nn.py 397.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
26 27
from ..framework import Variable, OpProtoHolder, _in_dygraph_mode
from ..dygraph import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
L
lujun 已提交
35
from ..dygraph import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
78
    'sequence_slice',
X
Xin Pan 已提交
79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
91
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
92 93 94 95 96
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
97
    'group_norm',
D
dengkaipeng 已提交
98
    'spectral_norm',
X
Xin Pan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
112
    'roi_align',
X
Xin Pan 已提交
113 114 115 116
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
117
    'resize_nearest',
X
Xin Pan 已提交
118 119 120 121 122 123
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
124
    'selu',
X
Xin Pan 已提交
125 126 127
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
128
    'margin_rank_loss',
X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
172
    'space_to_depth',
W
whs 已提交
173
    'affine_grid',
S
sneaxiy 已提交
174
    'sequence_reverse',
175
    'affine_channel',
B
barrierye 已提交
176
    'similarity_focus',
M
minqiyang 已提交
177
    'hash',
D
dengkaipeng 已提交
178
    'grid_sampler',
G
gmcather 已提交
179 180
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
181
    'bilinear_tensor_product',
C
chengduo 已提交
182 183
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
184
    'lstm',
S
shippingwang 已提交
185
    'shuffle_channel',
186
    'temporal_shift',
S
sneaxiy 已提交
187
    'py_func',
188
    'psroi_pool',
H
heqiaozhi 已提交
189
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
190
    'huber_loss',
D
dengkaipeng 已提交
191
    'kldiv_loss',
Z
zhaozhehao 已提交
192
    'tree_conv',
C
ceci3 已提交
193
    'npair_loss',
R
ruri 已提交
194
    'pixel_shuffle',
195
    'fsp_matrix',
H
heqiaozhi 已提交
196
    'continuous_value_model',
Y
Yu Yang 已提交
197 198
]

J
jerrywgz 已提交
199 200
kIgnoreIndex = -100

Y
Yu Yang 已提交
201 202 203 204 205 206 207

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
208
       is_test=False,
209
       name=None):
Y
Yu Yang 已提交
210
    """
211
    **Fully Connected Layer**
Y
Yu Yang 已提交
212

213
    This function creates a fully connected layer in the network. It can take
214
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
215
    Args in detail). It creates a variable called weights for each input tensor,
216 217 218 219
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
220
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
221 222
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
223

224
    When the input is single tensor:
C
caoying03 已提交
225

226 227 228 229 230
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
231 232 233

    .. math::

234
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
235 236 237

    In the above equation:

238 239 240
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
241
    * :math:`b`: The bias parameter created by this layer (if needed).
242
    * :math:`Act`: The activation function.
C
caoying03 已提交
243
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
263
    Args:
R
ranqiu 已提交
264 265 266 267 268 269 270 271 272 273
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
274
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
275 276 277 278
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
279 280
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
281
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
282
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
283
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
284

285
    Returns:
F
fengjiayi 已提交
286
        Variable: The transformation result.
287 288

    Raises:
C
caoying03 已提交
289
        ValueError: If rank of the input tensor is less than 2.
290 291 292 293

    Examples:
        .. code-block:: python

294
          # when input is single tensor
F
fengjiayi 已提交
295
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
296
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
297 298 299 300 301

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
302
    """
C
caoying03 已提交
303
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
304 305 306 307

    dtype = helper.input_dtype()

    mul_results = []
308 309
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
310 311 312
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
313

Y
Yu Yang 已提交
314
        w = helper.create_parameter(
315
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
316
        tmp = helper.create_variable_for_type_inference(dtype)
317
        helper.append_op(
318 319 320
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
321
            outputs={"Out": tmp},
M
mozga-intel 已提交
322 323
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
324 325 326 327
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
328
    else:
X
Xin Pan 已提交
329
        pre_bias = helper.create_variable_for_type_inference(dtype)
330
        helper.append_op(
331 332 333
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
334
            attrs={"use_mkldnn": False})
335 336 337 338
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
339 340


341 342 343
def embedding(input,
              size,
              is_sparse=False,
344
              is_distributed=False,
345 346 347
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
348
    """
349 350
    **Embedding Layer**

351
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
352 353
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
354 355 356

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
357 358

    Args:
359 360 361 362 363
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
364
        is_distributed(bool): Whether to run lookup table from remote parameter server.
365 366
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
367
            with zeros whenever lookup encounters it in :attr:`input`. If
368
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
369 370
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
371
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
372

373 374 375
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
376

377 378
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
379

C
chengduoZH 已提交
380
          dict_size = len(dataset.ids)
381
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
382
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
383 384 385
    """

    helper = LayerHelper('embedding', **locals())
386
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
387 388
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
389 390
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
391
    tmp = helper.create_variable_for_type_inference(dtype)
392 393
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
394 395 396 397 398
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
399 400 401
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
402
            'remote_prefetch': remote_prefetch,
403 404
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
405 406 407
    return tmp


W
wopeizl 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
424

W
wopeizl 已提交
425 426 427 428 429 430 431 432 433 434 435
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
436

W
wopeizl 已提交
437 438 439 440
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
441

W
wopeizl 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
485 486
    assert _in_dygraph_mode(
    ) is not True, "please use lstm instead of dynamic_lstm in dygraph mode!"
W
wopeizl 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
530 531


P
phlrain 已提交
532 533 534 535 536 537
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
538
         dropout_prob=0.0,
P
phlrain 已提交
539 540 541 542 543
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
544
    """
P
phlrain 已提交
545
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
546 547

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
548
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
549 550
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
551
    .. math::
M
minqiyang 已提交
552 553 554 555 556 557 558

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
559
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
560 561 562 563

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
564 565

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
566 567 568 569 570 571
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
572 573 574
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
575
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
576

M
minqiyang 已提交
577
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
578 579 580 581 582
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
583
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
584 585 586 587 588
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
589
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
590 591
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
592 593
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
594 595 596 597 598 599
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
600
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
601

L
liuhongyu 已提交
602 603

    Returns:
M
minqiyang 已提交
604 605
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
606
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
607

H
haowang101779990 已提交
608 609 610 611
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
612
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
613 614
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
615
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
631
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
632 633 634 635 636 637
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
638 639 640
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
700 701 702 703 704 705 706 707 708 709
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
710
                  proj_activation='tanh',
711
                  dtype='float32',
X
xuezhong 已提交
712 713 714 715 716
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
717 718 719
    """
    **Dynamic LSTMP Layer**

720 721 722 723 724 725
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
726 727 728 729 730

    The formula is as follows:

    .. math::

731
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
732

733
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
734

735
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
736

737
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
738

739
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
740

741
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
742

743
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
744

Y
Yibing Liu 已提交
745 746 747 748 749 750
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
751
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
752
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
753
          bias vector).
Y
Yibing Liu 已提交
754 755 756
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
757
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
758
    * :math:`h`: The hidden state.
759
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
760 761
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
762
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
763
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
764
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
765 766
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
767 768 769 770

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
771

Y
Yibing Liu 已提交
772 773 774 775 776 777 778 779 780 781 782 783
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
784
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
785 786
                               hidden-hidden weight and projection weight.

787 788
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
789 790
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
791 792
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
793
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
794 795 796 797 798

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
799
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
800 801 802 803 804 805
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
806
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
807 808 809
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
810
                                - The shape is (1 x 7D).
C
chengduo 已提交
811 812 813 814 815

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
816 817 818 819 820 821 822 823 824
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
825
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
826 827
                              default "tanh".
        proj_activation(str): The activation for projection output.
828
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
829
                              default "tanh".
Y
Yibing Liu 已提交
830
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
831 832
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
833 834 835 836 837 838 839 840 841 842 843
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
844 845

    Returns:
846 847 848 849
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
850 851

    Examples:
852

Y
Yibing Liu 已提交
853 854
        .. code-block:: python

855 856 857 858
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
859
            hidden_dim, proj_dim = 512, 256
860
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
861
                                     act=None, bias_attr=None)
862 863 864
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
865 866 867 868
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
869
    """
870

871 872 873
    assert _in_dygraph_mode(
    ) is not True, "please use lstm instead of dynamic_lstmp in dygraph mode!"

C
chengduo 已提交
874
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
875
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
876
    size = size // 4
Y
Yibing Liu 已提交
877 878 879 880 881 882 883 884 885 886
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
887 888 889 890 891 892
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
908

X
xuezhong 已提交
909 910 911 912 913
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
914 915
    helper.append_op(
        type='lstmp',
916
        inputs=inputs,
Y
Yibing Liu 已提交
917 918 919 920 921 922 923 924 925
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
926 927
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
928 929 930 931 932 933 934 935 936
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
937 938 939 940 941 942 943
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
944 945
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
946
    """
947
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
948

949 950 951
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
952

G
guosheng 已提交
953 954 955 956 957 958 959 960 961
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
962

G
guosheng 已提交
963
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
964

Q
Qiao Longfei 已提交
965 966 967

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
968 969 970 971 972 973 974 975 976 977 978 979
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
980
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
981 982
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
983 984 985 986
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
987
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
988 989

    Args:
990 991
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
992
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
993
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
994 995
            is the hidden size.
        size(int): The dimension of the gru cell.
996
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
997 998
            hidden-hidden weight matrix. Note:

999
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
1000
              :math:`D` is the hidden size.
1001
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
1002
              The first part are weights of the update gate and reset gate with
1003
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
1004
              candidate hidden state with shape :math:`(D \\times D)`.
1005 1006 1007 1008 1009

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1010
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1011
            the bias in the update gate, reset gate and candidate calculations.
1012 1013 1014
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1015 1016
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1017
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1018 1019 1020
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1021
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1022
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1023 1024 1025 1026
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1027 1028

    Returns:
G
guosheng 已提交
1029
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1030
            and sequence length is the same with the input.
1031

G
guosheng 已提交
1032
    Examples:
1033

G
guosheng 已提交
1034 1035
        .. code-block:: python

1036 1037 1038 1039
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1040
            hidden_dim = 512
1041
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1042
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1043 1044
    """

1045 1046 1047
    assert _in_dygraph_mode(
    ) is not True, "please use gru instead of dynamic_gru in dygraph mode!"

G
guosheng 已提交
1048 1049 1050 1051 1052 1053 1054
    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1055
    batch_size = input.shape[0]
G
guosheng 已提交
1056
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1057
    if h_0:
G
guosheng 已提交
1058
        assert h_0.shape == (
Y
Yancey 已提交
1059 1060 1061
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1062

X
Xin Pan 已提交
1063 1064 1065 1066
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1080 1081
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1082 1083 1084 1085
        })
    return hidden


Y
Yu Yang 已提交
1086 1087 1088
def gru_unit(input,
             hidden,
             size,
1089 1090
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1091
             activation='tanh',
Q
Qiao Longfei 已提交
1092 1093
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1094
    """
1095 1096 1097
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1098
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1099
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1100

1101 1102
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1103

1104
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1105

1106
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1107

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1123 1124

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1125 1126 1127
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1128 1129
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1130 1131
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1132 1133 1134
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1135 1136 1137

    Args:
        input (Variable): The fc transformed input value of current step.
1138
        hidden (Variable): The hidden value of gru unit from previous step.
1139
        size (integer): The input dimension value.
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1154
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1155
            the bias in the update gate, reset gate and candidate calculations.
1156 1157 1158
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1159 1160
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1161 1162 1163 1164
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1165

1166 1167 1168 1169 1170 1171
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1172

1173
             # assuming we have x_t_data and prev_hidden of size=10
1174
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1175 1176
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1189
    size = size // 3
Y
Yu Yang 已提交
1190 1191

    # create weight
1192 1193
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1194

X
Xin Pan 已提交
1195 1196 1197
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1198
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1199
    # create bias
1200
    if helper.bias_attr:
Y
Yu Yang 已提交
1201 1202 1203
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1204
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1205 1206 1207

    helper.append_op(
        type='gru_unit',
1208
        inputs=inputs,
Y
Yu Yang 已提交
1209 1210 1211 1212 1213 1214
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1215 1216
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1217 1218 1219 1220 1221
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1222
@templatedoc()
1223
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1224 1225 1226 1227 1228 1229 1230
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1231
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1232 1233 1234 1235
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1236 1237 1238
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1239 1240

    """
Y
Yu Yang 已提交
1241 1242 1243 1244 1245 1246
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1247 1248 1249 1250 1251 1252 1253 1254
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1270 1271 1272 1273
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1274

W
wopeizl 已提交
1275 1276
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1277

W
wopeizl 已提交
1278
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1279

W
wopeizl 已提交
1280
        label(${label_type}): ${label_comment}
1281

W
wopeizl 已提交
1282 1283
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1284

W
wopeizl 已提交
1285 1286
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1287

W
wopeizl 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1298
                "Transition": transition,
W
wopeizl 已提交
1299 1300
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1301

W
wopeizl 已提交
1302
    return viterbi_path
Y
Yu Yang 已提交
1303 1304


Y
yi.wu 已提交
1305
@templatedoc()
F
fengjiayi 已提交
1306
def cos_sim(X, Y):
Y
Yu Yang 已提交
1307
    """
Y
yi.wu 已提交
1308 1309 1310
    ${comment}

    Args:
1311 1312
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1313

Y
yi.wu 已提交
1314
    Returns:
1315
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1316
    """
F
fengjiayi 已提交
1317
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1318 1319 1320
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1331 1332 1333 1334 1335
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1336
            dropout_implementation="downgrade_in_infer"):
1337 1338 1339 1340 1341
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1342
    training. The dropout operator randomly sets (according to the given dropout
1343 1344 1345
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1346 1347
    dropout op can be removed from the program to make the program more efficient.

