Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
c8801e10
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c8801e10
编写于
11月 10, 2018
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
grad diff problem to be fixed and need api spec change to be done
上级
f37bd035
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
324 addition
and
60 deletion
+324
-60
paddle/fluid/framework/selected_rows.h
paddle/fluid/framework/selected_rows.h
+2
-1
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+10
-1
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+45
-10
paddle/fluid/operators/math/matrix_bit_code.cc
paddle/fluid/operators/math/matrix_bit_code.cc
+21
-28
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+109
-10
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+22
-1
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+5
-2
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+110
-7
未找到文件。
paddle/fluid/framework/selected_rows.h
浏览文件 @
c8801e10
...
...
@@ -133,7 +133,8 @@ class SelectedRows {
// SelectedRows are simply concated when adding together. Until a
// SelectedRows add a Tensor, will the duplicate rows be handled.
Vector
<
int64_t
>
rows_
;
std
::
unordered_map
<
int64_t
,
int64_t
>
id_to_index_
;
std
::
unordered_map
<
int64_t
,
int64_t
>
id_to_index_
;
// should not be used when ids has duplicate member
std
::
unique_ptr
<
Tensor
>
value_
{
nullptr
};
int64_t
height_
;
std
::
unique_ptr
<
RWLock
>
rwlock_
{
nullptr
};
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
c8801e10
...
...
@@ -91,10 +91,19 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"W"
,
"(Tensor, required), The parameters of hierarchical "
"sigmoid operator, each of them is a 2-D tensor, the shape is"
"[
num_classes - 1, D].
"
);
"[
K, D]. Which K is the num of non-leaf node in Path Tree
"
);
AddInput
(
"Label"
,
"(Tensor, required), The labels of training data. It's a"
"tensor with shape [N, 1]."
);
AddInput
(
"PTable"
,
"(Tensor, optional), The Path Table from root to current word"
"it should have shape like [N, L], L is the length of the Path"
)
.
AsDispensable
();
AddInput
(
"PCode"
,
"(Tensor, optional), The Code on each Node of the Path from root "
"to current word"
"it should have shape like [N, L], L is the length of the Path"
)
.
AsDispensable
();
AddInput
(
"Bias"
,
"(Tensor, optional), The bias is a tensor with shape"
"[1, num_classes - 1]."
);
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
c8801e10
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include <iostream>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/matrix_bit_code.h"
...
...
@@ -34,12 +35,21 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
w
=
ctx
.
Input
<
framework
::
Tensor
>
(
"W"
);
auto
*
path
=
ctx
.
Input
<
framework
::
Tensor
>
(
"PTable"
);
auto
*
code
=
ctx
.
Input
<
framework
::
Tensor
>
(
"PCode"
);
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
pre_out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"PreOut"
);
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
int64_t
code_length
=
math
::
FindLastSet
(
num_classes
-
1
);
bool
is_custom
=
false
;
if
(
path
)
{
is_custom
=
true
;
}
else
{
is_custom
=
false
;
}
int64_t
code_length
=
path
?
path
->
dims
()[
1
]
:
math
::
FindLastSet
(
num_classes
-
1
);
int64_t
batch_size
=
in
->
dims
()[
0
];
framework
::
Tensor
sum
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
...
...
@@ -52,7 +62,15 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
zero
(
dev_ctx
,
pre_out
,
static_cast
<
T
>
(
0.0
));
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
math
::
RowwiseSum
<
DeviceContext
,
T
>
row_sum
;
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
(
num_classes
,
label
->
data
<
int64_t
>
());
std
::
unique_ptr
<
math
::
MatrixBitCodeFunctor
<
T
>>
bit_code
;
if
(
!
is_custom
)
{
bit_code
.
reset
(
new
math
::
MatrixBitCodeFunctor
<
T
>
(
num_classes
,
label
->
data
<
int64_t
>
()));
}
else
{
bit_code
.
reset
(
new
math
::
MatrixBitCodeFunctor
<
T
>
(
path
,
code
,
label
->
data
<
int64_t
>
()));
}
std
::
vector
<
int64_t
>
sum_dims
({
batch_size
,
1UL
});
sum
.
mutable_data
<
T
>
(
framework
::
make_ddim
(
sum_dims
),
ctx
.
