Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
b548ecbc
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b548ecbc
编写于
8月 22, 2018
作者:
X
Xin Pan
提交者:
sneaxiy
8月 22, 2018
浏览文件
操作
浏览文件
下载
差异文件
add stack_op
上级
bc4f5375
a2c0e52f
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
540 addition
and
79 deletion
+540
-79
paddle/fluid/framework/array.h
paddle/fluid/framework/array.h
+48
-0
paddle/fluid/operators/stack_op.cc
paddle/fluid/operators/stack_op.cc
+66
-0
paddle/fluid/operators/stack_op.cu
paddle/fluid/operators/stack_op.cu
+109
-0
paddle/fluid/operators/stack_op.h
paddle/fluid/operators/stack_op.h
+192
-0
paddle/fluid/operators/while_op.cc
paddle/fluid/operators/while_op.cc
+5
-5
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+28
-74
python/paddle/fluid/tests/unittests/test_stack_op.py
python/paddle/fluid/tests/unittests/test_stack_op.py
+92
-0
未找到文件。
paddle/fluid/framework/array.h
0 → 100644
浏览文件 @
b548ecbc
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cstdint>
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
framework
{
template
<
typename
T
,
size_t
N
>
class
Array
{
static_assert
(
N
>
0
,
"The size of array must be larger than 0"
);
public:
HOSTDEVICE
Array
()
{}
HOSTDEVICE
explicit
Array
(
const
T
&
val
)
{
for
(
size_t
i
=
0
;
i
<
N
;
++
i
)
data_
[
i
]
=
val
;
}
HOSTDEVICE
const
T
*
Get
()
const
{
return
data_
;
}
HOSTDEVICE
T
*
GetMutable
()
{
return
data_
;
}
HOSTDEVICE
T
&
operator
[](
size_t
index
)
{
return
data_
[
index
];
}
HOSTDEVICE
const
T
&
operator
[](
size_t
index
)
const
{
return
data_
[
index
];
}
HOSTDEVICE
constexpr
size_t
size
()
const
{
return
N
;
}
private:
T
data_
[
N
];
};
}
// namespace framework
}
// namespace paddle
paddle/fluid/operators/stack_op.cc
0 → 100644
浏览文件 @
b548ecbc
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/stack_op.h"
namespace
paddle
{
namespace
operators
{
struct
CPUStackFunctor
{
template
<
typename
DeviceContext
,
typename
T
>
void
operator
()(
const
DeviceContext
&
ctx
,
const
std
::
vector
<
const
T
*>&
x
,
T
*
y
,
int
pre
,
int
n
,
int
post
)
const
{
int
total_num
=
pre
*
post
*
n
;
for
(
int
idx
=
0
;
idx
<
total_num
;
++
idx
)
{
int
i
=
idx
/
(
n
*
post
);
int
which_x
=
idx
/
post
-
i
*
n
;
int
x_index
=
i
*
post
+
idx
%
post
;
y
[
idx
]
=
x
[
which_x
][
x_index
];
}
}
};
struct
CPUStackGradFunctor
{
template
<
typename
DeviceContext
,
typename
T
>
void
operator
()(
const
DeviceContext
&
ctx
,
std
::
vector
<
T
*>&
dx
,
// NOLINT
const
T
*
dy
,
int
pre
,
int
n
,
int
post
)
const
{
int
total_num
=
pre
*
post
*
n
;
for
(
int
idx
=
0
;
idx
<
total_num
;
++
idx
)
{
int
i
=
idx
/
(
n
*
post
);
int
which_x
=
idx
/
post
-
i
*
n
;
int
x_index
=
i
*
post
+
idx
%
post
;
dx
[
which_x
][
x_index
]
=
dy
[
idx
];
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
plat
=
paddle
::
platform
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
stack
,
ops
::
StackOp
,
ops
::
StackOpMaker
,
ops
::
StackGradOpDescMaker
);
REGISTER_OPERATOR
(
stack_grad
