 4236 4237 4238 4239
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4240 4241
        num_neg_samples=None,
        name=None):
4242 4243 4244 4245 4246 4247 4248
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4249 4250
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4251
            sample is 1.0.
C
chengduo 已提交
4252 4253 4254 4255 4256 4257 4258 4259 4260
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4261
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4262 4263
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4264

4265
    Returns:
Y
Yibing Liu 已提交
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4293
    """
Y
Yang Yu 已提交
4294 4295 4296
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4297 4298

    dim = input.shape[1]
Y
Yang Yu 已提交
4299 4300 4301 4302 4303 4304
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4318 4319 4320
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4321

Y
Yang Yu 已提交
4322 4323 4324 4325 4326 4327 4328 4329 4330
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4331 4332 4333

    helper.append_op(
        type='nce',
C
chengduo 已提交
4334
        inputs=inputs,
Y
Yang Yu 已提交
4335 4336 4337 4338 4339 4340
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4341
    return cost / (num_neg_samples + 1)
4342 4343


C
chengduo 已提交
4344 4345 4346 4347 4348 4349
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4350 4351
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4352
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4353 4354 4355 4356 4357 4358 4359 4360 4361
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4362

W
weixing02 已提交
4363
    Args:
M
minqiyang 已提交
4364
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4365 4366 4367 4368 4369
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4381 4382 4383 4384 4385 4386 4387 4388

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4389 4390 4391
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4392 4393 4394 4395
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4396 4397
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4398 4399
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4400
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4401 4402 4403 4404 4405
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4406 4407 4408 4409 4410 4411 4412 4413
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4414 4415
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4416
        inputs=inputs,
W
weixing02 已提交
4417 4418 4419 4420 4421 4422
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4423
def transpose(x, perm, name=None):
Y
ying 已提交
4424 4425 4426 4427 4428 4429 4430
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4431 4432 4433
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4434 4435 4436 4437 4438 4439 4440 4441

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4442
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4443 4444
    """

Y
fix ci.  
ying 已提交
4445
    if len(perm) != len(x.shape):
Y
ying 已提交
4446 4447 4448
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4449 4450 4451 4452 4453 4454
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4455 4456

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4457 4458
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4459
    helper.append_op(
4460
        type='transpose2',
Y
fix ci.  
ying 已提交
4461
        inputs={'X': [x]},
4462 4463
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4464 4465
        attrs={'axis': perm})
    return out
4466 4467


4468 4469 4470 4471 4472 4473 4474
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4475
    """
4476 4477 4478 4479 4480 4481 4482
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4511 4512 4513 4514 4515 4516 4517 4518 4519
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4520 4521 4522
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4523 4524 4525 4526 4527
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4555 4556 4557
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4570
            output.dims = {8, 8}
4571

4572
            output.lod = [[4, 4]]
4573

D
dzhwinter 已提交
4574
     Examples:
4575 4576 4577

        .. code-block:: python

4578 4579
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4580 4581

    """
W
wanghaoshuang 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590 4591

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4592 4593 4594 4595 4596 4597 4598
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4599
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4600
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4601
    helper.append_op(
4602
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4603
    return out
4604 4605


Y
yuyang18 已提交
4606
@templatedoc()
4607
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4608 4609
    """
    ${comment}
4610 4611

    Args:
Y
yuyang18 已提交
4612
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4613 4614
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4615 4616 4617 4618 4619
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4620
        ${out_comment}.
4621 4622

    Examples:
Y
yuyang18 已提交
4623 4624 4625 4626
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4627 4628 4629 4630 4631 4632
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4633
    out = helper.create_variable_for_type_inference(dtype)
4634 4635 4636 4637 4638
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4639
    return helper.append_activation(out)
4640 4641


Y
yuyang18 已提交
4642
@templatedoc()
4643 4644
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4645 4646 4647 4648 4649 4650 4651
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4652 4653

    Args:
Y
yuyang18 已提交
4654 4655
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4656 4657