1348
    Args:
1349 1350
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1351 1352 1353 1354 1355 1356 1357
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1358 1359
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1360
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1361 1362

                                           - train: out = input * mask
C
ceci3 已提交
1363
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1364 1365 1366

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1367
                                        2. upscale_in_train, upscale the outcome at training time
1368

H
haowang101779990 已提交
1369 1370
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1371

H
haowang101779990 已提交
1372 1373
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1374

M
minqiyang 已提交
1375

1376
    Returns:
1377
        Variable: A tensor variable is the shape with `x`.
1378 1379

    Examples:
1380

1381 1382
        .. code-block:: python

1383 1384
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1385 1386
    """

F
fengjiayi 已提交
1387
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1388 1389 1390
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1391 1392 1393 1394

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1395 1396 1397 1398 1399
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1400 1401 1402 1403
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1404 1405
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1406
        })
1407 1408 1409
    return out


J
jerrywgz 已提交
1410
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1411
    """
Y
Yibing Liu 已提交
1412 1413
    **Cross Entropy Layer**

1414 1415 1416
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1417 1418

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1419
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1420

Y
Yibing Liu 已提交
1421
        .. math::
Y
yangyaming 已提交
1422

Y
Yibing Liu 已提交
1423 1424 1425
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1426 1427
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1428 1429 1430 1431 1432

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1433
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1434 1435 1436
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1437 1438
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1439
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1440

Y
Yibing Liu 已提交
1441
    Args:
Y
yangyaming 已提交
1442
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1443 1444 1445 1446
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1447
        label (Variable|list): the ground truth which is a 2-D tensor. When
1448 1449 1450 1451
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1452
        soft_label (bool): a flag indicating whether to
1453
                                           interpretate the given labels as soft
1454
                                           labels. Default: `False`.
M
minqiyang 已提交
1455 1456
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1457
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1458 1459 1460 1461 1462

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1463 1464 1465
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1466

H
haowang101779990 已提交
1467 1468
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1469

H
haowang101779990 已提交
1470 1471
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1472 1473 1474 1475 1476 1477

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1478
    """
S
sneaxiy 已提交
1479 1480
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1481
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1482
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1483 1484 1485 1486 1487
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1488 1489
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1490 1491 1492
    return out


S
sneaxiy 已提交
1493 1494 1495 1496
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1497
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1498 1499 1500 1501 1502
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1503
                 'MatchX': [match_x],
S
sneaxiy 已提交
1504 1505 1506 1507 1508
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1509
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1510 1511 1512
    """
    Bayesian Personalized Ranking Loss Operator.

1513
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1514 1515 1516 1517 1518 1519
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1520 1521 1522 1523 1524 1525
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1526 1527
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1528 1529 1530
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1531 1532 1533
    Examples:
        .. code-block:: python

1534
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1535
    """
1536 1537 1538 1539 1540 1541

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1542
                'Label': [label]},
1543 1544 1545 1546
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1547
def square_error_cost(input, label):
Y
Yu Yang 已提交
1548
    """
1549 1550
    **Square error cost layer**

1551 1552
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1553

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1567 1568
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1569 1570

    Returns:
G
guosheng 已提交
1571
        Variable: The tensor variable storing the element-wise squared error \
1572
                  difference of input and label.
1573 1574 1575 1576 1577 1578 1579 1580

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1581
    """
F
fengjiayi 已提交
1582
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1583
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1584 1585 1586 1587 1588 1589
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1590
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1591
    helper.append_op(
F
fengjiayi 已提交
1592 1593
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1594 1595 1596
    return square_out


Y
yi.wu 已提交
1597
@templatedoc()
Y
Yu Yang 已提交
1598 1599 1600 1601
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1602
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1603
    """
Y
yi.wu 已提交
1604
    **Chunk Evaluator**
Y
yi.wu 已提交
1605

Y
yangyaming 已提交
1606
    This function computes and outputs the precision, recall and
1607
    F1-score of chunk detection.
Y
yi.wu 已提交
1608

M
minqiyang 已提交
1609
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1610
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1611 1612 1613 1614 1615 1616

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1617

Y
yi.wu 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1643

Y
yi.wu 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1668
    Args:
1669 1670 1671 1672 1673
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1674

Y
yi.wu 已提交
1675
    Returns:
Y
update  
yi.wu 已提交
1676 1677 1678
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1679

Y
yi.wu 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1692
    """
F
fengjiayi 已提交
1693
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1694 1695

    # prepare output
X
Xin Pan 已提交
1696 1697 1698 1699 1700 1701 1702
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1703 1704 1705 1706 1707 1708 1709 1710

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1711 1712 1713 1714
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1715 1716 1717
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1718 1719
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1720
        })
1721 1722
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1723 1724


1725
@templatedoc()
Y
Yu Yang 已提交
1726 1727 1728 1729 1730 1731 1732
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1733 1734
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1735 1736 1737 1738
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1739 1740 1741 1742 1743 1744 1745

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1759

1760 1761
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1762 1763
    """

1764 1765
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Y
Yu Yang 已提交
1766 1767 1768 1769 1770
    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1771
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1782
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1783 1784 1785 1786 1787 1788
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1789
def sequence_softmax(input, use_cudnn=False, name=None):
1790 1791 1792
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1793
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1810 1811 1812
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1813

1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1825 1826
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
1827 1828
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1829
    softmax_out = helper.create_variable_for_type_inference(dtype)
1830 1831 1832 1833 1834 1835 1836 1837
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1838
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1839
    """
1840
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1841
    has the same shape as the input.
Q
qiaolongfei 已提交
1842

D
dengkaipeng 已提交
1843
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1844
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1845
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1846 1847 1848
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1849
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1850
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1851 1852 1853 1854 1855 1856 1857

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1858
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1859 1860 1861 1862 1863 1864 1865 1866

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1867 1868
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1869 1870
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1871 1872 1873
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1883
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1884
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1885 1886
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1887 1888

    """
1889 1890
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1891
    softmax_out = helper.create_variable_for_type_inference(dtype)
1892 1893 1894 1895
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1896 1897
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1898 1899 1900
    return softmax_out


Y
Yu Yang 已提交
1901 1902 1903
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1904 1905
           stride=1,
           padding=0,
1906
           dilation=1,
Y
Yu Yang 已提交
1907 1908 1909
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1910
           use_cudnn=True,
1911 1912
           act=None,
           name=None):
Y
Yu Yang 已提交
1913
    """
C
chengduoZH 已提交
1914
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1915 1916
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1917
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1918 1919 1920 1921 1922 1923 1924
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1925 1926 1927
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1928

1929
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1930

C
chengduoZH 已提交
1931 1932
    .. math::

C
refine  
chengduoZH 已提交
1933
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1934

T
tensor-tang 已提交
1935
    Where:
C
chengduoZH 已提交
1936

1937 1938 1939 1940 1941
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1942
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1943 1944 1945

    Example:

1946 1947
        - Input:

W
weixing02 已提交
1948
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1949

W
weixing02 已提交
1950
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1951

1952
        - Output:
T
tensor-tang 已提交
1953

W
weixing02 已提交
1954
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1955

C
chengduoZH 已提交
1956
        Where
1957 1958

        .. math::
C
chengduoZH 已提交
1959

W
weixing02 已提交
1960 1961
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1962 1963

    Args:
1964
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1965
        num_filters(int): The number of filter. It is as same as the output
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1983 1984 1985 1986 1987
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1988
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1989 1990 1991 1992 1993
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1994 1995
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1996 1997
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1998
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1999
            will be named automatically. Default: None
C
chengduoZH 已提交
2000 2001

    Returns:
G
guosheng 已提交
2002
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
2003 2004
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
2005
    Raises:
2006 2007
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
2008

C
chengduoZH 已提交
2009 2010 2011
    Examples:
        .. code-block:: python

2012 2013
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2014 2015 2016
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2017
    assert param_attr is not False, "param_attr should not be False here."
2018
    l_type = 'conv2d'
X
xzl 已提交
2019 2020
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2021
        l_type = 'depthwise_conv2d'
2022 2023 2024 2025

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2026 2027 2028 2029 2030
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2031
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2032

C
chengduoZH 已提交
2033 2034 2035
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2036
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2037

C
chengduoZH 已提交
2038 2039
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2040 2041

    input_shape = input.shape
M
minqiyang 已提交
2042
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2043 2044

    def _get_default_param_initializer():
C
chengduo 已提交
2045 2046
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2047 2048 2049 2050 2051 2052 2053 2054
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2055
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2071
    helper.append_op(
2072
        type=l_type,
Y
Yu Yang 已提交
2073 2074 2075 2076 2077
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2078 2079 2080
        attrs={
            'strides': stride,
            'paddings': padding,
2081
            'dilations': dilation,
C
chengduoZH 已提交
2082
            'groups': groups,
2083
            'use_cudnn': use_cudnn,
2084
            'use_mkldnn': False,
2085
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2086
        })
Y
Yu Yang 已提交
2087 2088 2089 2090 2091 2092

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2110 2111 2112 2113 2114 2115
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2125 2126
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2127 2128 2129
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2130
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2156
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2157 2158
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2159
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2160 2161
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2162
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2163 2164
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2165
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2166 2167 2168 2169 2170 2171
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2182 2183
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2184 2185
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2186
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2187
            will be named automatically. Default: None.
C
chengduoZH 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2200 2201
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2202 2203 2204
    """

    l_type = 'conv3d'
C
chengduo 已提交
2205
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2216
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2230 2231 2232
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2233 2234 2235 2236 2237 2238 2239 2240
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2241
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2256
            'use_mkldnn': False
C
chengduoZH 已提交
2257 2258
        })

2259
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2260 2261 2262 2263

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2264
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2265
    """
Y
yangyaming 已提交
2266 2267 2268
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2280
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2281 2282 2283 2284 2285
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2286
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2287 2288 2289 2290 2291 2292 2293

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2294 2295
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2296

L
Luo Tao 已提交
2297 2298
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2299
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2300
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2301
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2302 2303 2304 2305 2306 2307 2308

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2309

Y
yangyaming 已提交
2310
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2311 2312 2313 2314 2315
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2316 2317
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2318
    """
2319 2320
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
2321
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2322
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2323 2324
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2325 2326 2327 2328 2329 2330

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2331 2332
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2333

Y
yangyaming 已提交
2334 2335 2336 2337 2338
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2339 2340 2341
    return pool_out


C
add doc  
chengduoZH 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
2360 2361
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
C
add doc  
chengduoZH 已提交
2362
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2363
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2364 2365 2366 2367 2368
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2369
def sequence_first_step(input):
L
Luo Tao 已提交
2370
    """
L
Luo Tao 已提交
2371
    This function gets the first step of sequence.
L
Luo Tao 已提交
2372 2373 2374 2375

    .. code-block:: text

       x is a 1-level LoDTensor:
2376
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2377 2378 2379 2380 2381
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2382
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2383
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2384

L
Luo Tao 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2394

Y
yangyaming 已提交
2395
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2396 2397 2398
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2399 2400 2401
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2402
def sequence_last_step(input):
L
Luo Tao 已提交
2403
    """
L
Luo Tao 已提交
2404
    This function gets the last step of sequence.
L
Luo Tao 已提交
2405 2406 2407 2408

    .. code-block:: text

       x is a 1-level LoDTensor:
2409
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2410 2411 2412 2413 2414
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2415
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2416
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2417

L
Luo Tao 已提交
2418 2419 2420 2421 2422 2423 2424 2425 2426
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2427

Y
yangyaming 已提交
2428
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2429 2430 2431
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2432 2433 2434
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2435 2436 2437 2438
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2439
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2440 2441 2442 2443 2444
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2445

H
haowang101779990 已提交
2446
              - Case:
Y
Yibing Liu 已提交
2447

2448
            Given the input Variable **input**:
2449

2450 2451 2452
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2453

2454
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2455

2456
            the output Variable will be
2457

2458 2459 2460
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2461

M
minqiyang 已提交
2462
    Note:
H
haowang101779990 已提交
2463
          The first dimension size of **input**, **offset** and **length**
2464
          should be equal. The **offset** should start from 0.
2465

Y
Yibing Liu 已提交
2466
    Args:
2467
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2468
                         sequences.
Y
Yibing Liu 已提交
2469 2470 2471 2472 2473 2474
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2475
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2486
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2487 2488
                                                   length=length)
    """
2489 2490
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
2491 2492
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2493
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2508
@templatedoc()
Y
Yu Yang 已提交
2509
def pool2d(input,
C
chengduoZH 已提交
2510 2511
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2512 2513
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2514
           global_pooling=False,
C
chengduoZH 已提交
2515
           use_cudnn=True,
2516
           ceil_mode=False,
2517 2518
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2519
    """
F
fengjiayi 已提交
2520
    ${comment}
2521 2522

    Args:
2523 2524 2525
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2526
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2527
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2528 2529
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2530
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2531 2532 2533 2534 2535 2536
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2537 2538 2539
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2540
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2541
                        layer will be named automatically.
2542
        exclusive (bool): Whether to exclude padding points in average pooling
2543
                          mode, default is true
F
fengjiayi 已提交
2544

2545
    Returns:
F
fengjiayi 已提交
2546
        Variable: The pooling result.
F
fengjiayi 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2559
          pool2d = fluid.layers.pool2d(
2560 2561 2562 2563
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2564
                            global_pooling=False)
Y
Yu Yang 已提交
2565 2566 2567 2568 2569
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2570

C
chengduoZH 已提交
2571 2572 2573 2574 2575
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2576 2577 2578 2579
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2580 2581
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2582

C
Add doc  
chengduoZH 已提交
2583
    l_type = 'pool2d'
2584 2585

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2586
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2587
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2588 2589

    helper.append_op(
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2601 2602
            "use_mkldnn": False,
            "exclusive": exclusive,
2603 2604 2605 2606 2607
        })

    return pool_out


D
dengkaipeng 已提交
2608
@templatedoc()
2609 2610 2611 2612 2613 2614 2615 2616
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2617 2618
           name=None,
           exclusive=True):
2619
    """
2620
    ${comment}
2621 2622