,
ops
::
StackOpGrad
);
REGISTER_OP_CPU_KERNEL
(
stack
,
ops
::
StackKernel
<
plat
::
CPUDeviceContext
,
float
,
ops
::
CPUStackFunctor
>
,
ops
::
StackKernel
<
plat
::
CPUDeviceContext
,
double
,
ops
::
CPUStackFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
stack_grad
,
ops
::
StackGradKernel
<
plat
::
CPUDeviceContext
,
float
,
ops
::
CPUStackGradFunctor
>
,
ops
::
StackGradKernel
<
plat
::
CPUDeviceContext
,
double
,
ops
::
CPUStackGradFunctor
>
);
paddle/fluid/operators/stack_op.cu
0 → 100644
浏览文件 @
b548ecbc
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <thrust/device_vector.h>
#include "paddle/fluid/framework/array.h"
#include "paddle/fluid/operators/stack_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
typename
VecXType
>
__global__
void
StackCUDAKernel
(
VecXType
x
,
T
*
y
,
int
total_num
,
int
n
,
int
post
)
{
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
total_num
)
{
int
i
=
idx
/
(
n
*
post
);
int
which_x
=
idx
/
post
-
i
*
n
;
int
x_index
=
i
*
post
+
idx
%
post
;
y
[
idx
]
=
x
[
which_x
][
x_index
];
}
}
template
<
typename
T
,
typename
VecDxType
>
__global__
void
StackGradCUDAKernel
(
VecDxType
dx
,
const
T
*
dy
,
int
total_num
,
int
n
,
int
post
)
{
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
total_num
)
{
int
i
=
idx
/
(
n
*
post
);
int
which_x
=
idx
/
post
-
i
*
n
;
int
x_index
=
i
*
post
+
idx
%
post
;
dx
[
which_x
][
x_index
]
=
dy
[
idx
];
}
}
struct
GPUStackFunctor
{
template
<
typename
DeviceContext
,
typename
T
>
void
operator
()(
const
DeviceContext
&
ctx
,
const
std
::
vector
<
const
T
*>&
x
,
T
*
y
,
int
pre
,
int
n
,
int
post
)
const
{
int
total_num
=
pre
*
post
*
n
;
int
threads
=
512
;
int
grid
=
(
total_num
+
threads
-
1
)
/
threads
;
constexpr
auto
kMaxThreshold
=
16
;
if
(
n
<=
kMaxThreshold
)
{
framework
::
Array
<
const
T
*
,
kMaxThreshold
>
arr
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
arr
[
i
]
=
x
[
i
];
StackCUDAKernel
<<<
grid
,
threads
,
0
,
ctx
.
stream
()
>>>
(
arr
,
y
,
total_num
,
n
,
post
);
}
else
{
VLOG
(
10
)
<<
"Stack more than "
<<
kMaxThreshold
<<
" tensors may be slow on GPU."
;
thrust
::
device_vector
<
const
T
*>
dev_x
(
x
);
StackCUDAKernel
<<<
grid
,
threads
,
0
,
ctx
.
stream
()
>>>
(
dev_x
.
data
().
get
(),
y
,
total_num
,
n
,
post
);
}
}
};
struct
GPUStackGradFunctor
{
template
<
typename
DeviceContext
,
typename
T
>
void
operator
()(
const
DeviceContext
&
ctx
,
std
::
vector
<
T
*>&
dx
,
// NOLINT
const
T
*
dy
,
int
pre
,
int
n
,
int
post
)
const
{
int
total_num
=
pre
*
post
*
n
;
int
threads
=
512
;
int
grid
=
(
total_num
+
threads
-
1
)
/
threads
;
constexpr
auto
kMaxThreshold
=
16
;
if
(
n
<=
kMaxThreshold
)
{
framework
::
Array
<
T
*
,
kMaxThreshold
>
arr
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
arr
[
i
]
=
dx
[
i
];
StackGradCUDAKernel
<<<
grid
,
threads
,
0
,
ctx
.
stream
()
>>>
(
arr
,
dy
,
total_num
,
n
,
post
);
}
else
{
VLOG
(
10
)
<<
"Stack more than "
<<
kMaxThreshold
<<
" tensors may be slow on GPU."