GetPlace
());
...
...
@@ -60,15 +78,15 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
out_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
out
);
if
(
bias
)
{
bit_code
.
Add
(
pre_out
,
*
bias
);
bit_code
->
Add
(
pre_out
,
*
bias
);
}
bit_code
.
Mul
(
pre_out
,
*
w
,
*
in
);
bit_code
->
Mul
(
pre_out
,
*
w
,
*
in
);
// clip to [-40, 40]
Transform
<
DeviceContext
>
trans
;
trans
(
ctx
.
template
device_context
<
DeviceContext
>(),
pre_out_data
,
pre_out_data
+
pre_out
->
numel
(),
pre_out_data
,
ClipFunctor
<
T
>
(
static_cast
<
T
>
(
-
40.0
),
static_cast
<
T
>
(
40.0
)));
bit_code
.
Sum
(
*
pre_out
,
out
,
static_cast
<
T
>
(
-
1
));
bit_code
->
Sum
(
*
pre_out
,
out
,
static_cast
<
T
>
(
-
1
));
// use softrelu to calculate cross entropy
pre_out_mat
.
device
(
place
)
=
(
static_cast
<
T
>
(
1.0
)
+
pre_out_mat
.
exp
()).
log
();
row_sum
(
dev_ctx
,
*
pre_out
,
&
sum
);
...
...
@@ -86,6 +104,8 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
w
=
ctx
.
Input
<
framework
::
Tensor
>
(
"W"
);
auto
*
path
=
ctx
.
Input
<
framework
::
Tensor
>
(
"PTable"
);
auto
*
code
=
ctx
.
Input
<
framework
::
Tensor
>
(
"PCode"
);
auto
*
in_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
w_grad
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"W"
));
auto
*
bias_grad
=
...
...
@@ -105,7 +125,22 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
zero
(
dev_ctx
,
w_grad
,
static_cast
<
T
>
(
0.0
));
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
math
::
MatrixBitCodeFunctor
<
T
>
bit_code
(
num_classes
,
label
->
data
<
int64_t
>
());
bool
is_custom
=
false
;
if
(
path
)
{
is_custom
=
true
;
}
else
{
is_custom
=
false
;
}
std
::
unique_ptr
<
math
::
MatrixBitCodeFunctor
<
T
>>
bit_code
;
if
(
!
is_custom
)
{
bit_code
.
reset
(
new
math
::
MatrixBitCodeFunctor
<
T
>
(
num_classes
,
label
->
data
<
int64_t
>
()));
}
else
{
bit_code
.
reset
(
new
math
::
MatrixBitCodeFunctor
<
T
>
(
path
,
code
,
label
->
data
<
int64_t
>
()));
}
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
pre_out_mat
=
EigenMatrix
<
T
>::
From
(
*
pre_out
);
...
...
@@ -116,7 +151,7 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
// softrelu derivative
pre_out_grad_mat
.
device
(
place
)
=
static_cast
<
T
>
(
1.0
)
-
static_cast
<
T
>
(
1.0
)
/
pre_out_mat
.
exp
();
bit_code
.
Sub
(
&
pre_out_grad
);
// the gradient of clip(w * x + b)
bit_code
->
Sub
(
&
pre_out_grad
);
// the gradient of clip(w * x + b)
pre_out_grad_mat
.
device
(
place
)
=
pre_out_grad_mat
*
out_grad_mat
.
broadcast
(
bcast
);
// TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
...
...
@@ -124,10 +159,10 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
bit_code
.
AddGrad
(
pre_out_grad
,
bias_grad
);
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
}
bit_code
.
MulGradWeight
(
pre_out_grad
,
w_grad
,
*
in
);
bit_code
.
MulGradError
(
pre_out_grad
,
*
w
,
in_grad
);
bit_code
->
MulGradWeight
(
pre_out_grad
,
w_grad
,
*
in
);
bit_code
->
MulGradError
(
pre_out_grad
,
*
w
,
in_grad
);
}
};
...
...
paddle/fluid/operators/math/matrix_bit_code.cc
浏览文件 @
c8801e10
...
...