    Args:
D
dengkaipeng 已提交
2623 2624 2625 2626 2627
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2628 2629 2630 2631 2632
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2633 2634 2635 2636 2637 2638 2639
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2640
        exclusive (bool): Whether to exclude padding points in average pooling
2641
                          mode, default is true
2642

2643
    Returns:
2644
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2658 2659 2660 2661 2662
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2663

C
chengduoZH 已提交
2664 2665 2666 2667 2668
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2669 2670 2671
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2672

C
chengduoZH 已提交
2673 2674
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2675

2676 2677
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2678
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2679
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2680 2681

    helper.append_op(
2682
        type=l_type,
Y
Yu Yang 已提交
2683 2684 2685 2686 2687 2688 2689
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2690
            "paddings": pool_padding,
2691
            "use_cudnn": use_cudnn,
2692
            "ceil_mode": ceil_mode,
2693 2694
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2695 2696 2697 2698 2699
        })

    return pool_out


2700 2701 2702 2703 2704 2705 2706
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2707 2708 2709 2710 2711 2712 2713
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2714

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2728 2729 2730 2731 2732 2733 2734 2735 2736

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2737 2738
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2753
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2754
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2755
          # of input data into m * n grids averagely and performs poolings in each
2756 2757
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2758
          #
2759 2760 2761 2762 2763 2764 2765 2766
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2767 2768
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2769
          pool_out = fluid.layers.adaptive_pool2d(
2770 2771
                            input=data,
                            pool_size=[3, 3],
2772
                            pool_type='avg')
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2783
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2809
    return (pool_out, mask) if require_index else pool_out
2810 2811 2812 2813 2814 2815 2816 2817 2818


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2819 2820 2821 2822 2823 2824 2825
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2826

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2844 2845 2846

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2847 2848 2849
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2850
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2851
            it must contain three integers, (Depth, Height, Width).
2852
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2853 2854
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2869 2870
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2871
          # of input data into l * m * n grids averagely and performs poolings in each
2872 2873
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2874
          #
2875 2876 2877 2878 2879 2880 2881 2882 2883
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2884
          #                 output[:, :, i, j, k] =
2885 2886
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2887 2888
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2889
          pool_out, mask = fluid.layers.adaptive_pool3d(
2890
                            input=data,
D
dengkaipeng 已提交
2891
                            pool_size=[3, 3, 3],
2892
                            pool_type='avg')
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2903
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2929
    return (pool_out, mask) if require_index else pool_out
2930 2931


Y
Yu Yang 已提交
2932 2933 2934 2935 2936 2937 2938
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2939
               data_layout='NCHW',
Y
Yang Yang 已提交
2940
               in_place=False,
2941 2942
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2943
               moving_variance_name=None,
2944
               do_model_average_for_mean_and_var=False,
2945 2946
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2947
    """
Q
qiaolongfei 已提交
2948 2949 2950 2951
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2952

Q
qiaolongfei 已提交
2953
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2954

Q
qiaolongfei 已提交
2955 2956
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2957 2958 2959
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2972

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2986
    Args:
Q
qingqing01 已提交
2987
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2988
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2998 2999 3000 3001 3002 3003 3004 3005
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
3006
        data_layout(string, default NCHW): NCHW|NHWC
3007
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
3008 3009 3010 3011
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
3012
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
3013
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
3014 3015 3016 3017 3018
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3019 3020

    Returns:
Q
qiaolongfei 已提交
3021
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3022 3023 3024 3025 3026 3027 3028

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3029
    """
C
chengduo 已提交
3030
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3031 3032 3033
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3034 3035 3036 3037
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3056
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3057

3058 3059
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3060 3061 3062
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3063
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3064
        shape=param_shape,
W
Wu Yi 已提交
3065
        dtype=dtype)
3066 3067 3068 3069 3070 3071
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3072
            trainable=False,
W
wanghaoshuang 已提交
3073
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3074
        shape=param_shape,
W
Wu Yi 已提交
3075
        dtype=dtype)
3076
    variance.stop_gradient = True
Y
Yu Yang 已提交
3077 3078 3079 3080 3081 3082

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3083 3084 3085 3086
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3087

X
Xin Pan 已提交
3088 3089
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3107 3108 3109 3110
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3111
            "data_layout": data_layout,
X
Xin Pan 已提交
3112
            "use_mkldnn": False,
3113 3114
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3115
        })
Y
Yu Yang 已提交
3116 3117 3118 3119

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3239
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3240 3241 3242 3243

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3244
@templatedoc()
G
guosheng 已提交
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3255
    ${comment}
G
guosheng 已提交
3256 3257 3258

    The formula is as follows:

Y
yuyang18 已提交
3259
    ..  math::
G
guosheng 已提交
3260 3261 3262 3263 3264 3265 3266

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3267 3268 3269 3270 3271 3272 3273 3274
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3275

G
guosheng 已提交
3276 3277
    Args:
        input(Variable): The input tensor variable.
3278
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3279
            normalization. Default True.
3280
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3281 3282
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3283
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3284
            Default 1.
3285
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3286
            division by zero. Default 1e-05.
G
guosheng 已提交
3287
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3288 3289
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3290 3291
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3292
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3293 3294
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3295
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3296
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3297
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3298 3299 3300
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3301 3302

    Returns:
Y
yuyang18 已提交
3303
        ${y_comment}
G
guosheng 已提交
3304 3305 3306

    Examples:

Y
yuyang18 已提交
3307 3308 3309
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3310
    """
L
lujun 已提交
3311 3312
    assert _in_dygraph_mode(
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3327
    if shift:
G
guosheng 已提交
3328 3329 3330 3331 3332 3333
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3334 3335 3336 3337 3338
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3366
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3414 3415
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3433
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3434 3435 3436
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3437
    This layer calculates the spectral normalization value of weight parameters of
3438
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3439
    Parameters. Calculations are showed as follows.
3440

D
dengkaipeng 已提交
3441 3442 3443
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3444
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3457
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3458 3459 3460 3461

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3462

D
dengkaipeng 已提交
3463
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3464 3465
                

D
dengkaipeng 已提交
3466 3467 3468 3469
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3470 3471 3472
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3473 3474 3475
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3476
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3477 3478 3479 3480 3481 3482 3483 3484

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3485
    dtype = weight.dtype
D
dengkaipeng 已提交
3486 3487 3488

    # create intput and parameters
    inputs = {'Weight': weight}
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3507 3508

    # create output
3509
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3510 3511

    helper.append_op(
3512
        type="spectral_norm",
D
Dun 已提交
3513
        inputs=inputs,
3514 3515 3516 3517 3518 3519
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3520

3521
    return out
D
Dun 已提交
3522 3523


Y
Yu Yang 已提交
3524 3525 3526 3527
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3528 3529 3530
                     padding=0,
                     stride=1,
                     dilation=1,
3531
                     groups=None,
C
caoying03 已提交
3532
                     param_attr=None,
3533
                     bias_attr=None,
C
chengduoZH 已提交
3534
                     use_cudnn=True,
3535
                     act=None,
C
caoying03 已提交
3536
                     name=None):
Y
Yu Yang 已提交
3537
    """
3538 3539 3540 3541 3542 3543 3544 3545
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3546 3547
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3548 3549 3550
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3551 3552 3553 3554 3555

    For each input :math:`X`, the equation is:

    .. math::

3556
        Out = \sigma (W \\ast X + b)
3557

3558
    Where:
3559 3560 3561

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3562 3563 3564 3565
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3566

3567 3568 3569 3570
    Example:

        - Input:

3571
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3572

3573
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3574 3575 3576

        - Output:

3577
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3578 3579

        Where
Y
Yu Yang 已提交
3580

3581 3582
        .. math::

3583 3584
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3585 3586
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3587 3588

    Args:
3589 3590 3591 3592
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3593 3594 3595 3596
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3625
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3626 3627 3628
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3629
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3630
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3631 3632

    Returns:
3633
        Variable: The tensor variable storing the convolution transpose result.
3634 3635

    Raises:
3636 3637
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3638 3639 3640 3641

    Examples:
       .. code-block:: python

3642 3643
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3644
    """
C
chengduo 已提交
3645
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3646 3647 3648 3649 3650 3651 3652 3653
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3654 3655 3656
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3657 3658 3659
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3660

C
chengduoZH 已提交
3661 3662
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3663

Y
Yu Yang 已提交
3664 3665 3666 3667 3668
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3669

Y
Yu Yang 已提交
3670 3671
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3672

C
chengduoZH 已提交
3673
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3674
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3675
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3676
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3677
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3678 3679 3680
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3681

3682 3683 3684 3685 3686 3687 3688
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3689
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3690
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3691

Y
Yu Yang 已提交
3692 3693 3694
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3695
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3696
    helper.append_op(
3697
        type=op_type,
Y
Yu Yang 已提交
3698 3699
        inputs={'Input': [input],
                'Filter': [img_filter]},
3700
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3701
        attrs={
3702
            'output_size': output_size,
3703 3704 3705 3706 3707
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3708 3709
        })

3710 3711 3712
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3713 3714


3715
def conv3d_transpose(input,
Y
Yu Yang 已提交
3716 3717 3718
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3719 3720 3721
                     padding=0,
                     stride=1,
                     dilation=1,
3722
                     groups=None,
C
caoying03 已提交
3723
                     param_attr=None,
3724
                     bias_attr=None,
C
chengduoZH 已提交
3725
                     use_cudnn=True,
3726
                     act=None,
C
caoying03 已提交
3727
                     name=None):
Y
Yu Yang 已提交
3728
    """
3729
    **Convlution3D transpose layer**
3730

3731
    The convolution3D transpose layer calculates the output based on the input,
3732
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3733 3734 3735 3736 3737 3738
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3739 3740 3741
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3742 3743 3744 3745 3746

    For each input :math:`X`, the equation is:

    .. math::

3747
        Out = \sigma (W \\ast X + b)
3748 3749 3750

    In the above equation:

3751 3752
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3753 3754 3755 3756
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3757

3758 3759 3760 3761
    Example:

        - Input:

3762
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3763

3764
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3765 3766 3767

        - Output:

3768
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3769 3770

        Where
Y
Yu Yang 已提交
3771

3772 3773
        .. math::

3774 3775 3776
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3777 3778

    Args:
3779
        input(Variable): The input image with [N, C, D, H, W] format.
3780 3781 3782
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3783
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3784 3785
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3786
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3787 3788 3789
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3790 3791
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3792
        stride(int|tuple): The stride size. If stride is a tuple, it must
3793 3794
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3795
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3796 3797 3798
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3799 3800 3801 3802 3803
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3804 3805 3806 3807 3808 3809 3810 3811 3812
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3813 3814
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3815 3816
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3817 3818
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3819 3820

    Returns:
3821
        Variable: The tensor variable storing the convolution transpose result.
3822 3823

    Raises:
3824 3825
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3826 3827 3828 3829

    Examples:
       .. code-block:: python

3830 3831
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3832
    """
C
chengduo 已提交
3833
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3834 3835
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3836
    if not isinstance(input, Variable):
3837
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3838 3839
    input_channel = input.shape[1]

3840 3841 3842
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3843

C
chengduoZH 已提交
3844 3845 3846
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3847 3848 3849 3850 3851 3852
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3853 3854 3855
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3856

3857
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3858
                         padding[0] - 1) // dilation[0] + 1
3859
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3860
                         padding[1] - 1) // dilation[1] + 1
3861
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3862
                         padding[2] - 1) // dilation[2] + 1
3863
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3864
    else:
3865 3866
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3867

3868
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3869
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3870 3871 3872
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3873
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3874
    helper.append_op(
3875
        type=l_type,
Y
Yu Yang 已提交
3876 3877
        inputs={'Input': [input],
                'Filter': [img_filter]},
3878
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3879 3880 3881 3882
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3883
            'groups': groups,
C
chengduoZH 已提交
3884 3885
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3886

3887 3888
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3889
    return out
Y
yangyaming 已提交
3890 3891


Y
yangyaming 已提交
3892
def sequence_expand(x, y, ref_level=-1, name=None):
3893
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3894 3895 3896 3897
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3898 3899 3900 3901 3902

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3903
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3904
                x.data = [[a], [b], [c], [d]]
3905 3906 3907
                x.dims = [4, 1]

            y is a LoDTensor:
3908 3909
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3910

Y
yangyaming 已提交
3911
            ref_level: 0
3912

Y
yangyaming 已提交
3913
            then output is a 1-level LoDTensor:
3914
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3915
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3916 3917 3918 3919
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3920
                x.data = [[a], [b], [c]]
3921 3922 3923
                x.dims = [3, 1]

            y is a LoDTensor:
3924
                y.lod = [[2, 0, 3]]
3925

Y
yangyaming 已提交
3926
            ref_level: -1
3927

Y
yangyaming 已提交
3928 3929 3930
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3931 3932 3933
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3934 3935
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3936
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3937
                        will be named automatically.
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3948
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3949
    """
3950 3951
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Y
yangyaming 已提交
3952
    helper = LayerHelper('sequence_expand', input=x, **locals())
3953
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3954
    tmp = helper.create_variable_for_type_inference(dtype)
3955
    helper.append_op(
Y
yangyaming 已提交
3956 3957 3958 3959 3960
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3961
    return tmp
3962 3963


C
chengduo 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
4018 4019
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
C
chengduo 已提交
4020 4021
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4022
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4023 4024 4025 4026 4027 4028 4029 4030
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4031
@templatedoc()
4032
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4033 4034 4035 4036 4037
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4038 4039 4040
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4041
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4042 4043 4044 4045
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4046 4047 4048
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4049

