nn.py 389.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
26
from ..framework import Variable, OpProtoHolder, _in_imperative_mode
X
Xin Pan 已提交
27
from ..imperative import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
X
Xin Pan 已提交
35
from ..imperative import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
76 77
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
78 79
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
80
    'sequence_slice',
X
Xin Pan 已提交
81 82 83 84 85 86 87 88 89 90 91 92
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
93
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
94 95 96 97 98
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
99
    'group_norm',
D
dengkaipeng 已提交
100
    'spectral_norm',
X
Xin Pan 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
114
    'roi_align',
X
Xin Pan 已提交
115 116 117 118
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
119
    'resize_nearest',
X
Xin Pan 已提交
120 121 122 123 124 125
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
126
    'selu',
X
Xin Pan 已提交
127 128 129
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
130
    'margin_rank_loss',
X
Xin Pan 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
174
    'space_to_depth',
W
whs 已提交
175
    'affine_grid',
S
sneaxiy 已提交
176
    'sequence_reverse',
177
    'affine_channel',
B
barrierye 已提交
178
    'similarity_focus',
M
minqiyang 已提交
179
    'hash',
D
dengkaipeng 已提交
180
    'grid_sampler',
G
gmcather 已提交
181 182
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
183
    'bilinear_tensor_product',
C
chengduo 已提交
184 185
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
186
    'lstm',
S
shippingwang 已提交
187
    'shuffle_channel',
S
sneaxiy 已提交
188
    'py_func',
189
    'psroi_pool',
H
heqiaozhi 已提交
190
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
191
    'huber_loss',
Z
zhaozhehao 已提交
192
    'tree_conv',
C
ceci3 已提交
193
    'npair_loss',
Y
Yu Yang 已提交
194 195
]

J
jerrywgz 已提交
196 197
kIgnoreIndex = -100

Y
Yu Yang 已提交
198 199 200 201 202 203 204

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
205
       is_test=False,
206
       name=None):
Y
Yu Yang 已提交
207
    """
208
    **Fully Connected Layer**
Y
Yu Yang 已提交
209

210
    This function creates a fully connected layer in the network. It can take
211
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
212
    Args in detail). It creates a variable called weights for each input tensor,
213 214 215 216
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
217
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
218 219
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
220

221 222 223 224 225 226 227
    When the input is single tensor:

    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
228 229 230

    .. math::

231
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
232 233 234

    In the above equation:

235 236 237
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
238
    * :math:`b`: The bias parameter created by this layer (if needed).
239
    * :math:`Act`: The activation function.
C
caoying03 已提交
240
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
260
    Args:
R
ranqiu 已提交
261 262 263 264 265 266 267 268 269 270
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
271
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
272 273 274 275
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
276 277
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
278
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
279
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
280
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
281

282
    Returns:
F
fengjiayi 已提交
283
        Variable: The transformation result.
284 285

    Raises:
C
caoying03 已提交
286
        ValueError: If rank of the input tensor is less than 2.
287 288 289 290

    Examples:
        .. code-block:: python

291
          # when input is single tensor
F
fengjiayi 已提交
292
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
293
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
294 295 296 297 298

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
299
    """
C
caoying03 已提交
300

C
caoying03 已提交
301
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
302 303 304 305

    dtype = helper.input_dtype()

    mul_results = []
306 307
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
308 309 310
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
311

Y
Yu Yang 已提交
312
        w = helper.create_parameter(
313
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
314
        tmp = helper.create_variable_for_type_inference(dtype)
315
        helper.append_op(
316 317 318
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
319
            outputs={"Out": tmp},
M
mozga-intel 已提交
320 321
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
322 323 324 325
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
326
    else:
X
Xin Pan 已提交
327
        pre_bias = helper.create_variable_for_type_inference(dtype)
328
        helper.append_op(
329 330 331
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
332
            attrs={"use_mkldnn": False})
333 334 335 336
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
337 338


339 340 341
def embedding(input,
              size,
              is_sparse=False,
342
              is_distributed=False,
343 344 345
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
346
    """
347 348
    **Embedding Layer**

349
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
350 351
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
352 353 354

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
355 356

    Args:
357 358 359 360 361
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
362
        is_distributed(bool): Whether to run lookup table from remote parameter server.
363 364
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
365
            with zeros whenever lookup encounters it in :attr:`input`. If
366
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
367 368
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
369
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
370

371 372 373
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
374

375 376
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
377

C
chengduoZH 已提交
378
          dict_size = len(dataset.ids)
379
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
380
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
381 382 383
    """

    helper = LayerHelper('embedding', **locals())
384
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
385 386
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
387 388
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
389
    tmp = helper.create_variable_for_type_inference(dtype)
390 391
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
392 393 394 395 396
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
397 398 399
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
400
            'remote_prefetch': remote_prefetch,
401 402
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
403 404 405
    return tmp


W
wopeizl 已提交
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
422

W
wopeizl 已提交
423 424 425 426 427 428 429 430 431 432 433
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
434

W
wopeizl 已提交
435 436 437 438
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
439

W
wopeizl 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
526 527


P
phlrain 已提交
528 529 530 531 532 533
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
534
         dropout_prob=0.0,
P
phlrain 已提交
535 536 537 538 539
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
540
    """
P
phlrain 已提交
541
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
542 543

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
544
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
545 546
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
547
    .. math::
M
minqiyang 已提交
548 549 550 551 552 553 554

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
555
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
556 557 558 559

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
560 561

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
562 563 564 565 566 567
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
568 569 570
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
571
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
572

M
minqiyang 已提交
573
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
574 575 576 577 578
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
579
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
580 581 582 583 584
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
585
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
586 587
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
588 589
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
590 591 592 593 594 595
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
596
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
597

L
liuhongyu 已提交
598 599

    Returns:
M
minqiyang 已提交
600 601
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
602
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
603

H
haowang101779990 已提交
604 605 606 607
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
608
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
609 610
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
611
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
627
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
628 629 630 631 632 633
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
634 635 636
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
696 697 698 699 700 701 702 703 704 705
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
706
                  proj_activation='tanh',
707
                  dtype='float32',
X
xuezhong 已提交
708 709 710 711 712
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
713 714 715
    """
    **Dynamic LSTMP Layer**

716 717 718 719 720 721
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
722 723 724 725 726

    The formula is as follows:

    .. math::

727
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
728

729
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
730

731
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
732

733
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
734

735
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
736

737
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
738

739
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
740

Y
Yibing Liu 已提交
741 742 743 744 745 746
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
747
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
748
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
749
          bias vector).
Y
Yibing Liu 已提交
750 751 752
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
753
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
754
    * :math:`h`: The hidden state.
755
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
756 757
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
758
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
759
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
760
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
761 762
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
763 764 765 766

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
767

Y
Yibing Liu 已提交
768 769 770 771 772 773 774 775 776 777 778 779
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
780
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
781 782
                               hidden-hidden weight and projection weight.

783 784
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
785 786
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
787 788
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
789
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
790 791 792 793 794

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
795
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
796 797 798 799 800 801
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
802
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
803 804 805
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
806
                                - The shape is (1 x 7D).
C
chengduo 已提交
807 808 809 810 811

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
812 813 814 815 816 817 818 819 820
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
821
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
822 823
                              default "tanh".
        proj_activation(str): The activation for projection output.
824
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
825
                              default "tanh".
Y
Yibing Liu 已提交
826
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
827 828
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
829 830 831 832 833 834 835 836 837 838 839
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
840 841

    Returns:
842 843 844 845
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
846 847

    Examples:
848

Y
Yibing Liu 已提交
849 850
        .. code-block:: python

851 852 853 854
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
855
            hidden_dim, proj_dim = 512, 256
856
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
857
                                     act=None, bias_attr=None)
858 859 860
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
861 862 863 864
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
865
    """
866

C
chengduo 已提交
867
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
868
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
869
    size = size // 4
Y
Yibing Liu 已提交
870 871 872 873 874 875 876 877 878 879
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
880 881 882 883 884 885
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
901

X
xuezhong 已提交
902 903 904 905 906
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
907 908
    helper.append_op(
        type='lstmp',
909
        inputs=inputs,
Y
Yibing Liu 已提交
910 911 912 913 914 915 916 917 918
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
919 920
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
921 922 923 924 925 926 927 928 929
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
930 931 932 933 934 935 936
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
937 938
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
939
    """
940
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
941

942 943 944
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
945

G
guosheng 已提交
946 947 948 949 950 951 952 953 954
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
955

G
guosheng 已提交
956
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
957

Q
Qiao Longfei 已提交
958 959 960

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
961 962 963 964 965 966 967 968 969 970 971 972
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
973
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
974 975
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
976 977 978 979
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
980
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
981 982

    Args:
983 984
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
985
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
986
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
987 988
            is the hidden size.
        size(int): The dimension of the gru cell.
989
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
990 991
            hidden-hidden weight matrix. Note:

992
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
993
              :math:`D` is the hidden size.
994
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
995
              The first part are weights of the update gate and reset gate with
996
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
997
              candidate hidden state with shape :math:`(D \\times D)`.
998 999 1000 1001 1002

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1003
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1004
            the bias in the update gate, reset gate and candidate calculations.
1005 1006 1007
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1008 1009
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1010
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1011 1012 1013
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1014
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1015
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1016 1017 1018 1019
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1020 1021

    Returns:
G
guosheng 已提交
1022
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1023
            and sequence length is the same with the input.
1024

G
guosheng 已提交
1025
    Examples:
1026

G
guosheng 已提交
1027 1028
        .. code-block:: python

1029 1030 1031 1032
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1033
            hidden_dim = 512
1034
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1035
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1045
    batch_size = input.shape[0]
G
guosheng 已提交
1046
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1047
    if h_0:
G
guosheng 已提交
1048
        assert h_0.shape == (
Y
Yancey 已提交
1049 1050 1051
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1052

X
Xin Pan 已提交
1053 1054 1055 1056
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1070 1071
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1072 1073 1074 1075
        })
    return hidden


Y
Yu Yang 已提交
1076 1077 1078
def gru_unit(input,
             hidden,
             size,
1079 1080
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1081
             activation='tanh',
Q
Qiao Longfei 已提交
1082 1083
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1084
    """
1085 1086 1087
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1088
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1089
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1090

1091 1092
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1093

1094
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1095

1096
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1113 1114

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1115 1116 1117
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1118 1119
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1120 1121
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1122 1123 1124
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1125 1126 1127

    Args:
        input (Variable): The fc transformed input value of current step.
1128
        hidden (Variable): The hidden value of gru unit from previous step.
1129
        size (integer): The input dimension value.
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1144
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1145
            the bias in the update gate, reset gate and candidate calculations.
1146 1147 1148
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1149 1150
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1151 1152 1153 1154
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1155

1156 1157 1158 1159 1160 1161
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1162

1163
             # assuming we have x_t_data and prev_hidden of size=10
1164
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1165 1166
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1179
    size = size // 3
Y
Yu Yang 已提交
1180 1181

    # create weight
1182 1183
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1184

X
Xin Pan 已提交
1185 1186 1187
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1188
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1189
    # create bias
1190
    if helper.bias_attr:
Y
Yu Yang 已提交
1191 1192 1193
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1194
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1195 1196 1197

    helper.append_op(
        type='gru_unit',
1198
        inputs=inputs,
Y
Yu Yang 已提交
1199 1200 1201 1202 1203 1204
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1205 1206
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1207 1208 1209 1210 1211
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1212
@templatedoc()
1213
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1214 1215 1216 1217 1218 1219 1220
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1221
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1222 1223 1224 1225
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1226 1227 1228
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1229 1230

    """
Y
Yu Yang 已提交
1231 1232 1233 1234 1235 1236
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1237 1238 1239 1240 1241 1242 1243 1244
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1260 1261 1262 1263
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1264

W
wopeizl 已提交
1265 1266
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1267

W
wopeizl 已提交
1268
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1269

W
wopeizl 已提交
1270
        label(${label_type}): ${label_comment}
1271

W
wopeizl 已提交
1272 1273
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1274

W
wopeizl 已提交
1275 1276
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1277

W
wopeizl 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1288
                "Transition": transition,
W
wopeizl 已提交
1289 1290
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1291

W
wopeizl 已提交
1292
    return viterbi_path
Y
Yu Yang 已提交
1293 1294


Y
yi.wu 已提交
1295
@templatedoc()
F
fengjiayi 已提交
1296
def cos_sim(X, Y):
Y
Yu Yang 已提交
1297
    """
Y
yi.wu 已提交
1298 1299 1300
    ${comment}

    Args:
1301 1302
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1303

Y
yi.wu 已提交
1304
    Returns:
1305
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1306
    """
F
fengjiayi 已提交
1307
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1308 1309 1310
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1321 1322 1323 1324 1325
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1326
            dropout_implementation="downgrade_in_infer"):
1327 1328 1329 1330 1331
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1332
    training. The dropout operator randomly sets (according to the given dropout
1333 1334 1335
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1336 1337
    dropout op can be removed from the program to make the program more efficient.