    Returns:
Y
yuyang18 已提交
4658
        ${out_comment}.
4659 4660
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4661 4662 4663 4664 4665

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4666
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4667 4668 4669 4670 4671 4672
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4673 4674


4675 4676 4677 4678
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4679 4680
    """
    **Softmax With Cross Entropy Operator.**
4681

4682 4683 4684 4685
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4686

4687 4688 4689
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4690

4691 4692 4693
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4694

4695
    The equation is as follows:
4696

4697
    1) Hard label (one-hot label, so every sample has exactly one class)
4698

4699 4700 4701 4702
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4703

4704 4705 4706
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4707

4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4720 4721
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4722 4723
                            if soft_label is set to False. Default: -100

4724 4725 4726 4727 4728 4729 4730 4731 4732
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4733 4734
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4735 4736
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4737 4738
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4739 4740 4741 4742 4743 4744
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4745 4746
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4747 4748 4749 4750 4751
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4752 4753
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4754
    For each instance, it computes the smooth L1 loss element by element first
4755
    and then sums all the losses. So the shape of ouput Variable is
4756
    [batch_size, 1].
4757

4758 4759
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4760
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4761
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4762
            L1 loss op with same shape as :attr:`x`.
4763
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4764 4765
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4766
            by this tensor element by element.
4767
        outside_weight (Variable|None): A tensor with rank at least 2. This
4768 4769
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4770
            element by element.
4771
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4772 4773
           scalar with default value 1.0.

4774
    Returns:
4775
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4776 4777 4778 4779 4780

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4781 4782
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4783
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4784
            out = fluid.layers.smooth_l1(x=fc, y=label)
4785
    """
4786

4787
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4788 4789
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4802 4803 4804 4805


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4806
    This layer creates the one-hot representations for input indices.
4807 4808

    Args:
Y
Yibing Liu 已提交
4809 4810
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4811 4812

    Returns:
Y
Yibing Liu 已提交
4813
        Variable: The one-hot representations of input.
4814 4815

    Examples:
C
caoying03 已提交
4816
        .. code-block:: python
4817

Y
Yibing Liu 已提交
4818 4819
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4820 4821
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4822
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4823 4824 4825 4826 4827 4828
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4829 4830


Y
Yu Yang 已提交
4831
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4832
    """
Y
yi.wu 已提交
4833 4834 4835
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4836 4837 4838 4839 4840 4841

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4842 4843
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4844 4845 4846 4847 4848 4849

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4850 4851
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4852 4853
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4854 4855 4856 4857 4858
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4859
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4860
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4861 4862
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4863 4864
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4865 4866 4867
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4868 4869


4870
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4871
    """
C
caoying03 已提交
4872 4873
    Gives a new shape to the input Tensor without changing its data.

4874 4875 4876 4877 4878
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4879

4880
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4881

4882 4883 4884 4885
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4886
    2. 0 means the actual dimension value is going to be copied from the
4887 4888 4889 4890
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4891 4892

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4893
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4894
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4895

4896
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4897 4898
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4899 4900
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4901
    dimensions.
C
caoying03 已提交
4902

4903
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4904 4905 4906 4907
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4908 4909

    Args:
4910
        x(variable): The input tensor.
C
caoying03 已提交
4911 4912
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4913 4914 4915 4916 4917
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4918 4919
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
4920 4921 4922 4923 4924 4925 4926
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
4927
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4928

4929
    Returns:
G
guosheng 已提交
4930 4931 4932 4933
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
4934

X
Xin Pan 已提交
4935 4936 4937
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4938 4939
    Examples:
        .. code-block:: python
G
guosheng 已提交
4940

4941
            data = fluid.layers.data(
4942
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4943
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
4944
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
4945 4946 4947
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4948
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4949 4950 4951 4952 4953
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4954

4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4970
    helper = LayerHelper("reshape2", **locals())
4971 4972
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
4973
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4974
    helper.append_op(
4975
        type="reshape2",
X
Xin Pan 已提交
4976
        inputs=inputs,
D
dzhwinter 已提交
4977
        attrs={"shape": shape},
4978 4979
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4980

