未验证 提交 c8d00cb2 编写于 作者: H Hongyu Liu 提交者: GitHub

Sequence mask support tensor (#18249) (#18318)

* sequnce mask support max length tensor input; test=develop

* add rnn_impl.py; test=develop

* add basic gru lstm unittest; test=develop

* fix api spec; test=develop

* fix sequence_mask op bug;
test=develop
test=document_preview

* change +-*x to elmentwise_op; test=develop

* add mkl flag; test=develop

* fix rnn impl bug; test=develop

* update api spec; test=develop

* fix doc bug; test=develop

* fix lstm bugs; test=develop
上级 5cd4bbfe
......@@ -429,6 +429,38 @@ paddle.fluid.contrib.multi_upload (ArgSpec(args=['client', 'hdfs_path', 'local_p
paddle.fluid.contrib.extend_with_decoupled_weight_decay (ArgSpec(args=['base_optimizer'], varargs=None, keywords=None, defaults=None), ('document', 'a1095dfd4ec725747f662d69cd7659d4'))
paddle.fluid.contrib.mixed_precision.decorate (ArgSpec(args=['optimizer', 'init_loss_scaling', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'incr_ratio', 'decr_ratio', 'use_dynamic_loss_scaling'], varargs=None, keywords=None, defaults=(1.0, 1000, 2, 2.0, 0.8, False)), ('document', 'bdb8f9dbb0d94b3957272c53eeee9818'))
paddle.fluid.contrib.fused_elemwise_activation (ArgSpec(args=['x', 'y', 'functor_list', 'axis', 'scale', 'save_intermediate_out'], varargs=None, keywords=None, defaults=(-1, 0.0, True)), ('document', '1c4b247a2858cea8d9d8750693688270'))
paddle.fluid.contrib.BasicGRUUnit.__init__ (ArgSpec(args=['self', 'name_scope', 'hidden_size', 'param_attr', 'bias_attr', 'gate_activation', 'activation', 'dtype'], varargs=None, keywords=None, defaults=(None, None, None, None, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicGRUUnit.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.contrib.BasicGRUUnit.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.contrib.BasicGRUUnit.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicGRUUnit.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicGRUUnit.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.contrib.BasicGRUUnit.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.contrib.BasicGRUUnit.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicGRUUnit.forward (ArgSpec(args=['self', 'input', 'pre_hidden'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicGRUUnit.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.contrib.BasicGRUUnit.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicGRUUnit.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.contrib.BasicGRUUnit.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicGRUUnit.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.contrib.BasicGRUUnit.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.basic_gru (ArgSpec(args=['input', 'init_hidden', 'hidden_size', 'num_layers', 'sequence_length', 'dropout_prob', 'bidirectional', 'batch_first', 'param_attr', 'bias_attr', 'gate_activation', 'activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(1, None, 0.0, False, True, None, None, None, None, 'float32', 'basic_gru')), ('document', '0afcbe4fbe1b8c35eda58b4efe48f9fd'))
paddle.fluid.contrib.BasicLSTMUnit.__init__ (ArgSpec(args=['self', 'name_scope', 'hidden_size', 'param_attr', 'bias_attr', 'gate_activation', 'activation', 'forget_bias', 'dtype'], varargs=None, keywords=None, defaults=(None, None, None, None, 1.0, 'float32')), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicLSTMUnit.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.contrib.BasicLSTMUnit.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
paddle.fluid.contrib.BasicLSTMUnit.backward (ArgSpec(args=['self'], varargs='inputs', keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicLSTMUnit.clear_gradients (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicLSTMUnit.create_parameter (ArgSpec(args=['self', 'attr', 'shape', 'dtype', 'is_bias', 'default_initializer'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'a6420ca1455366eaaf972191612de0b6'))
paddle.fluid.contrib.BasicLSTMUnit.create_variable (ArgSpec(args=['self', 'name', 'persistable', 'dtype', 'type'], varargs=None, keywords=None, defaults=(None, None, None, VarType.LOD_TENSOR)), ('document', '171cccfceba636d5bbf7bbae672945d8'))
paddle.fluid.contrib.BasicLSTMUnit.eval (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicLSTMUnit.forward (ArgSpec(args=['self', 'input', 'pre_hidden', 'pre_cell'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicLSTMUnit.full_name (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '23ce4f961f48ed0f79cadf93a3938ed2'))
paddle.fluid.contrib.BasicLSTMUnit.load_dict (ArgSpec(args=['self', 'stat_dict', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicLSTMUnit.parameters (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '5aec25a854eb57abc798dccccbb507d5'))
paddle.fluid.contrib.BasicLSTMUnit.state_dict (ArgSpec(args=['self', 'destination', 'include_sublayers'], varargs=None, keywords=None, defaults=(None, True)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.BasicLSTMUnit.sublayers (ArgSpec(args=['self', 'include_sublayers'], varargs=None, keywords=None, defaults=(True,)), ('document', '00a881005ecbc96578faf94513bf0d62'))
paddle.fluid.contrib.BasicLSTMUnit.train (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.basic_lstm (ArgSpec(args=['input', 'init_hidden', 'init_cell', 'hidden_size', 'num_layers', 'sequence_length', 'dropout_prob', 'bidirectional', 'batch_first', 'param_attr', 'bias_attr', 'gate_activation', 'activation', 'forget_bias', 'dtype', 'name'], varargs=None, keywords=None, defaults=(1, None, 0.0, False, True, None, None, None, None, 1.0, 'float32', 'basic_lstm')), ('document', 'fe4d0c3c55a162b8cfe10b05fabb7ce4'))
paddle.fluid.dygraph.Layer.__init__ (ArgSpec(args=['self', 'name_scope', 'dtype'], varargs=None, keywords=None, defaults=(VarType.FP32,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.dygraph.Layer.add_parameter (ArgSpec(args=['self', 'name', 'parameter'], varargs=None, keywords=None, defaults=None), ('document', 'f35ab374c7d5165c3daf3bd64a5a2ec1'))
paddle.fluid.dygraph.Layer.add_sublayer (ArgSpec(args=['self', 'name', 'sublayer'], varargs=None, keywords=None, defaults=None), ('document', '839ff3c0534677ba6ad8735c3fd4e995'))
......