1338
    Args:
1339 1340
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1341 1342 1343 1344 1345 1346 1347
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1348 1349
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1350
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1351 1352

                                           - train: out = input * mask
C
ceci3 已提交
1353
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1354 1355 1356

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1357
                                        2. upscale_in_train, upscale the outcome at training time
1358

H
haowang101779990 已提交
1359 1360
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1361

H
haowang101779990 已提交
1362 1363
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1364

M
minqiyang 已提交
1365

1366
    Returns:
1367
        Variable: A tensor variable is the shape with `x`.
1368 1369

    Examples:
1370

1371 1372
        .. code-block:: python

1373 1374
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1375 1376
    """

F
fengjiayi 已提交
1377
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1378 1379 1380
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1381 1382 1383 1384

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1385 1386 1387 1388 1389
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1390 1391 1392 1393
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1394 1395
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1396
        })
1397 1398 1399
    return out


J
jerrywgz 已提交
1400
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1401
    """
Y
Yibing Liu 已提交
1402 1403
    **Cross Entropy Layer**

1404 1405 1406
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1407 1408

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1409
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1410

Y
Yibing Liu 已提交
1411
        .. math::
Y
yangyaming 已提交
1412

Y
Yibing Liu 已提交
1413 1414 1415
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1416 1417
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1418 1419 1420 1421 1422

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1423
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1424 1425 1426
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1427 1428
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1429
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1430

Y
Yibing Liu 已提交
1431
    Args:
Y
yangyaming 已提交
1432
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1433 1434 1435 1436
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1437
        label (Variable|list): the ground truth which is a 2-D tensor. When
1438 1439 1440 1441
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1442
        soft_label (bool): a flag indicating whether to
1443
                                           interpretate the given labels as soft
1444
                                           labels. Default: `False`.
M
minqiyang 已提交
1445 1446
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1447
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1448 1449 1450 1451 1452

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1453 1454 1455
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1456

H
haowang101779990 已提交
1457 1458
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1459

H
haowang101779990 已提交
1460 1461
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1462 1463 1464 1465 1466 1467

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1468
    """
S
sneaxiy 已提交
1469 1470
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1471
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1472
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1473 1474 1475 1476 1477
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1478 1479
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1480 1481 1482
    return out


S
sneaxiy 已提交
1483 1484 1485 1486
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1487
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1488 1489 1490 1491 1492
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1493
                 'MatchX': [match_x],
S
sneaxiy 已提交
1494 1495 1496 1497 1498
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1499
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1500 1501 1502
    """
    Bayesian Personalized Ranking Loss Operator.

1503
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1504 1505 1506 1507 1508 1509
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1510 1511 1512 1513 1514 1515
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1516 1517
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1518 1519 1520
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1521 1522 1523
    Examples:
        .. code-block:: python

1524
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1525
    """
1526 1527 1528 1529 1530 1531

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1532
                'Label': [label]},
1533 1534 1535 1536
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1537
def square_error_cost(input, label):
Y
Yu Yang 已提交
1538
    """
1539 1540
    **Square error cost layer**

1541 1542
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1543

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1557 1558
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1559 1560

    Returns:
G
guosheng 已提交
1561
        Variable: The tensor variable storing the element-wise squared error \
1562
                  difference of input and label.
1563 1564 1565 1566 1567 1568 1569 1570

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1571
    """
F
fengjiayi 已提交
1572
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1573
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1574 1575 1576 1577 1578 1579
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1580
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1581
    helper.append_op(
F
fengjiayi 已提交
1582 1583
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1584 1585 1586
    return square_out


Y
yi.wu 已提交
1587
@templatedoc()
Y
Yu Yang 已提交
1588 1589 1590 1591
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1592
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1593
    """
Y
yi.wu 已提交
1594
    **Chunk Evaluator**
Y
yi.wu 已提交
1595

Y
yangyaming 已提交
1596
    This function computes and outputs the precision, recall and
1597
    F1-score of chunk detection.
Y
yi.wu 已提交
1598

M
minqiyang 已提交
1599
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1600
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1601 1602 1603 1604 1605 1606

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1607

Y
yi.wu 已提交
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1633

Y
yi.wu 已提交
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1658
    Args:
1659 1660 1661 1662 1663
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1664

Y
yi.wu 已提交
1665
    Returns:
Y
update  
yi.wu 已提交
1666 1667 1668
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1669

Y
yi.wu 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1682
    """
F
fengjiayi 已提交
1683
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1684 1685

    # prepare output
X
Xin Pan 已提交
1686 1687 1688 1689 1690 1691 1692
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1693 1694 1695 1696 1697 1698 1699 1700

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1701 1702 1703 1704
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1705 1706 1707
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1708 1709
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1710
        })
1711 1712
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1713 1714


1715
@templatedoc()
Y
Yu Yang 已提交
1716 1717 1718 1719 1720 1721 1722
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1723 1724
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1725 1726 1727 1728
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1729 1730 1731 1732 1733 1734 1735

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1749

1750 1751
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1752 1753 1754 1755 1756 1757 1758
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1759
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1770
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1771 1772 1773 1774 1775 1776
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1777
def sequence_softmax(input, use_cudnn=False, name=None):
1778 1779 1780
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1781
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1798 1799 1800
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1801

1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1813 1814
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1815
    softmax_out = helper.create_variable_for_type_inference(dtype)
1816 1817 1818 1819 1820 1821 1822 1823
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1824
def softmax(input, use_cudnn=False, name=None):
Q
qiaolongfei 已提交
1825
    """
1826
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1827
    has the same shape as the input.
Q
qiaolongfei 已提交
1828

1829 1830 1831 1832 1833 1834
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1835
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1836 1837 1838 1839 1840 1841 1842

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1843
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1844 1845 1846 1847 1848 1849 1850 1851

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1852 1853
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1854 1855
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1868 1869
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1870
    softmax_out = helper.create_variable_for_type_inference(dtype)
1871 1872 1873 1874 1875 1876 1877 1878
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1879 1880 1881
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1882 1883
           stride=1,
           padding=0,
1884
           dilation=1,
Y
Yu Yang 已提交
1885 1886 1887
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1888
           use_cudnn=True,
1889 1890
           act=None,
           name=None):
Y
Yu Yang 已提交
1891
    """
C
chengduoZH 已提交
1892
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1893 1894
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1895
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1896 1897 1898 1899 1900 1901 1902
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1903 1904 1905
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1906

1907
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1908

C
chengduoZH 已提交
1909 1910
    .. math::

C
refine  
chengduoZH 已提交
1911
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1912

T
tensor-tang 已提交
1913
    Where:
C
chengduoZH 已提交
1914

1915 1916 1917 1918 1919
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1920
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1921 1922 1923

    Example:

1924 1925
        - Input:

W
weixing02 已提交
1926
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1927

W
weixing02 已提交
1928
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1929

1930
        - Output:
T
tensor-tang 已提交
1931

W
weixing02 已提交
1932
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1933

C
chengduoZH 已提交
1934
        Where
1935 1936

        .. math::
C
chengduoZH 已提交
1937

W
weixing02 已提交
1938 1939
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1940 1941

    Args:
1942
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1943
        num_filters(int): The number of filter. It is as same as the output
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1961 1962 1963 1964 1965
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1966
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1967 1968 1969 1970 1971
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1972 1973
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1974 1975
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1976
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1977
            will be named automatically. Default: None
C
chengduoZH 已提交
1978 1979

    Returns:
G
guosheng 已提交
1980
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1981 1982
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1983
    Raises:
1984 1985
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1986

C
chengduoZH 已提交
1987 1988 1989
    Examples:
        .. code-block:: python

1990 1991
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1992 1993 1994
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1995
    assert param_attr is not False, "param_attr should not be False here."
1996
    l_type = 'conv2d'
X
xzl 已提交
1997 1998
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1999
        l_type = 'depthwise_conv2d'
2000 2001 2002 2003

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2004 2005 2006 2007 2008
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2009
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2010

C
chengduoZH 已提交
2011 2012 2013
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2014
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2015

C
chengduoZH 已提交
2016 2017
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2018 2019

    input_shape = input.shape
M
minqiyang 已提交
2020
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2021 2022

    def _get_default_param_initializer():
C
chengduo 已提交
2023 2024
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2025 2026 2027 2028 2029 2030 2031 2032
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2033
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2034

2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2049
    helper.append_op(
2050
        type=l_type,
Y
Yu Yang 已提交
2051 2052 2053 2054 2055
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2056 2057 2058
        attrs={
            'strides': stride,
            'paddings': padding,
2059
            'dilations': dilation,
C
chengduoZH 已提交
2060
            'groups': groups,
2061
            'use_cudnn': use_cudnn,
2062
            'use_mkldnn': False,
2063
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2064
        })
Y
Yu Yang 已提交
2065 2066 2067 2068 2069 2070

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2088 2089 2090 2091 2092 2093
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2103 2104
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2105 2106 2107
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2108
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2134
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2135 2136
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2137
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2138 2139
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2140
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2141 2142
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2143
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2144 2145 2146 2147 2148 2149
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2160 2161
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2162 2163
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2164
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2165
            will be named automatically. Default: None.
C
chengduoZH 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2178 2179
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2180 2181 2182
    """

    l_type = 'conv3d'
C
chengduo 已提交
2183
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2194
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2208 2209 2210
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2211 2212 2213 2214 2215 2216 2217 2218
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2219
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2234
            'use_mkldnn': False
C
chengduoZH 已提交
2235 2236
        })

2237
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2238 2239 2240 2241

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2242
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2243
    """
Y
yangyaming 已提交
2244 2245 2246
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2258
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2259 2260 2261 2262 2263
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2264
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2265 2266 2267 2268 2269 2270 2271

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2272 2273
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2274

L
Luo Tao 已提交
2275 2276
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2277
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2278
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2279
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2280 2281 2282 2283 2284 2285 2286

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2287

Y
yangyaming 已提交
2288
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2289 2290 2291 2292 2293
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2294 2295
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2296
    """
F
fengjiayi 已提交
2297
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2298
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2299 2300
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2301 2302 2303 2304 2305 2306

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2307 2308
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2309

Y
yangyaming 已提交
2310 2311 2312 2313 2314
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2315 2316 2317
    return pool_out


C
add doc  
chengduoZH 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2337
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2338 2339 2340 2341 2342
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2343
def sequence_first_step(input):
L
Luo Tao 已提交
2344
    """
L
Luo Tao 已提交
2345
    This function gets the first step of sequence.
L
Luo Tao 已提交
2346 2347 2348 2349

    .. code-block:: text

       x is a 1-level LoDTensor:
2350
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2351 2352 2353 2354 2355
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2356
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2357
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2358

L
Luo Tao 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2368

Y
yangyaming 已提交
2369
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2370 2371 2372
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2373 2374 2375
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2376
def sequence_last_step(input):
L
Luo Tao 已提交
2377
    """
L
Luo Tao 已提交
2378
    This function gets the last step of sequence.
L
Luo Tao 已提交
2379 2380 2381 2382

    .. code-block:: text

       x is a 1-level LoDTensor:
2383
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2384 2385 2386 2387 2388
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2389
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2390
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2391

L
Luo Tao 已提交
2392 2393 2394 2395 2396 2397 2398 2399 2400
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2401

Y
yangyaming 已提交
2402
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2403 2404 2405
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2406 2407 2408
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2409 2410 2411 2412
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2413
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2414 2415 2416 2417 2418
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2419

H
haowang101779990 已提交
2420
              - Case:
Y
Yibing Liu 已提交
2421

2422
            Given the input Variable **input**:
2423

2424 2425 2426
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2427

2428
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2429

2430
            the output Variable will be
2431

2432 2433 2434
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2435

M
minqiyang 已提交
2436
    Note:
H
haowang101779990 已提交
2437
          The first dimension size of **input**, **offset** and **length**
2438
          should be equal. The **offset** should start from 0.
2439

Y
Yibing Liu 已提交
2440
    Args:
2441
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2442
                         sequences.
Y
Yibing Liu 已提交
2443 2444 2445 2446 2447 2448
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2449
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2460
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2461 2462 2463 2464
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2465
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2480
@templatedoc()
Y
Yu Yang 已提交
2481
def pool2d(input,
C
chengduoZH 已提交
2482 2483
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2484 2485
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2486
           global_pooling=False,
C
chengduoZH 已提交
2487
           use_cudnn=True,
2488
           ceil_mode=False,
2489 2490
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2491
    """
F
fengjiayi 已提交
2492
    ${comment}
2493 2494

    Args:
2495 2496 2497
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2498
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2499
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2500 2501
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2502
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2503 2504 2505 2506 2507 2508
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2509 2510 2511
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2512
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2513
                        layer will be named automatically.
2514
        exclusive (bool): Whether to exclude padding points in average pooling
2515
                          mode, default is true
F
fengjiayi 已提交
2516

2517
    Returns:
F
fengjiayi 已提交
2518
        Variable: The pooling result.
F
fengjiayi 已提交
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2531
          pool2d = fluid.layers.pool2d(
2532 2533 2534 2535
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2536
                            global_pooling=False)
Y
Yu Yang 已提交
2537 2538 2539 2540 2541
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2542

C
chengduoZH 已提交
2543 2544 2545 2546 2547
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2548 2549 2550 2551
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2552 2553
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2554

C
Add doc  
chengduoZH 已提交
2555
    l_type = 'pool2d'
2556 2557

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2558
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2559
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2560 2561

    helper.append_op(
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2573 2574
            "use_mkldnn": False,
            "exclusive": exclusive,
2575 2576 2577 2578 2579
        })

    return pool_out


D
dengkaipeng 已提交
2580
@templatedoc()
2581 2582 2583 2584 2585 2586 2587 2588
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2589 2590
           name=None,
           exclusive=True):
2591
    """
2592
    ${comment}
2593 2594