;
thrust
::
device_vector
<
T
*>
dev_dx
(
dx
);
StackGradCUDAKernel
<<<
grid
,
threads
,
0
,
ctx
.
stream
()
>>>
(
dev_dx
.
data
().
get
(),
dy
,
total_num
,
n
,
post
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
plat
=
paddle
::
platform
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
stack
,
ops
::
StackKernel
<
plat
::
CUDADeviceContext
,
float
,
ops
::
GPUStackFunctor
>
,
ops
::
StackKernel
<
plat
::
CUDADeviceContext
,
double
,
ops
::
GPUStackFunctor
>
);
REGISTER_OP_CUDA_KERNEL
(
stack_grad
,
ops
::
StackGradKernel
<
plat
::
CUDADeviceContext
,
float
,
ops
::
GPUStackGradFunctor
>
,
ops
::
StackGradKernel
<
plat
::
CUDADeviceContext
,
double
,
ops
::
GPUStackGradFunctor
>
);
paddle/fluid/operators/stack_op.h
0 → 100644
浏览文件 @
b548ecbc
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
inline
void
GetPrePostForStackOp
(
const
framework
::
DDim
&
dim
,
int
axis
,
int
*
pre
,
int
*
post
)
{
*
pre
=
1
;
for
(
auto
i
=
0
;
i
<
axis
;
++
i
)
(
*
pre
)
*=
dim
[
i
];
*
post
=
1
;
for
(
auto
i
=
axis
;
i
<
dim
.
size
();
++
i
)
(
*
post
)
*=
dim
[
i
];
}
class
StackOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_GT
(
ctx
->
Inputs
(
"X"
).
size
(),
0
,
"Number of Inputs(X) must be larger than 0"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Y"
),
"Output(Y) must exist."
);
auto
input_dims
=
ctx
->
GetInputsDim
(
"X"
);
for
(
size_t
i
=
1
;
i
<
input_dims
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
input_dims
[
i
],
input_dims
[
0
],
"Dims of all Inputs(X) must be the same"
);
}
// Only lod of X[0] would be shared with Y
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Y"
);
int
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
int
rank
=
input_dims
[
0
].
size
();
PADDLE_ENFORCE
(
axis
>=
-
(
rank
+
1
)
&&
axis
<
rank
+
1
,
"Attr(axis) must be inside [-(rank+1), rank+1), where rank = %d"
,
rank
);
if
(
axis
<
0
)
axis
+=
(
rank
+
1
);
auto
vec
=
framework
::
vectorize2int
(
input_dims
[
0
]);
vec
.
insert
(
vec
.
begin
()
+
axis
,
input_dims
.
size
());
ctx
->
SetOutputDim
(
"Y"
,
framework
::
make_ddim
(
vec
));
}
};
class
StackOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input of stack op."
).
AsDuplicable
();
AddOutput
(
"Y"
,
"The output of stack op."
);
AddAttr
<
int
>
(
"axis"
,
"The axis along which all of the Inputs(X) should be stacked."
)
.
SetDefault
(
0
);
AddComment
(
R"DOC(
Stack Operator.
Stack all of the Inputs(X) into one tensor along Attr(axis). The dims of all Inputs(X) must be the same.
)DOC"
);
}
};
template
<
typename
DeviceContext
,
typename
T
,
typename
Functor
>
class
StackKernel
:
public
framework
::
OpKernel
<
T
>
{
using
Tensor
=
framework
::
LoDTensor
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
x
=
ctx
.