F
fengjiayi 已提交
4050
    Returns:
M
minqiyang 已提交
4051
        Variable: The padded sequence batch and the original lengths before
4052
                  padding. All sequences has the same length.
M
minqiyang 已提交
4053

F
fengjiayi 已提交
4054 4055 4056 4057 4058 4059 4060
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4061
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4062
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4063 4064 4065
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

4066 4067
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
F
fengjiayi 已提交
4068 4069
    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4070 4071
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4072 4073 4074 4075

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4076 4077 4078 4079 4080 4081
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4082 4083
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4084
        attrs={'padded_length': maxlen})
4085
    return out, length
F
fengjiayi 已提交
4086 4087


4088
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4089
    """
4090
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4091

4092 4093
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4094 4095 4096 4097 4098 4099 4100 4101 4102
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4103 4104 4105
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4106
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4107 4108 4109 4110 4111 4112

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4113
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4114 4115 4116 4117 4118 4119

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4120 4121
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

4134 4135
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
4136 4137
    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4138
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4150 4151 4152 4153 4154 4155 4156
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4157
                is_accumulated=True,
4158 4159
                name=None,
                return_parent_idx=False):
4160
    """
4161 4162
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4163 4164 4165

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4166 4167

    This layer does the search in beams for one time step. Specifically, it
4168 4169 4170
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4182 4183 4184 4185

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4186

4187
    Args:
4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4211 4212
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4213 4214
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4215 4216 4217 4218
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4219

4220
    Returns:
4221 4222 4223 4224
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4225 4226 4227 4228

    Examples:
        .. code-block:: python

4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4246
    helper = LayerHelper('beam_search', **locals())
4247 4248 4249 4250 4251 4252
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4253

X
Xin Pan 已提交
4254 4255 4256
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4257 4258 4259 4260 4261
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4262 4263 4264

    helper.append_op(
        type='beam_search',
4265
        inputs=inputs,
Q
Qiao Longfei 已提交
4266 4267 4268
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4269
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4270 4271 4272 4273 4274 4275
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4276
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4277
        })
4278 4279 4280 4281
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4282 4283


4284 4285 4286 4287 4288 4289 4290
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4291

4292 4293 4294 4295 4296 4297 4298 4299 4300
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4301

4302 4303 4304 4305 4306 4307
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4308

4309 4310
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4311

4312 4313 4314 4315 4316 4317
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4318 4319
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4335 4336 4337 4338
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4339
              param_attr=None,
C
caoying03 已提交
4340 4341
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4342 4343 4344 4345
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4346
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4347

4348
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4349

4350
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4351

4352
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4353 4354 4355

            h_t & = o_t tanh(c_t)

4356 4357 4358 4359 4360 4361
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4362 4363 4364

        .. math::

4365
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4366 4367 4368 4369 4370 4371 4372 4373

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4374
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4375 4376

    Args:
Y
yangyaming 已提交
4377 4378 4379 4380 4381 4382
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4383
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4396 4397
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4398 4399

    Returns:
Y
yangyaming 已提交
4400
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4401 4402

    Raises:
4403 4404 4405 4406
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4407 4408 4409 4410 4411 4412

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4413
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4414
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4415
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4432
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4433 4434 4435 4436
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4437 4438
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4439 4440 4441
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4442
    size = cell_t_prev.shape[1]
4443
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4444 4445
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4446
                param_attr=param_attr,
4447
                bias_attr=bias_attr)
Y
yangyaming 已提交
4448
    dtype = x_t.dtype
X
Xin Pan 已提交
4449 4450
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4451 4452 4453 4454 4455 4456 4457 4458 4459

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4460
    return h, c
G
guosheng 已提交
4461 4462


C
caoying03 已提交
4463
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4464
    """
Y
yangyaming 已提交
4465
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4466 4467 4468

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4469
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4470 4471
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4472 4473
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4474
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4475
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4476
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4477 4478
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4479 4480 4481

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4482

G
guosheng 已提交
4483 4484 4485 4486 4487 4488
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4489
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4490 4491 4492 4493
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4494 4495 4496 4497

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4498
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4499 4500 4501
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4502 4503
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4504
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4505 4506
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4507 4508 4509 4510 4511
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4512
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4513 4514 4515 4516
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4517 4518


C
caoying03 已提交
4519
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4520
    """
Y
Yibing Liu 已提交
4521
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4522 4523 4524

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4525 4526 4527
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4528
            must be in the range :math:`[-rank(input), rank(input))`. If
4529
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4530
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4531 4532
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4533
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4534
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4535
                       will be named automatically.
G
guosheng 已提交
4536 4537

    Returns:
Y
Yibing Liu 已提交
4538
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4539

G
guosheng 已提交
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4550 4551
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4552 4553 4554 4555 4556 4557 4558

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4559 4560
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4561
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4562 4563
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4564 4565 4566 4567 4568
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4569
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4570 4571 4572 4573
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4574 4575


C
caoying03 已提交
4576
def reduce_max(input, dim=None, keep_dim=False, name=None):
4577
    """
Y
yangyaming 已提交
4578
    Computes the maximum of tensor elements over the given dimension.
4579 4580 4581

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4582
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4583 4584 4585
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4586
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4587 4588
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4589
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4590 4591
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4592 4593 4594

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4595

4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4607 4608 4609 4610 4611 4612 4613

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4614 4615
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4616
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4617 4618
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4619 4620 4621 4622 4623
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4624
            'dim': dim if dim != None else [0],
4625 4626 4627 4628 4629 4630
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4631
def reduce_min(input, dim=None, keep_dim=False, name=None):
4632
    """
Y
yangyaming 已提交
4633
    Computes the minimum of tensor elements over the given dimension.
4634 4635 4636

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4637
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4638 4639 4640
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4641
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4642 4643
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4644
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4645 4646
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4647 4648 4649

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4650

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4662 4663 4664 4665 4666 4667 4668

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4669 4670
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4671
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4672 4673
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4674 4675 4676 4677 4678
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4679
            'dim': dim if dim != None else [0],
4680 4681 4682 4683
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4684 4685


4686 4687 4688 4689 4690 4691
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4692
        dim (list|int|None): The dimensions along which the product is performed. If
4693 4694
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4695 4696
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4697 4698 4699
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4700
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4701
            layer will be named automatically.
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4716
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4717
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4718 4719 4720 4721 4722 4723 4724

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4725 4726
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4727
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4728 4729
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4730 4731 4732 4733 4734
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4735
            'dim': dim if dim != None else [0],
4736 4737 4738 4739 4740 4741
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4742
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4743
    """
C
caoying03 已提交
4744
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4745 4746 4747

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4748 4749 4750 4751 4752
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4753
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4754
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4755
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4756 4757
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4758 4759

    Returns:
D
dzhwinter 已提交
4760
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4770 4771
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4787
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4810
    .. math::
4811 4812

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4813 4814 4815 4816 4817

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4818
        x(Variable|list): The input tensor to l2_normalize layer.
4819
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4820 4821
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4822
        epsilon(float): The epsilon value is used to avoid division by zero, \
4823
            the defalut value is 1e-10.
4824
        name(str|None): A name for this layer(optional). If set None, the layer \
4825
            will be named automatically.
C
caoying03 已提交
4826 4827

    Returns:
4828
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4829 4830

    Examples:
4831

C
caoying03 已提交
4832 4833
        .. code-block:: python

4834 4835 4836 4837
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4838 4839
    """

F
fengjiayi 已提交
4840 4841
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4842 4843
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4844 4845
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4846
    helper.append_op(
4847 4848 4849 4850
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4851
        attrs={
4852 4853
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4854 4855
        })
    return out
4856 4857


S
sneaxiy 已提交
4858
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4859
    """
Y
ying 已提交
4860 4861 4862 4863
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4864

C
chengduoZH 已提交
4865
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4866
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4867

4868 4869 4870 4871 4872
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4873
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4874

C
chengduoZH 已提交
4875
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4876
      performs in the following way.
G
guosheng 已提交
4877

4878
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4879
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4880
        last two dimensions and a batched matrix multiply supporting broadcast
4881
        applies on the two tensors.
G
guosheng 已提交
4882

Y
ying 已提交
4883 4884
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4885
    removed after matrix multiplication.
G
guosheng 已提交
4886 4887 4888

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4889 4890 4891
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4892
        alpha (float): The scale of output. Default 1.0.
4893
        name(str|None): A name for this layer(optional). If set None, the layer
4894
            will be named automatically.
G
guosheng 已提交
4895 4896

    Returns:
4897
        Variable: The product Tensor variable.
G
guosheng 已提交
4898

G
guosheng 已提交
4899 4900 4901
    Examples:
        .. code-block:: python

4902
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4903 4904
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4905

4906 4907
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4908

4909 4910
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4911

4912 4913
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4914 4915 4916 4917

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4918 4919
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4920

Y
ying 已提交
4921
            # x: [M], y: [N]
4922
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4923
    """
Y
ying 已提交
4924 4925 4926 4927 4928 4929 4930

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4931
            y_shape = y_shape + [1]
Y
ying 已提交
4932 4933 4934 4935 4936 4937 4938

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4939 4940
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
4941

C
chengduo 已提交
4942
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4943
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4944 4945 4946
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4947
                if dim_x != y_shape[i]:
C
chengduo 已提交
4948 4949
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4950 4951 4952

    __check_input(x, y)

4953
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4954
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4955
    helper.append_op(
4956 4957 4958 4959
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4960 4961 4962
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4963
            'alpha': float(alpha),
S
sneaxiy 已提交
4964
        })
4965
    return out
4966 4967


4968
def topk(input, k, name=None):
Q
qingqing01 已提交
4969 4970 4971 4972
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4973
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4974 4975 4976 4977 4978 4979
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5001 5002 5003
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5004
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5005
                 of input.
5006
        name(str|None): A name for this layer(optional). If set None, the layer
5007
                       will be named automatically.
F
fengjiayi 已提交
5008
                       Default: None
Q
qingqing01 已提交
5009 5010

    Returns:
5011 5012 5013
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5014
        within the last dimension of input.
Q
qingqing01 已提交
5015

F
fengjiayi 已提交
5016 5017
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5018 5019 5020 5021 5022 5023 5024

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5025 5026
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5027 5028 5029 5030 5031 5032
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5033 5034
    helper.append_op(
        type="top_k",
W
whs 已提交
5035
        inputs=inputs,
Q
qingqing01 已提交
5036 5037
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5038
        attrs=attrs)
Q
qingqing01 已提交
5039 5040 5041 5042 5043
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5044
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5045
    """
Y
ying 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5055

Y
ying 已提交
5056
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5057

5058
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5059 5060
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5061
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5062

5063
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5064 5065
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5066

5067 5068 5069
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5070
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5071
                          the length of reference string.
5072
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5073
                                     calculating edit distance.
5074
        name (str): The name of this layer. It is optional.
5075

W
wanghaoshuang 已提交
5076
    Returns:
W
wanghaoshuang 已提交
5077
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5078 5079 5080 5081

    Examples:
        .. code-block:: python

T
tink2123 已提交
5082 5083
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5084
            cost = fluid.layers.edit_distance(input=x,label=y)
5085
    """
5086
    helper = LayerHelper("edit_distance", **locals())
5087

5088
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5089
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5090 5091
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5092 5093 5094 5095 5096

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5097
            attrs={"tokens": ignored_tokens})
5098 5099 5100 5101 5102
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5103
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5104
            attrs={"tokens": ignored_tokens})
5105 5106
        label = erased_label

5107
    # edit distance op
X
Xin Pan 已提交
5108 5109
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5110 5111 5112 5113
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5114 5115
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5116 5117
        attrs={"normalized": normalized})

5118
    return edit_distance_out, sequence_num
5119 5120 5121 5122 5123


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5124

Y
ying 已提交
5125 5126 5127 5128
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5146
        input.lod = [[4, 4]]
M
minqiyang 已提交
5147

W
whs 已提交
5148
        Computation:
5149

W
whs 已提交
5150 5151 5152 5153 5154 5155
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5156 5157 5158 5159 5160

        output.data = [[2],
                       [1],
                       [3]]

5161
        output.lod = [[2, 1]]
5162

W
whs 已提交
5163

5164 5165
    Args:

Y
ying 已提交
5166 5167 5168 5169 5170 5171 5172 5173 5174
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5175
        name (str): The name of this layer. It is optional.
5176 5177

    Returns:
H
haowang101779990 已提交
5178 5179 5180
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5181
                  LoD [[]] and dims [1, 1].
5182 5183 5184 5185 5186

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5187

5188
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5189
    """
5190
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5191
    _, topk_indices = topk(input, k=1)
5192 5193

    # ctc align op
X
Xin Pan 已提交
5194
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5195 5196 5197
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5198
        outputs={"Output": [ctc_out]},
5199 5200
        attrs={"merge_repeated": True,
               "blank": blank})
5201
    return ctc_out
5202 5203


W
Wu Yi 已提交
5204
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5205
    """
5206 5207
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5208
    to compute Connectionist Temporal Classification (CTC) loss.
5209 5210
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5211 5212 5213
    input tensor.