    Args:
D
dengkaipeng 已提交
2595 2596 2597 2598 2599
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2600 2601 2602 2603 2604
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2605 2606 2607 2608 2609 2610 2611
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2612
        exclusive (bool): Whether to exclude padding points in average pooling
2613
                          mode, default is true
2614

2615
    Returns:
2616
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2630 2631 2632 2633 2634
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2635

C
chengduoZH 已提交
2636 2637 2638 2639 2640
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2641 2642 2643
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2644

C
chengduoZH 已提交
2645 2646
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2647

2648 2649
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2650
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2651
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2652 2653

    helper.append_op(
2654
        type=l_type,
Y
Yu Yang 已提交
2655 2656 2657 2658 2659 2660 2661
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2662
            "paddings": pool_padding,
2663
            "use_cudnn": use_cudnn,
2664
            "ceil_mode": ceil_mode,
2665 2666
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2667 2668 2669 2670 2671
        })

    return pool_out


2672 2673 2674 2675 2676 2677 2678
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2679 2680 2681 2682 2683 2684 2685
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2686

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2700 2701 2702 2703 2704 2705 2706 2707 2708

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2709 2710
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2725
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2726
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2727
          # of input data into m * n grids averagely and performs poolings in each
2728 2729
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2730
          #
2731 2732 2733 2734 2735 2736 2737 2738
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2739 2740
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2741
          pool_out = fluid.layers.adaptive_pool2d(
2742 2743
                            input=data,
                            pool_size=[3, 3],
2744
                            pool_type='avg')
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2755
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2781
    return (pool_out, mask) if require_index else pool_out
2782 2783 2784 2785 2786 2787 2788 2789 2790


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2791 2792 2793 2794 2795 2796 2797
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2798

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2816 2817 2818

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2819 2820 2821
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2822
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2823
            it must contain three integers, (Depth, Height, Width).
2824
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2825 2826
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2841 2842
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2843
          # of input data into l * m * n grids averagely and performs poolings in each
2844 2845
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2846
          #
2847 2848 2849 2850 2851 2852 2853 2854 2855
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2856
          #                 output[:, :, i, j, k] =
2857 2858
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2859 2860
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2861
          pool_out, mask = fluid.layers.adaptive_pool3d(
2862
                            input=data,
D
dengkaipeng 已提交
2863
                            pool_size=[3, 3, 3],
2864
                            pool_type='avg')
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2875
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2901
    return (pool_out, mask) if require_index else pool_out
2902 2903


Y
Yu Yang 已提交
2904 2905 2906 2907 2908 2909 2910
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2911
               data_layout='NCHW',
Y
Yang Yang 已提交
2912
               in_place=False,
2913 2914
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2915
               moving_variance_name=None,
2916
               do_model_average_for_mean_and_var=False,
2917 2918
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2919
    """
Q
qiaolongfei 已提交
2920 2921 2922 2923
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2924

Q
qiaolongfei 已提交
2925
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2926

Q
qiaolongfei 已提交
2927 2928
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2929 2930 2931
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2944

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2958
    Args:
Q
qingqing01 已提交
2959
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2960
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2961 2962 2963 2964 2965 2966 2967 2968 2969
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2970 2971 2972 2973 2974 2975 2976 2977
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2978
        data_layout(string, default NCHW): NCHW|NHWC
2979
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2980 2981 2982 2983
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2984
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2985
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2986 2987 2988 2989 2990
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2991 2992

    Returns:
Q
qiaolongfei 已提交
2993
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2994 2995 2996 2997 2998 2999 3000

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3001
    """
C
chengduo 已提交
3002
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3003 3004 3005
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3006 3007 3008 3009
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3028
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3029

3030 3031
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3032 3033 3034
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3035
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3036
        shape=param_shape,
W
Wu Yi 已提交
3037
        dtype=dtype)
3038 3039 3040 3041 3042 3043
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3044
            trainable=False,
W
wanghaoshuang 已提交
3045
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3046
        shape=param_shape,
W
Wu Yi 已提交
3047
        dtype=dtype)
3048
    variance.stop_gradient = True
Y
Yu Yang 已提交
3049 3050 3051 3052 3053 3054

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3055 3056 3057 3058
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3059

X
Xin Pan 已提交
3060 3061
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3079 3080 3081 3082
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3083
            "data_layout": data_layout,
X
Xin Pan 已提交
3084
            "use_mkldnn": False,
3085 3086
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3087
        })
Y
Yu Yang 已提交
3088 3089 3090 3091

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3211
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3212 3213 3214 3215

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3216
@templatedoc()
G
guosheng 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3227
    ${comment}
G
guosheng 已提交
3228 3229 3230

    The formula is as follows:

Y
yuyang18 已提交
3231
    ..  math::
G
guosheng 已提交
3232 3233 3234 3235 3236 3237 3238

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3239 3240 3241 3242 3243 3244 3245 3246
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3247

G
guosheng 已提交
3248 3249
    Args:
        input(Variable): The input tensor variable.
3250
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3251
            normalization. Default True.
3252
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3253 3254
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3255
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3256
            Default 1.
3257
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3258
            division by zero. Default 1e-05.
G
guosheng 已提交
3259
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3260 3261
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3262 3263
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3264
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3265 3266
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3267
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3268
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3269
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3270 3271 3272
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3273 3274

    Returns:
Y
yuyang18 已提交
3275
        ${y_comment}
G
guosheng 已提交
3276 3277 3278

    Examples:

Y
yuyang18 已提交
3279 3280 3281
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3297
    if shift:
G
guosheng 已提交
3298 3299 3300 3301 3302 3303
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3304 3305 3306 3307 3308
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3336
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3384 3385
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3403
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3404 3405 3406
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3407
    This layer calculates the spectral normalization value of weight parameters of
3408
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3409
    Parameters. Calculations are showed as follows.
3410

D
dengkaipeng 已提交
3411 3412 3413
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3414
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3427
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3428 3429 3430 3431

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3432

D
dengkaipeng 已提交
3433
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3434 3435
                

D
dengkaipeng 已提交
3436 3437 3438 3439
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3440 3441 3442
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3443 3444 3445
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3446
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3447 3448 3449 3450 3451 3452 3453 3454

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3455
    dtype = weight.dtype
D
dengkaipeng 已提交
3456 3457 3458

    # create intput and parameters
    inputs = {'Weight': weight}
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3477 3478

    # create output
3479
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3480 3481

    helper.append_op(
3482
        type="spectral_norm",
D
Dun 已提交
3483
        inputs=inputs,
3484 3485 3486 3487 3488 3489
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3490

3491
    return out
D
Dun 已提交
3492 3493


Y
Yu Yang 已提交
3494 3495 3496 3497
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3498 3499 3500
                     padding=0,
                     stride=1,
                     dilation=1,
3501
                     groups=None,
C
caoying03 已提交
3502
                     param_attr=None,
3503
                     bias_attr=None,
C
chengduoZH 已提交
3504
                     use_cudnn=True,
3505
                     act=None,
C
caoying03 已提交
3506
                     name=None):
Y
Yu Yang 已提交
3507
    """
3508 3509 3510 3511 3512 3513 3514 3515
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3516 3517
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3518 3519 3520
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3521 3522 3523 3524 3525

    For each input :math:`X`, the equation is:

    .. math::

3526
        Out = \sigma (W \\ast X + b)
3527

3528
    Where:
3529 3530 3531

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3532 3533 3534 3535
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3536

3537 3538 3539 3540
    Example:

        - Input:

3541
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3542

3543
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3544 3545 3546

        - Output:

3547
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3548 3549

        Where
Y
Yu Yang 已提交
3550

3551 3552
        .. math::

3553 3554
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3555 3556
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3557 3558

    Args:
3559 3560 3561 3562
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3563 3564 3565 3566
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3595
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3596 3597 3598
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3599
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3600
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3601 3602

    Returns:
3603
        Variable: The tensor variable storing the convolution transpose result.
3604 3605

    Raises:
3606 3607
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3608 3609 3610 3611

    Examples:
       .. code-block:: python

3612 3613
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3614
    """
C
chengduo 已提交
3615
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3616 3617 3618 3619 3620 3621 3622 3623
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3624 3625 3626
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3627 3628 3629
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3630

C
chengduoZH 已提交
3631 3632
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3633

Y
Yu Yang 已提交
3634 3635 3636 3637 3638
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3639

Y
Yu Yang 已提交
3640 3641
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3642

C
chengduoZH 已提交
3643
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3644
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3645
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3646
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3647
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3648 3649 3650
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3651

3652 3653 3654 3655 3656 3657 3658
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3659
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3660
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3661

Y
Yu Yang 已提交
3662 3663 3664
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3665
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3666
    helper.append_op(
3667
        type=op_type,
Y
Yu Yang 已提交
3668 3669
        inputs={'Input': [input],
                'Filter': [img_filter]},
3670
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3671
        attrs={
3672
            'output_size': output_size,
3673 3674 3675 3676 3677
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3678 3679
        })

3680 3681 3682
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3683 3684


3685
def conv3d_transpose(input,
Y
Yu Yang 已提交
3686 3687 3688
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3689 3690 3691
                     padding=0,
                     stride=1,
                     dilation=1,
3692
                     groups=None,
C
caoying03 已提交
3693
                     param_attr=None,
3694
                     bias_attr=None,
C
chengduoZH 已提交
3695
                     use_cudnn=True,
3696
                     act=None,
C
caoying03 已提交
3697
                     name=None):
Y
Yu Yang 已提交
3698
    """
3699
    **Convlution3D transpose layer**
3700

3701
    The convolution3D transpose layer calculates the output based on the input,
3702
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3703 3704 3705 3706 3707 3708
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3709 3710 3711
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3712 3713 3714 3715 3716

    For each input :math:`X`, the equation is:

    .. math::

3717
        Out = \sigma (W \\ast X + b)
3718 3719 3720

    In the above equation:

3721 3722
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3723 3724 3725 3726
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3727

3728 3729 3730 3731
    Example:

        - Input:

3732
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3733

3734
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3735 3736 3737

        - Output:

3738
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3739 3740

        Where
Y
Yu Yang 已提交
3741

3742 3743
        .. math::

3744 3745 3746
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3747 3748

    Args:
3749
        input(Variable): The input image with [N, C, D, H, W] format.
3750 3751 3752
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3753
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3754 3755
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3756
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3757 3758 3759
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3760 3761
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3762
        stride(int|tuple): The stride size. If stride is a tuple, it must
3763 3764
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3765
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3766 3767 3768
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3769 3770 3771 3772 3773
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3774 3775 3776 3777 3778 3779 3780 3781 3782
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3783 3784
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3785 3786
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3787 3788
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3789 3790

    Returns:
3791
        Variable: The tensor variable storing the convolution transpose result.
3792 3793

    Raises:
3794 3795
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3796 3797 3798 3799

    Examples:
       .. code-block:: python

3800 3801
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3802
    """
C
chengduo 已提交
3803
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3804 3805
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3806
    if not isinstance(input, Variable):
3807
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3808 3809
    input_channel = input.shape[1]

3810 3811 3812
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3813

C
chengduoZH 已提交
3814 3815 3816
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3817 3818 3819 3820 3821 3822
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3823 3824 3825
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3826

3827
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3828
                         padding[0] - 1) // dilation[0] + 1
3829
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3830
                         padding[1] - 1) // dilation[1] + 1
3831
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3832
                         padding[2] - 1) // dilation[2] + 1
3833
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3834
    else:
3835 3836
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3837

3838
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3839
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3840 3841 3842
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3843
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3844
    helper.append_op(
3845
        type=l_type,
Y
Yu Yang 已提交
3846 3847
        inputs={'Input': [input],
                'Filter': [img_filter]},
3848
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3849 3850 3851 3852
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3853
            'groups': groups,
C
chengduoZH 已提交
3854 3855
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3856

3857 3858
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3859
    return out
Y
yangyaming 已提交
3860 3861


Y
yangyaming 已提交
3862
def sequence_expand(x, y, ref_level=-1, name=None):
3863
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3864 3865 3866 3867
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3868 3869 3870 3871 3872

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3873
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3874
                x.data = [[a], [b], [c], [d]]
3875 3876 3877
                x.dims = [4, 1]

            y is a LoDTensor:
3878 3879
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3880

Y
yangyaming 已提交
3881
            ref_level: 0
3882

Y
yangyaming 已提交
3883
            then output is a 1-level LoDTensor:
3884
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3885
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3886 3887 3888 3889
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3890
                x.data = [[a], [b], [c]]
3891 3892 3893
                x.dims = [3, 1]

            y is a LoDTensor:
3894
                y.lod = [[2, 0, 3]]
3895

Y
yangyaming 已提交
3896
            ref_level: -1
3897

Y
yangyaming 已提交
3898 3899 3900
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3901 3902 3903
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3904 3905
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3906
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3907
                        will be named automatically.
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3918
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3919
    """
Y
yangyaming 已提交
3920
    helper = LayerHelper('sequence_expand', input=x, **locals())
3921
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3922
    tmp = helper.create_variable_for_type_inference(dtype)
3923
    helper.append_op(
Y
yangyaming 已提交
3924 3925 3926 3927 3928
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3929
    return tmp
3930 3931


C
chengduo 已提交
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3988
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3989 3990 3991 3992 3993 3994 3995 3996
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3997
@templatedoc()
3998
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3999 4000 4001 4002 4003
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4004 4005 4006
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4007
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4008 4009 4010 4011
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4012 4013 4014
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4015