......@@ -35,7 +35,9 @@ template struct SetConstant<platform::CUDADeviceContext, bool>;
template struct Transpose<platform::CUDADeviceContext, float, RANK>; \
template struct Transpose<platform::CUDADeviceContext, double, RANK>; \
template struct Transpose<platform::CUDADeviceContext, float16, RANK>; \
template struct Transpose<platform::CUDADeviceContext, int8_t, RANK>;
template struct Transpose<platform::CUDADeviceContext, int8_t, RANK>; \
template struct Transpose<platform::CUDADeviceContext, int32_t, RANK>; \
template struct Transpose<platform::CUDADeviceContext, int64_t, RANK>;
DEFINE_GPU_TRANS(1);
DEFINE_GPU_TRANS(2);
......
......@@ -13,6 +13,80 @@
// limitations under the License.
#include "paddle/fluid/operators/sequence_ops/sequence_mask_op.h"
#include <string>
namespace paddle {
namespace operators {
class SequenceMaskOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must exist");
PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) must exist");
int maxlen = ctx->Attrs().Get<int>("maxlen");
auto dim = framework::vectorize2int(ctx->GetInputDim("X"));
if (ctx->HasInputs("MaxLenTensor")) {
dim.push_back(-1);
} else {
dim.push_back(maxlen > 0 ? maxlen : -1);
}
ctx->SetOutputDim("Y", framework::make_ddim(dim));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
ctx.device_context());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string& var_name, const Tensor& tensor,
const framework::OpKernelType& expected_kernel_type) const override {
if (var_name == "depth_tensor") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
};
class SequenceMaskOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "The input tensor of sequence_mask op.");
AddOutput("Y", "The output mask of sequence_mask op.");
AddInput("MaxLenTensor",
"Max length tensor"
"have higher priority than maxlen attribute")
.AsDispensable();
AddAttr<int>("maxlen",
"The maximum length of the sequence. If maxlen < 0, maxlen "
"= max(Input(X)).")
.SetDefault(-1)
.AddCustomChecker([](const int& v) {
PADDLE_ENFORCE(v < 0 || v >= 1,
"Attr(maxlen) must be less than 0 or larger than 1");
});
AddAttr<int>("out_dtype", "Output data type");
AddComment(R"DOC(
SequenceMask Operator
This operator outputs a Mask according to Input(X) and Attr(maxlen).
Supposing Input(X) is a Tensor with shape [d_1, d_2, ..., d_n], the
Output(Y) is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
Y(i_1, i_2, ..., i_n, j) = (j < X(i_1, i_2, ..., i_n))
If maxlen < 0, maxlen = max(X)
)DOC");
}
};
} // namespace operators
} // namespace paddle
REGISTER_OPERATOR(sequence_mask, paddle::operators::SequenceMaskOp,
paddle::operators::SequenceMaskOpMaker,
......
......@@ -28,48 +28,8 @@
namespace paddle {
namespace operators {
class SequenceMaskOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must exist");
PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) must exist");
int maxlen = ctx->Attrs().Get<int>("maxlen");
auto dim = framework::vectorize2int(ctx->GetInputDim("X"));
dim.push_back(maxlen > 0 ? maxlen : -1);
ctx->SetOutputDim("Y", framework::make_ddim(dim));
}
};
class SequenceMaskOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "The input tensor of sequence_mask op.");
AddOutput("Y", "The output mask of sequence_mask op.");
AddAttr<int>("maxlen",
"The maximum length of the sequence. If maxlen < 0, maxlen "
"= max(Input(X)).")
.SetDefault(-1)
.AddCustomChecker([](const int &v) {
PADDLE_ENFORCE(v < 0 || v >= 1,
"Attr(maxlen) must be less than 0 or larger than 1");
});
AddAttr<int>("out_dtype", "Output data type");
AddComment(R"DOC(
SequenceMask Operator
This operator outputs a Mask according to Input(X) and Attr(maxlen).
Supposing Input(X) is a Tensor with shape [d_1, d_2, ..., d_n], the
Output(Y) is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
Y(i_1, i_2, ..., i_n, j) = (j < X(i_1, i_2, ..., i_n))
If maxlen < 0, maxlen = max(X)
)DOC");
}
};
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;
template <typename Tx, typename Ty>
struct SequenceMaskForRangeFunctor {
......@@ -90,8 +50,6 @@ struct SequenceMaskForRangeFunctor {
template <typename DeviceContext, typename Tx>
struct SequenceMaskFunctor {
using Tensor = framework::LoDTensor;
SequenceMaskFunctor(const DeviceContext &ctx, const Tx *x, Tensor *y,
int limits, int maxlen)
: ctx_(ctx), x_(x), y_(y), limits_(limits), maxlen_(maxlen) {}
......@@ -119,7 +77,25 @@ class SequenceMaskKernel : public framework::OpKernel<Tx> {
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x = ctx.Input<Tensor>("X");
auto *y = ctx.Output<Tensor>("Y");
auto maxlen = ctx.Attr<int>("maxlen");
int maxlen = ctx.Attr<int>("maxlen");
if (ctx.HasInput("MaxLenTensor")) {
auto max_len_tensor = ctx.Input<Tensor>("MaxLenTensor");
PADDLE_ENFORCE(max_len_tensor != NULL, "MaxLenTensor is NULL");
if (platform::is_gpu_place(max_len_tensor->place())) {
framework::Tensor temp;
TensorCopySync(*max_len_tensor, platform::CPUPlace(), &temp);
maxlen = *temp.data<int32_t>();
} else {
maxlen = *max_len_tensor->data<int32_t>();
}
auto y_dim = framework::vectorize2int(x->dims());
y_dim.push_back(maxlen);
y->Resize(framework::make_ddim(y_dim));
PADDLE_ENFORCE_GT(maxlen, 0,
"MaxLenTensor value should be greater than 0");
}
auto *x_data = x->data<Tx>();
auto x_numel = x->numel();
......