    Args:
5214
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5215 5216 5217 5218
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5219
       label (Variable): The ground truth of variable-length sequence,
5220 5221 5222
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5223 5224
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5225 5226 5227
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5228
         follewed by a mean_op.
W
Wu Yi 已提交
5229
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5230 5231

    Returns:
5232 5233
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5234 5235

    Examples:
5236

W
wanghaoshuang 已提交
5237
        .. code-block:: python
5238

5239 5240 5241
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5242 5243

    """
F
fengjiayi 已提交
5244
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5245 5246
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5247 5248 5249 5250 5251 5252
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5253 5254 5255 5256 5257
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5258
    return loss_out
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5274 5275 5276
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5277 5278 5279 5280 5281
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5282

5283
            out.lod  = [[0, 1, 3]]
5284 5285 5286 5287

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5288 5289 5290 5291 5292 5293 5294
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5295 5296 5297

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5298 5299

    Returns:
5300

5301 5302 5303 5304 5305
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5306
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5307
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5308
    """
5309 5310
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
5311
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5312
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5313 5314 5315 5316 5317 5318
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5319 5320


5321 5322 5323 5324
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5325 5326 5327 5328 5329 5330
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5331
        num_neg_samples=None,
5332 5333 5334
        name=None,
        sampler="uniform",
        custom_dist=None,
5335 5336
        seed=0,
        is_sparse=False):
5337 5338 5339 5340 5341 5342 5343
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5344 5345
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5346
            sample is 1.0.
C
chengduo 已提交
5347 5348 5349 5350 5351 5352 5353 5354 5355
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5356
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5357 5358
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5359 5360 5361
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5362
        custom_dist (float[]): A float[] with size=num_total_classes.
5363 5364 5365 5366
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5367
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5368

5369
    Returns:
Y
Yibing Liu 已提交
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5397 5398 5399 5400 5401 5402 5403 5404 5405

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5406

5407
    """
Y
Yang Yu 已提交
5408 5409 5410
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5411 5412

    dim = input.shape[1]
Y
Yang Yu 已提交
5413 5414 5415 5416 5417 5418
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5419
    inputs = {}
C
chengduo 已提交
5420 5421 5422 5423 5424 5425 5426
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5427 5428 5429
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5430

5431 5432 5433 5434
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5435 5436 5437 5438 5439 5440 5441

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5442 5443 5444 5445 5446 5447 5448 5449 5450
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5451
            if normal_prob - 1.0 > 0:
5452
                bigs.append((i, normal_prob))
5453
            elif 1.0 - normal_prob > 0:
5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5469
            if big_left - 1.0 > 0:
5470
                bigs.append((big_idx, big_left))
5471
            elif 1.0 - big_left > 0:
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5501 5502 5503 5504
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5505 5506 5507 5508 5509
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5510 5511 5512 5513
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5514

Y
Yang Yu 已提交
5515 5516
    attrs = {
        'num_total_classes': int(num_total_classes),
5517 5518
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5519
        'sampler': sampler,
5520 5521
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5522
    }
Y
Yang Yu 已提交
5523 5524 5525

    helper.append_op(
        type='nce',
C
chengduo 已提交
5526
        inputs=inputs,
Y
Yang Yu 已提交
5527 5528 5529 5530 5531 5532
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5533
    return cost / (num_neg_samples + 1)
5534 5535


C
chengduo 已提交
5536 5537
def hsigmoid(input,
             label,
5538
             num_classes,
C
chengduo 已提交
5539 5540
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5541
             name=None,
5542 5543 5544
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5545
             is_sparse=False):
W
weixing02 已提交
5546 5547
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5548
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5549
    complete binary tree, or you can use is_custom to pass your own tree to
5550
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5551 5552 5553 5554 5555 5556
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5557
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5558
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5559

5560 5561
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5562 5563 5564 5565
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5566
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5567
       related to the same batch of inputs.
5568

W
weixing02 已提交
5569
    Args:
M
minqiyang 已提交
5570
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5571 5572 5573 5574
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5575 5576
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5577
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5589
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5590
            it should be in leaf -> root order
M
minqiyang 已提交
5591 5592 5593
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5594
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5595
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5596
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5597
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5598
             of W and input will be sparse.
W
weixing02 已提交
5599 5600

    Returns:
J
JiabinYang 已提交
5601
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5602 5603 5604 5605 5606

    Examples:

        .. code-block:: python

G
guosheng 已提交
5607 5608 5609
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5610 5611 5612 5613
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5614 5615
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5616
    dim = input.shape[1]
5617
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5618 5619 5620
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5621 5622 5623 5624
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5625 5626
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5627 5628 5629
    else:
        pass

J
JiabinYang 已提交
5630
    weights = None
5631 5632 5633 5634
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5635
    if not is_custom:
J
JiabinYang 已提交
5636 5637 5638 5639 5640 5641 5642 5643
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5644
            shape=[num_classes, dim],
J
JiabinYang 已提交
5645 5646
            is_bias=False,
            dtype=input.dtype)
5647 5648 5649
    inputs = {
        "X": input,
        "W": weights,
5650
        "PathTable": path_table,
5651
        "PathCode": path_code,
5652 5653
        "Label": label
    }
W
weixing02 已提交
5654
    if helper.bias_attr:
5655
        if not is_custom:
J
JiabinYang 已提交
5656 5657
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5658
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5659 5660 5661 5662 5663 5664
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5665
                shape=[num_classes, 1],
J
JiabinYang 已提交
5666 5667 5668
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5669 5670
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5671
        inputs=inputs,
W
weixing02 已提交
5672
        outputs={"Out": out,
5673 5674 5675 5676 5677 5678 5679
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5680 5681 5682
    return out


Y
fix ci.  
ying 已提交
5683
def transpose(x, perm, name=None):
Y
ying 已提交
5684 5685 5686 5687 5688 5689 5690
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5691 5692 5693
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5694 5695 5696 5697 5698 5699 5700

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5701
            # use append_batch_size=False to avoid prepending extra
5702
            # batch size in shape
5703
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5704
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5705
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5706 5707
    """

Y
fix ci.  
ying 已提交
5708
    if len(perm) != len(x.shape):
Y
ying 已提交
5709 5710 5711
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5712 5713 5714 5715 5716 5717
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5718 5719

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5720 5721
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5722
    helper.append_op(
5723
        type='transpose2',
Y
fix ci.  
ying 已提交
5724
        inputs={'X': [x]},
5725 5726
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5727 5728
        attrs={'axis': perm})
    return out
5729 5730


5731 5732 5733 5734 5735 5736 5737
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5738
    """
5739 5740 5741 5742 5743 5744 5745
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5774 5775 5776 5777 5778 5779 5780 5781 5782
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5783 5784 5785
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5786 5787 5788 5789 5790
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5818 5819 5820
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5833
            output.dims = {8, 8}
5834

5835
            output.lod = [[4, 4]]
5836

T
Tink_Y 已提交
5837
    Examples:
5838 5839 5840

        .. code-block:: python

5841 5842
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5843 5844

    """
5845 5846
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
W
wanghaoshuang 已提交
5847 5848 5849 5850 5851 5852 5853 5854 5855 5856

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5857 5858 5859 5860 5861 5862 5863
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5864
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5865
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5866
    helper.append_op(
5867
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5868
    return out
5869 5870


Y
yuyang18 已提交
5871
@templatedoc()
5872
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5873 5874
    """
    ${comment}
5875 5876

    Args:
Y
yuyang18 已提交
5877
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5878 5879
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5880 5881 5882 5883 5884
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5885
        ${out_comment}.
5886 5887

    Examples:
Y
yuyang18 已提交
5888 5889 5890 5891
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5892 5893 5894 5895 5896 5897
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5898
    out = helper.create_variable_for_type_inference(dtype)
5899 5900 5901 5902 5903
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5904
    return helper.append_activation(out)
5905 5906


Y
yuyang18 已提交
5907
@templatedoc()
5908 5909
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5910 5911
    ${comment}

L
lujun 已提交
5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5955 5956

    Args:
Y
yuyang18 已提交
5957 5958
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5959 5960

    Returns:
Y
yuyang18 已提交
5961
        ${out_comment}.
5962 5963
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5964 5965 5966 5967 5968

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5969
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5970 5971 5972 5973 5974 5975
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5976 5977


5978 5979 5980
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5981
                               ignore_index=kIgnoreIndex,
5982
                               numeric_stable_mode=True,
5983
                               return_softmax=False):
5984 5985
    """
    **Softmax With Cross Entropy Operator.**
5986

5987 5988 5989 5990
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5991

5992 5993 5994
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5995

5996 5997 5998
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5999

6000
    The equation is as follows:
6001

6002
    1) Hard label (one-hot label, so every sample has exactly one class)
6003

6004 6005 6006 6007
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6008

6009 6010 6011
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6012

6013 6014 6015 6016
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
6017 6018 6019
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
6020

H
haowang101779990 已提交
6021
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6022

H
haowang101779990 已提交
6023
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6024

H
haowang101779990 已提交
6025
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6026 6027 6028

    and then cross entropy loss is calculated by softmax and label.

6029 6030 6031 6032 6033 6034 6035 6036
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
6037 6038
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
6039
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
6040 6041 6042
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
6043 6044 6045
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
6046
                                    stable algorithm. Default: True
6047
        return_softmax (bool): A flag indicating whether to return the softmax
6048
                               along with the cross entropy loss. Default: False
6049

6050
    Returns:
H
haowang101779990 已提交
6051 6052 6053 6054 6055
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
6056 6057 6058 6059 6060 6061 6062

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6063 6064
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6065 6066
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6067 6068
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6069 6070 6071 6072 6073 6074
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6075 6076 6077 6078 6079
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
6080 6081 6082 6083

    if return_softmax:
        return loss, softmax

6084 6085 6086
    return loss


6087 6088 6089
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6090
                                       num_true=1,
6091
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6092 6093 6094
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6095
                                       seed=0):
X
xuezhong 已提交
6096 6097 6098 6099 6100
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6101
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6102 6103 6104 6105 6106 6107 6108 6109
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6110
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6111 6112 6113 6114 6115 6116 6117 6118
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6119
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6131
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6132 6133 6134 6135 6136
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6137
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6138
            logits.
X
xuezhong 已提交
6139 6140 6141 6142 6143
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6144 6145 6146
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6167 6168
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6169 6170 6171 6172 6173

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6174
            'Labels': label,
X
xuezhong 已提交
6175 6176
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6177 6178 6179 6180
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6181
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6182 6183 6184
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6185
            'use_customized_samples': use_customized_samples,
6186
            'uniq': True,
X
xuezhong 已提交
6187 6188 6189 6190
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6191 6192
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6193 6194 6195 6196 6197 6198
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6199 6200
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6201
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6202
                'Label': sampled_softlabel},
X
xuezhong 已提交
6203 6204 6205
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6206
            'soft_label': True,
X
xuezhong 已提交
6207 6208 6209
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6210
    return loss / num_true
X
xuezhong 已提交
6211 6212


6213 6214
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6215 6216
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6217
    For each instance, it computes the smooth L1 loss element by element first
6218
    and then sums all the losses. So the shape of ouput Variable is
6219
    [batch_size, 1].
6220

6221 6222
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6223
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6224
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6225
            L1 loss op with same shape as :attr:`x`.
6226
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6227 6228
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6229
            by this tensor element by element.
6230
        outside_weight (Variable|None): A tensor with rank at least 2. This
6231 6232
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6233
            element by element.
6234
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6235 6236
           scalar with default value 1.0.

6237
    Returns:
6238
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6239 6240 6241 6242 6243

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6244 6245
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6246
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6247
            out = fluid.layers.smooth_l1(x=fc, y=label)
6248
    """
6249

6250
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6251 6252
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
6263
        attrs={'sigma': sigma if sigma is not None else 1.0})
6264
    return loss
6265 6266 6267 6268


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6269
    This layer creates the one-hot representations for input indices.
6270 6271

    Args:
Y
Yibing Liu 已提交
6272 6273
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6274 6275

    Returns:
Y
Yibing Liu 已提交
6276
        Variable: The one-hot representations of input.
6277 6278

    Examples:
C
caoying03 已提交
6279
        .. code-block:: python
6280

Y
Yibing Liu 已提交
6281 6282
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6283 6284
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6285
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6286 6287 6288 6289
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6290 6291
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6292
    return one_hot_out
Y
Yu Yang 已提交
6293 6294


Y
Yu Yang 已提交
6295
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6296
    """
Y
yi.wu 已提交
6297 6298 6299
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6300 6301 6302 6303 6304 6305

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6306 6307
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6308 6309 6310 6311 6312 6313

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6314 6315
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6316 6317
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6318 6319 6320 6321 6322
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6323
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6324
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6325 6326
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6327
            outputs={'Out': [counter]},
M
minqiyang 已提交
6328 6329
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6330 6331 6332
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6333 6334


6335
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6336
    """
C
caoying03 已提交
6337 6338
    Gives a new shape to the input Tensor without changing its data.

