Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
e1599eb3
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
e1599eb3
编写于
6月 05, 2018
作者:
F
fengjiayi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add image_resize_short and refine API
上级
23812490
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
73 addition
and
15 deletion
+73
-15
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+73
-15
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
e1599eb3
...
...
@@ -3929,22 +3929,25 @@ def dice_loss(input, label, epsilon=0.00001):
return
reduce_mean
(
dice_score
)
def
resize_bilinear
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
):
def
image_resize
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
,
resample
=
'BILINEAR'
):
"""
The mathematical meaning of resize bilinear layer is
Bilinear interpolation.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this layer) on a rectilinear 2D grid.
Resize a batch of images.
For details, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
and the resizing only applies on the last two dimensions(hight and width).
Supporting resample methods:
'BILINEAR' : Bilinear interpolation
Args:
input (Variable): The input tensor of
resize bilinear
layer,
input (Variable): The input tensor of
image resize
layer,
This is a 4-D tensor of the shape
(num_batches, channels, in_h, in_w).
out_shape(list|tuple|Variable|None): Output shape of
resize bilinear
out_shape(list|tuple|Variable|None): Output shape of
image resize
layer, the shape is (out_h, out_w).
Default: None
scale(float|None): The multiplier for the input height or width.
...
...
@@ -3953,6 +3956,8 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
Default: None
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically.
resample(str): The resample method. It can only be 'BILINEAR' currently.
Default: 'BILINEAR'
Returns:
out (Variable): The output is a 4-D tensor of the shape
...
...
@@ -3961,8 +3966,12 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
Examples:
.. code-block:: python
out = fluid.layers.
resize_bilinear
(input, out_shape=[12, 12])
out = fluid.layers.
image_resize
(input, out_shape=[12, 12])
"""
resample_methods
=
{
'BILINEAR'
:
'bilinear_interp'
}
if
resample
not
in
resample_methods
:
raise
ValueError
(
"The 'resample' of image_resize can only be 'BILINEAR' currently."
)
if
out_shape
is
None
and
scale
is
None
:
raise
ValueError
(
"One of out_shape and scale must not be None"
)
helper
=
LayerHelper
(
'bilinear_interp'
,
**
locals
())
...
...
@@ -3990,7 +3999,7 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
out
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"bilinear_interp"
,
type
=
resample_methods
[
resample
]
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
},
attrs
=
{
"out_h"
:
out_h
,
...
...
@@ -3998,6 +4007,55 @@ def resize_bilinear(input, out_shape=None, scale=None, name=None):
return
out
def
resize_bilinear
(
input
,
out_shape
=
None
,
scale
=
None
,
name
=
None
):
"""
This is an alias of layer 'image_resize' with bilinear interpolation.
The mathematical meaning of resize bilinear layer is
Bilinear interpolation.
Bilinear interpolation is an extension of linear interpolation for
interpolating functions of two variables (e.g. H-direction and
W-direction in this layer) on a rectilinear 2D grid.
For details, please refer to Wikipedia:
https://en.wikipedia.org/wiki/Bilinear_interpolation
"""
return
image_resize
(
input
,
out_shape
,
scale
,
name
,
'BILINEAR'
)
def
image_resize_short
(
input
,
out_short_len
,
resample
=
'BILINEAR'
):
"""
Resize a batch of images. The short edge of input images will be
resized to the given 'out_short_len'. The long edge of input images
will be resized proportionately to make images' length-width ratio
constant.
Args:
input (Variable): The input tensor of image resize layer,
This is a 4-D tensor of the shape
(num_batches, channels, in_h, in_w).
out_short_len(int): The length of output images' short edge.
Returns:
out (Variable): The output is a 4-D tensor of the shape
(num_batches, channls, out_h, out_w).
"""
in_shape
=
input
.
shape
if
len
(
in_shape
)
!=
4
:
raise
ValueError
(
"The rank of input must be 4 (num_batches, channels, in_h, in_w)."
)
hw
=
in_shape
[
2
:
4
]
short_idx
=
hw
.
index
(
min
(
hw
))
long_idx
=
1
-
short_idx
out_shape
=
list
(
hw
)
out_shape
[
short_idx
]
=
out_short_len
out_shape
[
long_idx
]
=
round
(
float
(
out_shape
[
long_idx
])
*
(
float
(
out_short_len
)
/
float
(
hw
[
short_idx
])))
return
image_resize
(
input
=
input
,
out_shape
=
out_shape
,
resample
=
resample
)
def
gather
(
input
,
index
):
"""
Output is obtained by gathering entries of the outer-most dimension
...
...
@@ -4005,7 +4063,7 @@ def gather(input, index):
.. math::
Out = X[Index]
Out = X[Index]
.. code-block:: text
...
...
@@ -4013,8 +4071,8 @@ def gather(input, index):
Given:
X = [[1, 2],
[3, 4],
X = [[1, 2],
[3, 4],
[5, 6]]
Index = [1, 2]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录