F
fengjiayi 已提交
4016
    Returns:
M
minqiyang 已提交
4017
        Variable: The padded sequence batch and the original lengths before
4018
                  padding. All sequences has the same length.
M
minqiyang 已提交
4019

F
fengjiayi 已提交
4020 4021 4022 4023 4024 4025 4026
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4027
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4028
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4029 4030 4031 4032 4033
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4034 4035
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4036 4037 4038 4039

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4040 4041 4042 4043 4044 4045
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4046 4047
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4048
        attrs={'padded_length': maxlen})
4049
    return out, length
F
fengjiayi 已提交
4050 4051


4052
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4053
    """
4054
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4055

4056 4057
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4058 4059 4060 4061 4062 4063 4064 4065 4066
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4067 4068 4069
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4070
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4071 4072 4073 4074 4075 4076

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4077
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4078 4079 4080 4081 4082 4083

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4084 4085
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4100
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4112 4113 4114 4115 4116 4117 4118
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4119
                is_accumulated=True,
4120 4121
                name=None,
                return_parent_idx=False):
4122
    """
4123 4124
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4125 4126 4127

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4128 4129

    This layer does the search in beams for one time step. Specifically, it
4130 4131 4132
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4144 4145 4146 4147

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4148

4149
    Args:
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4173 4174
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4175 4176
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4177 4178 4179 4180
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4181

4182
    Returns:
4183 4184 4185 4186
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4187 4188 4189 4190

    Examples:
        .. code-block:: python

4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4208
    helper = LayerHelper('beam_search', **locals())
4209 4210 4211 4212 4213 4214
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4215

X
Xin Pan 已提交
4216 4217 4218
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4219 4220 4221 4222 4223
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4224 4225 4226

    helper.append_op(
        type='beam_search',
4227
        inputs=inputs,
Q
Qiao Longfei 已提交
4228 4229 4230
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4231
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4232 4233 4234 4235 4236 4237
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4238
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4239
        })
4240 4241 4242 4243
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4244 4245


4246 4247 4248 4249 4250 4251 4252
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4253

4254 4255 4256 4257 4258 4259 4260 4261 4262
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4263

4264 4265 4266 4267 4268 4269
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4270

4271 4272
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4273

4274 4275 4276 4277 4278 4279
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4280 4281
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4297 4298 4299 4300
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4301
              param_attr=None,
C
caoying03 已提交
4302 4303
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4304 4305 4306 4307
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4308
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4309

4310
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4311

4312
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4313

4314
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4315 4316 4317

            h_t & = o_t tanh(c_t)

4318 4319 4320 4321 4322 4323
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4324 4325 4326

        .. math::

4327
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4328 4329 4330 4331 4332 4333 4334 4335

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4336
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4337 4338

    Args:
Y
yangyaming 已提交
4339 4340 4341 4342 4343 4344
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4345
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4358 4359
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4360 4361

    Returns:
Y
yangyaming 已提交
4362
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4363 4364

    Raises:
4365 4366 4367 4368
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4369 4370 4371 4372 4373 4374

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4375
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4376
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4377
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4394
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4395 4396 4397 4398
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4399 4400
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4401 4402 4403
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4404
    size = cell_t_prev.shape[1]
4405
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4406 4407
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4408
                param_attr=param_attr,
4409
                bias_attr=bias_attr)
Y
yangyaming 已提交
4410
    dtype = x_t.dtype
X
Xin Pan 已提交
4411 4412
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4413 4414 4415 4416 4417 4418 4419 4420 4421

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4422
    return h, c
G
guosheng 已提交
4423 4424


C
caoying03 已提交
4425
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4426
    """
Y
yangyaming 已提交
4427
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4428 4429 4430

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4431
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4432 4433
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4434 4435
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4436
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4437
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4438
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4439 4440
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4441 4442 4443

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4444

G
guosheng 已提交
4445 4446 4447 4448 4449 4450
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4451
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4452 4453 4454 4455
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4456 4457 4458 4459

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4460
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4461 4462 4463
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4464 4465
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4466
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4467 4468
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4469 4470 4471 4472 4473
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4474
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4475 4476 4477 4478
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4479 4480


C
caoying03 已提交
4481
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4482
    """
Y
Yibing Liu 已提交
4483
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4484 4485 4486

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4487 4488 4489
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4490
            must be in the range :math:`[-rank(input), rank(input))`. If
4491
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4492
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4493 4494
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4495
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4496
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4497
                       will be named automatically.
G
guosheng 已提交
4498 4499

    Returns:
Y
Yibing Liu 已提交
4500
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4501

G
guosheng 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4512 4513
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4514 4515 4516 4517 4518 4519 4520

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4521 4522
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4523
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4524 4525
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4526 4527 4528 4529 4530
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4531
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4532 4533 4534 4535
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4536 4537


C
caoying03 已提交
4538
def reduce_max(input, dim=None, keep_dim=False, name=None):
4539
    """
Y
yangyaming 已提交
4540
    Computes the maximum of tensor elements over the given dimension.
4541 4542 4543

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4544
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4545 4546 4547
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4548
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4549 4550
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4551
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4552 4553
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4554 4555 4556

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4557

4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4569 4570 4571 4572 4573 4574 4575

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4576 4577
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4578
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4579 4580
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4581 4582 4583 4584 4585
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4586
            'dim': dim if dim != None else [0],
4587 4588 4589 4590 4591 4592
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4593
def reduce_min(input, dim=None, keep_dim=False, name=None):
4594
    """
Y
yangyaming 已提交
4595
    Computes the minimum of tensor elements over the given dimension.
4596 4597 4598

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4599
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4600 4601 4602
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4603
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4604 4605
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4606
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4607 4608
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4609 4610 4611

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4612

4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4624 4625 4626 4627 4628 4629 4630

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4631 4632
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4633
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4634 4635
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4636 4637 4638 4639 4640
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4641
            'dim': dim if dim != None else [0],
4642 4643 4644 4645
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4646 4647


4648 4649 4650 4651 4652 4653
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4654
        dim (list|int|None): The dimensions along which the product is performed. If
4655 4656
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4657 4658
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4659 4660 4661
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4662
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4663
            layer will be named automatically.
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4678
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4679
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4680 4681 4682 4683 4684 4685 4686

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4687 4688
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4689
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4690 4691
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4692 4693 4694 4695 4696
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4697
            'dim': dim if dim != None else [0],
4698 4699 4700 4701 4702 4703
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
    Computes the logical and of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
    Computes the logical or of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4802
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4803
    """
C
caoying03 已提交
4804
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4805 4806 4807

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4808 4809 4810 4811 4812
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4813
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4814
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4815
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4816 4817
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4818 4819

    Returns:
D
dzhwinter 已提交
4820
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4821 4822 4823 4824 4825 4826 4827 4828 4829

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4830 4831
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4847
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4861 4862 4863 4864 4865 4866 4867 4868 4869


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4870
    .. math::
4871 4872

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4873 4874 4875 4876 4877

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4878
        x(Variable|list): The input tensor to l2_normalize layer.
4879
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4880 4881
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4882
        epsilon(float): The epsilon value is used to avoid division by zero, \
4883
            the defalut value is 1e-10.
4884
        name(str|None): A name for this layer(optional). If set None, the layer \
4885
            will be named automatically.
C
caoying03 已提交
4886 4887

    Returns:
4888
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4889 4890

    Examples:
4891

C
caoying03 已提交
4892 4893
        .. code-block:: python

4894 4895 4896 4897
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4898 4899
    """

F
fengjiayi 已提交
4900 4901
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4902 4903
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4904 4905
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4906
    helper.append_op(
4907 4908 4909 4910
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4911
        attrs={
4912 4913
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4914 4915
        })
    return out
4916 4917


S
sneaxiy 已提交
4918
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4919
    """
Y
ying 已提交
4920 4921 4922 4923
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4924

C
chengduoZH 已提交
4925
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4926
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4927

4928 4929 4930 4931 4932
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4933
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4934

C
chengduoZH 已提交
4935
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4936
      performs in the following way.
G
guosheng 已提交
4937

4938
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4939
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4940
        last two dimensions and a batched matrix multiply supporting broadcast
4941
        applies on the two tensors.
G
guosheng 已提交
4942

Y
ying 已提交
4943 4944
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4945
    removed after matrix multiplication.
G
guosheng 已提交
4946 4947 4948

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4949 4950 4951
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4952
        alpha (float): The scale of output. Default 1.0.
4953
        name(str|None): A name for this layer(optional). If set None, the layer
4954
            will be named automatically.
G
guosheng 已提交
4955 4956

    Returns:
4957
        Variable: The product Tensor variable.
G
guosheng 已提交
4958

G
guosheng 已提交
4959 4960 4961
    Examples:
        .. code-block:: python

4962
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4963 4964
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4965

4966 4967
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4968

4969 4970
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4971

4972 4973
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4974 4975 4976 4977

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4978 4979
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4980

Y
ying 已提交
4981
            # x: [M], y: [N]
4982
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4983
    """
Y
ying 已提交
4984 4985 4986 4987 4988 4989 4990

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4991
            y_shape = y_shape + [1]
Y
ying 已提交
4992 4993 4994 4995 4996 4997 4998

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4999 5000
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5001

C
chengduo 已提交
5002
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5003
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5004 5005 5006
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5007
                if dim_x != y_shape[i]:
C
chengduo 已提交
5008 5009
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5010 5011 5012

    __check_input(x, y)

5013
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5014
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5015
    helper.append_op(
5016 5017 5018 5019
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5020 5021 5022
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5023
            'alpha': float(alpha),
S
sneaxiy 已提交
5024
        })
5025
    return out
5026 5027


5028
def topk(input, k, name=None):
Q
qingqing01 已提交
5029 5030 5031 5032
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5033
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5034 5035 5036 5037 5038 5039
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5061 5062 5063
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5064
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5065
                 of input.
5066
        name(str|None): A name for this layer(optional). If set None, the layer
5067
                       will be named automatically.
F
fengjiayi 已提交
5068
                       Default: None
Q
qingqing01 已提交
5069 5070

    Returns:
5071 5072 5073
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5074
        within the last dimension of input.
Q
qingqing01 已提交
5075

F
fengjiayi 已提交
5076 5077
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5078 5079 5080 5081 5082 5083 5084

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5085 5086
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5087 5088 5089 5090 5091 5092
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5093 5094
    helper.append_op(
        type="top_k",
W
whs 已提交
5095
        inputs=inputs,
Q
qingqing01 已提交
5096 5097
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5098
        attrs=attrs)
Q
qingqing01 已提交
5099 5100 5101 5102 5103
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5104
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5105
    """
Y
ying 已提交
5106 5107 5108 5109 5110 5111 5112 5113 5114
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5115

Y
ying 已提交
5116
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5117

5118
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5119 5120
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5121
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5122

5123
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5124 5125
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5126

5127 5128 5129
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5130
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5131
                          the length of reference string.
5132
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5133
                                     calculating edit distance.
5134
        name (str): The name of this layer. It is optional.
5135

W
wanghaoshuang 已提交
5136
    Returns:
W
wanghaoshuang 已提交
5137
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5138 5139 5140 5141

    Examples:
        .. code-block:: python

T
tink2123 已提交
5142 5143
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5144
            cost = fluid.layers.edit_distance(input=x,label=y)
5145
    """
5146
    helper = LayerHelper("edit_distance", **locals())
5147

5148
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5149
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5150 5151
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5152 5153 5154 5155 5156

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5157
            attrs={"tokens": ignored_tokens})
5158 5159 5160 5161 5162
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5163
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5164
            attrs={"tokens": ignored_tokens})
5165 5166
        label = erased_label

5167
    # edit distance op
X
Xin Pan 已提交
5168 5169
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5170 5171 5172 5173
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5174 5175
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5176 5177
        attrs={"normalized": normalized})

5178
    return edit_distance_out, sequence_num
5179 5180 5181 5182 5183


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5184

Y
ying 已提交
5185 5186 5187 5188
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5206
        input.lod = [[4, 4]]
M
minqiyang 已提交
5207

W
whs 已提交
5208
        Computation:
5209

W
whs 已提交
5210 5211 5212 5213 5214 5215
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5216 5217 5218 5219 5220

        output.data = [[2],
                       [1],
                       [3]]

5221
        output.lod = [[2, 1]]
5222

W
whs 已提交
5223

5224 5225
    Args:

Y
ying 已提交
5226 5227 5228 5229 5230 5231 5232 5233 5234
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5235
        name (str): The name of this layer. It is optional.
5236 5237

    Returns:
H
haowang101779990 已提交
5238 5239 5240
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5241
                  LoD [[]] and dims [1, 1].
5242 5243 5244 5245 5246

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5247

5248
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5249
    """
5250
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5251
    _, topk_indices = topk(input, k=1)
5252 5253

    # ctc align op
X
Xin Pan 已提交
5254
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5255 5256 5257
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5258
        outputs={"Output": [ctc_out]},
5259 5260
        attrs={"merge_repeated": True,
               "blank": blank})
5261
    return ctc_out
5262 5263


W
Wu Yi 已提交
5264
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5265
    """
5266 5267
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5268
    to compute Connectionist Temporal Classification (CTC) loss.
5269 5270
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5271 5272 5273
    input tensor.