6339 6340 6341 6342 6343
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6344

6345
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6346

6347 6348 6349 6350
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6351
    2. 0 means the actual dimension value is going to be copied from the
6352 6353 6354 6355
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6356 6357

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6358
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6359
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6360

6361
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6362 6363
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6364 6365
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6366
    dimensions.
C
caoying03 已提交
6367

6368
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6369 6370 6371 6372
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6373 6374

    Args:
6375
        x(variable): The input tensor.
C
caoying03 已提交
6376 6377
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6378 6379 6380 6381 6382
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6383 6384
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6385 6386 6387
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6388
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6389
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6390

6391
    Returns:
G
guosheng 已提交
6392 6393 6394 6395
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6396

X
Xin Pan 已提交
6397 6398 6399
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6400 6401
    Examples:
        .. code-block:: python
G
guosheng 已提交
6402

6403
            data = fluid.layers.data(
6404
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6405
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6406
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6407 6408 6409
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6410
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6411 6412 6413 6414 6415
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6416

6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6432
    helper = LayerHelper("reshape2", **locals())
6433 6434
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6435
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6436
    helper.append_op(
6437
        type="reshape2",
X
Xin Pan 已提交
6438
        inputs=inputs,
D
dzhwinter 已提交
6439
        attrs={"shape": shape},
6440 6441
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6442

D
dzhwinter 已提交
6443
    return helper.append_activation(out)
6444

6445

6446
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6447
    """
M
minqiyang 已提交
6448 6449 6450
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6451
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6452

H
haowang101779990 已提交
6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6474

Y
Yibing Liu 已提交
6475
    Args:
6476
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6477
        axes (list): List of integers, indicating the dimensions to be squeezed.
6478
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6479 6480 6481 6482 6483 6484 6485 6486

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6487
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6488
    """
L
lujun 已提交
6489 6490
    assert not _in_dygraph_mode(), (
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6491
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6492 6493
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6494
    helper.append_op(
6495
        type="squeeze2",
6496
        inputs={"X": input},
Y
Yibing Liu 已提交
6497
        attrs={"axes": axes},
6498 6499
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6500

6501 6502 6503
    return out


6504
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6505
    """
M
minqiyang 已提交
6506 6507 6508
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6509

M
minqiyang 已提交
6510
    For example:
H
haowang101779990 已提交
6511 6512 6513

    .. code-block:: text

M
minqiyang 已提交
6514
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6515
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6516

Y
Yibing Liu 已提交
6517
    Args:
6518
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6519
        axes (list): List of integers, indicating the dimensions to be inserted.
6520
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6521 6522 6523 6524 6525 6526 6527 6528

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6529
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6530 6531
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6532 6533
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6534
    helper.append_op(
6535
        type="unsqueeze2",
6536
        inputs={"X": input},
Y
Yibing Liu 已提交
6537
        attrs={"axes": axes},
6538 6539
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6540

6541 6542
    return out

6543

Y
yangyaming 已提交
6544
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6545
    """
Y
Yibing Liu 已提交
6546
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6547 6548 6549 6550
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6551
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6552 6553 6554 6555 6556 6557

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6558
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6559 6560 6561
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6562
            target_lod: [4, 2]
Y
yangyaming 已提交
6563 6564

            then we get a 1-level LoDTensor:
6565
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6566 6567 6568 6569 6570 6571
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6572
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6573 6574 6575 6576
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6577
                y.data = [[2, 4]]
Y
yangyaming 已提交
6578 6579 6580
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6581
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6582 6583 6584 6585 6586 6587
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6588
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6589 6590 6591 6592
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6593
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6594 6595 6596 6597
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6598
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6599 6600 6601 6602 6603
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6604
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6605
                           from :attr:`y`.
Y
yangyaming 已提交
6606
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6607
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6608 6609

    Returns:
Y
Yibing Liu 已提交
6610
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6611 6612

    Raises:
Y
Yibing Liu 已提交
6613
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6614 6615 6616 6617 6618 6619 6620 6621 6622

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6623
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6649
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6678 6679
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6692 6693 6694
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6708 6709 6710 6711


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6712
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6713
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6714

G
guosheng 已提交
6715 6716 6717 6718
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6741
                         The length of :attr:paddings must be
G
guosheng 已提交
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6752

G
guosheng 已提交
6753 6754 6755 6756 6757 6758
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6759
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6760 6761 6762 6763 6764 6765 6766
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6767 6768


C
chengduo 已提交
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6800 6801
		And
            pad_value = -1,
C
chengduo 已提交
6802

T
Tink_Y 已提交
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6838
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6839 6840 6841 6842 6843 6844 6845 6846 6847
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6848 6849 6850 6851 6852 6853 6854
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6855 6856
    called label-smoothing regularization (LSR).

6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6880
                              be :math:`(1, class\_num)`.
6881 6882
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6883
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6903
    smooth_label = helper.create_variable_for_type_inference(dtype)
6904 6905 6906 6907 6908 6909 6910
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6911 6912


W
wopeizl 已提交
6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6949 6950


J
jerrywgz 已提交
6951 6952 6953 6954 6955 6956
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6957 6958
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6975 6976 6977
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6978 6979 6980 6981 6982 6983
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6984
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7025 7026
        .. code-block:: python

W
whs 已提交
7027 7028 7029 7030
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
7031
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7032 7033 7034 7035 7036 7037
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7038 7039


7040 7041 7042 7043
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7044
                 resample='BILINEAR',
7045 7046
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7047
                 align_mode=1):
7048
    """
Q
qiaolongfei 已提交
7049
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7050

7051
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7052 7053 7054
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7055

7056
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7057

7058
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7059

7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7070
    Align_corners and align_mode are optinal parameters,the calculation method 
7071 7072 7073 7074
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7075
    .. code-block:: text
7076

T
Tink_Y 已提交
7077
        For scale:
7078
          
T
Tink_Y 已提交
7079
            if align_corners = True && out_size > 1 :
7080

T
Tink_Y 已提交
7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7092

T
Tink_Y 已提交
7093 7094
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7095

T
Tink_Y 已提交
7096 7097
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7098

T
Tink_Y 已提交
7099 7100
          else:
              align_corners = True
7101

T
Tink_Y 已提交
7102 7103
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7104

T
Tink_Y 已提交
7105 7106
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7107

T
Tink_Y 已提交
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7118

T
Tink_Y 已提交
7119 7120 7121 7122
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7123

T
Tink_Y 已提交
7124 7125
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7126 7127 7128 7129 7130 7131 7132 7133 7134

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7135
    Args:
7136
        input (Variable): The input tensor of image resize layer,
7137 7138
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7139
        out_shape(list|tuple|Variable|None): Output shape of image resize
7140 7141
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7142
        scale(float|None): The multiplier for the input height or width.
7143 7144 7145
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7146 7147
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7148
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7149
                       currently.
7150
                       Default: 'BILINEAR'
7151 7152 7153
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7154
                                :attr:`out_shape` and :attr:`scale` specifying
7155 7156 7157 7158 7159 7160 7161
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7162 7163
                                constructing stage.
                                Default: None
7164 7165 7166 7167
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7168
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7169 7170
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7171 7172

    Returns:
Q
update  
qiaolongfei 已提交
7173 7174
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7175

7176 7177 7178
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7179
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7180 7181 7182
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7183 7184
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7185

7186 7187 7188
    Examples:
        .. code-block:: python

7189
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7190
    """
7191 7192 7193 7194
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7195 7196
    if resample not in resample_methods:
        raise ValueError(
7197
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7198
        )
7199
    resample_type = resample_methods[resample]
7200 7201 7202 7203 7204 7205

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7206
    if out_shape is None and scale is None:
7207
        raise ValueError("One of out_shape and scale must not be None.")
7208
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7209
    dtype = helper.input_dtype()
7210 7211 7212 7213

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7214 7215 7216
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7217
    if out_shape is not None:
7218 7219 7220 7221
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7222
            inputs['OutSize'] = out_shape
7223 7224 7225 7226 7227 7228 7229 7230
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7231 7232 7233 7234
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7235 7236 7237 7238 7239
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7240
    out = helper.create_variable_for_type_inference(dtype)
7241
    helper.append_op(
7242
        type='{}_interp'.format(resample_type),
7243
        inputs=inputs,
7244
        outputs={"Out": out},
7245 7246 7247 7248 7249 7250 7251
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7252
    return out
F
stash  
fengjiayi 已提交
7253 7254


7255
@templatedoc(op_type="bilinear_interp")
7256 7257 7258 7259
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7260 7261
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7262
                    align_mode=1):
7263
    """
7264 7265
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7266 7267
    in priority order.

7268 7269 7270 7271
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7272 7273
    again in the other direction.

7274
    For details of bilinear interpolation, please refer to Wikipedia:
7275
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7276

T
tink2123 已提交
7277
    Align_corners and align_mode are optinal parameters,the calculation 
7278 7279 7280 7281
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7282
    .. code-block:: text
7283

T
Tink_Y 已提交
7284
        For scale:
7285
          
T
Tink_Y 已提交
7286
            if align_corners = True && out_size > 1 :
7287

T
Tink_Y 已提交
7288 7289 7290 7291 7292
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7293

T
Tink_Y 已提交
7294 7295 7296 7297 7298 7299 7300 7301 7302 7303
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7304 7305


T
Tink_Y 已提交
7306
          else:
T
tink2123 已提交
7307

T
Tink_Y 已提交
7308 7309
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7310

T
Tink_Y 已提交
7311 7312
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7313 7314 7315



Y
yuyang18 已提交
7316 7317 7318 7319
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7320

Y
yuyang18 已提交
7321 7322 7323 7324 7325
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7326 7327 7328
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7329
                                :attr:`out_shape` and :attr:`scale` specifying
7330 7331 7332 7333 7334 7335 7336
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7337 7338
                                constructing stage.
                                Default: None
7339 7340
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7341 7342 7343

    Returns:
        ${out_comment}.
7344 7345 7346 7347 7348

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7349 7350
    """

7351 7352
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7353 7354


7355
@templatedoc(op_type="nearest_interp")
7356 7357 7358 7359
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7360 7361
                   actual_shape=None,
                   align_corners=True):
7362
    """
7363
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7364 7365
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7366 7367
    out_shape and scale in priority order.

7368 7369
    Example:

T
Tink_Y 已提交
7370 7371 7372 7373 7374
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7375

T
Tink_Y 已提交
7376 7377 7378 7379 7380 7381 7382 7383
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7384
          
T
Tink_Y 已提交
7385 7386
          if:
              align_corners = False
7387

T
Tink_Y 已提交
7388 7389
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7390

T
Tink_Y 已提交
7391 7392
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7393

T
Tink_Y 已提交
7394 7395
          else:
              align_corners = True
7396

T
Tink_Y 已提交
7397 7398
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7399

T
Tink_Y 已提交
7400 7401
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7402 7403


7404
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7405
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7406 7407 7408 7409 7410

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7411

Y
yuyang18 已提交
7412 7413 7414 7415 7416
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7417 7418 7419
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7420
                                :attr:`out_shape` and :attr:`scale` specifying
7421 7422 7423 7424 7425 7426 7427
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7428 7429
                                constructing stage.
                                Default: None
7430
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7431 7432 7433

    Returns:
        ${out_comment}.
7434 7435 7436 7437 7438

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7439 7440
    """

7441 7442
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7443 7444 7445 7446


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7447 7448 7449
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7450 7451 7452 7453 7454 7455 7456
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7457
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7458

7459
    Returns:
Q
update  
qiaolongfei 已提交
7460
        Variable: The output is a 4-D tensor of the shape
7461
        (num_batches, channls, out_h, out_w).
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7472 7473 7474
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7475 7476 7477
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7478 7479
def gather(input, index):
    """
Q
qiaolongfei 已提交
7480 7481
    **Gather Layer**

7482
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7483 7484 7485 7486
    of X indexed by `index` and concatenate them together.

    .. math::

7487
        Out = X[Index]
W
whs 已提交
7488 7489 7490 7491 7492 7493 7494


    .. code-block:: text


                Given:

7495 7496
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7497 7498 7499 7500 7501 7502 7503 7504 7505 7506
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7507
        input (Variable): The source input with rank>=1.
W
whs 已提交
7508 7509 7510 7511 7512 7513
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7514

W
whs 已提交
7515 7516 7517 7518 7519 7520
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7521
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7522 7523 7524 7525 7526 7527 7528 7529
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7561
    out = helper.create_variable_for_type_inference(dtype)
7562 7563 7564 7565 7566 7567 7568 7569 7570
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7571 7572 7573 7574 7575 7576 7577 7578 7579
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7580

Q
Qingsheng Li 已提交
7581
    Given the following input:
H
haowang101779990 已提交
7582

Q
Qingsheng Li 已提交
7583
    .. code-block:: text
H
haowang101779990 已提交
7584

Q
Qingsheng Li 已提交
7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7597

Q
Qingsheng Li 已提交
7598
    .. code-block:: text
H
haowang101779990 已提交
7599

Q
Qingsheng Li 已提交
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7615
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7616 7617 7618 7619 7620 7621 7622 7623

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
7624 7625
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
Q
Qingsheng Li 已提交
7626 7627
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7628
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7629 7630 7631 7632 7633 7634 7635 7636 7637
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7651

7652 7653 7654
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7655
    """
F
stash  
fengjiayi 已提交
7656
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7657
    dtype = x.dtype
X
Xin Pan 已提交
7658
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7659
    if seed is None:
7660
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7661
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7662
    if isinstance(seed, int):
F
fengjiayi 已提交
7663 7664 7665 7666 7667
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7668 7669 7670 7671
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7672
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7673 7674
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7675 7676
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7677
    return out
W
whs 已提交
7678 7679


7680
def log(x, name=None):
W
wanghaoshuang 已提交
7681 7682 7683 7684 7685
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7686
        Out = \\ln(x)
W
wanghaoshuang 已提交
7687 7688

    Args:
7689
        x (Variable): Input tensor.
7690 7691
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7692 7693 7694 7695 7696 7697 7698 7699

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7700
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7701 7702
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7703
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7704
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7705
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7706 7707 7708
    return out


7709
def relu(x, name=None):
W
wanghaoshuang 已提交
7710 7711
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7712
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7713 7714 7715 7716
    the tensor elementwise.