......@@ -55,4 +55,5 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR(shape, ops::ShapeOp, ops::ShapeOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(shape, ops::ShapeKernel<int>, ops::ShapeKernel<int32_t>,
ops::ShapeKernel<float>, ops::ShapeKernel<double>);
ops::ShapeKernel<int64_t>, ops::ShapeKernel<float>,
ops::ShapeKernel<double>);
......@@ -16,5 +16,6 @@ limitations under the License. */
REGISTER_OP_CUDA_KERNEL(shape, paddle::operators::ShapeKernel<int>,
paddle::operators::ShapeKernel<int32_t>,
paddle::operators::ShapeKernel<int64_t>,
paddle::operators::ShapeKernel<float>,
paddle::operators::ShapeKernel<double>);
......@@ -92,7 +92,7 @@ class SliceOp : public framework::OperatorWithKernel {
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
ctx.GetPlace());
ctx.Input<Tensor>("Input")->place());
}
};
......
......@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/transpose_op.h"
#include <memory>
#include <string>
#include <vector>
......@@ -289,8 +290,12 @@ REGISTER_OPERATOR(transpose2_grad, ops::Transpose2OpGrad);
REGISTER_OP_CPU_KERNEL(
transpose2, ops::TransposeKernel<paddle::platform::CPUDeviceContext, float>,
ops::TransposeKernel<paddle::platform::CPUDeviceContext, int32_t>,
ops::TransposeKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::TransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
transpose2_grad,
ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int32_t>,
ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::TransposeGradKernel<paddle::platform::CPUDeviceContext, double>);
......@@ -30,11 +30,15 @@ REGISTER_OP_CUDA_KERNEL(
REGISTER_OP_CUDA_KERNEL(
transpose2,
ops::TransposeKernel<paddle::platform::CUDADeviceContext, int32_t>,
ops::TransposeKernel<paddle::platform::CUDADeviceContext, int64_t>,
ops::TransposeKernel<paddle::platform::CUDADeviceContext, float>,
ops::TransposeKernel<paddle::platform::CUDADeviceContext, double>,
ops::TransposeKernel<paddle::platform::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
transpose2_grad,
ops::TransposeGradKernel<paddle::platform::CUDADeviceContext, int32_t>,
ops::TransposeGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
ops::TransposeGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::TransposeGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::TransposeGradKernel<paddle::platform::CUDADeviceContext,
......
......@@ -16,6 +16,8 @@ from __future__ import print_function
from . import nn
from .nn import *
from .rnn_impl import *
__all__ = []
__all__ += nn.__all__
__all__ += rnn_impl.__all__
此差异已折叠。
......@@ -448,7 +448,7 @@ class StaticRNN(object):
raise TypeError("step input takes a Variable")
if self.seq_len is None:
self.seq_len = x.shape[0]
elif self.seq_len != x.shape[0]:
elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
raise ValueError("Static RNN only take fix seq_len input")
ipt = self.helper.create_variable(
......
......@@ -9225,14 +9225,18 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None):
else:
out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
inputs = {'X': [x]}
attrs = {'out_dtype': out.dtype}
if maxlen is not None:
if isinstance(maxlen, Variable):
inputs['MaxLenTensor'] = maxlen
else:
attrs['maxlen'] = maxlen
helper.append_op(
type='sequence_mask',
inputs={'X': [x]},
outputs={'Y': out},
attrs={
'maxlen': maxlen if maxlen is not None else -1,
'out_dtype': out.dtype
})
type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs)
out.stop_gradient = True
return out
......
......@@ -116,6 +116,12 @@ list(REMOVE_ITEM TEST_OPS test_imperative_mnist)
list(REMOVE_ITEM TEST_OPS test_ir_memory_optimize_transformer)
list(REMOVE_ITEM TEST_OPS test_layers)
list(REMOVE_ITEM TEST_OPS test_imperative_ocr_attention_model)
list(REMOVE_ITEM TEST_OPS test_async_ssa_graph_executor_mnist)
list(REMOVE_ITEM TEST_OPS test_install_check)
list(REMOVE_ITEM TEST_OPS test_basic_gru_api)
list(REMOVE_ITEM TEST_OPS test_basic_gru_unit_op)
list(REMOVE_ITEM TEST_OPS test_basic_lstm_api)
list(REMOVE_ITEM TEST_OPS test_basic_lstm_unit_op)
# Some ops need to check results when gc is enabled
# Currently, only ops that register NoNeedBufferVarsInference need to do this test
......@@ -159,6 +165,10 @@ py_test_modules(test_adam_op_multi_thread MODULES test_adam_op ENVS FLAGS_inner_
py_test_modules(test_warpctc_op MODULES test_warpctc_op)
py_test_modules(test_bilinear_interp_op MODULES test_bilinear_interp_op ENVS ${GC_ENVS})
py_test_modules(test_nearest_interp_op MODULES test_nearest_interp_op ENVS ${GC_ENVS})
py_test_modules(test_basic_gru_api MODULES test_basic_gru_api ENVS MKL_CBWR=COMPATIBLE)
py_test_modules(test_basic_gru_unit_op MODULES test_basic_gru_unit_op ENVS MKL_CBWR=COMPATIBLE)
py_test_modules(test_basic_lstm_api MODULES test_basic_lstm_api ENVS MKL_CBWR=COMPATIBLE)
py_test_modules(test_basic_lstm_unit_op MODULES test_basic_lstm_unit_op ENVS MKL_CBWR=COMPATIBLE)
py_test_modules(test_imperative_resnet MODULES test_imperative_resnet ENVS
FLAGS_cudnn_deterministic=1 SERIAL)
set_tests_properties(test_imperative_resnet PROPERTIES LABELS "RUN_TYPE=EXCLUSIVE")
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.contrib.layers import basic_gru
from paddle.fluid.executor import Executor
from paddle.fluid import framework
import numpy as np
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0
def sigmoid(x):
y = np.copy(x)
y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
return 1. / (1. + np.exp(-y))
def tanh(x):
y = -2. * x
y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
return (2. / (1. + np.exp(y))) - 1.