@@ -21,14 +21,13 @@ namespace math {
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Add
(
framework
::
Tensor
*
tmat
,
const
framework
::
Tensor
&
vec
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
batch_size
=
tmat
->
dims
()[
0
];
size_t
width
=
tmat
->
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
tmat
->
data
<
T
>
()[
i
*
width
+
j
]
+=
vec
.
data
<
T
>
()[
index
];
}
}
...
...
@@ -37,14 +36,13 @@ void MatrixBitCodeFunctor<T>::Add(framework::Tensor* tmat,
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
vec
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
batch_size
=
tmat
.
dims
()[
0
];
size_t
width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
vec
->
data
<
T
>
()[
index
]
+=
tmat
.
data
<
T
>
()[
i
*
width
+
j
];
}
}
...
...
@@ -53,15 +51,14 @@ void MatrixBitCodeFunctor<T>::AddGrad(const framework::Tensor& tmat,
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sum
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
sum
,
T
scale_sum
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
o_width
=
tmat
.
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
T
sm
=
static_cast
<
T
>
(
0.0
);
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
if
(
code
->
calc_bit
(
j
))
{
// calc_bit starts from right most bit, while data in tmat[i] is in the
// reverse order.
sm
+=
tmat
.
data
<
T
>
()[
i
*
o_width
+
j
];
...
...
@@ -75,7 +72,6 @@ template <typename T>
void
MatrixBitCodeFunctor
<
T
>::
Mul
(
framework
::
Tensor
*
tmat
,
const
framework
::
Tensor
&
weight
,
const
framework
::
Tensor
&
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
->
dims
()[
0
];
size_t
tmat_width
=
tmat
->
dims
()[
1
];
size_t
input_width
=
input
.
dims
()[
1
];
...
...
@@ -84,10 +80,10 @@ void MatrixBitCodeFunctor<T>::Mul(framework::Tensor* tmat,
auto
weight_value
=
weight
.
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
T
sum
=
static_cast
<
T
>
(
0.0
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
sum
+=
weight_value
[
weight_width
*
index
+
k
]
*
...
...
@@ -102,7 +98,6 @@ template <typename T>
void
MatrixBitCodeFunctor
<
T
>::
MulGradWeight
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
weight
,
const
framework
::
Tensor
&
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
input_width
=
input
.
dims
()[
1
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
...
...
@@ -111,10 +106,10 @@ void MatrixBitCodeFunctor<T>::MulGradWeight(const framework::Tensor& tmat,
auto
weight_value
=
weight
->
data
<
T
>
();
auto
input_value
=
input
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
weight_value
[
weight_width
*
index
+
k
]
+=
...
...
@@ -128,7 +123,6 @@ template <typename T>
void
MatrixBitCodeFunctor
<
T
>::
MulGradError
(
const
framework
::
Tensor
&
tmat
,
const
framework
::
Tensor
&
weight
,
framework
::
Tensor
*
input
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
.
dims
()[
0
];
size_t
tmat_width
=
tmat
.
dims
()[
1
];
size_t
input_width
=
input
->
dims
()[
1
];
...
...
@@ -138,10 +132,10 @@ void MatrixBitCodeFunctor<T>::MulGradError(const framework::Tensor& tmat,
auto
input_value
=
input
->
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
size_t
index
=
code
->
calc_index
(
j
);
for
(
size_t
k
=
0
;
k
<
input_width
;
++
k
)
{
input_value
[
input_width
*
i
+
k
]
+=
...
...
@@ -154,14 +148,13 @@ void MatrixBitCodeFunctor<T>::MulGradError(const framework::Tensor& tmat,
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
Sub
(
framework
::
Tensor
*
tmat
)
{
SimpleCodeTable
code_table
(
num_classes_
);
size_t
num_samples
=
tmat
->
dims
()[
0
];
size_t
o_width
=
tmat
->
dims
()[
1
];
for
(
size_t
i
=
0
;
i
<
num_samples
;
++
i
)
{
auto
code
=
code_table
(
static_cast
<
size_t
>
(
ids_
[
i
])
);
int
code_length
=
code
.
get_length
();
auto
code
=
code_table
->
get_code
(
i
);
int
code_length
=
code
->
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
if
(
code
.
calc_bit
(
j
))
{
if
(
code
->
calc_bit
(
j
))
{
tmat
->
data
<
T
>
()[
i
*
o_width
+
j
]
-=
1
;
}
}
...