D
dzhwinter 已提交
4981
    return helper.append_activation(out)
4982

4983

4984
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4985
    """
M
minqiyang 已提交
4986 4987 4988
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4989
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4990

Y
Yibing Liu 已提交
4991 4992
    Examples:
    Case 1:
M
minqiyang 已提交
4993
      Given
Y
Yibing Liu 已提交
4994 4995 4996 4997 4998 4999 5000 5001
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5002
        and
Y
Yibing Liu 已提交
5003 5004 5005
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5006

Y
Yibing Liu 已提交
5007
    Args:
5008
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5009
        axes (list): List of integers, indicating the dimensions to be squeezed.
5010
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5011 5012 5013 5014 5015 5016 5017 5018

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5019
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5020 5021
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5022 5023
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5024
    helper.append_op(
5025
        type="squeeze2",
5026
        inputs={"X": input},
Y
Yibing Liu 已提交
5027
        attrs={"axes": axes},
5028 5029
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5030

5031 5032 5033
    return out


5034
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5035
    """
M
minqiyang 已提交
5036 5037 5038
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5039

M
minqiyang 已提交
5040 5041
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5042
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5043

Y
Yibing Liu 已提交
5044
    Args:
5045
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5046
        axes (list): List of integers, indicating the dimensions to be inserted.
5047
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5048 5049 5050 5051 5052 5053 5054 5055

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5056
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5057 5058
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5059 5060
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5061
    helper.append_op(
5062
        type="unsqueeze2",
5063
        inputs={"X": input},
Y
Yibing Liu 已提交
5064
        attrs={"axes": axes},
5065 5066
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5067

5068 5069
    return out

5070

Y
yangyaming 已提交
5071
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5072
    """
Y
Yibing Liu 已提交
5073
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5074 5075 5076 5077
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5078
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5079 5080 5081 5082 5083 5084

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5085
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5086 5087 5088
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5089
            target_lod: [4, 2]
Y
yangyaming 已提交
5090 5091

            then we get a 1-level LoDTensor:
5092
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5093 5094 5095 5096 5097 5098
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5099
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5100 5101 5102 5103
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5104
                y.data = [[2, 4]]
Y
yangyaming 已提交
5105 5106 5107
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5108
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5109 5110 5111 5112 5113 5114
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5115
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5116 5117 5118 5119
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5120
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5121 5122 5123 5124
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5125
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5126 5127 5128 5129 5130
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5131
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5132
                           from :attr:`y`.
Y
yangyaming 已提交
5133
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5134
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5135 5136

    Returns:
Y
Yibing Liu 已提交
5137
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5138 5139

    Raises:
Y
Yibing Liu 已提交
5140
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5141 5142 5143 5144 5145 5146 5147 5148 5149

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5150
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5176
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5205 5206
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5219 5220 5221
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5235 5236 5237 5238


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5239
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5240
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5241

G
guosheng 已提交
5242 5243 5244 5245
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5268
                         The length of :attr:paddings must be
G
guosheng 已提交
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5279

G
guosheng 已提交
5280 5281 5282 5283 5284 5285
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5286
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5287 5288 5289 5290 5291 5292 5293
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5294 5295


C
chengduo 已提交
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5366
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5367 5368 5369 5370 5371 5372 5373 5374 5375
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5376 5377 5378 5379 5380 5381 5382
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5383 5384
    called label-smoothing regularization (LSR).