def gru_np(input,
init_h,
hidden_size,
gate_weight,
gate_bias,
candidate_weight,
candidate_bias,
num_layers=1,
batch_first=False,
is_bidirect=False,
sequence_length=None):
def step(step_in, pre_hidden, gate_w, gate_b, candidate_w, candidate_b):
concat_1 = np.concatenate([step_in, pre_hidden], 1)
gate_input = np.matmul(concat_1, gate_w)
gate_input += gate_b
gate_input = sigmoid(gate_input)
r, u = np.split(gate_input, indices_or_sections=2, axis=1)
r_hidden = r * pre_hidden
candidate = np.matmul(
np.concatenate([step_in, pre_hidden], 1), candidate_w)
candidate += candidate_b
c = tanh(candidate)
new_hidden = u * pre_hidden + (1 - u) * c
return new_hidden
if batch_first:
input = np.tranpose(input, [1, 0, 2])
batch_size = input.shape[1]
mask = None
if sequence_length is not None:
max_seq_len = input.shape[0]
mask = np.zeros([batch_size, max_seq_len])
for i, len in enumerate(sequence_length):
mask[i, :len] = 1.0
mask = np.transpose(mask, [1, 0])
direc_num = 1
if is_bidirect:
direc_num = 2
if init_h:
init_h = np.reshape(
init_h, shape=[num_layers, direc_num, -1, hidden_size])
else:
init_h = np.zeros([num_layers, direc_num, batch_size, hidden_size])
def get_single_direction_output(rnn_input, mask=None, direc_index=0):
seq_len = rnn_input.shape[0]
output = []
# init pre hidden
pre_hidden_array = []
for i in range(num_layers):
pre_hidden_array.append(init_h[i, direc_index])
for i in range(seq_len):
step_input = rnn_input[i]
if mask is not None:
step_mask = mask[i]
step_mask = np.reshape(step_mask, [-1, 1])
for i in range(num_layers):
new_hidden = step(
step_input, pre_hidden_array[i],
gate_weight[direc_index * num_layers + i],
gate_bias[direc_index * num_layers + i],
candidate_weight[direc_index * num_layers + i],
candidate_bias[direc_index * num_layers + i])
if mask is not None:
new_hidden = new_hidden * step_mask + (
1 - step_mask) * pre_hidden_array[i]
pre_hidden_array[i] = new_hidden
step_input = new_hidden
output.append(step_input)
rnn_out = np.concatenate(output, 0)
rnn_out = np.reshape(rnn_out, [seq_len, -1, hidden_size])
last_hidden_out = np.concatenate(pre_hidden_array, 0)
last_hidden_out = np.reshape(last_hidden_out,
[num_layers, -1, hidden_size])
return rnn_out, last_hidden_out
fw_rnn_out, fw_last_hidden = get_single_direction_output(
input, mask, direc_index=0)
if is_bidirect:
bw_input = input[::-1]
bw_mask = None
if mask is not None:
bw_mask = mask[::-1]
bw_rnn_out, bw_last_hidden = get_single_direction_output(
bw_input, bw_mask, direc_index=1)
bw_rnn_out = bw_rnn_out[::-1]
rnn_out = np.concatenate([fw_rnn_out, bw_rnn_out], 2)
last_hidden = np.concatenate([fw_last_hidden, bw_last_hidden], 1)
last_hidden = np.reshape(last_hidden,
[num_layers * direc_num, -1, hidden_size])
if batch_first:
rnn_out = np.transpose(rnn_out, [1, 0, 2])
return rnn_out, last_hidden
else:
rnn_out = fw_rnn_out
last_hidden = fw_last_hidden
if batch_first:
rnn_out = np.transpose(rnn_out, [1, 0, 2])
return rnn_out, last_hidden
class TestBasicGRUApi(unittest.TestCase):
def setUp(self):
self.hidden_size = 10
self.batch_size = 5
self.seq_len = 6
self.num_layers = 2
self.is_bidirect = True
self.batch_first = False
def test_run(self):
x = layers.data(
name='x',
shape=[-1, self.batch_size, self.hidden_size],
dtype='float32')
sequence_length = layers.data(
name="sequence_length", shape=[-1], dtype='float32')
rnn_out, last_hidden = basic_gru( x, None, self.hidden_size, num_layers=self.num_layers, \
batch_first = self.batch_first, bidirectional=self.is_bidirect, sequence_length=sequence_length )
last_hidden.persisbale = True
rnn_out.persisbale = True
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
param_list = fluid.default_main_program().block(0).all_parameters()
# process weight and bias
gate_weight = []
gate_bias = []
candidate_weight = []
candidate_bias = []
for i in range(self.num_layers):
gate_w_name = "basic_gru_layers_" + str(i) + "/BasicGRUUnit_0.w_0"
gate_b_name = "basic_gru_layers_" + str(i) + "/BasicGRUUnit_0.b_0"