...
paddle/fluid/operators/math/matrix_bit_code.h
浏览文件 @
c8801e10
...
...
@@ -93,9 +93,27 @@ inline int clz(const T& value) {
inline
size_t
FindLastSet
(
size_t
x
)
{
return
sizeof
(
size_t
)
*
8
-
clz
(
x
);
}
#endif // !_WIN32
}
// set a code interface to create multiple code
class
Code
{
public:
virtual
~
Code
()
{}
virtual
size_t
calc_index
(
int
bit
)
const
=
0
;
virtual
bool
calc_bit
(
int
bit
)
const
=
0
;
virtual
int
get_length
()
const
=
0
;
};
// set a CodeTable interface to create multiple code table
class
CodeTable
{
public:
virtual
std
::
unique_ptr
<
Code
>
get_code
(
int64_t
code
)
const
=
0
;
virtual
size_t
size
()
const
=
0
;
virtual
int
get_max_code_length
()
const
=
0
;
virtual
~
CodeTable
()
{}
};
struct
SimpleCode
{
SimpleCode
(
size_t
code
,
size_t
num_classes
)
:
c_
(
code
+
num_classes
)
{}
class
SimpleCode
:
public
Code
{
public:
SimpleCode
(
size_t
code
,
size_t
num_classes
,
const
int64_t
*
ids
)
:
c_
(
static_cast
<
size_t
>
(
ids
[
code
])
+
num_classes
)
{}
/**
* Here the id of root shoud be 1 rather than 0, thus the encoding of class c
* is `c + num_classes` and all siblings can get the same weight indice using
...
...
@@ -105,31 +123,111 @@ struct SimpleCode {
* Binary classification path is the suffixes of encoding, thus leave out the
* left most bit in calc_bit.
*/
inline
size_t
calc_index
(
int
bit
)
const
{
return
(
c_
>>
(
bit
+
1
))
-
1
;
}
inline
bool
calc_bit
(
int
bit
)
const
{
return
c_
&
(
1
<<
bit
);
}
in
line
in
t
get_length
()
const
{
return
FindLastSet
(
c_
)
-
1
;
}
size_t
calc_index
(
int
bit
)
const
{
return
(
c_
>>
(
bit
+
1
))
-
1
;
}
bool
calc_bit
(
int
bit
)
const
{
return
c_
&
(
1
<<
bit
);
}
int
get_length
()
const
{
return
FindLastSet
(
c_
)
-
1
;
}
private:
size_t
c_
;
};
struct
SimpleCodeTable
{
explicit
SimpleCodeTable
(
size_t
num_classes
)
:
num_classes_
(
num_classes
)
{}
SimpleCode
operator
()(
size_t
code
)
const
{
return
SimpleCode
(
code
,
num_classes_
);
template
<
typename
R
>
class
CustomCode
:
public
Code
{
public:
CustomCode
(
const
framework
::
Tensor
*
ptable
,
const
framework
::
Tensor
*
pcode
,
const
int64_t
*
ids
,
const
int
index
)
:
ptable_
(
ptable
),
pcode_
(
pcode
),
ids_
(
ids
),
index_
(
index
)
{}
/**
* Here the id of root shoud be 1 rather than 0, thus the encoding of class c
* is `c + num_classes` and all siblings can get the same weight indice using
* prefixes.
* Weight index is the prefixes of encoding, thus leave out the right most
* bit in calc_index.
* Binary classification path is the suffixes of encoding, thus leave out the
* left most bit in calc_bit.
