Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
54dddee3
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
54dddee3
编写于
4月 09, 2019
作者:
H
heqiaozhi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add continuous value model op
test=develop
上级
1c8b34dd
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
314 addition
and
0 deletion
+314
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/operators/cvm_op.cc
paddle/fluid/operators/cvm_op.cc
+163
-0
paddle/fluid/operators/cvm_op.h
paddle/fluid/operators/cvm_op.h
+105
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+45
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
54dddee3
...
...
@@ -237,6 +237,7 @@ paddle.fluid.layers.tree_conv (ArgSpec(args=['nodes_vector', 'edge_set', 'output
paddle.fluid.layers.npair_loss (ArgSpec(args=['anchor', 'positive', 'labels', 'l2_reg'], varargs=None, keywords=None, defaults=(0.002,)), ('document', '46994d10276dd4cb803b4062b5d14329'))
paddle.fluid.layers.pixel_shuffle (ArgSpec(args=['x', 'upscale_factor'], varargs=None, keywords=None, defaults=None), ('document', 'ad669cdf83e72a69ebc5ed79e36486de'))
paddle.fluid.layers.fsp_matrix (ArgSpec(args=['x', 'y'], varargs=None, keywords=None, defaults=None), ('document', 'b76ccca3735bea4a58a0dbf0d77c5393'))
paddle.fluid.layers.continuous_value_model (ArgSpec(args=['input', 'cvm', 'use_cvm'], varargs=None, keywords=None, defaults=(True,)), ('document', 'f870a9e750f2309f044c24bbdc3f232e'))
paddle.fluid.layers.data (ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)), ('document', '33bbd42027d872b3818b3d64ec52e139'))
paddle.fluid.layers.open_files (ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None)), ('document', 'b1ae2e1cc0750e58726374061ea90ecc'))
paddle.fluid.layers.read_file (ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None), ('document', 'b0a1c2fc51c27a106da28f3308c41f5e'))
...
...
paddle/fluid/operators/cvm_op.cc
0 → 100644
浏览文件 @
54dddee3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/cvm_op.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
class
CVMOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"CVM"
),
"Input(CVM) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
"Output(Y) should be not null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
cvm_dims
=
ctx
->
GetInputDim
(
"CVM"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2UL
,
"Input(X)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
cvm_dims
.
size
(),
2UL
,
"Input(CVM)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
cvm_dims
[
1
],
2UL
,
"The 2nd dimension of "
"Input(CVM) should be 2."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"use_cvm"
))
{
ctx
->
SetOutputDim
(
"Y"
,
{
x_dims
[
0
],
x_dims
[
1
]});
}
else
{
ctx
->
SetOutputDim
(
"Y"
,
{
x_dims
[
0
],
x_dims
[
1
]
-
2
});
}
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Y"
);
}
protected:
// Explicitly set that the data type of computation kernel of
// cvm
// is determined by its input "X".
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
device_context
());
}
};
class
CVMGradientOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"CVM"
),
"Input(CVM) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
"Input(Y@GRAD) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Output(X@GRAD) should be not null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
cvm_dims
=
ctx
->
GetInputDim
(
"CVM"
);
auto
dy_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Y"
));
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
dy_dims
.
size
(),
2
,
"Input(Y@Grad)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
cvm_dims
.
size
(),
2
,
"Input(CVM)'s rank should be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
dy_dims
[
0
],
"The 1st dimension of Input(X) and Input(Y@Grad) should "
"be equal."
);
PADDLE_ENFORCE_EQ
(
cvm_dims
[
1
],
2
,
"When Attr(soft_label) == false, the 2nd dimension of "
"Input(CVM) should be 2."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
ShareLoD
(
"X"
,
framework
::
GradVarName
(
"X"
));
}
protected:
// Explicitly set that the data type of computation kernel of
// cvm
// is determined by its input "X".
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
device_context
());
}
};
class
CVMOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(LodTensor, default LodTensor<float>), a 2-D tensor with shape "
"[N x D],"
" where N is the batch size and D is the emebdding dim. "
);
AddInput
(
"CVM"
,
"(Tensor), a 2-D Tensor with shape [N x 2], where N is the batch "
"size, 2 is show and click."
);
AddOutput
(
"Y"
,
"(LodTensor, default LodTensor<float>), a 2-D tensor with shape "
"[N x K]."
);
AddAttr
<
bool
>
(
"use_cvm"
,
"bool, use cvm or not"
).
SetDefault
(
true
);
AddComment
(
R"DOC(
CVM Operator.
example:
input = fluid.layers.data(name=\"input\", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype=\"int64\")
label = fluid.layers.data(name=\"label\", shape=[-1, 1], append_batch_size=False, dtype=\"int64\")
embed = fluid.layers.embedding(
input=input,
size=[100, 11],
dtype='float32')
ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype=\"int64\", value=1)
show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
show_clk.stop_gradient = True
input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
)DOC"
);
}
};
class
CVMGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"cvm_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"CVM"
,
Input
(
"CVM"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Y"
),
OutputGrad
(
"Y"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"CVM"
),
InputGrad
(
"CVM"
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
cvm
,
ops
::
CVMOp
,
ops
::
CVMOpMaker
,
ops
::
CVMGradOpDescMaker
);
REGISTER_OPERATOR
(
cvm_grad
,
ops
::
CVMGradientOp
);
REGISTER_OP_CPU_KERNEL
(
cvm
,
ops
::
CVMOpKernel
<
float
>
,
ops
::
CVMOpKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
cvm_grad
,
ops
::
CVMGradOpKernel
<
float
>
,
ops
::
CVMGradOpKernel
<
double
>
);
paddle/fluid/operators/cvm_op.h
0 → 100644
浏览文件 @
54dddee3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
>
class
CVMOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
LoDTensor
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
const
T
*
x_data
=
x
->
data
<
T
>
();
auto
lod
=
x
->
lod
()[
0
];
int64_t
item_size
=
x
->
numel
()
/
x
->
dims
()[
0
];
int
offset
=
2
;
if
(
!
context
.