candidate_w_name = "basic_gru_layers_" + str(
i) + "/BasicGRUUnit_0.w_1"
candidate_b_name = "basic_gru_layers_" + str(
i) + "/BasicGRUUnit_0.b_1"
gate_w = np.array(fluid.global_scope().find_var(gate_w_name)
.get_tensor())
gate_w = np.random.uniform(
-0.1, 0.1, size=gate_w.shape).astype('float32')
fluid.global_scope().find_var(gate_w_name).get_tensor().set(gate_w,
place)
gate_b = np.array(fluid.global_scope().find_var(gate_b_name)
.get_tensor())
gate_b = np.random.uniform(
-0.1, 0.1, size=gate_b.shape).astype('float32')
fluid.global_scope().find_var(gate_b_name).get_tensor().set(gate_b,
place)
candidate_w = np.array(fluid.global_scope().find_var(
candidate_w_name).get_tensor())
candidate_w = np.random.uniform(
-0.1, 0.1, size=candidate_w.shape).astype('float32')
fluid.global_scope().find_var(candidate_w_name).get_tensor().set(
candidate_w, place)
candidate_b = np.array(fluid.global_scope().find_var(
candidate_b_name).get_tensor())
candidate_b = np.random.uniform(
-0.1, 0.1, size=candidate_b.shape).astype('float32')
fluid.global_scope().find_var(candidate_b_name).get_tensor().set(
candidate_b, place)
gate_weight.append(gate_w)
gate_bias.append(gate_b)
candidate_weight.append(candidate_w)
candidate_bias.append(candidate_b)
if self.is_bidirect:
for i in range(self.num_layers):
gate_w_name = "basic_gru_reverse_layers_" + str(
i) + "/BasicGRUUnit_0.w_0"
gate_b_name = "basic_gru_reverse_layers_" + str(
i) + "/BasicGRUUnit_0.b_0"
candidate_w_name = "basic_gru_reverse_layers_" + str(
i) + "/BasicGRUUnit_0.w_1"
candidate_b_name = "basic_gru_reverse_layers_" + str(
i) + "/BasicGRUUnit_0.b_1"
gate_w = np.array(fluid.global_scope().find_var(gate_w_name)
.get_tensor())
gate_w = np.random.uniform(
-0.1, 0.1, size=gate_w.shape).astype('float32')
fluid.global_scope().find_var(gate_w_name).get_tensor().set(
gate_w, place)
gate_b = np.array(fluid.global_scope().find_var(gate_b_name)
.get_tensor())
gate_b = np.random.uniform(
-0.1, 0.1, size=gate_b.shape).astype('float32')
fluid.global_scope().find_var(gate_b_name).get_tensor().set(
gate_b, place)
candidate_w = np.array(fluid.global_scope().find_var(
candidate_w_name).get_tensor())
candidate_w = np.random.uniform(
-0.1, 0.1, size=candidate_w.shape).astype('float32')
fluid.global_scope().find_var(candidate_w_name).get_tensor(
).set(candidate_w, place)
candidate_b = np.array(fluid.global_scope().find_var(
candidate_b_name).get_tensor())
candidate_b = np.random.uniform(
-0.1, 0.1, size=candidate_b.shape).astype('float32')
fluid.global_scope().find_var(candidate_b_name).get_tensor(
).set(candidate_b, place)
gate_weight.append(gate_w)
gate_bias.append(gate_b)
candidate_weight.append(candidate_w)
candidate_bias.append(candidate_b)
step_input_np = np.random.uniform(-0.1, 0.1, (
self.seq_len, self.batch_size, self.hidden_size)).astype('float32')
sequence_length_np = np.random.randint(
self.seq_len // 2, self.seq_len,
size=(self.batch_size)).astype('int64')
out = exe.run(
feed={'x': step_input_np,
'sequence_length': sequence_length_np},
fetch_list=[rnn_out, last_hidden])
api_rnn_out = out[0]
api_last_hidden = out[1]
np_out = gru_np(
step_input_np,
None,
self.hidden_size,
gate_weight,
gate_bias,
candidate_weight,
candidate_bias,
num_layers=self.num_layers,
batch_first=self.batch_first,
is_bidirect=self.is_bidirect,
sequence_length=sequence_length_np)
self.assertTrue(np.allclose(api_rnn_out, np_out[0], rtol=1e-4, atol=0))
self.assertTrue(
np.allclose(
api_last_hidden, np_out[1], rtol=1e-4, atol=0))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.contrib.layers import BasicGRUUnit
from paddle.fluid.executor import Executor
from paddle.fluid import framework
import numpy as np
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0
def sigmoid(x):
y = np.copy(x)
y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
return 1. / (1. + np.exp(-y))
def tanh(x):
y = -2. * x
y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
return (2. / (1. + np.exp(y))) - 1.