    .. math::

7717
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7718 7719

    Args:
7720
        x (Variable): The input tensor.
7721 7722
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7723 7724 7725 7726 7727 7728 7729 7730

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7731
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7732 7733
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7734
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7735
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7736 7737
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7738
    return out
7739 7740


C
chengduo 已提交
7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7782 7783 7784
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7785 7786 7787 7788
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7789
    .. math::
7790

H
haowang101779990 已提交
7791
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7792

7793
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7794 7795 7796 7797 7798
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7799
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7800
                           Its shape should be the same as input.
7801
        num_classes (int): The possible number of labels.
W
whs 已提交
7802 7803

    Returns:
M
minqiyang 已提交
7804 7805
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7806
                     Three variables:
M
minqiyang 已提交
7807

H
haowang101779990 已提交
7808 7809 7810
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7811 7812 7813 7814

    Examples:

        .. code-block:: python
7815

W
whs 已提交
7816 7817 7818 7819
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7820 7821 7822
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7823 7824
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7825 7826
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7827
        outputs={
W
whs 已提交
7828 7829 7830
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7831 7832 7833
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7902
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7903 7904 7905 7906 7907

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7908
            isinstance(shape, Variable)):
7909 7910 7911 7912 7913
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7914
    out = helper.create_variable_for_type_inference(x.dtype)
7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7932 7933


W
whs 已提交
7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7951

W
whs 已提交
7952
              out_shape = [2, 3, 5, 5]
7953

W
whs 已提交
7954
          Step 1:
7955

W
whs 已提交
7956 7957 7958
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7959

W
whs 已提交
7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8005
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8006
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8019

W
whs 已提交
8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8031
            isinstance(out_shape, Variable)):
W
whs 已提交
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8053 8054
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8055

8056 8057
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8058
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8059 8060 8061
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8062

8063 8064
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8065

H
haowang101779990 已提交
8066 8067
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8068 8069
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8070

H
haowang101779990 已提交
8071 8072 8073 8074 8075 8076 8077 8078
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8079 8080 8081

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8116
    out = helper.create_variable_for_type_inference("float32")
8117 8118 8119 8120 8121 8122 8123 8124

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8125 8126


M
minqiyang 已提交
8127 8128
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8129
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8130
    which compares left score and right score passed in.
M
minqiyang 已提交
8131
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8132 8133 8134

    .. math::

H
haowang101779990 已提交
8135
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8136 8137

    Args:
M
minqiyang 已提交
8138
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8139 8140
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8141
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8142 8143
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8144

M
minqiyang 已提交
8145
    Returns:
M
minqiyang 已提交
8146
       Variable: The ranking loss.
H
haowang101779990 已提交
8147

M
minqiyang 已提交
8148
    Raises:
M
minqiyang 已提交
8149
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8150

M
minqiyang 已提交
8151
    Examples:
H
haowang101779990 已提交
8152

M
minqiyang 已提交
8153
        .. code-block:: python
H
haowang101779990 已提交
8154

M
minqiyang 已提交
8155 8156 8157 8158 8159
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8160
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8161 8162 8163 8164 8165 8166
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8167 8168
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8192
        .. code-block:: text
W
whs 已提交
8193

T
Tink_Y 已提交
8194
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8195

T
Tink_Y 已提交
8196 8197
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8198

T
Tink_Y 已提交
8199
	      Case 0:
M
minqiyang 已提交
8200

T
Tink_Y 已提交
8201 8202 8203
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8204

T
Tink_Y 已提交
8205 8206 8207
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8208

T
Tink_Y 已提交
8209
	      Case 1:
M
minqiyang 已提交
8210

T
Tink_Y 已提交
8211 8212
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8213

T
Tink_Y 已提交
8214 8215 8216
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8217

T
Tink_Y 已提交
8218
	      Case 2:
M
minqiyang 已提交
8219

T
Tink_Y 已提交
8220 8221
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8222

T
Tink_Y 已提交
8223 8224 8225
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8226 8227


W
whs 已提交
8228 8229
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8230
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8254
    out = helper.create_variable_for_type_inference(dtype)
8255 8256 8257 8258 8259 8260 8261 8262 8263
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8264
    helper.append_op(
8265
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8266 8267 8268 8269

    return out


8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8282 8283 8284 8285 8286

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8287 8288
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8289 8290
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8291
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8312 8313 8314 8315 8316

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8317 8318
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8319 8320
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8321
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8342 8343 8344 8345 8346

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8347 8348
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8349 8350
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8351
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8373 8374 8375 8376 8377

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8378
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8379
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8380 8381
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8382
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8405 8406 8407 8408 8409

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8410 8411
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8412 8413
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8414
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8436 8437 8438 8439 8440

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8441 8442
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8443 8444
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8445
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8446 8447 8448 8449 8450 8451 8452 8453
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8454 8455 8456 8457
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8458 8459
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8460 8461 8462

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8463
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8464
          weight (alpha).
J
jerrywgz 已提交
8465
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8466 8467 8468
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8469
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8470
          will be named automatically.
J
jerrywgz 已提交
8471 8472 8473 8474 8475 8476 8477 8478

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8479
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8493
        attr=helper.param_attr,
J
jerrywgz 已提交
8494 8495 8496 8497
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8498
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8499 8500 8501 8502 8503 8504 8505 8506 8507
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8508 8509 8510 8511 8512 8513 8514 8515 8516 8517
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8518
    Returns:
8519
        output(${out_type}): ${out_comment}
8520 8521 8522

    Examples:

8523
    .. code-block:: python
8524

H
haowang101779990 已提交
8525 8526
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8527 8528
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8529
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8548
    Returns:
8549
        output(${out_type}): ${out_comment}
8550 8551 8552 8553 8554

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8555 8556
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8557 8558
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8559
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8577
    Returns:
8578
        output(${out_type}): ${out_comment}
8579 8580 8581 8582 8583

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8584 8585
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8586 8587
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8588
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8589 8590 8591 8592 8593 8594 8595 8596
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8597 8598 8599 8600
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8601

H
haowang101779990 已提交
8602
    For Example:
M
minqiyang 已提交
8603

H
haowang101779990 已提交
8604
    .. code-block:: text
8605

H
haowang101779990 已提交
8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8627 8628 8629

    Args:
        x (Variable): A tensor of rank >= axis.
8630 8631
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8632 8633 8634 8635 8636 8637 8638 8639
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8640 8641 8642
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8643 8644 8645 8646
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8647
        ValueError: If axis is not in range [0, rank(x)].
8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8664 8665
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8666
    helper.append_op(
8667
        type='flatten2',
8668
        inputs={"X": x},
8669 8670
        outputs={'Out': out,
                 'XShape': x_shape},
8671 8672
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8673 8674


C
chenweihang 已提交
8675
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8676
    """
C
chenweihang 已提交
8677
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8678
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8679 8680
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8681

H
haowang101779990 已提交
8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8699 8700

    Args:
C
chenweihang 已提交
8701 8702 8703
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8704 8705 8706 8707 8708 8709 8710 8711 8712 8713

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
8714 8715
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
C
chenweihang 已提交
8716
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8717 8718
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8719 8720 8721 8722 8723 8724
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8725
    return out
8726

8727

S
sneaxiy 已提交
8728 8729 8730 8731 8732 8733 8734 8735 8736
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8737

S
sneaxiy 已提交
8738
    .. math::
8739

S
sneaxiy 已提交
8740 8741 8742
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8743
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8744 8745 8746 8747
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8748 8749 8750
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8751 8752
    Returns:
        Variable: The output sequence mask.
8753

S
sneaxiy 已提交
8754
    """
8755 8756
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
8757

Q
qingqing01 已提交
8758
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8759
    if name is None:
X
Xin Pan 已提交
8760
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8761
    else:
X
Xin Pan 已提交
8762
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8763

Q
qingqing01 已提交
8764 8765 8766
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8767 8768
        outputs={'Y': out},
        attrs={
8769
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8770 8771 8772
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8773 8774


X
Xin Pan 已提交
8775
def stack(x, axis=0):
S
sneaxiy 已提交
8776 8777 8778 8779
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8780 8781 8782 8783 8784 8785 8786

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8787
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8788
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8789

C
chengduozh 已提交
8790 8791
    For Example:

C
chengduozh 已提交
8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8830
    Args:
8831
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8832
        axis (int|None): The axis along which all inputs are stacked.
8833

S
sneaxiy 已提交
8834 8835
    Returns:
        Variable: The stacked variable.
8836

S
sneaxiy 已提交
8837 8838
    """

X
Xin Pan 已提交
8839 8840 8841 8842 8843 8844
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8845
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8846
    helper.append_op(
S
sneaxiy 已提交
8847 8848
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8849

X
Xin Pan 已提交
8850
    return out
D
dzhwinter 已提交
8851 8852 8853 8854 8855 8856 8857


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8858

D
dzhwinter 已提交
8859 8860 8861
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8862
    raised.
D
dzhwinter 已提交
8863 8864

    Args:
M
minqiyang 已提交
8865
        x (Variable): Input variable.
D
dzhwinter 已提交
8866 8867
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8868

D
dzhwinter 已提交
8869 8870
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8871

D
dzhwinter 已提交
8872 8873 8874 8875 8876 8877 8878 8879 8880 8881
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8882
    for _ in range(num):
X
Xin Pan 已提交
8883
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8884 8885 8886 8887 8888 8889 8890 8891

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8904

W
whs 已提交
8905 8906 8907 8908
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8909

W
whs 已提交
8910
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8911

W
whs 已提交
8912
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8913

W
whs 已提交
8914 8915 8916 8917
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8918

W
whs 已提交
8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8935
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8936 8937 8938 8939 8940 8941
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8942 8943


G
fix  
gongweibao 已提交
8944 8945 8946
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8947
@templatedoc()
G
fix  
gongweibao 已提交
8948 8949 8950 8951 8952 8953 8954 8955 8956
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8957
    ${comment}
G
fix  
gongweibao 已提交
8958 8959

    Args:
G
gongweibao 已提交
8960 8961 8962
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8963
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8964 8965 8966
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8967 8968
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8969
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8970

8971 8972 8973 8974 8975
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8976 8977 8978
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8979
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8996 8997


G
gongweibao 已提交
8998
@templatedoc()
X
Xin Pan 已提交
8999
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9000
    """
G
gongweibao 已提交
9001
    ${comment}
G
fix  
gongweibao 已提交
9002 9003

    Args:
G
gongweibao 已提交
9004 9005 9006 9007
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9008 9009 9010
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9011
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9012

9013 9014 9015 9016
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9017 9018 9019
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9020
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9021 9022 9023 9024 9025 9026 9027 9028 9029 9030
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9031
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9032 9033 9034 9035 9036
        })

    return out


G
gongweibao 已提交
9037
@templatedoc()
G
fix  
gongweibao 已提交
9038
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9039
    """
G
gongweibao 已提交
9040
    ${comment}
G
fix  
gongweibao 已提交
9041 9042

    Args:
G
gongweibao 已提交
9043 9044 9045 9046
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9047
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9048 9049

    Returns:
G
gongweibao 已提交
9050
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9051

9052 9053 9054 9055 9056 9057 9058 9059 9060 9061
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
9062 9063 9064
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9065
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9077
@templatedoc()
G
fix  
gongweibao 已提交
9078 9079 9080 9081 9082 9083 9084 9085 9086
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9087
    ${comment}
G
fix  
gongweibao 已提交
9088 9089

    Args:
G
gongweibao 已提交
9090 9091
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9092
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9093 9094 9095 9096
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9097
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9098 9099

    Returns:
G
gongweibao 已提交
9100
        out (Variable): ${out_comment}
9101 9102 9103 9104 9105 9106 9107 9108

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9109 9110 9111
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9112
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9131
@templatedoc()
X
Xin Pan 已提交
9132
def sum(x):
G
fix  
gongweibao 已提交
9133
    """
G
gongweibao 已提交
9134
    ${comment}
G
fix  
gongweibao 已提交
9135 9136

    Args:
G
gongweibao 已提交
9137
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9138 9139

    Returns:
G
gongweibao 已提交
9140
        out (Variable): ${out_comment}
9141 9142 9143 9144 9145 9146

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9147 9148 9149
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9150 9151
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9152 9153 9154 9155
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9156
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9157 9158 9159 9160

    return out


G
gongweibao 已提交
9161
@templatedoc()
G
fix  
gongweibao 已提交
9162 9163
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9164
    ${comment}
G
fix  
gongweibao 已提交
9165 9166

    Args:
G
gongweibao 已提交
9167 9168 9169 9170
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9171 9172

    Returns:
G
gongweibao 已提交
9173
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9174

9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9186 9187 9188
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9189 9190
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9204 9205
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9206
    Get the shape of the input.
G
fix  
gongweibao 已提交
9207 9208

    Args:
C
chengduozh 已提交
9209
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9210 9211

    Returns:
C
fix doc  
chengduozh 已提交
9212
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9213

9214 9215 9216 9217 9218 9219
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9220 9221 9222
    """

    helper = LayerHelper('shape', **locals())
9223
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9224
    helper.append_op(
G
fix  
gongweibao 已提交
9225
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9226 9227

    return out
G
merge  
gongweibao 已提交
9228 9229


S
sneaxiy 已提交
9230 9231 9232 9233
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9234
    if _in_dygraph_mode():
X
Xin Pan 已提交
9235 9236 9237
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9238 9239 9240 9241
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9242 9243
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9244
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9245 9246 9247
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9248

S
sneaxiy 已提交
9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9260
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9261 9262 9263 9264 9265 9266 9267 9268
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9269
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9270
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9271 9272 9273 9274 9275 9276

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9277
    if name is None:
X
Xin Pan 已提交
9278
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9279 9280 9281
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9282 9283 9284 9285 9286 9287 9288 9289 9290 9291

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9292
    return helper.append_activation(out)
S
sneaxiy 已提交
9293 9294


X
Xin Pan 已提交
9295
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9296 9297 9298
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9299
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9300 9301 9302
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9303
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9304 9305 9306
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9307
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9308 9309 9310
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9311
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9312 9313 9314
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9315
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9316 9317 9318
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9319
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9320 9321 9322
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9323 9324 9325 9326 9327 9328 9329 9330
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9331
for func in [
9332 9333 9334 9335 9336 9337 9338 9339 9340
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9341 9342 9343 9344 9345
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9346 9347
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9348
        ])
M
minqiyang 已提交
9349 9350


9351
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9352 9353
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9354 9355
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9356 9357 9358

    if out is None:
        if name is None:
X
Xin Pan 已提交
9359
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9375
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9387 9388 9389 9390 9391 9392 9393 9394 9395

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9396 9397 9398 9399 9400 9401 9402
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9403
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9415 9416 9417 9418 9419 9420 9421 9422 9423

