Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1413336a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1413336a
编写于
7月 05, 2019
作者:
X
xsrobin
提交者:
GitHub
7月 05, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
unaligned error in some examples(#18486)
上级
61b91926
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
81 addition
and
81 deletion
+81
-81
paddle/fluid/API.spec
paddle/fluid/API.spec
+4
-4
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+35
-35
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+8
-8
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+34
-34
未找到文件。
paddle/fluid/API.spec
浏览文件 @
1413336a
...
...
@@ -70,8 +70,8 @@ paddle.fluid.initializer.TruncatedNormalInitializer.__init__ (ArgSpec(args=['sel
paddle.fluid.initializer.XavierInitializer.__init__ (ArgSpec(args=['self', 'uniform', 'fan_in', 'fan_out', 'seed'], varargs=None, keywords=None, defaults=(True, None, None, 0)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.initializer.BilinearInitializer.__init__ (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', 'd389912dc079cbef432335a00017cec0'))
paddle.fluid.initializer.MSRAInitializer.__init__ (ArgSpec(args=['self', 'uniform', 'fan_in', 'seed'], varargs=None, keywords=None, defaults=(True, None, 0)), ('document', '53c757bed9345f2ad3361902531e7cf5'))
paddle.fluid.initializer.force_init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '5
3c01b661feb8e60d0efa2066976c1a8
'))
paddle.fluid.initializer.init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '
68bebc3963526880a07c98a5d6226794
'))
paddle.fluid.initializer.force_init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '5
f55553caf939d270c7fe8dc418084b2
'))
paddle.fluid.initializer.init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '
eaa04fd68661a3af59abd0e19b3b6eda
'))
paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None)), ('document', '1c74f52549814235077ecc34856a95eb'))
paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', '6f9f96d2a1517cd1affebc960c3526f7'))
...
...
@@ -127,7 +127,7 @@ paddle.fluid.layers.warpctc (ArgSpec(args=['input', 'label', 'blank', 'norm_by_t
paddle.fluid.layers.sequence_reshape (ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None), ('document', 'f568714a876425004aca4ea2d4a27701'))
paddle.fluid.layers.transpose (ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '8e72db173d4c082e27cb11f31d8c9bfa'))
paddle.fluid.layers.im2sequence (ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None)), ('document', '33134416fc27dd65a767e5f15116ee16'))
paddle.fluid.layers.nce (ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False)), ('document', '
11a544a6e3fd0482509712dd54377fa1
'))
paddle.fluid.layers.nce (ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False)), ('document', '
83d4ca6dfb957912807f535756e76992
'))
paddle.fluid.layers.sampled_softmax_with_cross_entropy (ArgSpec(args=['logits', 'label', 'num_samples', 'num_true', 'remove_accidental_hits', 'use_customized_samples', 'customized_samples', 'customized_probabilities', 'seed'], varargs=None, keywords=None, defaults=(1, True, False, None, None, 0)), ('document', '4521da36af223d5a95bb8f190b5c7add'))
paddle.fluid.layers.hsigmoid (ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name', 'path_table', 'path_code', 'is_custom', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, False, False)), ('document', 'b83e7dfa81059b39bb137922dc914f50'))
paddle.fluid.layers.beam_search (ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'is_accumulated', 'name', 'return_parent_idx'], varargs=None, keywords=None, defaults=(0, True, None, False)), ('document', '1270395ce97a4e1b556104abbb14f096'))
...
...
@@ -376,7 +376,7 @@ paddle.fluid.layers.inverse_time_decay (ArgSpec(args=['learning_rate', 'decay_st
paddle.fluid.layers.polynomial_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False)), ('document', 'a343254c36c2e89512cd8cd8a1960ead'))
paddle.fluid.layers.piecewise_decay (ArgSpec(args=['boundaries', 'values'], varargs=None, keywords=None, defaults=None), ('document', 'd9f654117542c6b702963dda107a247f'))
paddle.fluid.layers.noam_decay (ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None), ('document', 'fd57228fb76195e66bbcc8d8e42c494d'))
paddle.fluid.layers.cosine_decay (ArgSpec(args=['learning_rate', 'step_each_epoch', 'epochs'], varargs=None, keywords=None, defaults=None), ('document', '
f0d65d8c89d0fe78051ca689daa15e35
'))
paddle.fluid.layers.cosine_decay (ArgSpec(args=['learning_rate', 'step_each_epoch', 'epochs'], varargs=None, keywords=None, defaults=None), ('document', '
1062e487dd3b50a6e58b5703b4f594c9
'))
paddle.fluid.layers.linear_lr_warmup (ArgSpec(args=['learning_rate', 'warmup_steps', 'start_lr', 'end_lr'], varargs=None, keywords=None, defaults=None), ('document', '0b529386b62cc73d27b711a5f618f3e4'))
paddle.fluid.contrib.InitState.__init__ (ArgSpec(args=['self', 'init', 'shape', 'value', 'init_boot', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, None, False, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.StateCell.__init__ (ArgSpec(args=['self', 'inputs', 'states', 'out_state', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
...
...
python/paddle/fluid/initializer.py
浏览文件 @
1413336a
...
...
@@ -42,10 +42,10 @@ def force_init_on_cpu():
.. code-block:: python
import paddle.fluid as fluid
if fluid.initializer.force_init_on_cpu():
step = fluid.layers.create_global_var(
shape=[2,3], value=1.0, dtype='float32')
import paddle.fluid as fluid
if fluid.initializer.force_init_on_cpu():
step = fluid.layers.create_global_var(
shape=[2,3], value=1.0, dtype='float32')
"""
return
_force_init_on_cpu_
...