MultiInput
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
if
(
axis
<
0
)
axis
+=
(
x
[
0
]
->
dims
().
size
()
+
1
);
int
n
=
static_cast
<
int
>
(
x
.
size
());
auto
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
vector
<
const
T
*>
x_datas
(
n
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
x_datas
[
i
]
=
x
[
i
]
->
data
<
T
>
();
int
pre
=
1
,
post
=
1
;
auto
&
dim
=
x
[
0
]
->
dims
();
for
(
auto
i
=
0
;
i
<
axis
;
++
i
)
pre
*=
dim
[
i
];
for
(
auto
i
=
axis
;
i
<
dim
.
size
();
++
i
)
post
*=
dim
[
i
];
Functor
functor
;
functor
(
ctx
.
template
device_context
<
DeviceContext
>(),
x_datas
,
y_data
,
pre
,
n
,
post
);
}
};
class
StackOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
"Input(Y@Grad) must exist."
);
int
axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"axis"
);
auto
dy_dim
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Y"
));
int
rank
=
dy_dim
.
size
();
PADDLE_ENFORCE
(
axis
>=
-
rank
&&
axis
<
rank
,
"Attr(axis) must be inside [-rank, rank), where rank = %d"
,
rank
);
if
(
axis
<
0
)
axis
+=
rank
;
PADDLE_ENFORCE_EQ
(
ctx
->
Outputs
(
framework
::
GradVarName
(
"X"
)).
size
(),
static_cast
<
size_t
>
(
dy_dim
[
axis
]),
"Number of Outputs(X@Grad) is wrong"
);
auto
vec
=
framework
::
vectorize2int
(
dy_dim
);
vec
.
erase
(
vec
.
begin
()
+
axis
);
ctx
->
SetOutputsDim
(
framework
::
GradVarName
(
"X"
),
std
::
vector
<
framework
::
DDim
>
(
dy_dim
[
axis
],
framework
::
make_ddim
(
vec
)));
}
};
class
StackGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
/*framework::GradOpDescMakerBase*/
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
/*
using framework::GradOpDescMakerBase::GradOpDescMakerBase;
std::vector<std::unique_ptr<framework::OpDesc>> operator ()() const override {
auto x_grads = InputGrad("X", false);
std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
grad_ops.reserve(x_grads.size());
auto og = OutputGrad("Y");
std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
[&og](const std::string& x_grad) {
auto* grad_op = new framework::OpDesc();
grad_op->SetInput("X", og);
grad_op->SetOutput("Y", {x_grad});
grad_op->SetAttrMap(Attrs());
return std::unique_ptr<framework::OpDesc>(grad_op);
});
return grad_ops;
}
*/
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
std
::
unique_ptr
<
framework
::
OpDesc
>
op
(
new
framework
::
OpDesc
());
op
->
SetType
(
"stack_grad"
);
op
->
SetInput
(
framework
::
GradVarName
(
"Y"
),
OutputGrad
(
"Y"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
,
false
));
op
->
SetAttrMap
(
Attrs
());
return
op
;
}
};
template
<
typename
DeviceContext
,
typename
T
,
typename
GradFunctor
>
class
StackGradKernel
:
public
framework
::
OpKernel
<
T
>
{
using
Tensor
=
framework
::
LoDTensor
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
dy
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
dx
=
ctx
.
MultiOutput
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
if
(
axis
<
0
)
axis
+=
dy
->
dims
().
size
();
int
n
=
dy
->
dims
()[
axis
];
std
::
vector
<
T
*>
dx_datas
(
n
);
// NOLINT
for
(
int
i
=
0
;
i
<
n
;
i
++
)
dx_datas
[
i
]
=
dx
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dy_data
=
dy
->
data
<
T
>
();
int
pre
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
pre
*=
dy
->
dims
()[
i
];
int
post
=
dy
->
numel
()
/
(
n
*
pre
);
GradFunctor
functor
;
functor
(
ctx
.
template
device_context
<
DeviceContext
>(),
dx_datas
,
dy_data
,
pre
,
n
,
post
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/while_op.cc
浏览文件 @
b548ecbc
...
