Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1e510d99
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1e510d99
编写于
2月 28, 2018
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add ceil_mode option for pool2d and pool3d
上级
69643b5e
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
154 addition
and
29 deletion
+154
-29
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+43
-10
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+3
-1
python/paddle/fluid/tests/unittests/test_pool2d_op.py
python/paddle/fluid/tests/unittests/test_pool2d_op.py
+51
-8
python/paddle/fluid/tests/unittests/test_pool3d_op.py
python/paddle/fluid/tests/unittests/test_pool3d_op.py
+57
-10
未找到文件。
paddle/fluid/operators/pool_op.cc
浏览文件 @
1e510d99
...
...
@@ -17,8 +17,15 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
int
PoolOutputSize
(
int
input_size
,
int
filter_size
,
int
padding
,
int
stride
)
{
int
output_size
=
(
input_size
-
filter_size
+
2
*
padding
)
/
stride
+
1
;
int
PoolOutputSize
(
int
input_size
,
int
filter_size
,
int
padding
,
int
stride
,
bool
ceil_mode
)
{
int
output_size
;
if
(
!
ceil_mode
)
{
output_size
=
(
input_size
-
filter_size
+
2
*
padding
)
/
stride
+
1
;
}
else
{
output_size
=
(
input_size
-
filter_size
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
}
PADDLE_ENFORCE
(
output_size
>
0
,
"Due to the settings of padding(%d), filter_size(%d) and "
"stride(%d), the output size is less than 0, please check "
...
...
@@ -38,6 +45,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
std
::
vector
<
int
>
ksize
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
bool
ceil_mode
=
ctx
->
Attrs
().
Get
<
bool
>
(
"ceil_mode"
);
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
||
in_x_dims
.
size
()
==
5
,
"Pooling intput should be 4-D or 5-D tensor."
);
...
...
@@ -59,8 +67,8 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
std
::
vector
<
int64_t
>
output_shape
({
in_x_dims
[
0
],
in_x_dims
[
1
]});
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
output_shape
.
push_back
(
PoolOutputSize
(
in_x_dims
[
i
+
2
],
ksize
[
i
],
paddings
[
i
],
strides
[
i
]
));
output_shape
.
push_back
(
PoolOutputSize
(
in_x_dims
[
i
+
2
],
ksize
[
i
],
paddings
[
i
],
strides
[
i
],
ceil_mode
));
}
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
ShareLoD
(
"X"
,
"Out"
);
...
...
@@ -167,6 +175,13 @@ Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
"use_cudnn"
,
"(bool, default false) Only used in cudnn kernel, need install cudnn"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"ceil_mode"
,
"(bool, default false) Wether to use the ceil function to calculate "
"output height and width."
"True is the default. If it is set to False, the floor function will"
"be used"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
"(string, default NCHW) Only used in "
...
...
@@ -187,16 +202,21 @@ Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Example:
Input:
X shape: $(N, C, H_{in}, W_{in})$
Output:
Out shape: $(N, C, H_{out}, W_{out})$
Where
$$
For ceil_mode = false:
$$
H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
$$
For ceil_mode = true:
$$
H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
$$
)DOC"
);
}
...
...
@@ -251,6 +271,13 @@ Pool3dOpMaker::Pool3dOpMaker(OpProto *proto, OpAttrChecker *op_checker)
"use_cudnn"
,
"(bool, default false) Only used in cudnn kernel, need install cudnn"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"ceil_mode"
,
"(bool, default false) Wether to use the ceil function to calculate "
"output height and width."
"True is the default. If it is set to False, the floor function will"
"be used"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
"(string, default NCHW) Only used in "
...
...
@@ -267,8 +294,8 @@ The pooling3d operation calculates the output based on
the input, pooling_type, ksize, strides, and paddings parameters.
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
width, respectively. The input(X) size and output(Out) size may be different.
Example:
...
...
@@ -276,12 +303,18 @@ Example:
X shape: $(N, C, D_{in}, H_{in}, W_{in})$
Output:
Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
Where
For ceil_mode = false:
$$
D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
$$
For ceil_mode = true:
$$
D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
$$
)DOC"
);
}
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
1e510d99
...
...
@@ -1437,6 +1437,7 @@ def pool2d(input,
pool_padding
=
0
,
global_pooling
=
False
,
use_cudnn
=
True
,
ceil_mode
=
False
,
name
=
None
):
"""
This function adds the operator for pooling in 2 dimensions, using the
...
...
@@ -1473,7 +1474,8 @@ def pool2d(input,
"global_pooling"
:
global_pooling
,
"strides"
:
pool_stride
,
"paddings"
:
pool_padding
,
"use_cudnn"
:
use_cudnn
"use_cudnn"
:
use_cudnn
,
"ceil_mode"
:
ceil_mode
})
return
pool_out
...
...
python/paddle/fluid/tests/unittests/test_pool2d_op.py
浏览文件 @
1e510d99
...
...
@@ -19,12 +19,21 @@ import paddle.fluid.core as core
from
op_test
import
OpTest
def
max_pool2D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
):
def
max_pool2D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
,
ceil_mode
=
False
):
N
,
C
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
ksize
=
[
H
,
W
]
H_out
=
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
W_out
=
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
H_out
=
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
/
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
W_out
=
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
]
+
strides
[
1
]
-
1
)
/
strides
[
1
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
out
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
for
i
in
xrange
(
H_out
):
for
j
in
xrange
(
W_out
):
...