...
@@ -59,10 +59,10 @@ def init_on_cpu():
Examples:
.. code-block:: python
import paddle.fluid as fluid
with fluid.initializer.init_on_cpu():
step = fluid.layers.create_global_var(
shape=[2,3], value=1.0, dtype='float32')
import paddle.fluid as fluid
with fluid.initializer.init_on_cpu():
step = fluid.layers.create_global_var(
shape=[2,3], value=1.0, dtype='float32')
"""
global
_force_init_on_cpu_
...
...
@@ -295,10 +295,10 @@ class NormalInitializer(Initializer):
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
import paddle.fluid as fluid
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
"""
...
...
@@ -611,11 +611,11 @@ class MSRAInitializer(Initializer):
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.MSRA(uniform=False))
import paddle.fluid as fluid
x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=x, size=10,
param_attr=fluid.initializer.MSRA(uniform=False))
"""
...
...
@@ -715,25 +715,25 @@ class BilinearInitializer(Initializer):
.. code-block:: python
import paddle.fluid as fluid
factor = 2
C = 2
w_attr = fluid.initializer.ParamAttr(
learning_rate=0.,
regularizer=fluid.regularizer.L2Decay(0.),
import paddle.fluid as fluid
factor = 2
C = 2
w_attr = fluid.initializer.ParamAttr(
learning_rate=0.,
regularizer=fluid.regularizer.L2Decay(0.),
initializer=fluid.initializer.Bilinear())
x = fluid.layers.data(name="data", shape=[3, 32, 32],
dtype="float32")
conv_up = fluid.layers.conv2d_transpose(
input=x,
num_filters=C,
output_size=None,
filter_size=2 * factor - factor % 2,
padding=int(math.ceil((factor - 1) / 2.)),
stride=factor,
groups=C,
param_attr=w_attr,
bias_attr=False)
x = fluid.layers.data(name="data", shape=[3, 32, 32],
dtype="float32")
conv_up = fluid.layers.conv2d_transpose(
input=x,
num_filters=C,
output_size=None,
filter_size=2 * factor - factor % 2,
padding=int(math.ceil((factor - 1) / 2.)),
stride=factor,
groups=C,
param_attr=w_attr,
bias_attr=False)
Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
1413336a
...
...
@@ -403,23 +403,23 @@ def cosine_decay(learning_rate, step_each_epoch, epochs):
.. math::
decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch *
\\
frac{math.pi}{epochs} ) + 1)
decayed\_lr = learning\_rate * 0.5 * (math.cos * (epoch *
\\
frac{math.pi}{epochs} ) + 1)
Args:
learning_rate(Variable|float): The initial learning rate.
step_each_epoch(int): the number of steps in an epoch.
epochs(int): the number of epochs.
Returns:
Variable: The decayed learning rate.
Variable: The decayed learning rate.
Examples:
.. code-block:: python
.. code-block:: python
import paddle.fluid as fluid
base_lr = 0.1
lr = fluid.layers.cosine_decay(
learning_rate = base_lr, step_each_epoch=10000, epochs=120)
import paddle.fluid as fluid
base_lr = 0.1
lr = fluid.layers.cosine_decay(
learning_rate = base_lr, step_each_epoch=10000, epochs=120)
"""
with
default_main_program
().
_lr_schedule_guard
():
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
1413336a
...
...
@@ -5691,40 +5691,40 @@ def nce(input,
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
window_size = 5
words = []
for i in xrange(window_size):
words.append(fluid.layers.data(
name='word_{0}'.format(i), shape=[1], dtype='int64'))
dict_size = 10000
label_word = int(window_size / 2) + 1
embs = []
for i in xrange(window_size):
if i == label_word:
continue
emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
param_attr='embed', is_sparse=True)
embs.append(emb)
embs = fluid.layers.concat(input=embs, axis=1)
loss = fluid.layers.nce(input=embs, label=words[label_word],
num_total_classes=dict_size, param_attr='nce.w_0',
bias_attr='nce.b_0')
#or use custom distribution
dist = np.array([0.05,0.5,0.1,0.3,0.05])
loss = fluid.layers.nce(input=embs, label=words[label_word],
num_total_classes=5, param_attr='nce.w_1',
bias_attr='nce.b_1',
num_neg_samples=3,
sampler="custom_dist",
custom_dist=dist)
import paddle.fluid as fluid
import numpy as np
window_size = 5
words = []
for i in xrange(window_size):
words.append(fluid.layers.data(
name='word_{0}'.format(i), shape=[1], dtype='int64'))
dict_size = 10000
label_word = int(window_size / 2) + 1
embs = []
for i in xrange(window_size):
if i == label_word:
continue
emb = fluid.layers.embedding(input=words[i], size=[dict_size, 32],
param_attr='embed', is_sparse=True)
embs.append(emb)
embs = fluid.layers.concat(input=embs, axis=1)
loss = fluid.layers.nce(input=embs, label=words[label_word],
num_total_classes=dict_size, param_attr='nce.w_0',
bias_attr='nce.b_0')
#or use custom distribution
dist = np.array([0.05,0.5,0.1,0.3,0.05])
loss = fluid.layers.nce(input=embs, label=words[label_word],
num_total_classes=5, param_attr='nce.w_1',
bias_attr='nce.b_1',
num_neg_samples=3,
sampler="custom_dist",
custom_dist=dist)
"""
helper
=
LayerHelper
(
'nce'
,
**
locals
())
assert
isinstance
(
input
,
Variable
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录