5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5408
                              be :math:`(1, class\_num)`.
5409 5410
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5411
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5431
    smooth_label = helper.create_variable_for_type_inference(dtype)
5432 5433 5434 5435 5436 5437 5438
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5439 5440


Y
yi.wu 已提交
5441
@templatedoc()
5442 5443
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5444
    ${comment}
5445 5446

    Args:
Y
yi.wu 已提交
5447 5448
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5449 5450 5451
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5452 5453

    Returns:
Y
update  
yi.wu 已提交
5454
        Variable: ${out_comment}.
5455 5456

    Examples:
5457 5458
        .. code-block:: python

5459
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5460 5461 5462
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5463 5464
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5477 5478


J
jerrywgz 已提交
5479 5480 5481 5482 5483 5484
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5485 5486
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5503 5504 5505
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5506 5507 5508 5509 5510 5511
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5512
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5553 5554
        .. code-block:: python

W
whs 已提交
5555 5556 5557 5558
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5559
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5560 5561 5562 5563 5564 5565
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5566 5567


5568 5569 5570 5571 5572
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5573
    """
Q
qiaolongfei 已提交
5574
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5575

5576
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5577 5578 5579
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5580

5581
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5582

5583
    Args:
5584
        input (Variable): The input tensor of image resize layer,
5585 5586
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5587
        out_shape(list|tuple|Variable|None): Output shape of image resize
5588 5589
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5590
        scale(float|None): The multiplier for the input height or width.
5591 5592 5593
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5594 5595
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5596 5597
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5598 5599

    Returns:
Q
update  
qiaolongfei 已提交
5600 5601
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5602

5603 5604 5605
    Examples:
        .. code-block:: python

5606
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5607
    """
5608 5609 5610 5611
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5612 5613
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5614 5615
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5616 5617 5618 5619

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5620 5621 5622
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5623
    if out_shape is not None:
B
baiyf 已提交
5624 5625 5626
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5627 5628 5629 5630 5631 5632
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5633 5634 5635 5636
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5637
    out = helper.create_variable_for_type_inference(dtype)
5638
    helper.append_op(
5639
        type=resample_methods[resample],
5640
        inputs=inputs,
5641 5642 5643 5644
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5645 5646


Y
yuyang18 已提交
5647
@templatedoc(op_type="bilinear_interp")
5648 5649
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5650 5651 5652 5653 5654 5655
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5656

Y
yuyang18 已提交
5657 5658 5659 5660 5661 5662 5663 5664
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5665 5666 5667 5668 5669 5670 5671
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5672 5673 5674
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5675 5676 5677 5678 5679 5680 5681
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5682
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5683

5684
    Returns:
Q
update  
qiaolongfei 已提交
5685
        Variable: The output is a 4-D tensor of the shape
5686
        (num_batches, channls, out_h, out_w).
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5697 5698 5699
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5700 5701 5702
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5703 5704
def gather(input, index):
    """
Q
qiaolongfei 已提交
5705 5706
    **Gather Layer**

5707
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5708 5709 5710 5711
    of X indexed by `index` and concatenate them together.

    .. math::

5712
        Out = X[Index]
W
whs 已提交
5713 5714 5715 5716 5717 5718 5719


    .. code-block:: text


                Given:

5720 5721
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5732
        input (Variable): The source input with rank>=1.
W
whs 已提交
5733 5734 5735 5736 5737 5738
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5739

W
whs 已提交
5740 5741 5742 5743 5744 5745
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5746
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5747 5748 5749 5750 5751 5752 5753 5754
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5786
    out = helper.create_variable_for_type_inference(dtype)
5787 5788 5789 5790 5791 5792 5793 5794 5795
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5846
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5847 5848 5849 5850 5851 5852 5853 5854 5855
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5869

5870 5871 5872
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5873
    """
F
stash  
fengjiayi 已提交
5874
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5875
    dtype = x.dtype
X
Xin Pan 已提交
5876
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5877
    if seed is None:
5878
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5879
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5880
    if isinstance(seed, int):
F
fengjiayi 已提交
5881 5882 5883 5884 5885
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5886 5887 5888 5889
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5890
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5891 5892
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5893 5894
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5895
    return out
W
whs 已提交
5896 5897


5898
def log(x, name=None):
W
wanghaoshuang 已提交
5899 5900 5901 5902 5903
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5904
        Out = \\ln(x)
W
wanghaoshuang 已提交
5905 5906

    Args:
5907
        x (Variable): Input tensor.
5908 5909
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5910 5911 5912 5913 5914 5915 5916 5917

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5918
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5919 5920
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5921
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5922
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5923
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5924 5925 5926
    return out


5927
def relu(x, name=None):
W
wanghaoshuang 已提交
5928 5929
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5930
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5931 5932 5933 5934
    the tensor elementwise.