def step(step_in, pre_hidden, gate_w, gate_b, candidate_w, candidate_b):
concat_1 = np.concatenate([step_in, pre_hidden], 1)
gate_input = np.matmul(concat_1, gate_w)
gate_input += gate_b
gate_input = sigmoid(gate_input)
r, u = np.split(gate_input, indices_or_sections=2, axis=1)
r_hidden = r * pre_hidden
candidate = np.matmul(np.concatenate([step_in, pre_hidden], 1), candidate_w)
candidate += candidate_b
c = tanh(candidate)
new_hidden = u * pre_hidden + (1 - u) * c
return new_hidden
class TestBasicGRUUnit(unittest.TestCase):
def setUp(self):
self.hidden_size = 5
self.batch_size = 5
def test_run(self):
x = layers.data(name='x', shape=[-1, self.hidden_size], dtype='float32')
pre_hidden = layers.data(
name="pre_hidden", shape=[-1, self.hidden_size], dtype='float32')
gru_unit = BasicGRUUnit("gru_unit", self.hidden_size)
new_hidden = gru_unit(x, pre_hidden)
new_hidden.persisbale = True
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
param_list = fluid.default_main_program().block(0).all_parameters()
# process weight and bias
gate_w_name = "gru_unit/BasicGRUUnit_0.w_0"
gate_b_name = "gru_unit/BasicGRUUnit_0.b_0"
candidate_w_name = "gru_unit/BasicGRUUnit_0.w_1"
candidate_b_name = "gru_unit/BasicGRUUnit_0.b_1"
gate_w = np.array(fluid.global_scope().find_var(gate_w_name).get_tensor(
))
gate_w = np.random.uniform(
-0.1, 0.1, size=gate_w.shape).astype('float32')
fluid.global_scope().find_var(gate_w_name).get_tensor().set(gate_w,
place)
gate_b = np.array(fluid.global_scope().find_var(gate_b_name).get_tensor(
))
gate_b = np.random.uniform(
-0.1, 0.1, size=gate_b.shape).astype('float32')
fluid.global_scope().find_var(gate_b_name).get_tensor().set(gate_b,
place)
candidate_w = np.array(fluid.global_scope().find_var(candidate_w_name)
.get_tensor())
candidate_w = np.random.uniform(
-0.1, 0.1, size=candidate_w.shape).astype('float32')
fluid.global_scope().find_var(candidate_w_name).get_tensor().set(
candidate_w, place)
candidate_b = np.array(fluid.global_scope().find_var(candidate_b_name)
.get_tensor())
candidate_b = np.random.uniform(
-0.1, 0.1, size=candidate_b.shape).astype('float32')
fluid.global_scope().find_var(candidate_b_name).get_tensor().set(
candidate_b, place)
step_input_np = np.random.uniform(-0.1, 0.1, (
self.batch_size, self.hidden_size)).astype('float32')
pre_hidden_np = np.random.uniform(-0.1, 0.1, (
self.batch_size, self.hidden_size)).astype('float32')
out = exe.run(feed={'x': step_input_np,
'pre_hidden': pre_hidden_np},
fetch_list=[new_hidden])
api_out = out[0]
np_out = step(step_input_np, pre_hidden_np, gate_w, gate_b, candidate_w,
candidate_b)
self.assertTrue(np.allclose(api_out, np_out, rtol=1e-4, atol=0))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.contrib.layers import basic_lstm
from paddle.fluid.executor import Executor
from paddle.fluid import framework
import numpy as np
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0
def sigmoid(x):
y = np.copy(x)
y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
return 1. / (1. + np.exp(-y))
def tanh(x):
y = -2. * x
y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
return (2. / (1. + np.exp(y))) - 1.
def lstm_np(input,
init_h,
init_c,
hidden_size,
gate_weight,
gate_bias,
num_layers=1,
batch_first=False,
is_bidirect=False,
sequence_length=None,
forget_bias=1.0):
def step(step_in, pre_hidden, pre_cell, gate_w, gate_b):
concat_1 = np.concatenate([step_in, pre_hidden], 1)
gate_input = np.matmul(concat_1, gate_w)
gate_input += gate_b
i, j, f, o = np.split(gate_input, indices_or_sections=4, axis=1)
new_cell = pre_cell * sigmoid(f + forget_bias) + sigmoid(i) * tanh(j)
new_hidden = tanh(new_cell) * sigmoid(o)
return new_hidden, new_cell
if batch_first:
input = np.tranpose(input, [1, 0, 2])
if mask is not None:
mask = np.transpose(mask, [1, 0])
batch_size = input.shape[1]
mask = None
if sequence_length is not None:
max_seq_len = input.shape[0]
mask = np.zeros([batch_size, max_seq_len])
for i, len in enumerate(sequence_length):
mask[i, :len] = 1.0
mask = np.transpose(mask, [1, 0])
direc_num = 1
if is_bidirect:
direc_num = 2
if init_h:
init_h = np.reshape(init_h, [num_layers, direc_num, -1, hidden_size])
init_c = np.reshape(init_c, [num_layers, direc_num, -1, hidden_size])
else:
init_h = np.zeros([num_layers, direc_num, batch_size, hidden_size])
init_c = np.zeros([num_layers, direc_num, batch_size, hidden_size])
def get_single_direction_output(rnn_input, mask=None, direc_index=0):
seq_len = rnn_input.shape[0]
output = []
# init pre hidden
pre_hidden_array = []
pre_cell_array = []
for i in range(num_layers):
pre_hidden_array.append(init_h[i, direc_index])
pre_cell_array.append(init_c[i, direc_index])
for i in range(seq_len):
step_input = rnn_input[i]
if mask is not None:
step_mask = mask[i]
step_mask = np.reshape(step_mask, [-1, 1])
#print("np mask", step_mask.shape )
for i in range(num_layers):
new_hidden, new_cell = step(
step_input, pre_hidden_array[i], pre_cell_array[i],
gate_weight[direc_index * num_layers + i],
gate_bias[direc_index * num_layers + i])
if mask is not None:
new_hidden = np.multiply(
new_hidden, step_mask) - np.multiply(
pre_hidden_array[i], (step_mask - 1.0))
#new_hidden = new_hidden * step_mask - pre_hidden_array[i] * ( step_mask -1 )
#new_cell = new_cell * step_mask - pre_cell_array[i] * (step_mask -1)