    Args:
5274
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5275 5276 5277 5278
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5279
       label (Variable): The ground truth of variable-length sequence,
5280 5281 5282
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5283 5284
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5285 5286 5287
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5288
         follewed by a mean_op.
W
Wu Yi 已提交
5289
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5290 5291

    Returns:
5292 5293
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5294 5295

    Examples:
5296

W
wanghaoshuang 已提交
5297
        .. code-block:: python
5298

5299 5300 5301
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5302 5303

    """
F
fengjiayi 已提交
5304
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5305 5306
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5307 5308 5309 5310 5311 5312
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5313 5314 5315 5316 5317
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5318
    return loss_out
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5334 5335 5336
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5337 5338 5339 5340 5341
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5342

5343
            out.lod  = [[0, 1, 3]]
5344 5345 5346 5347

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5348 5349 5350 5351 5352 5353 5354
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5355 5356 5357

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5358 5359

    Returns:
5360

5361 5362 5363 5364 5365
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5366
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5367
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5368 5369
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5370
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5371 5372 5373 5374 5375 5376
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5377 5378


5379 5380 5381 5382
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5383 5384 5385 5386 5387 5388
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5389
        num_neg_samples=None,
5390 5391 5392
        name=None,
        sampler="uniform",
        custom_dist=None,
5393 5394
        seed=0,
        is_sparse=False):
5395 5396 5397 5398 5399 5400 5401
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5402 5403
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5404
            sample is 1.0.
C
chengduo 已提交
5405 5406 5407 5408 5409 5410 5411 5412 5413
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5414
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5415 5416
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5417 5418 5419
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5420
        custom_dist (float[]): A float[] with size=num_total_classes.
5421 5422 5423 5424
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5425
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5426

5427
    Returns:
Y
Yibing Liu 已提交
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5455 5456 5457 5458 5459 5460 5461 5462 5463

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5464

5465
    """
Y
Yang Yu 已提交
5466 5467 5468
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5469 5470

    dim = input.shape[1]
Y
Yang Yu 已提交
5471 5472 5473 5474 5475 5476
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5477
    inputs = {}
C
chengduo 已提交
5478 5479 5480 5481 5482 5483 5484
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5485 5486 5487
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5488

5489 5490 5491 5492
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5493 5494 5495 5496 5497 5498 5499

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5500 5501 5502 5503 5504 5505 5506 5507 5508
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5509
            if normal_prob - 1.0 > 0:
5510
                bigs.append((i, normal_prob))
5511
            elif 1.0 - normal_prob > 0:
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5527
            if big_left - 1.0 > 0:
5528
                bigs.append((big_idx, big_left))
5529
            elif 1.0 - big_left > 0:
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5559 5560 5561 5562
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5563 5564 5565 5566 5567
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5568 5569 5570 5571
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5572

Y
Yang Yu 已提交
5573 5574
    attrs = {
        'num_total_classes': int(num_total_classes),
5575 5576
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5577
        'sampler': sampler,
5578 5579
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5580
    }
Y
Yang Yu 已提交
5581 5582 5583

    helper.append_op(
        type='nce',
C
chengduo 已提交
5584
        inputs=inputs,
Y
Yang Yu 已提交
5585 5586 5587 5588 5589 5590
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5591
    return cost / (num_neg_samples + 1)
5592 5593


C
chengduo 已提交
5594 5595
def hsigmoid(input,
             label,
5596
             num_classes,
C
chengduo 已提交
5597 5598
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5599
             name=None,
5600 5601 5602
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5603
             is_sparse=False):
W
weixing02 已提交
5604 5605
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5606
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5607
    complete binary tree, or you can use is_custom to pass your own tree to
5608
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5609 5610 5611 5612 5613 5614
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5615
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5616
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5617

5618 5619
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5620 5621 5622 5623
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5624
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5625
       related to the same batch of inputs.
5626

W
weixing02 已提交
5627
    Args:
M
minqiyang 已提交
5628
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5629 5630 5631 5632
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5633 5634
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5635
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5647
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5648
            it should be in leaf -> root order
M
minqiyang 已提交
5649 5650 5651
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5652
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5653
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5654
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5655
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5656
             of W and input will be sparse.
W
weixing02 已提交
5657 5658

    Returns:
J
JiabinYang 已提交
5659
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5660 5661 5662 5663 5664

    Examples:

        .. code-block:: python

G
guosheng 已提交
5665 5666 5667
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5668 5669 5670 5671
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5672 5673
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5674
    dim = input.shape[1]
5675
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5676 5677 5678
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5679 5680 5681 5682
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5683 5684
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5685 5686 5687
    else:
        pass

J
JiabinYang 已提交
5688
    weights = None
5689 5690 5691 5692
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5693
    if not is_custom:
J
JiabinYang 已提交
5694 5695 5696 5697 5698 5699 5700 5701
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5702
            shape=[num_classes, dim],
J
JiabinYang 已提交
5703 5704
            is_bias=False,
            dtype=input.dtype)
5705 5706 5707
    inputs = {
        "X": input,
        "W": weights,
5708
        "PathTable": path_table,
5709
        "PathCode": path_code,
5710 5711
        "Label": label
    }
W
weixing02 已提交
5712
    if helper.bias_attr:
5713
        if not is_custom:
J
JiabinYang 已提交
5714 5715
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5716
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5717 5718 5719 5720 5721 5722
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5723
                shape=[num_classes, 1],
J
JiabinYang 已提交
5724 5725 5726
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5727 5728
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5729
        inputs=inputs,
W
weixing02 已提交
5730
        outputs={"Out": out,
5731 5732 5733 5734 5735 5736 5737
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5738 5739 5740
    return out


Y
fix ci.  
ying 已提交
5741
def transpose(x, perm, name=None):
Y
ying 已提交
5742 5743 5744 5745 5746 5747 5748
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5749 5750 5751
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5752 5753 5754 5755 5756 5757 5758

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5759
            # use append_batch_size=False to avoid prepending extra
5760
            # batch size in shape
5761
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5762
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5763
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5764 5765
    """

Y
fix ci.  
ying 已提交
5766
    if len(perm) != len(x.shape):
Y
ying 已提交
5767 5768 5769
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5770 5771 5772 5773 5774 5775
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5776 5777

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5778 5779
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5780
    helper.append_op(
5781
        type='transpose2',
Y
fix ci.  
ying 已提交
5782
        inputs={'X': [x]},
5783 5784
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5785 5786
        attrs={'axis': perm})
    return out
5787 5788


5789 5790 5791 5792 5793 5794 5795
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5796
    """
5797 5798 5799 5800 5801 5802 5803
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5804 5805 5806 5807 5808 5809 5810 5811 5812 5813

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5832 5833 5834 5835 5836 5837 5838 5839 5840
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5841 5842 5843
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5844 5845 5846 5847 5848
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5876 5877 5878
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5891
            output.dims = {8, 8}
5892

5893
            output.lod = [[4, 4]]
5894

T
Tink_Y 已提交
5895
    Examples:
5896 5897 5898

        .. code-block:: python

5899 5900
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5901 5902

    """
W
wanghaoshuang 已提交
5903 5904 5905 5906 5907 5908 5909 5910 5911 5912

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5913 5914 5915 5916 5917 5918 5919
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5920
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5921
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5922
    helper.append_op(
5923
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5924
    return out
5925 5926


Y
yuyang18 已提交
5927
@templatedoc()
5928
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5929 5930
    """
    ${comment}
5931 5932

    Args:
Y
yuyang18 已提交
5933
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5934 5935
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5936 5937 5938 5939 5940
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5941
        ${out_comment}.
5942 5943

    Examples:
Y
yuyang18 已提交
5944 5945 5946 5947
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5948 5949 5950 5951 5952 5953
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5954
    out = helper.create_variable_for_type_inference(dtype)
5955 5956 5957 5958 5959
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5960
    return helper.append_activation(out)
5961 5962


Y
yuyang18 已提交
5963
@templatedoc()
5964 5965
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5966 5967 5968 5969 5970 5971 5972
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5973 5974

    Args:
Y
yuyang18 已提交
5975 5976
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5977 5978

    Returns:
Y
yuyang18 已提交
5979
        ${out_comment}.
5980 5981
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5982 5983 5984 5985 5986

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5987
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5988 5989 5990 5991 5992 5993
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5994 5995


5996 5997 5998
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5999
                               ignore_index=kIgnoreIndex,
6000
                               numeric_stable_mode=True,
6001
                               return_softmax=False):
6002 6003
    """
    **Softmax With Cross Entropy Operator.**
6004

6005 6006 6007 6008
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
6009

6010 6011 6012
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6013

6014 6015 6016
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
6017

6018
    The equation is as follows:
6019

6020
    1) Hard label (one-hot label, so every sample has exactly one class)
6021

6022 6023 6024 6025
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6026

6027 6028 6029
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6030

6031 6032 6033 6034
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
6035 6036 6037
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
6038

H
haowang101779990 已提交
6039
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6040

H
haowang101779990 已提交
6041
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6042

H
haowang101779990 已提交
6043
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6044 6045 6046

    and then cross entropy loss is calculated by softmax and label.

6047 6048 6049 6050 6051 6052 6053 6054
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
6055 6056
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
6057
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
6058 6059 6060
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
6061 6062 6063
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
6064
                                    stable algorithm. Default: True
6065
        return_softmax (bool): A flag indicating whether to return the softmax
6066
                               along with the cross entropy loss. Default: False
6067

6068
    Returns:
H
haowang101779990 已提交
6069 6070 6071 6072 6073
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
6074 6075 6076 6077 6078 6079 6080

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6081 6082
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6083 6084
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6085 6086
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6087 6088 6089 6090 6091 6092
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6093 6094 6095 6096 6097
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
6098 6099 6100 6101

    if return_softmax:
        return loss, softmax

6102 6103 6104
    return loss


6105 6106 6107
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6108
                                       num_true=1,
6109
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6110 6111 6112
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6113
                                       seed=0):
X
xuezhong 已提交
6114 6115 6116 6117 6118
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6119
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6120 6121 6122 6123 6124 6125 6126 6127
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6128
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6129 6130 6131 6132 6133 6134 6135 6136
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6137
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6149
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6150 6151 6152 6153 6154
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6155
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6156
            logits.
X
xuezhong 已提交
6157 6158 6159 6160 6161
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6162 6163 6164
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6185 6186
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6187 6188 6189 6190 6191

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6192
            'Labels': label,
X
xuezhong 已提交
6193 6194
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6195 6196 6197 6198
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6199
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6200 6201 6202
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6203
            'use_customized_samples': use_customized_samples,
6204
            'uniq': True,
X
xuezhong 已提交
6205 6206 6207 6208
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6209 6210
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6211 6212 6213 6214 6215 6216
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6217 6218
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6219
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6220
                'Label': sampled_softlabel},
X
xuezhong 已提交
6221 6222 6223
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6224
            'soft_label': True,
X
xuezhong 已提交
6225 6226 6227
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6228
    return loss / num_true
X
xuezhong 已提交
6229 6230


6231 6232
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6233 6234
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6235
    For each instance, it computes the smooth L1 loss element by element first
6236
    and then sums all the losses. So the shape of ouput Variable is
6237
    [batch_size, 1].
6238

6239 6240
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6241
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6242
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6243
            L1 loss op with same shape as :attr:`x`.
6244
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6245 6246
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6247
            by this tensor element by element.
6248
        outside_weight (Variable|None): A tensor with rank at least 2. This
6249 6250
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6251
            element by element.
6252
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6253 6254
           scalar with default value 1.0.

6255
    Returns:
6256
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6257 6258 6259 6260 6261

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6262 6263
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6264
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6265
            out = fluid.layers.smooth_l1(x=fc, y=label)
6266
    """
6267

6268
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6269 6270
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6283 6284 6285 6286


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6287
    This layer creates the one-hot representations for input indices.
6288 6289

    Args:
Y
Yibing Liu 已提交
6290 6291
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6292 6293

    Returns:
Y
Yibing Liu 已提交
6294
        Variable: The one-hot representations of input.
6295 6296

    Examples:
C
caoying03 已提交
6297
        .. code-block:: python
6298

Y
Yibing Liu 已提交
6299 6300
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6301 6302
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6303
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6304 6305 6306 6307 6308 6309
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
6310 6311


Y
Yu Yang 已提交
6312
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6313
    """
Y
yi.wu 已提交
6314 6315 6316
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6317 6318 6319 6320 6321 6322

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6323 6324
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6325 6326 6327 6328 6329 6330

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6331 6332
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6333 6334
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6335 6336 6337 6338 6339
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6340
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6341
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6342 6343
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6344
            outputs={'Out': [counter]},
M
minqiyang 已提交
6345 6346
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6347 6348 6349
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6350 6351


6352
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6353
    """
C
caoying03 已提交
6354 6355
    Gives a new shape to the input Tensor without changing its data.