Attr
<
bool
>
(
"use_cvm"
))
{
item_size
-=
offset
;
}
LoDTensor
*
y
=
context
.
Output
<
LoDTensor
>
(
"Y"
);
T
*
y_data
=
y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
seq_num
=
static_cast
<
int
>
(
lod
.
size
())
-
1
;
for
(
int
i
=
0
;
i
<
seq_num
;
++
i
)
{
int64_t
seq_len
=
static_cast
<
int64_t
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
for
(
int
j
=
0
;
j
<
seq_len
;
++
j
)
{
if
(
context
.
Attr
<
bool
>
(
"use_cvm"
))
{
std
::
memcpy
(
y_data
,
x_data
,
item_size
*
sizeof
(
T
));
y_data
[
0
]
=
log
(
y_data
[
0
]
+
1
);
y_data
[
1
]
=
log
(
y_data
[
1
]
+
1
)
-
y_data
[
0
];
x_data
+=
item_size
;
y_data
+=
item_size
;
}
else
{
std
::
memcpy
(
y_data
,
x_data
+
offset
,
item_size
*
sizeof
(
T
));
x_data
+=
item_size
+
offset
;
y_data
+=
item_size
;
}
}
}
}
};
template
<
typename
T
>
class
CVMGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
LoDTensor
*
dx
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
T
*
dx_data
=
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
Tensor
*
cvm
=
context
.
Input
<
Tensor
>
(
"CVM"
);
const
T
*
cvm_data
=
cvm
->
data
<
T
>
();
int
offset
=
2
;
const
framework
::
LoDTensor
*
dOut
=
context
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Y"
));
const
T
*
dout_data
=
dOut
->
data
<
T
>
();
auto
lod
=
dx
->
lod
()[
0
];
int64_t
item_size
=
dx
->
numel
()
/
dx
->
dims
()[
0
];
if
(
!
context
.
Attr
<
bool
>
(
"use_cvm"
))
{
item_size
-=
offset
;
}
int
seq_num
=
static_cast
<
int
>
(
lod
.
size
())
-
1
;
for
(
int
i
=
0
;
i
<
seq_num
;
++
i
)
{
int64_t
seq_len
=
static_cast
<
int64_t
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
for
(
int
j
=
0
;
j
<
seq_len
;
++
j
)
{
if
(
context
.
Attr
<
bool
>
(
"use_cvm"
))
{
std
::
memcpy
(
dx_data
,
dout_data
,
item_size
*
sizeof
(
T
));
dx_data
[
0
]
=
cvm_data
[
0
];
dx_data
[
1
]
=
cvm_data
[
1
];
dx_data
+=
item_size
;
dout_data
+=
item_size
;
}
else
{
std
::
memcpy
(
dx_data
+
offset
,
dout_data
,
item_size
*
sizeof
(
T
));
dx_data
[
0
]
=
cvm_data
[
0
];
dx_data
[
1
]
=
cvm_data
[
1
];
dx_data
+=
item_size
+
offset
;
dout_data
+=
item_size
;
}
}
cvm_data
+=
offset
;
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/layers/nn.py
浏览文件 @
54dddee3
...
...
@@ -193,6 +193,7 @@ __all__ = [
'npair_loss'
,
'pixel_shuffle'
,
'fsp_matrix'
,
'continuous_value_model'
,
]
kIgnoreIndex
=
-
100
...
...
@@ -11062,3 +11063,47 @@ def fsp_matrix(x, y):
input_param_name
=
'x'
))
helper
.
append_op
(
type
=
'fsp'
,
inputs
=
{
'X'
:
x
,
'Y'
:
y
},
outputs
=
{
'Out'
:
out
})
return
out
def
continuous_value_model
(
input
,
cvm
,
use_cvm
=
True
):
"""
**continuous_value_model layers**
continuous value moded(cvm). now, it only consider show and click value in ctr project.
We assume that input is a embedding vector with cvm_feature, which shape is [N * D] (D is 2 + embedding dim)
if use_cvm is True, we will log(cvm_feature), and output shape is [N * D].
if use_cvm is False, we will remove cvm_feature from inpput, and output shape is [N * (D - 2)].
This layer accepts a tensor named input which is ID after embedded and lod level is 1 ,
cvm is a show_click info.
Args:
input (Variable): a 2-D LodTensor with shape [N x D], where N is the
batch size, D is 2 + the embedding dim.
lod level = 1.
cvm (Variable): a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
use_cvm (bool): use cvm or not. if use cvm, the output dim is the same as input
if don't use cvm, the output dim is input dim - 2(remove show and click).
(cvm op is a customized op, which input is a sequence had embedd_with_cvm default, so we need a op named cvm to decided whever use it or not.)
Returns:
Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim,
if don't use cvm, D is equal to input dim - 2.
Examples:
.. code-block:: python
input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
embed = fluid.layers.embedding(
input=input,
size=[100, 11],
dtype='float32')
ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
show_clk.stop_gradient = True
input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
"""
helper
=
LayerHelper
(
'cvm'
,
**
locals
())
out
=
helper
.
create_variable
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
'cvm'
,
inputs
=
{
'X'
:
[
input
],
'CVM'
:
[
cvm
]},
outputs
=
{
'Y'
:
[
out
]},
attrs
=
{
"use_cvm"
:
use_cvm
})
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录