new_cell = np.multiply(new_cell, step_mask) - np.multiply(
pre_cell_array[i], (step_mask - 1.0))
pre_hidden_array[i] = new_hidden
pre_cell_array[i] = new_cell
step_input = new_hidden
output.append(step_input)
rnn_out = np.concatenate(output, 0)
rnn_out = np.reshape(rnn_out, [seq_len, -1, hidden_size])
last_hidden_out = np.concatenate(pre_hidden_array, 0)
last_hidden_out = np.reshape(last_hidden_out,
[num_layers, -1, hidden_size])
last_cell_out = np.concatenate(pre_cell_array, 0)
last_cell_out = np.reshape(last_cell_out, [num_layers, -1, hidden_size])
return rnn_out, last_hidden_out, last_cell_out
fw_rnn_out, fw_last_hidden, fw_last_cell = get_single_direction_output(
input, mask, direc_index=0)
if is_bidirect:
bw_input = input[::-1]
bw_mask = None
if mask is not None:
bw_mask = mask[::-1]
bw_rnn_out, bw_last_hidden, bw_last_cell = get_single_direction_output(
bw_input, bw_mask, direc_index=1)
bw_rnn_out = bw_rnn_out[::-1]
rnn_out = np.concatenate([fw_rnn_out, bw_rnn_out], 2)
last_hidden = np.concatenate([fw_last_hidden, bw_last_hidden], 1)
last_hidden = np.reshape(last_hidden,
[num_layers * direc_num, -1, hidden_size])
last_cell = np.concatenate([fw_last_cell, bw_last_cell], 1)
last_cell = np.reshape(last_cell,
[num_layers * direc_num, -1, hidden_size])
if batch_first:
rnn_out = np.transpose(rnn_out, [1, 0, 2])
return rnn_out, last_hidden, last_cell
else:
rnn_out = fw_rnn_out
last_hidden = fw_last_hidden
last_cell = fw_last_cell
if batch_first:
rnn_out = np.transpose(rnn_out, [1, 0, 2])
return rnn_out, last_hidden, last_cell
class TestBasicLSTMApi(unittest.TestCase):
def setUp(self):
self.hidden_size = 10
self.batch_size = 5
self.seq_len = 6
self.num_layers = 2
self.is_bidirect = True
self.batch_first = False
self.forget_bias = 1.0
def test_run(self):
x = layers.data(
name='x',
shape=[-1, self.batch_size, self.hidden_size],
dtype='float32')
sequence_length = layers.data(
name="sequence_length", shape=[-1], dtype='float32')
rnn_out, last_hidden, last_cell = basic_lstm( x, None, None, self.hidden_size, num_layers=self.num_layers, \
batch_first = self.batch_first, bidirectional=self.is_bidirect, sequence_length=sequence_length, forget_bias = self.forget_bias )
last_hidden.persisbale = True
rnn_out.persisbale = True
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
param_list = fluid.default_main_program().block(0).all_parameters()
# process weight and bias
gate_weight = []
gate_bias = []
for i in range(self.num_layers):
gate_w_name = "basic_lstm_layers_" + str(i) + "/BasicLSTMUnit_0.w_0"
gate_b_name = "basic_lstm_layers_" + str(i) + "/BasicLSTMUnit_0.b_0"
gate_w = np.array(fluid.global_scope().find_var(gate_w_name)
.get_tensor())
gate_w = np.random.uniform(
-0.1, 0.1, size=gate_w.shape).astype('float32')
fluid.global_scope().find_var(gate_w_name).get_tensor().set(gate_w,
place)
gate_b = np.array(fluid.global_scope().find_var(gate_b_name)
.get_tensor())
gate_b = np.random.uniform(
-0.1, 0.1, size=gate_b.shape).astype('float32')
fluid.global_scope().find_var(gate_b_name).get_tensor().set(gate_b,
place)
gate_weight.append(gate_w)
gate_bias.append(gate_b)
if self.is_bidirect:
for i in range(self.num_layers):
gate_w_name = "basic_lstm_reverse_layers_" + str(
i) + "/BasicLSTMUnit_0.w_0"
gate_b_name = "basic_lstm_reverse_layers_" + str(
i) + "/BasicLSTMUnit_0.b_0"
gate_w = np.array(fluid.global_scope().find_var(gate_w_name)
.get_tensor())
gate_w = np.random.uniform(
-0.1, 0.1, size=gate_w.shape).astype('float32')
fluid.global_scope().find_var(gate_w_name).get_tensor().set(
gate_w, place)
gate_b = np.array(fluid.global_scope().find_var(gate_b_name)
.get_tensor())
gate_b = np.random.uniform(
-0.1, 0.1, size=gate_b.shape).astype('float32')
fluid.global_scope().find_var(gate_b_name).get_tensor().set(
gate_b, place)
gate_weight.append(gate_w)
gate_bias.append(gate_b)
step_input_np = np.random.uniform(-0.1, 0.1, (
self.seq_len, self.batch_size, self.hidden_size)).astype('float32')
sequence_length_np = np.random.randint(
self.seq_len // 2, self.seq_len,
size=(self.batch_size)).astype('int64')
out = exe.run(
feed={'x': step_input_np,
'sequence_length': sequence_length_np},
fetch_list=[rnn_out, last_hidden, last_cell])
api_rnn_out = out[0]
api_last_hidden = out[1]
api_last_cell = out[2]
np_out = lstm_np(
step_input_np,
None,
None,
self.hidden_size,
gate_weight,
gate_bias,
num_layers=self.num_layers,
batch_first=self.batch_first,
is_bidirect=self.is_bidirect,
sequence_length=sequence_length_np)
self.assertTrue(np.allclose(api_rnn_out, np_out[0], rtol=1e-4, atol=0))
self.assertTrue(
np.allclose(
api_last_hidden, np_out[1], rtol=1e-4, atol=0))
self.assertTrue(
np.allclose(
api_last_cell, np_out[2], rtol=1e-4, atol=0))
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from paddle.fluid.contrib.layers import BasicLSTMUnit
from paddle.fluid.executor import Executor
from paddle.fluid import framework
import numpy as np
SIGMOID_THRESHOLD_MIN = -40.0
SIGMOID_THRESHOLD_MAX = 13.0
EXP_MAX_INPUT = 40.0
def sigmoid(x):
y = np.copy(x)
y[x < SIGMOID_THRESHOLD_MIN] = SIGMOID_THRESHOLD_MIN
y[x > SIGMOID_THRESHOLD_MAX] = SIGMOID_THRESHOLD_MAX
return 1. / (1. + np.exp(-y))
def tanh(x):
y = -2. * x
y[y > EXP_MAX_INPUT] = EXP_MAX_INPUT
return (2. / (1. + np.exp(y))) - 1.