    .. math::

5935
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5936 5937

    Args:
5938
        x (Variable): The input tensor.
5939 5940
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5941 5942 5943 5944 5945 5946 5947 5948

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5949
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5950 5951
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5952
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5953
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5954
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5955
    return out
5956 5957


W
whs 已提交
5958 5959 5960
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5961 5962 5963 5964
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5965
    .. math::
5966 5967

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5968

5969
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5970 5971 5972 5973 5974
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5975
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5976
                           Its shape should be the same as input.
5977
        num_classes (int): The possible number of labels.
W
whs 已提交
5978 5979 5980 5981

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5982
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5983 5984 5985 5986

    Examples:

        .. code-block:: python
5987

W
whs 已提交
5988 5989 5990 5991
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5992 5993 5994
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
5995 5996
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5997 5998
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5999
        outputs={
W
whs 已提交
6000 6001 6002
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6003 6004 6005
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6080
                    isinstance(shape, Variable)):
6081 6082 6083 6084 6085
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6086
    out = helper.create_variable_for_type_inference(x.dtype)
6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6104 6105 6106 6107 6108 6109 6110 6111 6112 6113


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6114

6115 6116
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6117

6118 6119 6120 6121
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6122

6123 6124 6125 6126 6127
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6128 6129 6130

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6166
    out = helper.create_variable_for_type_inference("float32")
6167 6168 6169 6170 6171 6172 6173 6174

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6175 6176


M
minqiyang 已提交
6177 6178
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6179
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6180
    which compares left score and right score passed in.
M
minqiyang 已提交
6181
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6182 6183 6184 6185 6186 6187

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6188
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6189 6190
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6191
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6192 6193 6194
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6195
       Variable: The ranking loss.
M
minqiyang 已提交
6196
    Raises:
M
minqiyang 已提交
6197
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6198 6199 6200 6201 6202 6203 6204
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6205
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6206 6207 6208 6209 6210 6211
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6212 6213
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6239

W
whs 已提交
6240 6241
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6242

W
whs 已提交
6243
      Case 0:
M
minqiyang 已提交
6244

W
whs 已提交
6245 6246 6247
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6248

W
whs 已提交
6249 6250 6251
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6252

W
whs 已提交
6253
      Case 1:
M
minqiyang 已提交
6254

W
whs 已提交
6255 6256
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6257

W
whs 已提交
6258 6259 6260
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6261

W
whs 已提交
6262
      Case 2:
M
minqiyang 已提交
6263

W
whs 已提交
6264 6265
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6266

W
whs 已提交
6267 6268 6269
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6270 6271


W
whs 已提交
6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6298
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6327
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6350
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6373
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6397
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6422
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6446
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6447 6448 6449 6450 6451 6452 6453 6454
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6469
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6470
                        will be named automatically.
J
jerrywgz 已提交
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6498
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6499 6500 6501 6502 6503 6504 6505 6506 6507
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6522
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6545
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6567
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6568 6569 6570 6571 6572 6573 6574 6575
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6589

6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6600 6601
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6617
        ValueError: If axis is not in range [0, rank(x)].
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6634 6635
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6636
    helper.append_op(
6637
        type='flatten2',
6638
        inputs={"X": x},
6639 6640
        outputs={'Out': out,
                 'XShape': x_shape},
6641 6642
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6643 6644


C
chenweihang 已提交
6645
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6646
    """
C
chenweihang 已提交
6647
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6648
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6649 6650
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6651

C
chenweihang 已提交
6652 6653 6654 6655
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6656
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6657 6658 6659 6660 6661 6662
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6663
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6664 6665 6666
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6667 6668 6669
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6681 6682
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6683 6684 6685 6686 6687 6688
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6689
    return out
6690