6356 6357 6358 6359 6360
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6361

6362
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6363

6364 6365 6366 6367
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6368
    2. 0 means the actual dimension value is going to be copied from the
6369 6370 6371 6372
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6373 6374

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6375
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6376
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6377

6378
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6379 6380
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6381 6382
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6383
    dimensions.
C
caoying03 已提交
6384

6385
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6386 6387 6388 6389
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6390 6391

    Args:
6392
        x(variable): The input tensor.
C
caoying03 已提交
6393 6394
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6395 6396 6397 6398 6399
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6400 6401
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6402 6403 6404
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6405
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6406
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6407

6408
    Returns:
G
guosheng 已提交
6409 6410 6411 6412
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6413

X
Xin Pan 已提交
6414 6415 6416
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6417 6418
    Examples:
        .. code-block:: python
G
guosheng 已提交
6419

6420
            data = fluid.layers.data(
6421
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6422
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6423
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6424 6425 6426
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6427
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6428 6429 6430 6431 6432
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6433

6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6449
    helper = LayerHelper("reshape2", **locals())
6450 6451
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6452
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6453
    helper.append_op(
6454
        type="reshape2",
X
Xin Pan 已提交
6455
        inputs=inputs,
D
dzhwinter 已提交
6456
        attrs={"shape": shape},
6457 6458
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6459

D
dzhwinter 已提交
6460
    return helper.append_activation(out)
6461

6462

6463
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6464
    """
M
minqiyang 已提交
6465 6466 6467
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6468
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6469

H
haowang101779990 已提交
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6491

Y
Yibing Liu 已提交
6492
    Args:
6493
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6494
        axes (list): List of integers, indicating the dimensions to be squeezed.
6495
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6496 6497 6498 6499 6500 6501 6502 6503

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6504
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6505
    """
6506 6507
    assert not _in_imperative_mode(), (
        "squeeze layer is not supported in imperative mode yet.")
Y
Yibing Liu 已提交
6508
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6509 6510
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6511
    helper.append_op(
6512
        type="squeeze2",
6513
        inputs={"X": input},
Y
Yibing Liu 已提交
6514
        attrs={"axes": axes},
6515 6516
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6517

6518 6519 6520
    return out


6521
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6522
    """
M
minqiyang 已提交
6523 6524 6525
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6526

M
minqiyang 已提交
6527
    For example:
H
haowang101779990 已提交
6528 6529 6530

    .. code-block:: text

M
minqiyang 已提交
6531
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6532
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6533

Y
Yibing Liu 已提交
6534
    Args:
6535
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6536
        axes (list): List of integers, indicating the dimensions to be inserted.
6537
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6538 6539 6540 6541 6542 6543 6544 6545

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6546
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6547 6548
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6549 6550
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6551
    helper.append_op(
6552
        type="unsqueeze2",
6553
        inputs={"X": input},
Y
Yibing Liu 已提交
6554
        attrs={"axes": axes},
6555 6556
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6557

6558 6559
    return out

6560

Y
yangyaming 已提交
6561
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6562
    """
Y
Yibing Liu 已提交
6563
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6564 6565 6566 6567
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6568
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6569 6570 6571 6572 6573 6574

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6575
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6576 6577 6578
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6579
            target_lod: [4, 2]
Y
yangyaming 已提交
6580 6581

            then we get a 1-level LoDTensor:
6582
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6583 6584 6585 6586 6587 6588
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6589
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6590 6591 6592 6593
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6594
                y.data = [[2, 4]]
Y
yangyaming 已提交
6595 6596 6597
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6598
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6599 6600 6601 6602 6603 6604
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6605
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6606 6607 6608 6609
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6610
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6611 6612 6613 6614
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6615
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6616 6617 6618 6619 6620
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6621
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6622
                           from :attr:`y`.
Y
yangyaming 已提交
6623
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6624
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6625 6626

    Returns:
Y
Yibing Liu 已提交
6627
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6628 6629

    Raises:
Y
Yibing Liu 已提交
6630
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6631 6632 6633 6634 6635 6636 6637 6638 6639

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6640
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6666
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6695 6696
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6709 6710 6711
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6725 6726 6727 6728


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6729
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6730
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6731

G
guosheng 已提交
6732 6733 6734 6735
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6758
                         The length of :attr:paddings must be
G
guosheng 已提交
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6769

G
guosheng 已提交
6770 6771 6772 6773 6774 6775
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6776
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6777 6778 6779 6780 6781 6782 6783
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6784 6785


C
chengduo 已提交
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6817 6818
		And
            pad_value = -1,
C
chengduo 已提交
6819

T
Tink_Y 已提交
6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6855
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6856 6857 6858 6859 6860 6861 6862 6863 6864
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6865 6866 6867 6868 6869 6870 6871
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6872 6873
    called label-smoothing regularization (LSR).

6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6897
                              be :math:`(1, class\_num)`.
6898 6899
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6900
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6920
    smooth_label = helper.create_variable_for_type_inference(dtype)
6921 6922 6923 6924 6925 6926 6927
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6928 6929


W
wopeizl 已提交
6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6966 6967


J
jerrywgz 已提交
6968 6969 6970 6971 6972 6973
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6974 6975
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6992 6993 6994
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6995 6996 6997 6998 6999 7000
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7001
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7042 7043
        .. code-block:: python

W
whs 已提交
7044 7045 7046 7047
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
7048
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7049 7050 7051 7052 7053 7054
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7055 7056


7057 7058 7059 7060
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7061
                 resample='BILINEAR',
7062 7063
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7064
                 align_mode=1):
7065
    """
Q
qiaolongfei 已提交
7066
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7067

7068
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7069 7070 7071
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7072

7073
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7074

7075
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7076

7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7087
    Align_corners and align_mode are optinal parameters,the calculation method 
7088 7089 7090 7091
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7092
    .. code-block:: text
7093

T
Tink_Y 已提交
7094
        For scale:
7095
          
T
Tink_Y 已提交
7096
            if align_corners = True && out_size > 1 :
7097

T
Tink_Y 已提交
7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7109

T
Tink_Y 已提交
7110 7111
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7112

T
Tink_Y 已提交
7113 7114
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7115

T
Tink_Y 已提交
7116 7117
          else:
              align_corners = True
7118

T
Tink_Y 已提交
7119 7120
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7121

T
Tink_Y 已提交
7122 7123
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7124

T
Tink_Y 已提交
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7135

T
Tink_Y 已提交
7136 7137 7138 7139
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7140

T
Tink_Y 已提交
7141 7142
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7143 7144 7145 7146 7147 7148 7149 7150 7151

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7152
    Args:
7153
        input (Variable): The input tensor of image resize layer,
7154 7155
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7156
        out_shape(list|tuple|Variable|None): Output shape of image resize
7157 7158
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7159
        scale(float|None): The multiplier for the input height or width.
7160 7161 7162
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7163 7164
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7165
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7166
                       currently.
7167
                       Default: 'BILINEAR'
7168 7169 7170
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7171
                                :attr:`out_shape` and :attr:`scale` specifying
7172 7173 7174 7175 7176 7177 7178
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7179 7180
                                constructing stage.
                                Default: None
7181 7182 7183 7184
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7185
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7186 7187
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7188 7189

    Returns:
Q
update  
qiaolongfei 已提交
7190 7191
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7192

7193 7194 7195
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7196
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7197 7198 7199
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7200 7201
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7202

7203 7204 7205
    Examples:
        .. code-block:: python

7206
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7207
    """
7208 7209 7210 7211
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7212 7213
    if resample not in resample_methods:
        raise ValueError(
7214
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7215
        )
7216
    resample_type = resample_methods[resample]
7217 7218 7219 7220 7221 7222

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7223
    if out_shape is None and scale is None:
7224
        raise ValueError("One of out_shape and scale must not be None.")
7225
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7226
    dtype = helper.input_dtype()
7227 7228 7229 7230

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7231 7232 7233
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7234
    if out_shape is not None:
7235 7236 7237 7238
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7239
            inputs['OutSize'] = out_shape
7240 7241 7242 7243 7244 7245 7246 7247
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7248 7249 7250 7251
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7252 7253 7254 7255 7256
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7257
    out = helper.create_variable_for_type_inference(dtype)
7258
    helper.append_op(
7259
        type='{}_interp'.format(resample_type),
7260
        inputs=inputs,
7261
        outputs={"Out": out},
7262 7263 7264 7265 7266 7267 7268
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7269
    return out
F
stash  
fengjiayi 已提交
7270 7271


7272
@templatedoc(op_type="bilinear_interp")
7273 7274 7275 7276
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7277 7278
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7279
                    align_mode=1):
7280
    """
7281 7282
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7283 7284
    in priority order.

7285 7286 7287 7288
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7289 7290
    again in the other direction.

7291
    For details of bilinear interpolation, please refer to Wikipedia:
7292
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7293

T
tink2123 已提交
7294
    Align_corners and align_mode are optinal parameters,the calculation 
7295 7296 7297 7298
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7299
    .. code-block:: text
7300

T
Tink_Y 已提交
7301
        For scale:
7302
          
T
Tink_Y 已提交
7303
            if align_corners = True && out_size > 1 :
7304

T
Tink_Y 已提交
7305 7306 7307 7308 7309
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7310

T
Tink_Y 已提交
7311 7312 7313 7314 7315 7316 7317 7318 7319 7320
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7321 7322


T
Tink_Y 已提交
7323
          else:
T
tink2123 已提交
7324

T
Tink_Y 已提交
7325 7326
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7327

T
Tink_Y 已提交
7328 7329
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7330 7331 7332



Y
yuyang18 已提交
7333 7334 7335 7336
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7337

Y
yuyang18 已提交
7338 7339 7340 7341 7342
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7343 7344 7345
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7346
                                :attr:`out_shape` and :attr:`scale` specifying
7347 7348 7349 7350 7351 7352 7353
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7354 7355
                                constructing stage.
                                Default: None
7356 7357
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7358 7359 7360

    Returns:
        ${out_comment}.
7361 7362 7363 7364 7365

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7366 7367
    """

7368 7369
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7370 7371


7372
@templatedoc(op_type="nearest_interp")
7373 7374 7375 7376
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7377 7378
                   actual_shape=None,
                   align_corners=True):
7379
    """
7380
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7381 7382
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7383 7384
    out_shape and scale in priority order.

7385 7386
    Example:

T
Tink_Y 已提交
7387 7388 7389 7390 7391
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7392

T
Tink_Y 已提交
7393 7394 7395 7396 7397 7398 7399 7400
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7401
          
T
Tink_Y 已提交
7402 7403
          if:
              align_corners = False
7404

T
Tink_Y 已提交
7405 7406
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7407

T
Tink_Y 已提交
7408 7409
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7410

T
Tink_Y 已提交
7411 7412
          else:
              align_corners = True
7413

T
Tink_Y 已提交
7414 7415
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7416

T
Tink_Y 已提交
7417 7418
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7419 7420


7421
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7422
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7423 7424 7425 7426 7427

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7428

Y
yuyang18 已提交
7429 7430 7431 7432 7433
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7434 7435 7436
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7437
                                :attr:`out_shape` and :attr:`scale` specifying
7438 7439 7440 7441 7442 7443 7444
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7445 7446
                                constructing stage.
                                Default: None
7447
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7448 7449 7450

    Returns:
        ${out_comment}.
7451 7452 7453 7454 7455

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7456 7457
    """

7458 7459
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7460 7461 7462 7463


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7464 7465 7466
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7467 7468 7469 7470 7471 7472 7473
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7474
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7475

7476
    Returns:
Q
update  
qiaolongfei 已提交
7477
        Variable: The output is a 4-D tensor of the shape
7478
        (num_batches, channls, out_h, out_w).
7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7489 7490 7491
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7492 7493 7494
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7495 7496
def gather(input, index):
    """
Q
qiaolongfei 已提交
7497 7498
    **Gather Layer**

7499
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7500 7501 7502 7503
    of X indexed by `index` and concatenate them together.

    .. math::

7504
        Out = X[Index]
W
whs 已提交
7505 7506 7507 7508 7509 7510 7511


    .. code-block:: text


                Given:

7512 7513
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7514 7515 7516 7517 7518 7519 7520 7521 7522 7523
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7524
        input (Variable): The source input with rank>=1.
W
whs 已提交
7525 7526 7527 7528 7529 7530
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7531

W
whs 已提交
7532 7533 7534 7535 7536 7537
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7538
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7539 7540 7541 7542 7543 7544 7545 7546
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7578
    out = helper.create_variable_for_type_inference(dtype)
7579 7580 7581 7582 7583 7584 7585 7586 7587
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7588 7589 7590 7591 7592 7593 7594 7595 7596
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7597

Q
Qingsheng Li 已提交
7598
    Given the following input:
H
haowang101779990 已提交
7599

Q
Qingsheng Li 已提交
7600
    .. code-block:: text
H
haowang101779990 已提交
7601

Q
Qingsheng Li 已提交
7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7614

Q
Qingsheng Li 已提交
7615
    .. code-block:: text
H
haowang101779990 已提交
7616

Q
Qingsheng Li 已提交
7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7632
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7633 7634 7635 7636 7637 7638 7639 7640 7641 7642

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7643
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7644 7645 7646 7647 7648 7649 7650 7651 7652
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7666

7667 7668 7669
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7670
    """
F
stash  
fengjiayi 已提交
7671
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7672
    dtype = x.dtype
X
Xin Pan 已提交
7673
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7674
    if seed is None:
7675
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7676
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7677
    if isinstance(seed, int):
F
fengjiayi 已提交
7678 7679 7680 7681 7682
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7683 7684 7685 7686
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7687
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7688 7689
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7690 7691
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7692
    return out
W
whs 已提交
7693 7694


7695
def log(x, name=None):
W
wanghaoshuang 已提交
7696 7697 7698 7699 7700
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7701
        Out = \\ln(x)
W
wanghaoshuang 已提交
7702 7703

    Args:
7704
        x (Variable): Input tensor.
7705 7706
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7707 7708 7709 7710 7711 7712 7713 7714

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7715
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7716 7717
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7718
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7719
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7720
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7721 7722 7723
    return out


7724
def relu(x, name=None):
W
wanghaoshuang 已提交
7725 7726
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7727
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7728 7729 7730 7731
    the tensor elementwise.