...
@@ -38,12 +47,21 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=0):
return
out
def
avg_pool2D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
):
def
avg_pool2D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
,
ceil_mode
=
False
):
N
,
C
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
ksize
=
[
H
,
W
]
H_out
=
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
W_out
=
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
H_out
=
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
/
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
W_out
=
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
]
+
strides
[
1
]
-
1
)
/
strides
[
1
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
out
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
for
i
in
xrange
(
H_out
):
for
j
in
xrange
(
W_out
):
...
...
@@ -65,12 +83,13 @@ class TestPool2d_Op(OpTest):
self
.
init_global_pool
()
self
.
init_op_type
()
self
.
init_pool_type
()
self
.
init_ceil_mode
()
if
self
.
global_pool
:
self
.
paddings
=
[
0
for
_
in
range
(
len
(
self
.
paddings
))]
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
output
=
self
.
pool2D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
).
astype
(
"float32"
)
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mode
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input
}
self
.
attrs
=
{
...
...
@@ -80,6 +99,7 @@ class TestPool2d_Op(OpTest):
'pooling_type'
:
self
.
pool_type
,
'global_pooling'
:
self
.
global_pool
,
'use_cudnn'
:
self
.
use_cudnn
,
'ceil_mode'
:
self
.
ceil_mode
,
'data_format'
:
'AnyLayout'
# TODO(dzhwinter) : should be fix latter
}
...
...
@@ -116,6 +136,9 @@ class TestPool2d_Op(OpTest):
def
init_global_pool
(
self
):
self
.
global_pool
=
True
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
False
class
TestCase1
(
TestPool2d_Op
):
def
init_test_case
(
self
):
...
...
@@ -217,5 +240,25 @@ class TestCUDNNCase6(TestCase5):
self
.
op_type
=
"pool2d"
class
TestCeilModeCase1
(
TestCUDNNCase1
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
class
TestCeilModeCase2
(
TestCUDNNCase2
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
class
TestCeilModeCase3
(
TestCase1
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
class
TestCeilModeCase4
(
TestCase2
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_pool3d_op.py
浏览文件 @
1e510d99
...
...
@@ -19,13 +19,24 @@ import paddle.fluid.core as core
from
op_test
import
OpTest
def
max_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
):
def
max_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
,
ceil_mode
=
False
):
N
,
C
,
D
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
ksize
=
[
D
,
H
,
W
]
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
strides
[
2
]
+
1
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
/
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
]
+
strides
[
1
]
-
1
)
/
strides
[
1
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
]
+
strides
[
2
]
-
1
)
/
strides
[
2
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
strides
[
2
]
+
1
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
for
k
in
xrange
(
D_out
):
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
...
...
@@ -42,13 +53,24 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=0):
return
out
def
avg_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
):
def
avg_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
,
ceil_mode
=
False
):
N
,
C
,
D
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
ksize
=
[
D
,
H
,
W
]
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
strides
[
2
]
+
1
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
]
+
strides
[
0
]
-
1
)
/
strides
[
0
]
+
1
if
ceil_mode
else
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
]
+
strides
[
1
]
-
1
)
/
strides
[
1
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
]
+
strides
[
2
]
-
1
)
/
strides
[
2
]
+
1
if
ceil_mode
else
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
strides
[
2
]
+
1
out
=
np
.
zeros
((
N
,
C
,
D_out
,
H_out
,
W_out
))
for
k
in
xrange
(
D_out
):
d_start
=
np
.
max
((
k
*
strides
[
0
]
-
paddings
[
0
],
0
))
...
...
@@ -73,13 +95,14 @@ class TestPool3d_Op(OpTest):
self
.
init_global_pool
()
self
.
init_op_type
()
self
.
init_pool_type
()
self
.
init_ceil_mode
()
if
self
.
global_pool
:
self
.
paddings
=
[
0
for
_
in
range
(
len
(
self
.
paddings
))]
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
output
=
self
.
pool3D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
).
astype
(
"float32"
)
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mode
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input
}
self
.
attrs
=
{
...
...
@@ -89,6 +112,7 @@ class TestPool3d_Op(OpTest):
'pooling_type'
:
self
.
pool_type
,
'global_pooling'
:
self
.
global_pool
,
'use_cudnn'
:
self
.
use_cudnn
,
'ceil_mode'
:
self
.
ceil_mode
,
'data_format'
:
'AnyLayout'
# TODO(dzhwinter) : should be fix latter
}
...
...
@@ -125,6 +149,9 @@ class TestPool3d_Op(OpTest):
def
init_global_pool
(
self
):
self
.
global_pool
=
True
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
False
class
TestCase1
(
TestPool3d_Op
):
def
init_test_case
(
self
):
...
...
@@ -227,5 +254,25 @@ class TestCUDNNCase6(TestCase5):
self
.
op_type
=
"pool3d"
class
TestCeilModeCase1
(
TestCUDNNCase1
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
class
TestCeilModeCase2
(
TestCUDNNCase2
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
class
TestCeilModeCase3
(
TestCase1
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
class
TestCeilModeCase4
(
TestCase2
):
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
True
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录