6691

S
sneaxiy 已提交
6692 6693 6694 6695 6696 6697 6698 6699 6700
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6701

S
sneaxiy 已提交
6702
    .. math::
6703

S
sneaxiy 已提交
6704 6705 6706
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6707
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6708 6709 6710 6711
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6712 6713 6714
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6715 6716
    Returns:
        Variable: The output sequence mask.
6717

S
sneaxiy 已提交
6718 6719
    """

Q
qingqing01 已提交
6720
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6721
    if name is None:
X
Xin Pan 已提交
6722
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6723
    else:
X
Xin Pan 已提交
6724
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6725

Q
qingqing01 已提交
6726 6727 6728
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6729 6730
        outputs={'Y': out},
        attrs={
6731
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6732 6733 6734
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6735 6736


X
Xin Pan 已提交
6737
def stack(x, axis=0):
S
sneaxiy 已提交
6738 6739 6740 6741
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6742 6743 6744 6745 6746 6747 6748

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6749
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6750
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6751 6752

    Args:
6753
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6754
        axis (int|None): The axis along which all inputs are stacked.
6755

S
sneaxiy 已提交
6756 6757
    Returns:
        Variable: The stacked variable.
6758

S
sneaxiy 已提交
6759 6760
    """

X
Xin Pan 已提交
6761 6762 6763 6764 6765 6766
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6767
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6768
    helper.append_op(
S
sneaxiy 已提交
6769 6770
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6771

X
Xin Pan 已提交
6772
    return out
D
dzhwinter 已提交
6773 6774 6775 6776 6777 6778 6779


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6780

D
dzhwinter 已提交
6781 6782 6783
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6784
    raised.
D
dzhwinter 已提交
6785 6786

    Args:
M
minqiyang 已提交
6787
        x (Variable): Input variable.
D
dzhwinter 已提交
6788 6789
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6790

D
dzhwinter 已提交
6791 6792
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6793

D
dzhwinter 已提交
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6805
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6806 6807 6808 6809 6810 6811 6812 6813

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6826

W
whs 已提交
6827 6828 6829 6830
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6831

W
whs 已提交
6832
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6833

W
whs 已提交
6834
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6835

W
whs 已提交
6836 6837 6838 6839
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6840

W
whs 已提交
6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6857
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6858 6859 6860 6861 6862 6863
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6864 6865


G
fix  
gongweibao 已提交
6866 6867 6868
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6869
@templatedoc()
G
fix  
gongweibao 已提交
6870 6871 6872 6873 6874 6875 6876 6877 6878
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6879
    ${comment}
G
fix  
gongweibao 已提交
6880 6881

    Args:
G
gongweibao 已提交
6882 6883 6884
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6885
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6886 6887 6888
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6889 6890
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6891
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6892 6893 6894 6895

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
6896
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6913 6914


G
gongweibao 已提交
6915
@templatedoc()
X
Xin Pan 已提交
6916
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6917
    """
G
gongweibao 已提交
6918
    ${comment}
G
fix  
gongweibao 已提交
6919 6920

    Args:
G
gongweibao 已提交
6921 6922 6923 6924
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6925 6926 6927
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6928
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6929 6930 6931 6932

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
6933
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6944
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6945 6946 6947 6948 6949
        })

    return out


G
gongweibao 已提交
6950
@templatedoc()
G
fix  
gongweibao 已提交
6951
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6952
    """
G
gongweibao 已提交
6953
    ${comment}
G
fix  
gongweibao 已提交
6954 6955

    Args:
G
gongweibao 已提交
6956 6957 6958 6959
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6960
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6961 6962

    Returns:
G
gongweibao 已提交
6963
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6964 6965 6966 6967

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
6968
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6980
@templatedoc()
G
fix  
gongweibao 已提交
6981 6982 6983 6984 6985 6986 6987 6988 6989
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6990
    ${comment}
G
fix  
gongweibao 已提交
6991 6992

    Args:
G
gongweibao 已提交
6993 6994
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6995
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6996 6997 6998 6999
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7000
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7001 7002