*/
size_t
calc_index
(
int
bit
)
const
{
return
ptable_
->
data
<
R
>
()[
index_
*
static_cast
<
int
>
(
ptable_
->
dims
()[
1
])
+
bit
];
}
bool
calc_bit
(
int
bit
)
const
{
return
pcode_
->
data
<
R
>
()[
index_
*
static_cast
<
int
>
(
ptable_
->
dims
()[
1
])
+
bit
];
}
int
get_length
()
const
{
int
length
=
0
;
for
(
int
i
=
0
;
i
<
ptable_
->
dims
()[
1
];
i
++
)
{
if
(
ptable_
->
data
<
R
>
()[
index_
*
static_cast
<
int
>
(
ptable_
->
dims
()[
1
])
+
i
]
!=
-
1
)
{
length
++
;
}
else
{
return
length
;
}
}
return
length
;
}
private:
const
framework
::
Tensor
*
ptable_
;
const
framework
::
Tensor
*
pcode_
;
const
int64_t
*
ids_
;
const
int
index_
;
};
class
SimpleCodeTable
:
public
CodeTable
{
public:
explicit
SimpleCodeTable
(
size_t
num_classes
,
const
int64_t
*
ids
)
:
num_classes_
(
num_classes
),
ids_
(
ids
)
{}
std
::
unique_ptr
<
Code
>
get_code
(
int64_t
code
)
const
{
std
::
unique_ptr
<
Code
>
coder
(
new
SimpleCode
(
code
,
num_classes_
,
ids_
));
return
coder
;
}
size_t
size
()
const
{
return
num_classes_
;
}
int
get_max_code_length
()
const
{
return
FindLastSet
(
num_classes_
-
1
);
}
private:
size_t
num_classes_
;
const
int64_t
*
ids_
;
};
template
<
typename
R
>
class
CustomCodeTable
:
public
CodeTable
{
public:
explicit
CustomCodeTable
(
const
framework
::
Tensor
*
ptable
,
const
framework
::
Tensor
*
pcode
,
const
int64_t
*
ids
)
:
ptable_
(
ptable
),
pcode_
(
pcode
),
ids_
(
ids
)
{}
std
::
unique_ptr
<
Code
>
get_code
(
int64_t
code
)
const
{
std
::
unique_ptr
<
Code
>
coder
(
new
CustomCode
<
R
>
(
ptable_
,
pcode_
,
ids_
,
code
));
return
coder
;
}
size_t
size
()
const
{
return
static_cast
<
size_t
>
(
ptable_
->
dims
()[
1
]);
}
int
get_max_code_length
()
const
{
return
static_cast
<
size_t
>
(
ptable_
->
dims
()[
1
]);
}
private:
const
framework
::
Tensor
*
ptable_
;
const
framework
::
Tensor
*
pcode_
;
const
int64_t
*
ids_
;
};
template
<
typename
T
>
class
MatrixBitCodeFunctor
{
public:
explicit
MatrixBitCodeFunctor
(
size_t
num_classes
,
const
int64_t
*
ids
)
:
num_classes_
(
num_classes
),
ids_
(
ids
)
{}
:
num_classes_
(
num_classes
),
ids_
(
ids
),
code_table
(
new
SimpleCodeTable
(
num_classes
,
ids
))
{}
explicit
MatrixBitCodeFunctor
(
const
framework
::
Tensor
*
ptable
,
const
framework
::
Tensor
*
pcode
,
const
int64_t
*
ids
)
:
num_classes_
(
static_cast
<
size_t
>
(
ptable
->
dims
()[
1
])),
ids_
(
ids
),
code_table
(
new
CustomCodeTable
<
int64_t
>
(
ptable
,
pcode
,
ids
))
{}
/* For j < code_length
tmat(i, j) += vec(0, index(i, j))
*/
...
...
@@ -168,6 +266,7 @@ class MatrixBitCodeFunctor {
size_t
num_classes_
;
const
int64_t
*
ids_
;
std
::
unique_ptr
<
CodeTable
>
code_table
;
};
}
// namespace math
}
// namespace operators
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
c8801e10
...
...
@@ -4349,6 +4349,8 @@ def nce(input,
def
hsigmoid
(
input
,
label
,
num_classes
,
ptabl
=
None
,
pcode
=
None
,
param_attr
=
None
,
bias_attr
=
None
,
name
=
None
):
...
...
@@ -4372,6 +4374,12 @@ def hsigmoid(input,
label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N
\\
times 1]`.
num_classes: (int), The number of classes, must not be less than 2.
ptable: (Variable|None) this variable can store each batch of samples' path to root,
it should be in leaf -> root order
ptable should have the same shape with pcode, and for each sample i ptable[i] indicates a np.array like
structure and each element in this array is indexes in parent nodes' Weight Matrix.
pcode: (Variable|None) this variable can store each batch of samples' code,
each code consist with every code of parent nodes. it should be in leaf -> root order
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
will create ParamAttr as param_attr. If the Initializer of the param_attr
...