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9424 9425 9426 9427 9428 9429 9430
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9431
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9443 9444 9445 9446 9447 9448 9449 9450 9451

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9452 9453 9454 9455 9456 9457 9458
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9459
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9460 9461 9462 9463 9464 9465 9466 9467 9468 9469
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9470 9471 9472 9473 9474 9475 9476

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9477 9478 9479 9480
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9496 9497 9498 9499 9500 9501 9502

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9503 9504 9505 9506 9507
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9508 9509 9510 9511
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9535 9536 9537 9538 9539 9540 9541

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9542 9543 9544 9545 9546
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9547 9548 9549 9550
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9551 9552 9553 9554 9555 9556 9557 9558

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9577
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9578 9579 9580 9581 9582 9583 9584 9585 9586 9587
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9630
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9631 9632 9633 9634 9635 9636 9637 9638 9639
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9640 9641
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9642 9643 9644 9645 9646 9647
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9648 9649 9650
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9651 9652
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9653 9654 9655 9656 9657 9658
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9659
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9660
        name(basestring|None): Name of the output.
9661 9662
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9663 9664 9665

    Returns:
        out(${out_type}): ${out_comment}
9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9680 9681 9682 9683 9684
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9685
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9686 9687 9688 9689 9690 9691 9692 9693
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9694 9695
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9716
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9717 9718 9719 9720 9721 9722 9723 9724 9725 9726
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9727 9728


J
JiabinYang 已提交
9729
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9730
    """
J
JiabinYang 已提交
9731
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9732 9733 9734

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9735
    The attr blocksize indicates the input block size.
9736 9737

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9738
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9739 9740

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9741
    (but keeping all data)
J
JiabinYang 已提交
9742

J
JiabinYang 已提交
9743
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9744
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9745 9746 9747 9748 9749
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9750
    Args:
J
JiabinYang 已提交
9751
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9752
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9753 9754

    Returns:
J
JiabinYang 已提交
9755
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9756 9757

    Raises:
J
JiabinYang 已提交
9758
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9759 9760 9761 9762 9763

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9764
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9765
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9766
                x=data, blocksize=2)
9767 9768 9769 9770 9771 9772

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9773 9774
    """

J
JiabinYang 已提交
9775
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9776

J
JiabinYang 已提交
9777 9778
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9779 9780

    if name is None:
J
JiabinYang 已提交
9781 9782
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9783 9784 9785 9786 9787
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9788
        type="space_to_depth",
J
JiabinYang 已提交
9789
        inputs={"X": x},
J
JiabinYang 已提交
9790
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9791
        outputs={"Out": out})
J
JiabinYang 已提交
9792 9793
    return out

J
JiabinYang 已提交
9794

S
sneaxiy 已提交
9795 9796
@templatedoc()
def sequence_reverse(x, name=None):
9797
    """
S
sneaxiy 已提交
9798 9799 9800 9801 9802 9803 9804 9805 9806
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
9807 9808
    assert not _in_dygraph_mode(), (
        "sequence layer is not supported in dygraph mode yet.")
S
sneaxiy 已提交
9809 9810
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9811
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9812 9813 9814 9815 9816 9817 9818 9819 9820 9821
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9822 9823


9824 9825 9826 9827 9828 9829
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
9830 9831 9832 9833 9834
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9835

9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
9848
        act (str, default None): Activation to be applied to the output of this layer.
9849 9850 9851 9852 9853 9854 9855

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9856
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
9868
    return helper.append_activation(out)
9869 9870


B
barrierye 已提交
9871
def similarity_focus(input, axis, indexes, name=None):
9872
    """
B
barrierye 已提交
9873
    SimilarityFocus Operator
B
barrierye 已提交
9874 9875

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9876

9877 9878 9879
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9880
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9881 9882 9883 9884 9885 9886 9887
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9888
       each index.
B
barrierye 已提交
9889 9890 9891 9892
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9942
    Args:
9943
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9944
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9945
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9946
            1, 2 or 3.
B
barrierye 已提交
9947
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9948 9949

    Returns:
H
haowang101779990 已提交
9950 9951
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9952

B
barrierye 已提交
9953 9954
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9955

B
barrierye 已提交
9956
            data = fluid.layers.data(
B
barrierye 已提交
9957 9958
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9959

B
barrierye 已提交
9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9972 9973 9974 9975 9976
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9977 9978 9979 9980 9981 9982 9983
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9984 9985


M
minqiyang 已提交
9986 9987
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9988 9989
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9990 9991
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10030
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10031
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10032 10033 10034 10035 10036 10037

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10038

M
minqiyang 已提交
10039 10040 10041
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10042 10043
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10044 10045
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10046 10047 10048 10049 10050 10051 10052
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10053 10054


D
dengkaipeng 已提交
10055
@templatedoc()
10056 10057
def grid_sampler(x, grid, name=None):
    """
10058
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10059
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10060 10061 10062 10063
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10064
    interpolation value of 4 nearest corner points.
10065

H
haowang101779990 已提交
10066
    .. code-block:: text
10067

H
haowang101779990 已提交
10068 10069
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10070

H
haowang101779990 已提交
10071 10072
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10073

H
haowang101779990 已提交
10074 10075 10076
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10077

H
haowang101779990 已提交
10078 10079 10080 10081 10082 10083 10084 10085 10086
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10087

H
haowang101779990 已提交
10088 10089 10090 10091
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10092

H
haowang101779990 已提交
10093 10094 10095 10096
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10097

H
haowang101779990 已提交
10098 10099 10100 10101
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10102

H
haowang101779990 已提交
10103 10104
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10105 10106

    Args:
10107 10108 10109
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10110 10111

    Returns:
H
haowang101779990 已提交
10112
        Variable: Output of shape [N, C, H, W] data samples input X
10113 10114
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10115 10116 10117 10118 10119 10120 10121 10122
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10123

D
dengkaipeng 已提交
10124 10125 10126 10127 10128 10129 10130 10131 10132
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10133
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10134 10135
    ipts = {'X': x, 'Grid': grid}

10136
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10137 10138 10139
    return out


G
gmcather 已提交
10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10206
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10207 10208 10209 10210 10211 10212 10213
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10214

H
heqiaozhi 已提交
10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10229 10230 10231 10232
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10233
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10234 10235
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10236
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10237 10238

    .. math::
H
haowang101779990 已提交
10239 10240 10241
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10242 10243

    Where:
H
haowang101779990 已提交
10244 10245
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10260

G
gmcather 已提交
10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10277 10278 10279 10280 10281 10282 10283 10284 10285 10286


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10287
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10288

Q
Qiao Longfei 已提交
10289
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10290 10291 10292
    For example:

    .. math::
H
haowang101779990 已提交
10293
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10294

Q
Qiao Longfei 已提交
10295
    In this formula:
10296 10297
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10298
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10299
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10300 10301 10302
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10303 10304
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10305 10306 10307
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10308
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10309
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10310
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10311 10312 10313 10314
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10315
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10316 10317 10318 10319

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10320
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10321 10322
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10323
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10324 10325 10326 10327

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10328
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10369 10370


S
shippingwang 已提交
10371
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10372 10373
    """
    **Shuffle Channel Operator**
10374

S
shippingwang 已提交
10375 10376 10377 10378 10379 10380
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10381
    
S
shippingwang 已提交
10382
    .. code-block:: text
10383

S
shippingwang 已提交
10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10412
    Args: 
S
shippingwang 已提交
10413 10414
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10415 10416

    Returns:
S
shippingwang 已提交
10417 10418
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10419 10420

    Raises:
S
shippingwang 已提交
10421
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10422 10423 10424

    Examples:
        .. code-block:: python
10425 10426

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10427
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10428 10429 10430
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10431
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10432 10433 10434 10435 10436 10437 10438 10439 10440

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10441
    return out
S
Add  
shippingwang 已提交
10442 10443


10444
@templatedoc()
D
dengkaipeng 已提交
10445
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10446 10447 10448 10449 10450 10451 10452 10453
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10454
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10455
        name (str, default None): The name of this layer.
10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10468
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10481 10482
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10483 10484 10485
    return out


S
sneaxiy 已提交
10486
class PyFuncRegistry(object):
S
sneaxiy 已提交
10487 10488 10489
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10490
        if func is None or not callable(func):
S
sneaxiy 已提交
10491 10492 10493
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10494
        # find named args using reflection
S
sneaxiy 已提交
10495 10496 10497 10498 10499 10500 10501
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10502 10503 10504
        '''
        Why record self here?

M
minqiyang 已提交
10505 10506
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10507
           to find the registered function corresponding
M
minqiyang 已提交
10508
           to :code:`idx`.
S
sneaxiy 已提交
10509

M
minqiyang 已提交
10510 10511
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10512
           whose reference count is 1 would cause
M
minqiyang 已提交
10513
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10514 10515
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10516
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10531 10532 10533 10534 10535 10536 10537 10538 10539
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10540

S
sneaxiy 已提交
10541 10542
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10543 10544

        ret = []
S
sneaxiy 已提交
10545 10546 10547
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10548 10549
                continue

S
sneaxiy 已提交
10550 10551
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10552

S
sneaxiy 已提交
10553 10554 10555
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10556

S
sneaxiy 已提交
10557
        return tuple(ret)
S
sneaxiy 已提交
10558 10559


S
sneaxiy 已提交
10560 10561 10562 10563
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10564

S
sneaxiy 已提交
10565 10566 10567 10568 10569 10570 10571 10572
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10573
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10574

S
sneaxiy 已提交
10575 10576
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10577 10578 10579 10580
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10581
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10582
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10583 10584
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10585 10586 10587 10588 10589
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10590
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10591
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10592
                                       None means no backward. Default None.
S
sneaxiy 已提交
10593
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10594
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10595 10596
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10597
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10598 10599 10600

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10601 10602

    Examples:
M
minqiyang 已提交
10603

S
sneaxiy 已提交
10604 10605 10606 10607 10608
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10609
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10610 10611
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10612
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10613 10614 10615
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10616
        >>>
S
sneaxiy 已提交
10617 10618 10619 10620 10621
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10622
        >>>     print(x)
S
sneaxiy 已提交
10623 10624 10625 10626 10627 10628
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10629
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10630 10631
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10632 10633
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10634 10635 10636 10637 10638 10639 10640 10641
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10642
    """
S
sneaxiy 已提交
10643
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10644 10645 10646
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10647
        x = [x]
S
sneaxiy 已提交
10648 10649
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10650

S
sneaxiy 已提交
10651 10652 10653
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10654
        out_list = [out]
S
sneaxiy 已提交
10655
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10656
        out_list = out
S
sneaxiy 已提交
10657 10658 10659
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10660

S
sneaxiy 已提交
10661 10662
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10663
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10664 10665

    for each_out in out_list:
S
sneaxiy 已提交
10666 10667
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10668 10669
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10670

S
sneaxiy 已提交
10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10686 10687 10688 10689

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10690 10691
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10692 10693 10694
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10695
        })
S
sneaxiy 已提交
10696
    return out
S
sneaxiy 已提交
10697 10698 10699


# For debug usage
S
sneaxiy 已提交
10700 10701 10702 10703
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10756

M
minqiyang 已提交
10757

M
minqiyang 已提交
10758
def huber_loss(input, label, delta):
10759
    """
M
minqiyang 已提交
10760 10761 10762
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10763 10764 10765 10766

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10767
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10768 10769 10770 10771

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10772
        huber\_loss = 0.5 * (label - input) * (label - input)
10773 10774 10775 10776 10777 10778 10779


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10780
        delta (float): The parameter of huber loss, which controls
10781 10782 10783
                       the range of outliers

    Returns:
M
minqiyang 已提交
10784
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10785 10786 10787 10788 10789

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10790
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10791
    """
M
minqiyang 已提交
10792
    helper = LayerHelper('huber_loss', **locals())
10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10804 10805


D
dengkaipeng 已提交
10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10906 10907


C
ceci3 已提交
10908
from .ops import square
C
ceci3 已提交
10909
from .control_flow import equal
C
ceci3 已提交
10910 10911


C
ceci3 已提交
10912 10913 10914
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10915

C
ceci3 已提交
10916
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10917 10918

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10919
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10920 10921 10922 10923 10924
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10925 10926
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10927 10928 10929 10930 10931 10932 10933

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10934 10935 10936 10937 10938 10939 10940 10941
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10942 10943 10944 10945 10946 10947 10948
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10949
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10950 10951
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10952 10953
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10954 10955 10956 10957
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10958 10959 10960
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10961 10962 10963
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
10964 10965


R
ruri 已提交
10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

        Out(Variable): the pixel shuffle result is a tensor variable with the same shape and the same type as the input.

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

            input = fluid.layers.data(shape=[9,4,4])
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
H
heqiaozhi 已提交
11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109


def continuous_value_model(input, cvm, use_cvm=True):
    """
    **continuous_value_model layers**
    continuous value moded(cvm). now, it only consider show and click value in ctr project.
    We assume that input is a embedding vector with cvm_feature, which shape is [N * D] (D is 2 + embedding dim)
    if use_cvm is True, we will log(cvm_feature), and output shape is [N * D].
    if use_cvm is False, we will remove cvm_feature from inpput, and output shape is [N * (D - 2)].
    
    This layer accepts a tensor named input which is ID after embedded and lod level is 1 ,
         cvm is a show_click info.
    Args:
        input (Variable): a 2-D LodTensor with shape [N x D], where N is the
                                batch size, D is 2 + the embedding dim. 
                                lod level = 1.
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
                          if don't use cvm, the output dim is input dim - 2(remove show and click).
                          (cvm op is a customized op, which input is a sequence had embedd_with_cvm default, so we need a op named cvm to decided whever use it or not.)
    Returns:
        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim,
                  if don't use cvm, D is equal to input dim - 2. 
    Examples:
        .. code-block:: python
          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})