def step(step_in, pre_hidden, pre_cell, gate_w, gate_b, forget_bias=1.0):
concat_1 = np.concatenate([step_in, pre_hidden], 1)
gate_input = np.matmul(concat_1, gate_w)
gate_input += gate_b
i, j, f, o = np.split(gate_input, indices_or_sections=4, axis=1)
new_cell = pre_cell * sigmoid(f + forget_bias) + sigmoid(i) * tanh(j)
new_hidden = tanh(new_cell) * sigmoid(o)
return new_hidden, new_cell
class TestBasicGRUUnit(unittest.TestCase):
def setUp(self):
self.hidden_size = 5
self.batch_size = 5
def test_run(self):
x = layers.data(name='x', shape=[-1, self.hidden_size], dtype='float32')
pre_hidden = layers.data(
name="pre_hidden", shape=[-1, self.hidden_size], dtype='float32')
pre_cell = layers.data(
name="pre_cell", shape=[-1, self.hidden_size], dtype='float32')
lstm_unit = BasicLSTMUnit("lstm_unit", self.hidden_size)
new_hidden, new_cell = lstm_unit(x, pre_hidden, pre_cell)
new_hidden.persisbale = True
new_cell.persisbale = True
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
else:
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
param_list = fluid.default_main_program().block(0).all_parameters()
# process weight and bias
gate_w_name = "lstm_unit/BasicLSTMUnit_0.w_0"
gate_b_name = "lstm_unit/BasicLSTMUnit_0.b_0"
gate_w = np.array(fluid.global_scope().find_var(gate_w_name).get_tensor(
))
gate_w = np.random.uniform(
-0.1, 0.1, size=gate_w.shape).astype('float32')
fluid.global_scope().find_var(gate_w_name).get_tensor().set(gate_w,
place)
gate_b = np.array(fluid.global_scope().find_var(gate_b_name).get_tensor(
))
gate_b = np.random.uniform(
-0.1, 0.1, size=gate_b.shape).astype('float32')
fluid.global_scope().find_var(gate_b_name).get_tensor().set(gate_b,
place)
step_input_np = np.random.uniform(-0.1, 0.1, (
self.batch_size, self.hidden_size)).astype('float32')
pre_hidden_np = np.random.uniform(-0.1, 0.1, (
self.batch_size, self.hidden_size)).astype('float32')
pre_cell_np = np.random.uniform(-0.1, 0.1, (
self.batch_size, self.hidden_size)).astype('float32')
out = exe.run( feed={ 'x' : step_input_np, 'pre_hidden' : pre_hidden_np, \
'pre_cell' : pre_cell_np },
fetch_list=[ new_hidden, new_cell])
api_hidden_out = out[0]
api_cell_out = out[1]
np_hidden_out, np_cell_out = step(step_input_np, pre_hidden_np,
pre_cell_np, gate_w, gate_b)
self.assertTrue(
np.allclose(
api_hidden_out, np_hidden_out, rtol=1e-4, atol=0))
self.assertTrue(
np.allclose(
api_cell_out, np_cell_out, rtol=1e-4, atol=0))
if __name__ == '__main__':
unittest.main()
......@@ -90,5 +90,67 @@ class SequenceMaskTest6(SequenceMaskTestBase):
self.maxlen = -1
class SequenceMaskTestBase_tensor_attr(OpTest):
def initDefaultParameters(self):
self.op_type = 'sequence_mask'
self.maxlen = 10
self.maxlen_tensor = np.ones((1), 'int32') * 10
self.mask_dtype = 'int64'
self.x = [[0, 3, 4], [5, 7, 9]]
def initParameters(self):
pass
def setUp(self):
self.initDefaultParameters()
self.initParameters()
if not isinstance(self.x, np.ndarray):
self.x = np.array(self.x)
self.inputs = {'X': self.x, 'MaxLenTensor': self.maxlen_tensor}
self.outputs = {'Y': self.calc_ground_truth_mask()}
self.attrs = {'out_dtype': convert_np_dtype_to_dtype_(self.mask_dtype)}
def calc_ground_truth_mask(self):
maxlen = np.max(self.x) if self.maxlen < 0 else self.maxlen
shape = self.x.shape + (maxlen, )
index_broadcast = np.broadcast_to(
np.reshape(
range(maxlen), newshape=[1] * self.x.ndim + [-1]),
shape=shape)
x_broadcast = np.broadcast_to(
np.reshape(
self.x, newshape=self.x.shape + (-1, )), shape=shape)
return (index_broadcast < x_broadcast).astype(self.mask_dtype)
def test_check_output(self):
self.check_output()
class SequenceMaskTest1_tensor_attr(SequenceMaskTestBase_tensor_attr):
def initParameters(self):
self.mask_dtype = 'bool'
class SequenceMaskTest2_tensor_attr(SequenceMaskTestBase_tensor_attr):
def initParameters(self):
self.mask_dtype = 'uint8'
class SequenceMaskTest3_tensor_attr(SequenceMaskTestBase_tensor_attr):
def initParameters(self):
self.mask_dtype = 'int32'
class SequenceMaskTest4_tensor_attr(SequenceMaskTestBase_tensor_attr):
def initParameters(self):
self.mask_dtype = 'float32'
class SequenceMaskTest5_tensor_attr(SequenceMaskTestBase_tensor_attr):
def initParameters(self):
self.mask_dtype = 'float64'
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册