...
@@ -4403,12 +4411,25 @@ def hsigmoid(input,
dim
=
input
.
shape
[
1
]
if
num_classes
<
2
:
raise
ValueError
(
"num_classes must not be less than 2."
)
if
(
ptable
is
not
None
)
and
(
pcode
is
None
):
raise
ValueError
(
"pcode should not be None when ptable has been set"
)
elif
(
ptable
is
None
)
and
(
pcode
is
not
None
):
raise
ValueError
(
"ptable should not be None when pcode has been set"
)
else
:
pass
weights
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
[
num_classes
-
1
,
dim
],
is_bias
=
False
,
dtype
=
input
.
dtype
)
inputs
=
{
"X"
:
input
,
"W"
:
weights
,
"Label"
:
label
}
inputs
=
{
"X"
:
input
,
"W"
:
weights
,
"PTable"
:
ptable
,
"PCode"
:
pcode
,
"Label"
:
label
}
if
helper
.
bias_attr
:
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
c8801e10
...
...
@@ -138,8 +138,11 @@ class OpTest(unittest.TestCase):
cls
.
dtype
=
"float32"
cls
.
outputs
=
{}
np
.
random
.
seed
(
123
)
random
.
seed
(
124
)
# np.random.seed(123)
# random.seed(124)
np
.
random
.
seed
(
190
)
random
.
seed
(
200
)
@
classmethod
def
tearDownClass
(
cls
):
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
浏览文件 @
c8801e10
...
...
@@ -40,6 +40,29 @@ class CodeTable(object):
return
self
.
c
&
(
1
<<
bit
)
class
CodeTableWithCustomTree
(
object
):
def
__init__
(
self
,
ptable
,
pcode
,
index
):
self
.
ptable_
=
ptable
self
.
pcode_
=
pcode
self
.
index_
=
index
def
cal_index
(
self
,
bit
):
return
self
.
ptable_
[
self
.
index_
][
bit
]
def
get_length
(
self
):
length
=
0
for
ele
in
self
.
ptable_
[
self
.
index_
]:
if
ele
>=
0
:
length
=
length
+
1
else
:
return
length
return
length
def
cal_bit
(
self
,
bit
):
return
self
.
pcode_
[
self
.
index_
][
bit
]
def
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
):
batch_size
=
x
.
shape
[
0
]
code_length
=
find_latest_set
(
num_classes
-
1
)
...
...
@@ -48,10 +71,12 @@ def hsigmoid(x, w, label, bias, num_classes):
pre_sum
=
np
.
zeros
((
batch_size
,
1
))
out
=
np
.
zeros
((
batch_size
,
1
)).
astype
(
"float32"
)
for
i
in
range
(
batch_size
):
#print("\n leaf {leaf}: \n".format(leaf = label[i]))
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
#print("index {index} ".format(index = j))
pre_output
[
i
][
j
]
+=
bias
[
0
][
idx
]
for
i
in
range
(
batch_size
):
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
...
...
@@ -63,10 +88,12 @@ def hsigmoid(x, w, label, bias, num_classes):
pre_output
=
np
.
clip
(
pre_output
,
-
40.0
,
40.0
)
# out(i, 0) = \sum_j bit(i, j) * preout(i, j)
for
i
in
range
(
batch_size
):
#print("\n leaf {leaf}: \n".format(leaf = label[i]))
code_table
=
CodeTable
(
num_classes
,
label
[
i
])
length
=
code_table
.
get_length
()
sum
=
0.0
for
j
in
range
(
length
):
#print("bit {bit} ".format(bit = code_table.cal_bit(j)))
if
code_table
.
cal_bit
(
j
):
sum
+=
pre_output
[
i
][
j
]
out
[
i
]
=
-
1.0
*
sum
...
...