    .. math::

7732
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7733 7734

    Args:
7735
        x (Variable): The input tensor.
7736 7737
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7738 7739 7740 7741 7742 7743 7744 7745

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7746
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7747 7748
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7749
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7750
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7751 7752
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7753
    return out
7754 7755


C
chengduo 已提交
7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7797 7798 7799
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7800 7801 7802 7803
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7804
    .. math::
7805

H
haowang101779990 已提交
7806
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7807

7808
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7809 7810 7811 7812 7813
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7814
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7815
                           Its shape should be the same as input.
7816
        num_classes (int): The possible number of labels.
W
whs 已提交
7817 7818

    Returns:
M
minqiyang 已提交
7819 7820
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7821
                     Three variables:
M
minqiyang 已提交
7822

H
haowang101779990 已提交
7823 7824 7825
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7826 7827 7828 7829

    Examples:

        .. code-block:: python
7830

W
whs 已提交
7831 7832 7833 7834
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7835 7836 7837
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7838 7839
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7840 7841
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7842
        outputs={
W
whs 已提交
7843 7844 7845
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7846 7847 7848
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7917
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7918 7919 7920 7921 7922

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7923
            isinstance(shape, Variable)):
7924 7925 7926 7927 7928
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7929
    out = helper.create_variable_for_type_inference(x.dtype)
7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7947 7948


W
whs 已提交
7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7966

W
whs 已提交
7967
              out_shape = [2, 3, 5, 5]
7968

W
whs 已提交
7969
          Step 1:
7970

W
whs 已提交
7971 7972 7973
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7974

W
whs 已提交
7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8020
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8021
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8034

W
whs 已提交
8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8046
            isinstance(out_shape, Variable)):
W
whs 已提交
8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8068 8069
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8070

8071 8072
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8073
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8074 8075 8076
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8077

8078 8079
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8080

H
haowang101779990 已提交
8081 8082
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8083 8084
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8085

H
haowang101779990 已提交
8086 8087 8088 8089 8090 8091 8092 8093
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8094 8095 8096

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8131
    out = helper.create_variable_for_type_inference("float32")
8132 8133 8134 8135 8136 8137 8138 8139

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8140 8141


M
minqiyang 已提交
8142 8143
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8144
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8145
    which compares left score and right score passed in.
M
minqiyang 已提交
8146
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8147 8148 8149

    .. math::

H
haowang101779990 已提交
8150
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8151 8152

    Args:
M
minqiyang 已提交
8153
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8154 8155
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8156
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8157 8158
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8159

M
minqiyang 已提交
8160
    Returns:
M
minqiyang 已提交
8161
       Variable: The ranking loss.
H
haowang101779990 已提交
8162

M
minqiyang 已提交
8163
    Raises:
M
minqiyang 已提交
8164
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8165

M
minqiyang 已提交
8166
    Examples:
H
haowang101779990 已提交
8167

M
minqiyang 已提交
8168
        .. code-block:: python
H
haowang101779990 已提交
8169

M
minqiyang 已提交
8170 8171 8172 8173 8174
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8175
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8176 8177 8178 8179 8180 8181
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8182 8183
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8207
        .. code-block:: text
W
whs 已提交
8208

T
Tink_Y 已提交
8209
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8210

T
Tink_Y 已提交
8211 8212
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8213

T
Tink_Y 已提交
8214
	      Case 0:
M
minqiyang 已提交
8215

T
Tink_Y 已提交
8216 8217 8218
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8219

T
Tink_Y 已提交
8220 8221 8222
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8223

T
Tink_Y 已提交
8224
	      Case 1:
M
minqiyang 已提交
8225

T
Tink_Y 已提交
8226 8227
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8228

T
Tink_Y 已提交
8229 8230 8231
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8232

T
Tink_Y 已提交
8233
	      Case 2:
M
minqiyang 已提交
8234

T
Tink_Y 已提交
8235 8236
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8237

T
Tink_Y 已提交
8238 8239 8240
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8241 8242


W
whs 已提交
8243 8244
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8245
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8269
    out = helper.create_variable_for_type_inference(dtype)
8270 8271 8272 8273 8274 8275 8276 8277 8278
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8279
    helper.append_op(
8280
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8281 8282 8283 8284

    return out


8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8297 8298 8299 8300 8301

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8302 8303
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8304 8305
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8306
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8327 8328 8329 8330 8331

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8332 8333
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8334 8335
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8336
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8357 8358 8359 8360 8361

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8362 8363
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8364 8365
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8366
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8388 8389 8390 8391 8392

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8393
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8394
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8395 8396
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8397
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8420 8421 8422 8423 8424

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8425 8426
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8427 8428
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8429
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8451 8452 8453 8454 8455

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8456 8457
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8458 8459
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8460
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8461 8462 8463 8464 8465 8466 8467 8468
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8469 8470 8471 8472
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8473 8474
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8475 8476 8477

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8478
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8479
          weight (alpha).
J
jerrywgz 已提交
8480
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8481 8482 8483
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8484
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8485
          will be named automatically.
J
jerrywgz 已提交
8486 8487 8488 8489 8490 8491 8492 8493

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8494
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8508
        attr=helper.param_attr,
J
jerrywgz 已提交
8509 8510 8511 8512
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8513
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8514 8515 8516 8517 8518 8519 8520 8521 8522
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8523 8524 8525 8526 8527 8528 8529 8530 8531 8532
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8533
    Returns:
8534
        output(${out_type}): ${out_comment}
8535 8536 8537

    Examples:

8538
    .. code-block:: python
8539

H
haowang101779990 已提交
8540 8541
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8542 8543
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8544
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8563
    Returns:
8564
        output(${out_type}): ${out_comment}
8565 8566 8567 8568 8569

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8570 8571
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8572 8573
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8574
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8592
    Returns:
8593
        output(${out_type}): ${out_comment}
8594 8595 8596 8597 8598

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8599 8600
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8601 8602
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8603
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8604 8605 8606 8607 8608 8609 8610 8611
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8612 8613 8614 8615
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8616

H
haowang101779990 已提交
8617
    For Example:
M
minqiyang 已提交
8618

H
haowang101779990 已提交
8619
    .. code-block:: text
8620

H
haowang101779990 已提交
8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8642 8643 8644

    Args:
        x (Variable): A tensor of rank >= axis.
8645 8646
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8647 8648 8649 8650 8651 8652 8653 8654
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8655 8656 8657
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8658 8659 8660 8661
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8662
        ValueError: If axis is not in range [0, rank(x)].
8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8679 8680
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8681
    helper.append_op(
8682
        type='flatten2',
8683
        inputs={"X": x},
8684 8685
        outputs={'Out': out,
                 'XShape': x_shape},
8686 8687
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8688 8689


C
chenweihang 已提交
8690
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8691
    """
C
chenweihang 已提交
8692
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8693
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8694 8695
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8696

H
haowang101779990 已提交
8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8714 8715

    Args:
C
chenweihang 已提交
8716 8717 8718
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8730 8731
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8732 8733 8734 8735 8736 8737
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8738
    return out
8739

8740

S
sneaxiy 已提交
8741 8742 8743 8744 8745 8746 8747 8748 8749
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8750

S
sneaxiy 已提交
8751
    .. math::
8752

S
sneaxiy 已提交
8753 8754 8755
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8756
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8757 8758 8759 8760
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8761 8762 8763
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8764 8765
    Returns:
        Variable: The output sequence mask.
8766

S
sneaxiy 已提交
8767 8768
    """

Q
qingqing01 已提交
8769
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8770
    if name is None:
X
Xin Pan 已提交
8771
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8772
    else:
X
Xin Pan 已提交
8773
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8774

Q
qingqing01 已提交
8775 8776 8777
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8778 8779
        outputs={'Y': out},
        attrs={
8780
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8781 8782 8783
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8784 8785


X
Xin Pan 已提交
8786
def stack(x, axis=0):
S
sneaxiy 已提交
8787 8788 8789 8790
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8791 8792 8793 8794 8795 8796 8797

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8798
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8799
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8800

C
chengduozh 已提交
8801 8802
    For Example:

C
chengduozh 已提交
8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8841
    Args:
8842
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8843
        axis (int|None): The axis along which all inputs are stacked.
8844

S
sneaxiy 已提交
8845 8846
    Returns:
        Variable: The stacked variable.
8847

S
sneaxiy 已提交
8848 8849
    """

X
Xin Pan 已提交
8850 8851 8852 8853 8854 8855
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8856
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8857
    helper.append_op(
S
sneaxiy 已提交
8858 8859
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8860

X
Xin Pan 已提交
8861
    return out
D
dzhwinter 已提交
8862 8863 8864 8865 8866 8867 8868


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8869

D
dzhwinter 已提交
8870 8871 8872
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8873
    raised.
D
dzhwinter 已提交
8874 8875

    Args:
M
minqiyang 已提交
8876
        x (Variable): Input variable.
D
dzhwinter 已提交
8877 8878
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8879

D
dzhwinter 已提交
8880 8881
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8882

D
dzhwinter 已提交
8883 8884 8885 8886 8887 8888 8889 8890 8891 8892
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8893
    for _ in range(num):
X
Xin Pan 已提交
8894
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8895 8896 8897 8898 8899 8900 8901 8902

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8915

W
whs 已提交
8916 8917 8918 8919
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8920

W
whs 已提交
8921
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8922

W
whs 已提交
8923
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8924

W
whs 已提交
8925 8926 8927 8928
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8929

W
whs 已提交
8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8946
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8947 8948 8949 8950 8951 8952
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8953 8954


G
fix  
gongweibao 已提交
8955 8956 8957
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8958
@templatedoc()
G
fix  
gongweibao 已提交
8959 8960 8961 8962 8963 8964 8965 8966 8967
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8968
    ${comment}
G
fix  
gongweibao 已提交
8969 8970

    Args:
G
gongweibao 已提交
8971 8972 8973
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8974
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8975 8976 8977
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8978 8979
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8980
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8981

8982 8983 8984 8985 8986
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8987 8988 8989
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8990
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9007 9008


G
gongweibao 已提交
9009
@templatedoc()
X
Xin Pan 已提交
9010
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9011
    """
G
gongweibao 已提交
9012
    ${comment}
G
fix  
gongweibao 已提交
9013 9014

    Args:
G
gongweibao 已提交
9015 9016 9017 9018
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9019 9020 9021
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9022
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9023

9024 9025 9026 9027
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9028 9029 9030
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9031
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9032 9033 9034 9035 9036 9037 9038 9039 9040 9041
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9042
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9043 9044 9045 9046 9047
        })

    return out


G
gongweibao 已提交
9048
@templatedoc()
G
fix  
gongweibao 已提交
9049
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9050
    """
G
gongweibao 已提交
9051
    ${comment}
G
fix  
gongweibao 已提交
9052 9053

    Args:
G
gongweibao 已提交
9054 9055 9056 9057
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9058
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9059 9060

    Returns:
G
gongweibao 已提交
9061
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9062

9063 9064 9065 9066 9067 9068 9069 9070 9071 9072
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
9073 9074 9075
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9076
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9088
@templatedoc()
G
fix  
gongweibao 已提交
9089 9090 9091 9092 9093 9094 9095 9096 9097
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9098
    ${comment}
G
fix  
gongweibao 已提交
9099 9100

    Args:
G
gongweibao 已提交
9101 9102
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9103
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9104 9105 9106 9107
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9108
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9109 9110

    Returns:
G
gongweibao 已提交
9111
        out (Variable): ${out_comment}
9112 9113 9114 9115 9116 9117 9118 9119

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9120 9121 9122
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9123
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9142
@templatedoc()
X
Xin Pan 已提交
9143
def sum(x):
G
fix  
gongweibao 已提交
9144
    """
G
gongweibao 已提交
9145
    ${comment}
G
fix  
gongweibao 已提交
9146 9147

    Args:
G
gongweibao 已提交
9148
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9149 9150

    Returns:
G
gongweibao 已提交
9151
        out (Variable): ${out_comment}
9152 9153 9154 9155 9156 9157

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9158 9159 9160
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9161 9162
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9163 9164 9165 9166
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9167
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9168 9169 9170 9171

    return out


G
gongweibao 已提交
9172
@templatedoc()
G
fix  
gongweibao 已提交
9173 9174
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9175
    ${comment}
G
fix  
gongweibao 已提交
9176 9177

    Args:
G
gongweibao 已提交
9178 9179 9180 9181
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9182 9183

    Returns:
G
gongweibao 已提交
9184
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9185

9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9197 9198 9199
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9200 9201
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9215 9216
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9217
    Get the shape of the input.
G
fix  
gongweibao 已提交
9218 9219

    Args:
C
chengduozh 已提交
9220
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9221 9222

    Returns:
C
fix doc  
chengduozh 已提交
9223
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9224

9225 9226 9227 9228 9229 9230
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9231 9232 9233
    """

    helper = LayerHelper('shape', **locals())
9234
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9235
    helper.append_op(
G
fix  
gongweibao 已提交
9236
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9237 9238

    return out
G
merge  
gongweibao 已提交
9239 9240


S
sneaxiy 已提交
9241 9242 9243 9244
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
9245 9246 9247 9248
    if _in_imperative_mode():
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9249 9250 9251 9252
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9253 9254
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9255
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9256 9257 9258
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9259