...
@@ -57,12 +57,12 @@ class WhileOp : public framework::OperatorBase {
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
cond
.
place
()),
"Condition of while op must in CPU memory."
);
auto
ctx
=
executor
.
Prepare
(
*
program
,
block
->
ID
());
while
(
cond
.
data
<
bool
>
()[
0
])
{
auto
&
current_scope
=
scope
.
NewScope
();
step_scopes
->
push_back
(
&
current_scope
);
executor
.
Run
(
*
program
,
&
current_scope
,
block
->
ID
(),
false
/*create_local_scope*/
);
executor
.
RunPreparedContext
(
ctx
.
get
(),
&
current_scope
,
false
);
}
}
};
...
...
@@ -109,6 +109,7 @@ class WhileGradOp : public framework::OperatorBase {
framework
::
Executor
executor
(
dev_place
);
auto
*
block
=
Attr
<
framework
::
BlockDesc
*>
(
kStepBlock
);
auto
*
program
=
block
->
Program
();
auto
ctx
=
executor
.
Prepare
(
*
program
,
block
->
ID
());
auto
*
step_scopes
=
scope
.
FindVar
(
Input
(
kStepScopes
))
->
GetMutable
<
StepScopeVar
>
();
...
...
@@ -161,8 +162,7 @@ class WhileGradOp : public framework::OperatorBase {
}
}
}
executor
.
Run
(
*
program
,
*
cur_scope_iter
,
block
->
ID
(),
false
);
executor
.
RunPreparedContext
(
ctx
.
get
(),
*
cur_scope_iter
,
false
);
auto
&
pg_names
=
Outputs
(
kXGRAD
);
auto
&
p_names
=
Inputs
(
kX
);
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
b548ecbc
...
...
@@ -29,80 +29,21 @@ from .. import unique_name
from
functools
import
reduce
__all__
=
[
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'dynamic_lstmp'
,
'dynamic_gru'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'conv3d'
,
'sequence_pool'
,
'sequence_softmax'
,
'softmax'
,
'pool2d'
,
'pool3d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'conv3d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'reduce_prod'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'ctc_greedy_decoder'
,
'edit_distance'
,
'l2_normalize'
,
'matmul'
,
'topk'
,
'warpctc'
,
'sequence_reshape'
,
'transpose'
,
'im2sequence'
,
'nce'
,
'hsigmoid'
,
'beam_search'
,
'row_conv'
,
'multiplex'
,
'layer_norm'
,
'softmax_with_cross_entropy'
,
'smooth_l1'
,
'one_hot'
,
'autoincreased_step_counter'
,
'reshape'
,
'lod_reset'
,
'lrn'
,
'pad'
,
'label_smooth'
,
'roi_pool'
,
'dice_loss'
,
'image_resize'
,
'image_resize_short'
,
'resize_bilinear'
,
'gather'
,
'scatter'
,
'random_crop'
,
'mean_iou'
,
'relu'
,
'log'
,
'crop'
,
'rank_loss'
,
'prelu'
,
'flatten'
,
'fc'
,
'embedding'
,
'dynamic_lstm'
,
'dynamic_lstmp'
,
'dynamic_gru'
,
'gru_unit'
,
'linear_chain_crf'
,
'crf_decoding'
,
'cos_sim'
,
'cross_entropy'
,
'square_error_cost'
,
'chunk_eval'
,
'sequence_conv'
,
'conv2d'
,
'conv3d'
,
'sequence_pool'
,
'sequence_softmax'
,
'softmax'
,
'pool2d'
,
'pool3d'
,
'batch_norm'
,
'beam_search_decode'
,
'conv2d_transpose'
,
'conv3d_transpose'
,
'sequence_expand'
,
'lstm_unit'
,
'reduce_sum'
,
'reduce_mean'