    Returns:
G
gongweibao 已提交
7003
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7004 7005 7006
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7007
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7026
@templatedoc()
X
Xin Pan 已提交
7027
def sum(x):
G
fix  
gongweibao 已提交
7028
    """
G
gongweibao 已提交
7029
    ${comment}
G
fix  
gongweibao 已提交
7030 7031

    Args:
G
gongweibao 已提交
7032
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7033 7034

    Returns:
G
gongweibao 已提交
7035
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7036 7037 7038
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7039 7040
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7041 7042 7043 7044
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7045
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7046 7047 7048 7049

    return out


G
gongweibao 已提交
7050
@templatedoc()
G
fix  
gongweibao 已提交
7051 7052
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7053
    ${comment}
G
fix  
gongweibao 已提交
7054 7055

    Args:
G
gongweibao 已提交
7056 7057 7058 7059
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7060 7061

    Returns:
G
gongweibao 已提交
7062
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7063 7064 7065 7066

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7067 7068
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7080
@templatedoc()
G
fix  
gongweibao 已提交
7081 7082
def shape(input):
    """
G
gongweibao 已提交
7083
    ${comment}
G
fix  
gongweibao 已提交
7084 7085

    Args:
G
gongweibao 已提交
7086
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7087 7088

    Returns:
G
gongweibao 已提交
7089
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7090 7091 7092 7093

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7094 7095
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7096
    helper.append_op(
G
fix  
gongweibao 已提交
7097
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7098 7099

    return out
G
merge  
gongweibao 已提交
7100 7101


S
sneaxiy 已提交
7102 7103 7104 7105 7106 7107 7108 7109
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7110 7111
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7112
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7113 7114 7115
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7116

S
sneaxiy 已提交
7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7128
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7129 7130 7131 7132 7133 7134 7135 7136
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7137
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7138
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7139 7140 7141 7142 7143 7144

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7145
    if name is None:
X
Xin Pan 已提交
7146
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7147 7148 7149
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7150 7151 7152 7153 7154 7155 7156 7157 7158 7159

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7160
    return helper.append_activation(out)
S
sneaxiy 已提交
7161 7162


X
Xin Pan 已提交
7163
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7164 7165 7166
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7167
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7168 7169 7170
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7171
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7172 7173 7174
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7175
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7176 7177 7178
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7179
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7180 7181 7182
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7183
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7184 7185 7186
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7187
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7199 7200
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7201
        ])
M
minqiyang 已提交
7202 7203


7204
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7205 7206
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7207 7208
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7209 7210 7211

    if out is None:
        if name is None:
X
Xin Pan 已提交
7212
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7228
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7247
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7266
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7285
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7320
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7352
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7382
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7412
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7413 7414 7415 7416 7417 7418 7419 7420 7421
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7422 7423
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7446
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7476
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7477 7478 7479 7480 7481 7482 7483 7484 7485 7486
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7487 7488


S
sneaxiy 已提交
7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7503
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7504 7505 7506 7507 7508 7509 7510 7511 7512 7513
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7514 7515


7516 7517 7518 7519 7520 7521
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7522

7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7542
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7555 7556


M
minqiyang 已提交
7557 7558 7559 7560 7561 7562 7563
def hash(input, hash_size, num_hash=1, name=None):
    """
    hash the input
     Args:
        input (Variable): The input variable which is a one-hot word.
        hash_size (int): The space size for hash algorithm.
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
7564
        name (str, default None): The name of this layer.
M
minqiyang 已提交
7565 7566 7567 7568
     Returns:
        Variable: The hash result variable which is a LoDTensor.
     Examples:
        .. code-block:: python
M
minqiyang 已提交
7569
            word_dict = paddle.dataset.imdb.word_dict()
M
minqiyang 已提交
7570 7571 7572 7573
            x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
            out = fluid.layers.hash(input=x, len(word_dict))
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
7574 7575
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
7576 7577 7578 7579 7580 7581 7582
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out