@@ -77,25 +104,101 @@ def hsigmoid(x, w, label, bias, num_classes):
return
pre_output
,
out
class
TestHSigmoidOp
(
OpTest
):
def
hsigmoidWithCustomTree
(
x
,
w
,
ptable
,
pcode
,
label
,
bias
,
num_classes
):
batch_size
=
x
.
shape
[
0
]
code_length
=
len
(
ptable
[
0
])
code_table
=
[
0
for
_
in
range
(
code_length
)]
pre_output
=
np
.
zeros
((
batch_size
,
code_length
))
pre_sum
=
np
.
zeros
((
batch_size
,
1
))
out
=
np
.
zeros
((
batch_size
,
1
)).
astype
(
"float32"
)
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
ptable
,
pcode
,
i
)
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
bias
[
0
][
idx
]
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
ptable
,
pcode
,
i
)
length
=
code_table
.
get_length
()
for
j
in
range
(
length
):
idx
=
code_table
.
cal_index
(
j
)
pre_output
[
i
][
j
]
+=
np
.
dot
(
w
[
idx
],
x
[
i
])
# clip[-40.0, 40.0]
pre_output
=
np
.
clip
(
pre_output
,
-
40.0
,
40.0
)
# out(i, 0) = \sum_j bit(i, j) * preout(i, j)
for
i
in
range
(
batch_size
):
code_table
=
CodeTableWithCustomTree
(
ptable
,
pcode
,
i
)
length
=
code_table
.
get_length
()
sum
=
0.0
for
j
in
range
(
length
):
if
code_table
.
cal_bit
(
j
):
sum
+=
pre_output
[
i
][
j
]
out
[
i
]
=
-
1.0
*
sum
# soft relu
pre_output
=
np
.
log
(
1
+
np
.
exp
(
pre_output
))
pre_sum
=
pre_output
.
sum
(
1
).
reshape
((
batch_size
,
1
))
out
+=
pre_sum
return
pre_output
,
out
# class TestHSigmoidOp(OpTest):
# def setUp(self):
# self.op_type = "hierarchical_sigmoid"
# num_classes = 6
# feature_size = 8
# batch_size = 7
# x = np.random.random((batch_size, feature_size)).astype("float32")
# w = np.random.random((num_classes - 1, feature_size)).astype("float32")
# label = np.random.randint(0, num_classes, (batch_size, 1))
# bias = np.random.random((1, num_classes - 1)).astype("float32")
# self.attrs = {'num_classes': num_classes}
# self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
# pre_output, out = hsigmoid(x, w, label, bias, num_classes)
# self.outputs = {'PreOut': pre_output, 'Out': out}
# def test_check_output(self):
# self.check_output()
# def test_check_grad(self):
# self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))
class
TestHSigmoidOpWithCostumTree
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"hierarchical_sigmoid"
num_classes
=
6
num_classes
=
6
#using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
feature_size
=
8
batch_size
=
4
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
w
=
np
.
random
.
random
((
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
label
=
np
.
random
.
randint
(
0
,
num_classes
,
(
batch_size
,
1
))
x
=
np
.
random
.
random
((
batch_size
,
feature_size
)).
astype
(
"float32"
)
*
10
w
=
np
.
random
.
random
(
(
num_classes
-
1
,
feature_size
)).
astype
(
"float32"
)
*
10
label
=
np
.
array
([
0
,
1
,
4
,
5
])
ptable
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)])
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
pcode
=
np
.
array
([(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)])
#np.array to store
bias
=
np
.
random
.
random
((
1
,
num_classes
-
1
)).
astype
(
"float32"
)
self
.
attrs
=
{
'num_classes'
:
num_classes
}
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoid
(
x
,
w
,
label
,
bias
,
num_classes
)
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
ptable
,
'PCode'
:
pcode
,
'Label'
:
label
,
'Bias'
:
bias
}
pre_output
,
out
=
hsigmoidWithCustomTree
(
x
,
w
,
ptable
,
pcode
,
label
,
bias
,
num_classes
)
self
.
outputs
=
{
'PreOut'
:
pre_output
,
'Out'
:
out
}
def
test_check_output
(
self
):
print
(
"checking output in CostumTree"
)
self
.
check_output
()
def
test_check_grad
(
self
):
print
(
"checking outputGrad in CostumTree"
)
self
.
check_grad
([
'Bias'
,
'X'
,
'W'
],
[
'Out'
],
no_grad_set
=
set
(
'Label'
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录