,
'reduce_max'
,
'reduce_min'
,
'reduce_prod'
,
'sequence_first_step'
,
'sequence_last_step'
,
'dropout'
,
'split'
,
'ctc_greedy_decoder'
,
'edit_distance'
,
'l2_normalize'
,
'matmul'
,
'topk'
,
'warpctc'
,
'sequence_reshape'
,
'transpose'
,
'im2sequence'
,
'nce'
,
'hsigmoid'
,
'beam_search'
,
'row_conv'
,
'multiplex'
,
'layer_norm'
,
'softmax_with_cross_entropy'
,
'smooth_l1'
,
'one_hot'
,
'autoincreased_step_counter'
,
'reshape'
,
'lod_reset'
,
'lrn'
,
'pad'
,
'label_smooth'
,
'roi_pool'
,
'dice_loss'
,
'image_resize'
,
'image_resize_short'
,
'resize_bilinear'
,
'gather'
,
'scatter'
,
'random_crop'
,
'mean_iou'
,
'relu'
,
'log'
,
'crop'
,
'rank_loss'
,
'prelu'
,
'flatten'
,
'stack'
]
...
...
@@ -5517,3 +5458,16 @@ def flatten(x, axis=1, name=None):
outputs
=
{
'Out'
:
out
},
attrs
=
{
"axis"
:
axis
})
return
out
def
stack
(
x
,
axis
=
0
):
helper
=
LayerHelper
(
'stack'
,
**
locals
())
axis
=
0
if
axis
is
None
else
axis
if
not
isinstance
(
x
,
list
)
and
not
isinstance
(
x
,
tuple
):
x
=
[
x
]
out
=
helper
.
create_tmp_variable
(
x
[
0
].
dtype
)
helper
.
append_op
(
type
=
'stack'
,
inputs
=
{
'X'
:
x
},
outpus
=
{
'Y'
:
out
},
attrs
=
{
'axis'
:
axis
})
return
out
python/paddle/fluid/tests/unittests/test_stack_op.py
0 → 100644
浏览文件 @
b548ecbc
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
op_test
import
OpTest
import
numpy
as
np
import
unittest
class
TestStackOpBase
(
OpTest
):
def
initDefaultParameters
(
self
):
self
.
num_inputs
=
4
self
.
input_dim
=
(
5
,
6
,
7
)
self
.
axis
=
0
self
.
dtype
=
'float32'
def
initParameters
(
self
):
pass
def
get_x_names
(
self
):
x_names
=
[]
for
i
in
range
(
self
.
num_inputs
):
x_names
.
append
(
'x{}'
.
format
(
i
))
return
x_names
def
setUp
(
self
):
self
.
initDefaultParameters
()
self
.
initParameters
()
self
.
op_type
=
'stack'
self
.
x
=
[]
for
i
in
range
(
self
.
num_inputs
):
self
.
x
.
append
(
np
.
random
.
random
(
size
=
self
.
input_dim
).
astype
(
self
.
dtype
))
tmp
=
[]
x_names
=
self
.
get_x_names
()
for
i
in
range
(
self
.
num_inputs
):
tmp
.
append
((
x_names
[
i
],
self
.
x
[
i
]))
self
.
inputs
=
{
'X'
:
tmp
}
self
.
outputs
=
{
'Y'
:
np
.
stack
(
self
.
x
,
axis
=
self
.
axis
)}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
self
.
get_x_names
(),
'Y'
)
class
TestStackOp1
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
num_inputs
=
16
class
TestStackOp2
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
num_inputs
=
20
class
TestStackOp3
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
-
1
class
TestStackOp4
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
-
4
class
TestStackOp5
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
1
class
TestStackOp6
(
TestStackOpBase
):
def
initParameters
(
self
):
self
.
axis
=
3
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录