S
sneaxiy 已提交
9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9271
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9272 9273 9274 9275 9276 9277 9278 9279
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9280
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9281
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9282 9283 9284 9285 9286 9287

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9288
    if name is None:
X
Xin Pan 已提交
9289
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9290 9291 9292
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9293 9294 9295 9296 9297 9298 9299 9300 9301 9302

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9303
    return helper.append_activation(out)
S
sneaxiy 已提交
9304 9305


X
Xin Pan 已提交
9306
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9307 9308 9309
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9310
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9311 9312 9313
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9314
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9315 9316 9317
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9318
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9319 9320 9321
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9322
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9323 9324 9325
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9326
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9327 9328 9329
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9330
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9331 9332 9333
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9334 9335 9336 9337 9338 9339 9340 9341
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9342
for func in [
9343 9344 9345 9346 9347 9348 9349 9350 9351
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9352 9353 9354 9355 9356
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9357 9358
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9359
        ])
M
minqiyang 已提交
9360 9361


9362
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9363 9364
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9365 9366
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9367 9368 9369

    if out is None:
        if name is None:
X
Xin Pan 已提交
9370
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9386
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9398 9399 9400 9401 9402 9403 9404 9405 9406

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9407 9408 9409 9410 9411 9412 9413
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9414
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9426 9427 9428 9429 9430 9431 9432 9433 9434

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9435 9436 9437 9438 9439 9440 9441
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9442
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9454 9455 9456 9457 9458 9459 9460 9461 9462

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9463 9464 9465 9466 9467 9468 9469
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9470
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9471 9472 9473 9474 9475 9476 9477 9478 9479 9480
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9481 9482 9483 9484 9485 9486 9487

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9488 9489 9490 9491
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9507 9508 9509 9510 9511 9512 9513

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9514 9515 9516 9517 9518
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9519 9520 9521 9522
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9546 9547 9548 9549 9550 9551 9552

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9553 9554 9555 9556 9557
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9558 9559 9560 9561
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9562 9563 9564 9565 9566 9567 9568 9569

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9588
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9589 9590 9591 9592 9593 9594 9595 9596 9597 9598
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9641
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9642 9643 9644 9645 9646 9647 9648 9649 9650
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9651 9652
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9653 9654 9655 9656 9657 9658
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9659 9660 9661
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9662 9663
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9664 9665 9666 9667 9668 9669
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9670
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9671
        name(basestring|None): Name of the output.
9672 9673
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9674 9675 9676

    Returns:
        out(${out_type}): ${out_comment}
9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9691 9692 9693 9694 9695
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9696
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9697 9698 9699 9700 9701 9702 9703 9704
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9705 9706
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9727
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9728 9729 9730 9731 9732 9733 9734 9735 9736 9737
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9738 9739


J
JiabinYang 已提交
9740
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9741
    """
J
JiabinYang 已提交
9742
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9743 9744 9745

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9746
    The attr blocksize indicates the input block size.
9747 9748

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9749
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9750 9751

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9752
    (but keeping all data)
J
JiabinYang 已提交
9753

J
JiabinYang 已提交
9754
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9755
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9756 9757 9758 9759 9760
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9761
    Args:
J
JiabinYang 已提交
9762
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9763
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9764 9765

    Returns:
J
JiabinYang 已提交
9766
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9767 9768

    Raises:
J
JiabinYang 已提交
9769
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9770 9771 9772 9773 9774 9775

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9776
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9777
                x=data, blocksize=2)
J
JiabinYang 已提交
9778 9779
    """

J
JiabinYang 已提交
9780
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9781

J
JiabinYang 已提交
9782 9783
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9784 9785

    if name is None:
J
JiabinYang 已提交
9786 9787
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9788 9789 9790 9791 9792
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9793
        type="space_to_depth",
J
JiabinYang 已提交
9794
        inputs={"X": x},
J
JiabinYang 已提交
9795
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9796
        outputs={"Out": out})
J
JiabinYang 已提交
9797 9798
    return out

J
JiabinYang 已提交
9799

S
sneaxiy 已提交
9800 9801
@templatedoc()
def sequence_reverse(x, name=None):
9802
    """
S
sneaxiy 已提交
9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9814
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9815 9816 9817 9818 9819 9820 9821 9822 9823 9824
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9825 9826


9827 9828 9829 9830 9831 9832
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
9833 9834 9835 9836 9837
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9838

9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
9851
        act (str, default None): Activation to be applied to the output of this layer.
9852 9853 9854 9855 9856 9857 9858

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9859
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
9871
    return helper.append_activation(out)
9872 9873


B
barrierye 已提交
9874
def similarity_focus(input, axis, indexes, name=None):
9875
    """
B
barrierye 已提交
9876
    SimilarityFocus Operator
B
barrierye 已提交
9877 9878

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9879

9880 9881 9882
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9883
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9884 9885 9886 9887 9888 9889 9890
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9891
       each index.
B
barrierye 已提交
9892 9893 9894 9895
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9945
    Args:
9946
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9947
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9948
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9949
            1, 2 or 3.
B
barrierye 已提交
9950
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9951 9952

    Returns:
H
haowang101779990 已提交
9953 9954
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9955

B
barrierye 已提交
9956 9957
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9958

B
barrierye 已提交
9959
            data = fluid.layers.data(
B
barrierye 已提交
9960 9961
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9962

B
barrierye 已提交
9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9975 9976 9977 9978 9979
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9980 9981 9982 9983 9984 9985 9986
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9987 9988


M
minqiyang 已提交
9989 9990
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9991 9992
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9993 9994
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10033
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10034
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10035 10036 10037 10038 10039 10040

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10041

M
minqiyang 已提交
10042 10043 10044
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10045 10046
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10047 10048
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10049 10050 10051 10052 10053 10054 10055
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10056 10057


D
dengkaipeng 已提交
10058
@templatedoc()
10059 10060
def grid_sampler(x, grid, name=None):
    """
10061
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10062
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10063 10064 10065 10066
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10067
    interpolation value of 4 nearest corner points.
10068

H
haowang101779990 已提交
10069
    .. code-block:: text
10070

H
haowang101779990 已提交
10071 10072
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10073

H
haowang101779990 已提交
10074 10075
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10076

H
haowang101779990 已提交
10077 10078 10079
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10080

H
haowang101779990 已提交
10081 10082 10083 10084 10085 10086 10087 10088 10089
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10090

H
haowang101779990 已提交
10091 10092 10093 10094
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10095

H
haowang101779990 已提交
10096 10097 10098 10099
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10100

H
haowang101779990 已提交
10101 10102 10103 10104
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10105

H
haowang101779990 已提交
10106 10107
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10108 10109

    Args:
10110 10111 10112
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10113 10114

    Returns:
H
haowang101779990 已提交
10115
        Variable: Output of shape [N, C, H, W] data samples input X
10116 10117
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10118 10119 10120 10121 10122 10123 10124 10125
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10126

D
dengkaipeng 已提交
10127 10128 10129 10130 10131 10132 10133 10134 10135
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10136
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10137 10138
    ipts = {'X': x, 'Grid': grid}

10139
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10140 10141 10142
    return out


G
gmcather 已提交
10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10209
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10210 10211 10212 10213 10214 10215 10216
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10217

H
heqiaozhi 已提交
10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10232 10233 10234 10235
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10236
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10237 10238
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10239
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10240 10241

    .. math::
H
haowang101779990 已提交
10242 10243 10244
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10245 10246

    Where:
H
haowang101779990 已提交
10247 10248
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10263

G
gmcather 已提交
10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10280 10281 10282 10283 10284 10285 10286 10287 10288 10289


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10290
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10291

Q
Qiao Longfei 已提交
10292
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10293 10294 10295
    For example:

    .. math::
H
haowang101779990 已提交
10296
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10297

Q
Qiao Longfei 已提交
10298
    In this formula:
10299 10300
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10301
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10302
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10303 10304 10305
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10306 10307
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10308 10309 10310
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10311
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10312
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10313
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10314 10315 10316 10317
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10318
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10319 10320 10321 10322

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10323
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10324 10325
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10326
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10327 10328 10329 10330

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10331
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10372 10373


S
shippingwang 已提交
10374
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10375 10376
    """
    **Shuffle Channel Operator**
10377

S
shippingwang 已提交
10378 10379 10380 10381 10382 10383
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10384
    
S
shippingwang 已提交
10385
    .. code-block:: text
10386

S
shippingwang 已提交
10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10415
    Args: 
S
shippingwang 已提交
10416 10417
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10418 10419

    Returns:
S
shippingwang 已提交
10420 10421
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10422 10423

    Raises:
S
shippingwang 已提交
10424
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10425 10426 10427

    Examples:
        .. code-block:: python
10428 10429

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10430
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10431 10432 10433
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10434
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10435 10436 10437 10438 10439 10440 10441 10442 10443

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10444
    return out
S
Add  
shippingwang 已提交
10445 10446


S
sneaxiy 已提交
10447
class PyFuncRegistry(object):
S
sneaxiy 已提交
10448 10449 10450
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10451
        if func is None or not callable(func):
S
sneaxiy 已提交
10452 10453 10454
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10455
        # find named args using reflection
S
sneaxiy 已提交
10456 10457 10458 10459 10460 10461 10462
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10463 10464 10465
        '''
        Why record self here?

M
minqiyang 已提交
10466 10467
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10468
           to find the registered function corresponding
M
minqiyang 已提交
10469
           to :code:`idx`.
S
sneaxiy 已提交
10470

M
minqiyang 已提交
10471 10472
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10473
           whose reference count is 1 would cause
M
minqiyang 已提交
10474
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10475 10476
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10477
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10492 10493 10494 10495 10496 10497 10498 10499 10500
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10501

S
sneaxiy 已提交
10502 10503
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10504 10505

        ret = []
S
sneaxiy 已提交
10506 10507 10508
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10509 10510
                continue

S
sneaxiy 已提交
10511 10512
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10513

S
sneaxiy 已提交
10514 10515 10516
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10517

S
sneaxiy 已提交
10518
        return tuple(ret)
S
sneaxiy 已提交
10519 10520


S
sneaxiy 已提交
10521 10522 10523 10524
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10525

S
sneaxiy 已提交
10526 10527 10528 10529 10530 10531 10532 10533
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10534
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10535

S
sneaxiy 已提交
10536 10537
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10538 10539 10540 10541
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10542
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10543
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10544 10545
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10546 10547 10548 10549 10550
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10551
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10552
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10553
                                       None means no backward. Default None.
S
sneaxiy 已提交
10554
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10555
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10556 10557
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10558
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10559 10560 10561

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10562 10563

    Examples:
M
minqiyang 已提交
10564

S
sneaxiy 已提交
10565 10566 10567 10568 10569
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10570
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10571 10572
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10573
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10574 10575 10576
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10577
        >>>
S
sneaxiy 已提交
10578 10579 10580 10581 10582
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10583
        >>>     print(x)
S
sneaxiy 已提交
10584 10585 10586 10587 10588 10589
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10590
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10591 10592
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10593 10594
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10595 10596 10597 10598 10599 10600 10601 10602
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10603
    """
S
sneaxiy 已提交
10604
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10605 10606 10607
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10608
        x = [x]
S
sneaxiy 已提交
10609 10610
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10611

S
sneaxiy 已提交
10612 10613 10614
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10615
        out_list = [out]
S
sneaxiy 已提交
10616
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10617
        out_list = out
S
sneaxiy 已提交
10618 10619 10620
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10621

S
sneaxiy 已提交
10622 10623
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10624
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10625 10626

    for each_out in out_list:
S
sneaxiy 已提交
10627 10628
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10629 10630
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10631

S
sneaxiy 已提交
10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10647 10648 10649 10650

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10651 10652
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10653 10654 10655
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10656
        })
S
sneaxiy 已提交
10657
    return out
S
sneaxiy 已提交
10658 10659 10660


# For debug usage
S
sneaxiy 已提交
10661 10662 10663 10664
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10717

M
minqiyang 已提交
10718

M
minqiyang 已提交
10719
def huber_loss(input, label, delta):
10720
    """
M
minqiyang 已提交
10721 10722 10723
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10724 10725 10726 10727

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10728
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10729 10730 10731 10732

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10733
        huber\_loss = 0.5 * (label - input) * (label - input)
10734 10735 10736 10737 10738 10739 10740


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10741
        delta (float): The parameter of huber loss, which controls
10742 10743 10744
                       the range of outliers

    Returns:
M
minqiyang 已提交
10745
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10746 10747 10748 10749 10750

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10751
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10752
    """
M
minqiyang 已提交
10753
    helper = LayerHelper('huber_loss', **locals())
10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10835 10836


C
ceci3 已提交
10837
from .ops import square
C
ceci3 已提交
10838
from .control_flow import equal
C
ceci3 已提交
10839 10840


C
ceci3 已提交
10841 10842 10843
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10844

C
ceci3 已提交
10845
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10846 10847

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10848
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10849 10850 10851 10852 10853
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10854 10855
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10856 10857 10858 10859 10860 10861 10862

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10863 10864 10865 10866 10867 10868 10869 10870
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10871 10872 10873 10874 10875 10876 10877
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10878
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10879 10880
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10881 10882
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10883 10884 10885 10886
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10887 10888 10889
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10890 10891 10892
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss